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This study investigates an integrated optimization problem on the three main types of resources used in

container terminals: berths, quay cranes, and yard storage space. It builds a mixed-integer programming

model for this problem, which takes account of the decisions of berth allocation, quay crane assignment,

and yard storage space unit assignment for incoming vessels. In addition, since the majority of the liner

shipping services operate according to a weekly arrival pattern, the periodicity of the plan is also considered

in the model and in the algorithm. In order to solve the model on large-scale problem instances, we develop

a column generation-based heuristic, and we also suggest some strategies for accelerating the algorithm.

Based on some realistic instances, we conduct extensive numerical experiments to validate the effectiveness

of the proposed model and the efficiency of the algorithm. The results show that the column generation-

based heuristic can yield a good solution with an approximate 1% optimality gap within a much shorter

computation time than that of CPLEX.
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1. Introduction1

In port operations management, it is essential to maximize the throughput because the port oper-2

ators are usually paid by a handling charge per container. The port operators usually have a3

great interest in berth allocation decisions since these define the first planning phase. The planned4

berth locations for vessels are subsequently used as the key input to yard storage, personnel, and5

equipment deployment planning.6
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When making the berth allocation decision, the quay crane (QC) assignment is usually planned7

at the same time because the number of QCs assigned to the vessels will affect their dwelling time in8

the port and will thereafter influence the berth allocation for the vessels. During a vessel’s dwelling9

time at a port, the number of assigned QCs may change over time, which further complicates the10

berth allocation process. Moreover, the decision on allocating berths to vessels is intertwined with11

that of assigning yard space (subblocks) to vessels. The yard assignment impacts the best berth12

positions for vessels and hence affects the berth allocation. On the other hand, the berth positions13

allocated to vessels will impact the assignment of yard space to vessels. As a result, port operators14

face a dilemma as to which operation should be scheduled first.15

Although practitioners usually plan the berth allocation before the yard assignment, ideally these16

two decisions should be optimized simultaneously. This study proposes an integrated model of17

berth allocation, QC assignment, and the yard assignment for container terminals. A column gen-18

eration (CG)-based heuristic is developed to solve the problem in large-scale realistic environments.19

Numerical experiments are conducted to validate the model and to demonstrate the efficiency of20

the algorithm. For a set of real-world-like instances, our method can generate good plans within21

reasonable computation times.22

The remainder of this paper is organized as follows. The related literature is reviewed in Section23

2. Section 3 gives a detailed description of the problems. A mixed-integer mathematical model is24

formulated in Section 4. In Section 5, a CG procedure is developed to solve the linear programming25

relaxation of a proposed set covering model, while a CG-based heuristic developed to obtain feasible26

integer solutions is described in Section 6. Extensive computational experiments are conducted in27

Section 7, and conclusions are drawn in the last section.28

2. Literature Review29

For a comprehensive overview on container terminal operations and maritime logistics, see the30

review papers of Vis and de Koster (2003), Steenken et al. (2004), Stahlbock and Voß (2008),31

Fransoo and Lee (2013), and Meng et al. (2014).32

This study is related to the berth allocation problem (BAP), which is crucial to port operations33

management and is also the basis for making other plans on container scheduling decisions by34

shipping liners. The BAP has attracted significant attention in the last two decades. Imai et al.35

(1997) addressed the static BAP (SBAP) in commercial ports, and Imai et al. (2001) extended the36

SBAP to the dynamic BAP (DBAP), while Monaco and Sammarra (2007) proposed a compact37

reformulation. The BAP can be classified into two types, discrete and continuous, depending on38

whether vessel berthing is performed in a continuous or in a discrete space (Imai et al. 2005, Mauri39

et al. 2016). As for the solution methodology, Ribeiro et al. (2016) developed an adaptive large40
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neighborhood search heuristic, Kim and Moon (2003) proposed a simulated annealing method, and41

Park and Kim (2002) employed a subgradient optimization method. Imai et al. (2007) investigated42

the BAP for indented berths where mega-containerships can be served from two sides. Cordeau43

et al. (2005) built a BAP model based on a vehicle routing problem formulation. For the tactical44

level BAP, Moorthy and Teo (2006) studied a berth template planning problem, which maximizes45

the service level and minimizes the connectivity cost related to the transshipment container groups.46

Cordeau et al. (2007) studied a tactical level service allocation problem arising in the Gioia Tauro47

transshipment hub, based on which Giallombardo et al. (2010) investigated the tactical discrete48

BAP and QC assignment problem. These authors proposed a novel concept called QC-profile to49

facilitate the combination of the BAP and QC assignment problems. For the above problem, Vacca50

et al. (2013) proposed an exact branch-and-price algorithm that can solve instances with up to51

20 ships and five berths. Recently, the effect of tides, which may influence the water depth of the52

navigation channels, has been considered in the BAP by Xu et al. (2012) and Du et al. (2015).53

Following the study of Giallombardo et al. (2010), Zhen et al. (2011) integrated the tactical berth54

allocation planning (also known as berth template) with the yard template planning, for which55

Jin et al. (2015) designed a column generation-based solution method. Similar to the QC-profile, a56

concept of YC-profile was proposed by Jin et al. (2014) and applied to yard management. Hendriks57

et al. (2013) proposed a heuristic for solving a simultaneous berth allocation and yard planning58

problem. For bulk ports, Robenek et al. (2014) designed an exact branch-and-price algorithm to59

solve the integrated berth and yard planning problem.60

Another stream of BAP studies concerns the integrated planning of the BAP and QC assignment.61

Park and Kim (2003) developed a two-phase heuristic solution procedure. Meisel and Bierwirth62

(2009) treated the BAP-QC assignment as a multi-mode resource constrained project scheduling63

problem. Imai et al. (2008) considered the constraint that QCs cannot pass or bypass from one64

side to the other side of a vessel whose containers are being handled. Meisel and Bierwirth (2013)65

proposed a framework for integrating the BAP, QC assignment, and QC scheduling. Recently,66

bunker fuel consumption and emissions have become more and more prevalent in some BAP related67

studies. Thus, Du et al. (2011) proposed a mixed-integer second-order cone programming model68

for a BAP by considering the fuel consumption and vessel emissions. Hu et al. (2014) further69

integrated QC allocation into the BAP considering fuel consumption and emissions from vessels,70

and developed a mixed integer second-order cone programming model. Besides the above studies71

which are mainly based on mathematical programming, some authors have employed discrete72

event simulation, e.g., Legato and Mazza (2001). A simulation optimization technique was recently73

applied to optimize the tactical and operational BAP decisions in an integrated way (Legato et al.74

2014). Randomness in loading and unloading operations and QC assignment were also considered75
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in Legato et al. (2014). For a comprehensive overview on the BAP, see the surveys of Bierwirth76

and Meisel (2010, 2015).77

With respect to the related literature, this paper makes following contributions. First, it extends78

the traditional berth allocation and QC assignment problem, which is related to the quay side79

decision, to the yard side decision making (i.e., the yard storage unit assignment problem). In80

addition, when formulating the integrated model, this study further considers the periodicity of81

the plan because most liner shipping services operate on a weekly basis. Second, although a few82

integrated optimization problems in the fields of container port operations have been studied,83

the solution methods consist of metaheuristics that cannot guarantee an optimality gap. This84

study proposes a CG-based heuristic to solve the model on large-scale problem instances. It also85

conducts numerical experiments based on some realistic instances, the results of which show that86

the proposed algorithm exhibits a better performance than the metaheuristics previously developed.87

3. Problem Background88

Before formulating the integrated model for the berth allocation, the QC assignment, and the yard89

assignment, we provide some problem background.90

3.1. QC-profiles based QC assignment decision91

Normally, the shipping liners will inform the port operators about the feasible and expected92

turnover time interval as well as the total container handling workload for their vessels. Based on93

this information, the port operators will arrange a number of QCs for container handling. When94

more QCs are assigned to an incoming vessel, the container handing process becomes faster and95

the turnover time is shorter. In this context, Giallombardo et al. (2010) proposed the concept of96

QC-profile to facilitate the QC assignment, in which the total workload is denoted as the number97

of QC time steps. Here, one QC time step is the number of containers that can be handled by98

one QC in a time step (e.g., four hours for a time step). Based on the workload, a set of QC-profile99

is generated for the vessel.100

Figure 1 shows three possible QC-profiles for a vessel with a workload of 20 QC × time steps.101

Two important parameters are defined for each QC-profile. One parameter is the handling time by102

using QC-profile p for Vessel i, denoted as hip. For the example of Figure 1, the handing time by103

using QC-profile 1 is six time steps. The other parameter is the number of QCs utilized in the mth
104

time step if QC-profile p is assigned to Vessel i, denoted as qipm. For instance, by using QC-profile105

2, five QCs are utilized in the first time step (i.e., qip1 = 5), four QCs are utilized in the second106

time step (i.e., qip2 = 4), and so on.107



Wang et al.: Column Generation for Integrated Berth and Yard Planning

Article submitted to Transportation Science; manuscript no. 5

Figure 1 An example of QC-profiles for a vessel.

3.2. Integrated berth planning and yard planning108

The integrated planning problem studied in this paper includes three subproblems: the berth109

allocation problem, the QC assignment problem (i.e., the QC-profile assignment) and the yard110

assignment problem, which are intertwined with each other in real-world operations. A visualization111

of the integrated planning problem is shown in Figure 2.112

For an incoming vessel, the berth planning determines when and where the vessel moors at the113

terminal, as well as which QC-profile is assigned to the vessel. In Figure 2, Vessel 1 is scheduled114

to arrive at the terminal in time step 1 and moors at Berth 1. Meanwhile, the QC-profile selected115

for the vessel is such that it will moor for five time steps. Such a decision is made based on the116

information provided by the shipping liner. As mentioned earlier, the feasible time interval (denoted117

as [afi , b
f
i ]), the expected time interval (denoted as [aei , b

e
i ]) as well as the total workload for loading118

and unloading container are provided by the shipping liner prior to the vessel arrival. The port119

operators attempt to construct the berth schedules and assign the QCs in such a way that the120

vessel can moor at the terminal within the interval [aei , b
e
i ]. If this interval is violated, a penalty121

cost is charged by the shipping liner. However, the feasible time interval [afi , b
f
i ] provided by the122

shipping liner cannot be violated under any circumstances.123

In reality, it is extremely difficult for the terminal operators to satisfy all the shipping liners’124

requirements on mooring within their expected time intervals. The service quality costs (i.e., the125

penalty costs) charged by shipping liners are inevitable, especially when the number of incoming126

vessels is large with respect to berth capacity and QC resources. Thus, the objective in berth127

planning is to minimize the costs incurred when the expected time intervals are violated. Assume128

that αi and βi are the start time step and the end time step for the handing of Vessel i, where129

αi ≥ afi and βi ≥ bfi . If αi <a
e
i or βi > b

e
i , a service quality cost will charged for Vessel i, which can130

be calculated as cpi [(a
e
i −αi)

+
+ (βi− bei )

+
] (cpi is the penalty cost coefficient for Vessel i).131
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Figure 2 Integrated berth allocation, QC assignment and yard assignment problem.

Yard planning is affected by berth planning. Under the consignment strategy in the terminal132

(Lee et al. 2006, Han et al. 2008, Jiang et al. 2012), the yard is utilized for temporary container133

storage for the shipping liners. Some specific subblocks in the yard are reserved for each vessel.134

When a vessel arrives, all the containers stored are loaded from its reserved subblocks to the vessel.135

In the example of Figure 2, the subblocks K15, K19, K52, K77, K100 and K152 are reserved136

for Vessel 2, which is scheduled to moor at Berth 3. When Vessel 2 arrives at the terminal, all137
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the containers stored in the six subblocks K15, K19, K52, K77, K100 and K152 are transported138

to the berth position along the solid flow lines shown. Here, we assume that each loading route139

between a subblock and a berth is predetermined as shown by the solid flow lines. We define DL
kb140

as the length of the loading route between Berth b and Subblock k.141

In addition to the loading process, an unloading process also occurs for an incoming vessel. The142

containers that need to be transshipped to other vessels are unloaded from the incoming vessel143

and are stored in the subblocks reserved for these vessels. Here, the unloaded containers could144

be transshipped to any incoming vessel, and can be then stored in any subblock. Thus, for the145

unloading process, we assume that if a vessel is allocated to Berth b, the route length for unloading146

a container is the average unloading route length between Berth b and all the subblocks in the147

yard, denoted as DU
b . In yard planning, the objective is to minimize the total loading and unloading148

length for all the incoming vessels in terms of all the handling containers. It is easy to understand149

that berth allocation will impact subblock assignment, which implies that berth planning and yard150

planning are intertwined and cannot be optimized individually. Therefore, an integrated model for151

berth allocation, the QC assignment, and yard assignment is needed.152

3.3. Cyclical berth planning153

Since most vessels visit the port on a weekly basis, periodicity should be considered when deter-154

mining the berth allocation plans. However, this brings additional challenges for the berth planning155

process (Moorthy and Teo 2006). The traditional BAP is usually modeled as a constrained two-156

dimensional bin packing problem (Lim 1998, Kim and Moon 2003). When constructing periodic157

schedules, the rectangle packing on a plane, as shown in Figure 2, should be extended to a packing158

problem on a cylinder with circumference equal to the length of the planning horizon. To handle159

periodicity in the planning process, the key idea is to enlarge the original planning horizon from H160

(e.g., one week) to H +E, where E = max∀i∈V,p∈Pi
{hip} (Pi is the set of QC-profiles for Vessel i),161

which is shown in Figure 3. For each berth, we introduce the first time step (i.e., the start time step162

%b, to be determined) and the last time step (i.e., the end time step ςb, to be determined) during163

which the berth is occupied in the planning horizon. We need to ensure that the berth cannot be164

occupied by any vessel before the start time step %b and after the end time step ςb. Meanwhile, to165

ensure that the berth occupancy can be wrapped around the original planning horizon H, the gap166

between the two time steps (i.e, ςb− %b) cannot exceed H.167

In addition, once the QC assignment is embedded within the berth planning process, the lim-168

itation for the QC utilization in each time step should be posed as follows: (i) in time step t =169

{E+1, E+2, ..,H}, the total number of QCs utilized cannot exceed the number of available QCs,170

(ii) the sum of the number of QCs utilized in time step t, t∈ {1, 2, ..,E}, and the number of QCs171

utilized in its ‘twin’ time step t+H cannot exceed the number of available QCs.172
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Figure 3 Horizon extension based method for considering the periodicity of the plan.

4. Mixed Integer Linear Programming Formulation173

We now formulate a mixed integer linear programming (MILP) model for the integrated berth174

allocation, QC assignment and yard assignment problem. The objective of the model is to minimize175

the total service quality cost, including the penalty cost caused by the deviation from the vessels’176

expected service time, and the total operation cost related to the route length of the container177

transportation flows in the yard.178

4.1. Notations179

Indices:180

i, j vessels;181

k subblocks;182

b berths;183

p QC-profiles;184

t time steps.185

Input parameters:186

V set of incoming vessels;187

K set of available subblocks in the yard;188

B set of berths in the quay;189

H number of time steps in the planning horizon;190

E maximum handling time of all vessels, i.e., E = max∀i∈V,p∈Pi
{hip};191

T set of time steps, T = {1, . . . ,H +E};192

Pi set of QC-profiles for Vessel i, i∈ V ;193

hip handling time of Vessel i by using QC-profile p with unit of time step, i∈ V, p∈ Pi;194



Wang et al.: Column Generation for Integrated Berth and Yard Planning

Article submitted to Transportation Science; manuscript no. 9

qipm
number of QCs used by QC-profile p ∈ Pi, i ∈ V at the mth time step, m ∈
{1, . . . , hip};

195

Qt maximum number of QCs available at time step t, t∈ T ;196

[afi , b
f
i ] feasible service time steps for Vessel i, i∈ V ;197

[aei , b
e
i ] expected service time steps for Vessel i, i∈ V ;198

ri number of subblocks that should be reserved for Vessel i, i∈ V ;199

li number of containers that should be loaded for Vessel i, i∈ V ;200

ui number of containers that should be unloaded for Vessel i, i∈ V ;201

DL
kb length of loading route from Subblock k to Berth b in the yard, k ∈K, b∈B;202

DU
b

average length of unloading route from Berth b to all the subblocks in the yard,
b∈B;

203

cpi
coefficient of the penalty cost caused by the deviation from the expected service
time of Vessel i;

204

co
coefficient of the operation cost related to the route length of the container trans-
portation flows in yard;

205

M a sufficiently large positive number.206

Decision variables:207

ωib ∈ {0, 1} set to one if Berth b is allocated to Vessel i, and to zero otherwise, i∈ V , b∈B;208

δijb ∈ {0, 1} set to one if both Vessel i and Vessel j dwell at Berth b, and Vessel i dwells at the
berth before Vessel j, and to zero otherwise, i, j ∈ V , i 6= j, b∈B;

209

ϕik ∈ {0, 1} set to one if Subblock k is reserved for Vessel i, and to zero otherwise, i∈ V , k ∈K;210

γip ∈ {0, 1} set to one if Vessel i is served by QC-profile p, and to zero otherwise, i∈ V , p∈ Pi;211

µit ∈ {0, 1} set to one if Vessel i begins handling in the time step t, and to zero otherwise,
i∈ V , t∈ T ;

212

ηipt ∈ {0, 1} set to one if Vessel i is served by QC-profile p and begins handling by this QC-profile
in the time step t, and to zero otherwise, i∈ V , p∈ Pi, t∈ T ;

213

αi ∈ T integer, the start time step of the handling for Vessel i, i∈ V ;214

βi ∈ T integer, the end time step of the handling for Vessel i, i∈ V ;215

%b, ςb ∈ T start and end time steps for Berth b, b∈B;216

σt ≥ 0 integer, the number of used QCs at time step t, t∈ T .217

4.2. Mathematical model218

[M1] minimize
∑
i∈V

cpi [(a
e
i −αi)

+
+ (βi− bei )

+
]+co

∑
i∈V

∑
b∈B

∑
k∈K

[ωibϕikD
L
kb

(
li
ri

)
]+co

∑
i∈V

∑
b∈B

ωibD
U
b ui

(1)

subject to:219 ∑
i∈V

ϕik≤1 ∀k ∈K, (2)
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220 ∑
k∈K

ϕik = ri ∀i∈ V, (3)

221 ∑
p∈Pi

γip = 1 ∀i∈ V, (4)

222 ∑
b∈B

ωib = 1 ∀i∈ V, (5)

223 ∑
t∈{1,...,H}

µit = 1 ∀i∈ V, (6)

224 ∑
t∈T

µitt= αi ∀i∈ V, (7)

225

αi +
∑
p∈Pi

γiphip− 1 = βi ∀i∈ V, (8)

226

αi +
∑
p∈Pi

γiphip ≤αj + (1− δijb)M ∀i, j ∈ V, i 6= j, ∀b∈B, (9)

227

δijb + δjib ≤ ωib ∀i, j ∈ V, i 6= j, ∀b∈B, (10)
228

δijb + δjib ≥ ωib +ωjb− 1 ∀i, j ∈ V, i 6= j, ∀b∈B, (11)
229

αi≥ afi ∀i∈ V, (12)
230

βi≤ bfi ∀i∈ V, (13)
231

ηipt ≥ γip +µit− 1 ∀i∈ V,∀p∈ Pi, ∀t∈ T, (14)
232

σt =
∑
i∈V

∑
p∈Pi

t∑
m=max{1;t−hip+1}

ηipmqip(t−m+1) ∀t∈ T, (15)

233

σt ≤Qt ∀t∈ {E+ 1, . . . ,H}, (16)
234

σt +σt+H ≤Qt ∀t∈ {1, . . . ,E}, (17)
235

%b ≤ αi + (1−ωib) ·M ∀i∈ V,∀b∈B, (18)
236

ςb ≥ βi + (ωib− 1) ·M ∀i∈ V,∀b∈B, (19)
237

ςb− %b ≤H − 1 ∀b∈B, (20)
238

ωib ∈ {0, 1} ∀i∈ V,∀b∈B, (21)
239

δijb ∈ {0, 1} ∀i, j ∈ V, i 6= j, ∀b∈B, (22)
240

ϕik ∈ {0, 1} ∀i∈ V,∀k ∈K, (23)
241

γip ∈ {0, 1} ∀i∈ V,∀p∈ Pi, (24)
242

µit ∈ {0, 1} ∀i∈ V,∀t∈ T, (25)
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243

ηipt ∈ {0, 1} ∀i∈ V,∀p∈ Pi,∀t∈ T, (26)
244

σt ≥ 0 ∀t∈ T, (27)
245

%b, ςb ∈ T ∀b∈B. (28)

In the above model, Objective (1) minimizes the total cost, including the penalty costs, the246

operation costs on the loading process and the operation costs on the unloading process. Constraints247

(2) guarantee that each subblock is reserved for at most one vessel. Constraints (3) ensure that248

a given number ri of subblocks are reserved to Vessel i. Constraints (4) stipulate that only one249

QC-profile is assigned to each vessel. Constraints (5) mean that each vessel can only be allocated to250

one berth. Constraints (6) state that each vessel starts handling in a certain time step. Constraints251

(7) connect the two handling start time decision variables (i.e.,πit and αi). Specifically, if Vessel i252

begins handling in time step t (i.e., πit = 1), the start time step of the handling for Vessel i is time253

step t. Constraints (8) link the start time step and the end time step of the vessels. Constraints254

(9) ensure that for the same berth, a former dwelling vessel must end its handling activities at the255

berth before a late dwelling vessel starts its handling activities at the berth. Constraints (10-11)256

guarantee that if two vessels are allocated to the same berth, there must be a time sequence for257

the two vessels dwelling at the berth. Constraints (12-13) enforce the condition that the service258

time for each vessel must lie within its feasible service time interval. Constraints (14) link two259

decision variables ηipt and µit that are both related to the start time of handling. Constraints (15)260

calculate the number of QCs used in each time step. Constraints (16) and (17) guarantee that the261

number of QCs used in each time step cannot exceed the capacity considering the periodicity of262

vessel schedules. Constraints (18) and (19) ensure that for each berth, %b (or ςb) is no later than263

(or no earlier than) all the start (or end) time steps of vessels that occupy Berth b. Constraints264

(20) ensure that the gap between %b and ςb does not exceed the length of the planning horizon.265

Constraints (21)–(28) define the domains of decision variables.266

4.3. Linearization for the model267

The first two parts in the objective of the above model are nonlinear, but they can be linearized.268

To linearized the first part, i.e.,
∑

i∈V c
p
i [(a

e
i −αi)

+
+ (βi− bei )

+
], we define the additional decision269

variables τa+i , τa−i , τ b+i , τ b−i , i ∈ V . By adding the following constraints, the first part in the270

objective can be reformulated as cp
∑

i∈V (τa+i + τ b+i ):271

aei −αi = τa+i − τa−i ∀i∈ V, (29)

272

βi− bei = τ b+i − τ b−i ∀i∈ V, (30)
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273

τa+i , τa−i , τ b+i , τ b−i ≥ 0 ∀i∈ V. (31)

the second part co
∑

i∈V
∑

b∈B
∑

k∈K [ωibϕikD
L
kb

(
li
ri

)
], can be linearized as follows:274

Let θikb ∈ {0, 1} equals one if and only if Vessel i dwells at Berth b and Subblock k is reserved275

for Vessel i, i∈ V , k ∈K, b∈B. Then,276

θikb ≥ ωib +ϕik− 1 ∀i∈ V, ∀k ∈K, ∀b∈B, (32)
277

θikb ∈ {0, 1} ∀i∈ V, ∀k ∈K, ∀b∈B. (33)

based on these new decision variables and constraints, the integrated model for the berth alloca-278

tion, QC assignment and yard assignment problem can be reformulated as a mixed integer linear279

programming model:280

[M2] minimize
∑
i∈V

cpi (τ
a+
i + τ b+i ) + co

∑
i∈V

∑
b∈B

∑
k∈K

[
θikbD

L
kb

(
li
ri

)]
+ co

∑
i∈V

∑
b∈B

ωibD
U
b ui (34)

subject to: Constraints (2)–(33).281

5. Set Covering Model and Column Generation282

The mixed-integer programming model for the integrated problem become hard to solve by some283

commercial solvers, such as CPLEX, when the size of problem instances become large, Therefore,284

in this section, we reformulate the problem as a set covering model and we apply decomposition285

techniques.286

5.1. Set covering model287

Let Pi be the set of all possible assignment plans of Vessel i, i ∈ V in the given planning horizon.288

Each assignment plan Pi of Vessel i represents the allocation of a berth to the vessel in time steps,289

the reservation of ri subblocks in the yard to the vessel, and the number of QCs used by Vessel i290

in each time step. Here, we define P=
⋃
i∈VPi as the set of all possible assignment plans. For each291

assignment plan Pi of Vessel i, we have the following input parameters:292

Input parameters:293

APi
bt

equals one if Berth b is allocated to Vessel i in time step t in assignment plan Pi,
and zero otherwise, b∈B, t∈ T ;

294

RPi
k

equals one if Subblock k is reserved to Vessel i in assignment plan Pi, and zero
otherwise, k ∈K;

295

UPi
t

integer, number of QCs used by Vessel i in the time step t in assignment plan Pi,
t∈ T .

296

Let CPi
be the cost constant of the assignment plan Pi, whose calculation will be elaborated in297

the Section 5.3. For each feasible assignment plan Pi ∈Pi, we define a binary variable λPi
, equals298
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one if and only if the assignment plan Pi is used by Vessel i. Based on these parameters, variables299

and constants, the set covering model for the problem can be formulated as follows:300

[M3] minimize
∑
i∈V

∑
Pi∈Pi

CPi
λPi

(35)

subject to:301 ∑
Pi∈Pi

λPi
= 1 ∀i∈ V, (36)

302 ∑
i∈V

∑
Pi∈Pi

APi
bt λPi

≤ 1 ∀b∈B,∀t∈ T, (37)

303 ∑
i∈V

∑
Pi∈Pi

RPi
k λPi

≤ 1 ∀k ∈K, (38)

304 ∑
i∈V

∑
Pi∈Pi

(U
Pi
t +UPi

t+H)λPi
≤Qt ∀t∈ {1, . . . ,E}, (39)

305 ∑
i∈V

∑
Pi∈Pi

UPi
t λPi

≤Qt ∀t∈ {E+ 1, . . . ,H}, (40)

306

t ·
∑
i∈V

∑
Pi∈Pi

APi
bt λPi

+M(1−
∑
i∈V

∑
Pi∈Pi

APi
bt λPi

)− %b ≥ 0 ∀b∈B,∀t∈ T, (41)

307

t ·
∑
i∈V

∑
Pi∈Pi

APi
bt λPi

+M(
∑
i∈V

∑
Pi∈Pi

APi
bt λPi

− 1)− ςb ≤ 0 ∀b∈B,∀t∈ T, (42)

308

ςb− %b ≤H − 1 ∀b∈B, (43)
309

λρi ∈ {0, 1} ∀i∈ V,∀Pi ∈Pi, (44)
310

%b, ςb ∈ T ∀b∈B. (45)

In the above formulation, Objective (35) minimizes the total cost of serving vessels in the port.311

Constraints (36) ensure that there is exactly one feasible assignment for each vessel in the solution.312

Constraints (37) guarantee that each berth is occupied by at most one vessel in each time step.313

Constraints (38) mean that each subblock can be reserved for at most one vessel. Constraints (39)314

and (40) state that the QCs used in each time step is within the limited capacity. Constraints (41)315

and (42) ensure that for each berth, %b (or ςb) is no later than (or no earlier than) all the start316

(or end) time steps of vessels who occupy Berth b. Constraints (43) ensure that the gap between317

%b and ςb does not exceed the length of the planning horizon. Constraints (44) and (45) define the318

domains of decision variables.319
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5.2. Restricted master problem (RMP) for the column generation procedure320

The above formulation contains all the possible assignment plans for the vessels. Therefore, the size321

of P and the corresponding computational time needed to solve the problem grow exponentially322

with the instance size. To circumvent this difficulty, we use CG to solve the linear programming323

(LP) relaxation of the formulation.324

In the CG procedure, we maintain a restricted master problem (RMP) with a subset of a feasible325

assignment plan P′ =
⋃
i∈VP

′
i ⊆ P. Initially, we derive a P′ for the RMP by using a heuristic (Section326

5.5), which ensures that an initial feasible solution exists in the RMP. The RMP is formulated as:327

[M4] minimize
∑
i∈V

∑
Pi∈P

′
i

CPi
λPi

(46)

subject to:328 ∑
Pi∈P

′
i

λPi
= 1 ∀i∈ V, (47)

329 ∑
i∈V

∑
Pi∈P

′
i

APi
bt λPi

≤ 1 ∀b∈B,∀t∈ T, (48)

330 ∑
i∈V

∑
Pi∈P

′
i

RPi
k λPi

≤ 1 ∀k ∈K, (49)

331 ∑
i∈V

∑
Pi∈P

′
i

(U
Pi
t +UPi

t+H)λPi
≤Qt ∀t∈ {1, . . . ,E}, (50)

332 ∑
i∈V

∑
Pi∈P

′
i

UPi
t λPi

≤Qt ∀t∈ {E+ 1, . . . ,H}, (51)

333

0≤ λPi
≤ 1 ∀i∈ V,∀Pi ∈P

′

i . (52)

Note that the constraints that ensure the periodicity of the berth allocation (i.e., Constraints (42)334

and (43)) are invalid and removed for the RMP which is an LP relaxation. In order to guarantee335

periodicity in feasible integer solutions, a substep is designed in a CG-based heuristic, which will336

be discussed in Section 6.1.337

At each iteration of the CG procedure, the dual variables of the RMP are transferred to pricing338

problems that are used to generate new feasible assignment plans (i.e., columns). These dual339

variables are defined as follows:340

Dual variables:341

πi the dual variables for Constraints (47), i∈ V ;342

$bt the dual variables for Constraints (48) , b∈B, t∈ T ;343

ρk the dual variables for Constraints (49), k ∈K;344

φt the dual variables for Constraints (50) and (51), t∈ T ;345
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The dual variables φt obtained from the RMP are φt, ∀t ∈ {1, . . . ,H}. To ensure periodicity,346

the planning horizon is enlarged from H to T =H+E. Therefore, the dual variables φt passing to347

the pricing problems should be φt,∀t ∈ T , where φt = φt−H ,∀t ∈ {H + 1, . . . ,H +E}. Using these348

dual variables, the pricing problems will generate feasible assignment plans with the lowest reduced349

costs (i.e., the objective values of the pricing problems). The CG procedure stops when all the350

minimal reduced costs are positive, which means that no feasible assignment plan can be added to351

the RMP.352

5.3. Pricing problem (PP)353

The goal of the pricing problems is to find feasible assignment plans with a negative reduced cost354

to be added to the RMP. At each iteration of the CG procedure, there are |V | pricing problems355

to be solved, each of which corresponds a vessel (e.g., Vessel i), and we will generate one feasible356

assignment plan Pi
∗ for each vessel. For all the |V | optimal feasible assignment plans generated by357

solving the pricing problems, only the feasible assignment plans with a negative reduced cost can358

be added to the RMP, which means that at each iteration of the CG procedure, there are at most359

|V | columns to be added into the RMP. The formulation for the pricing problem of each vessel is360

given next. Note that the index i ∈ V is removed from the formulation since the pricing problem361

for each vessel is solved separately.362

Input parameters:363

π,$bt, ρk, φt the dual variables obtained from the RMP;364

P set of QC-profiles for the vessel;365

hp handling time of the vessel by using QC-profile p with unit of time step, p∈ P ;366

qpm number of QCs used by QC-profile p∈ P at the mth time step, m∈ {1, . . . , hp};367

[af , bf ] feasible service time steps for the vessel;368

[ae, be] expected service time steps for the vessel;369

r number of subblocks that should be reserved for the vessel;370

l number of containers that should be loaded for the vessel;371

u number of containers that should be unloaded for the vessel;372

cp
coefficient of the penalty cost caused by the deviation from the vessel’s expected
service time.

373

Decision variables:374

εbt ∈ {0, 1} set to one if the vessel dwells at Berth b in the time step t, and to zero otherwise,
b∈B, t∈ T (corresponding to APi

bt );
375

ϕk ∈ {0, 1} set to one if Subblock k is reserved the vessel, and to zero otherwise, k ∈K (corre-
sponding to RPi

k );
376

ζt ≥ 0
integer, the number of QCs used by the vessel in the time step t, t∈ T (correspond-
ing to UPi

t );
377
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νt ∈ {0, 1} set to one if the vessel is served in the time step t, and to zero otherwise, t∈ T ;378

ωb ∈ {0, 1} set to one if Berth b is allocated to the vessel, and to zero otherwise, b∈B;379

γp ∈ {0, 1} set to one if the vessel is served by QC-profile p, and to zero otherwise, p∈ P ;380

µt ∈ {0, 1} set to one if the vessel begins handling in the time step t, and to zero otherwise,
t∈ T ;

381

ηpt ∈ {0, 1} set to one if the vessel is served by QC-profile p and begins handling by this QC-
profile in the time step t, and to zero otherwise, p∈ P , t∈ T ;

382

θkb ∈ {0, 1} set to one if the vessel dwells at Berth b and Subblock k is reserved for the vessel,
and to zero otherwise, k ∈K, b∈B;

383

α∈ T integer, the start time step of the handling for the vessel;384

β ∈ T integer, the end time step of the handling for the vessel;385

C̈P ≥ 0 the cost for the assignment plan of the vessel;386

τa+, τa−, τ b+, τ b− are additional variables for the linearization.387

[M5] minimize CP−

(
π+

∑
b∈B

∑
t∈T

$bt · εbt +
∑
k∈K

ρk ·ϕk +
∑
t∈T

φt · ζt

)
(53)

subject to:388 ∑
k∈K

ϕk = r (54)

389 ∑
p∈P

γp = 1 (55)

390 ∑
b∈B

ωb = 1 (56)

391 ∑
t∈{1,...,H}

µt = 1 (57)

392 ∑
t∈T

µtt= α (58)

393

α+
∑
p∈P

γphp− 1 = β (59)

394

α≥ af (60)
395

β ≤ bf (61)
396

ηpt ≥ γp +µt− 1 ∀p∈ P , ∀t∈ T, (62)
397

ηpt ≤ γp ∀p∈ P , ∀t∈ T, (63)
398

ηpt ≤ µt ∀p∈ P , ∀t∈ T, (64)
399

ζt =
∑
p∈P

t∑
m=max{1;t−hp+1}

ηpmqp(t−m+1) ∀t∈ T, (65)
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400

t+M(1− νt)≥ α ∀t∈ T, (66)
401

t≤ β+M(1− νt) ∀t∈ T, (67)
402 ∑

t∈T

νt = β−α+ 1 (68)

403

εbt ≥ νt +ωb− 1 ∀b∈B,∀t∈ T, (69)
404

εbt ≤ νt ∀b∈B,∀t∈ T, (70)
405

εbt ≤ ωb ∀b∈B,∀t∈ T, (71)
406

θkb ≥ ωb +ϕk− 1 ∀k ∈K, ∀b∈B, (72)
407

ae−α= τa+− τa− (73)
408

β− be = τ b+− τ b− (74)
409

CP = cp
(
τa+ + τ b+

)
+ co

∑
b∈B

∑
k∈K

[
θkbD

L
kb

(
l

r

)]
+ co

∑
b∈B

ωbD
U
b u (75)

410

εbt ∈ {0, 1} ∀b∈B,∀t∈ T, (76)
411

ϕk ∈ {0, 1} ∀k ∈K, (77)
412

ωb ∈ {0, 1} ∀b∈B, (78)
413

γp ∈ {0, 1} ∀p∈ P, (79)
414

µt ∈ {0, 1} ∀t∈ T, (80)
415

ηpt ∈ {0, 1} ∀p∈ P,∀t∈ T, (81)
416

θkb ∈ {0, 1} ∀k ∈K,∀b∈B, (82)
417

ηpt ∈ {0, 1} ∀p∈ P,∀t∈ T, (83)
418

ζt ≥ 0 ∀t∈ T, (84)
419

α,β ∈ T (85)
420

τa+, τa−, τ b+, τ b−,CP ≥ 0. (86)

Note that CP is a decision variable of the pricing problem instead of an input parameter. Once an421

assignment plan P is chosen as the newly added column to the RMP for Vessel i, the corresponding422

cost CP is a cost constant of the newly added assignment plan Pi (i.e., CPi
), which is included in the423

objective function of the RMP (i.e., Objective (35)). Meanwhile, the decision variables εbt, ϕk and424

ζt are transferred to the input parameters of the RMP, which are APi
bt , RPi

k and UPi
t , respectively.425
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In the above formulation, Objective (53) minimizes the reduced cost of the optimal assignment426

plan. Constraints (54) states that r subblocks should be reserved for the vessel. Constraint (55)427

guarantees that only one QC-profile is selected for the vessel. Constraint (56) ensures that exactly428

one berth is allocated to the vessel. Constraint (57) states that the vessel starts handling in a429

certain time step. Constraint (58) connects the two handling start related decision variables (i.e.,430

πi and α). Constraint (59) links the start time step and the end time step of the vessel. (60) and431

(61) force the service time for the vessel to be within the feasible service time span. Constraints432

(62)–(64) link two decision variables ηpt and µt that are both related to the start time of handling.433

Constraint (65) calculate the number of QCs used by the vessel in each time step. Constraints434

(66-68) connect the three service related decision variables (i.e., α, β and νt). Constraints (69)–435

(71) links two decision variables εbt and ωb that are both to related berth allocation. Constraints436

(72)–(74) are additional constraints for the linearization. Constraint (75) calculates the cost for437

the assignment plan of the vessel. Constraints (76)–(86) define the domains of decision variables.438

After solving these pricing problems, we obtain |V | optimal columns (i.e., the plans with the439

minimal reduced cost). The columns with the negative reduced cost are selected as the newly added440

columns for the RMP. The CG procedure stops if no column can be added to the RMP.441

5.4. Solving the pricing problem442

In this section, we propose an efficient algorithm for the pricing problem, which can compute443

optimal solution for the problem in pseudo-polynomial time. The basic idea of this method is as444

follows: for a given vessel, we list all the possible time steps at which the vessel starts to be served445

(i.e., t : µt = 1), and all the possible number of time steps during which the vessel dwells at the446

port (i.e., β −α+ 1). Here, for the sake of simplicity, we define the time step at which the vessel447

starts to be served as χ, and the number of time steps that the vessel dwells at the port as ψ.448

Based on the input parameters, the handling time of the vessel using QC-profile p (i.e., hp) is used449

to measure the efficiency of the QC-profiles. However, in order to improve the berth availability450

in the optimal solution, hp can also be used to narrow down the range of ψ since the vessel will451

be served immediately upon arrival and can depart immediately after the service finished, which452

means that ψ ∈ [min(hp),max(hp)]. Regarding χ, we use another input parameter to reduce its453

possible range, which is [af , bf ] (i.e., the feasible service time steps for the vessel). Given a value of454

ψ (i.e., the dwelling time for the vessel is given), we can further conclude that χ∈ [af , bf −ψ+ 1].455

We denote the combination of a given starting time step (i.e., χ) and of a dwelling time (i.e., ψ)456

as a scenario of the vessel. Here, note that χ can also be deemed as the arrival time step of the457

vessel, and χ+ψ−1 as its departure time step. The cardinality of the scenarios remains unchanged458

even if the size of the problem instance increases, because it is related to the service level of the459
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port and to the flexibility of the vessel. Given a scenario, χ and ψ can be determined, which brings460

the following changes for the pricing problem: (i) the penalty cost (i.e., cp(τa+ + τ b+)) caused461

by the deviation can be written as [(ae−χ)
+

+ ((χ+ψ− 1)− be)+], which helps avoid complex462

linearizations in the pricing problem; (ii) the selection of QC-profile p is isolated from the pricing463

problem, which can be implemented by solving M6. This model can be solved very easily by an464

exact polynomial algorithm (denoted as Sub-algorithm 1). The pseudocode for this algorithm is465

given in Appendix A; (iii) what is left for the pricing problem is to allocate a berth and certain466

number of subblocks to the vessel. The berth allocation and the subblock assignment still interact467

with each other even in the scenario. However, we can formulate a simple model for the berth468

allocation and the subblock assignment, denoted as M7. The exact polynomial algorithm (denoted469

as Sub-algorithm 2) for this model is also elaborated in Appendix A.470

[M6] maximize
∑
t∈T

φt · ζt (87)

subject to:471 ∑
p∈P

γp = 1 (88)

472 ∑
p∈P

γp ·hp =ψ (89)

473

ζt =
∑
p∈P

γp · qp(t−χ+1) ∀t∈ [χ, (χ+ψ− 1)], (90)

474

ζt = 0 ∀t∈ T\[χ, (χ+ψ− 1)], (91)
475

γp ∈ {0, 1} ∀p∈ P. (92)

In the above model, Objective (87) aims to optimize the QC related reduced cost of the scenario.476

Constraint (88) ensures that exactly one QC-profile is selected. Constraint (89) guarantees that477

the selected QC-profile must serve the vessel for exactly ψ time steps. Constraints (90) and (91)478

calculate the number of QCs used by the vessel in each time step. Constraints (92) define the479

domains of decision variables.480

[M7] minimize co
∑
b∈B

∑
k∈K

[
θkbD

L
kb

(
l

r

)]
+ co

∑
b∈B

ωbD
U
b u−

∑
b∈B

∑
t∈T

$bt · εbt−
∑
k∈K

ρk ·ϕk (93)

subject to:481 ∑
k∈K

ϕk = r (94)

482 ∑
b∈B

ωb = 1 (95)

483

θkb ≥ ωb +ϕk− 1 ∀k ∈K, ∀b∈B, (96)
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484

εbt = ωb ∀t∈ [χ, (χ+ψ− 1)], ∀b∈B, (97)
485

εbt = 0 ∀t∈ T\ [χ, (χ+ψ− 1)] ,∀b∈B, (98)
486

εbt ∈ {0, 1} ∀b∈B,∀t∈ T, (99)
487

ϕk ∈ {0, 1} ∀k ∈K, (100)
488

ωb ∈ {0, 1} ∀b∈B, (101)
489

θkb ∈ {0, 1} ∀k ∈K,∀b∈B. (102)

In the above formulation, Objective (93) minimizes the berth and subblock related reduced490

cost of the scenario. Constraint (94) states that r subblocks should be reserved for the vessel.491

Constraint (95) ensures that exactly one berth is allocated to the vessel. Constraints (96) link492

the two decision variables ωb and ϕk which are related to the berth allocation and the subblock493

assignment, respectively. Constraints (97) and (98) aim to derive the allocation of berths to the494

vessel in each time step. Constraints (99)–(102) define the domains of the decision variables.495

Based on above analysis, the detailed procedure of this exact algorithm for solving the pricing496

problem is elaborated in Algorithm 1:497

5.5. Heuristic for the initial set of feasible assignment plans498

To apply the CG procedure, we need to generate an initial set of feasible assignment plans for499

the RMP, so that the RMP can yield at least one feasible solution. Here, we propose a heuristic500

to derive an initial feasible solution. Since solving the integrated problem of berth, QC, and yard501

arrangement is still intractable, even heuristically, we divide the integrated problem into two stages.502

The berth allocation and the QC assignment are solved in the first stage, and the yard assignment503

is solved in the second stage given that the berth-related variables are determined.504

When solving the first-stage problem (i.e., the berth allocation and the QC assignment), we505

apply a sequential method (Zhen et al. 2011), which consists of solving the berthing schedule for506

the vessels one at a time. To implement this method, a sequence of vessels must be generated at507

the beginning. Here, we generate this sequence in decreasing order of the cpi value, which reflects508

the priority of vessels in the sense of penalty. A berth-QC planning model denoted as M8 is then509

solved for each vessel. After solving the model M8 for a vessel, the remaining time-berth space510

and the number of available QCs in each time step are updated before solving the next vessel. The511

formulation of M8 and the procedure for the first stage are given in Appendix B.512
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Algorithm 1 Exact algorithm for the pricing problem

1: Input: A given vessel

2: Output: An optimal assignment plan and its minimal reduced cost

3: for all the ψ, ψ ∈ [min(hp),max(hp)] do

4: for all the χ, χ∈ [af , bf −ψ+ 1] do

5: Define Vχ,ψ as the minimal reduced cost if the vessel starts to be served in time step χ

and its dwelling time at the port is ψ

6: Initialize Vχ,ψ = cp[(ae−χ)
+

+ ((χ+ψ− 1)− be)+]

7: Solve model M6 with the objective value denoted as Z∗1 , by Sub-algorithm 1

8: Solve model M7 with the objective value denoted as Z∗2 , by Sub-algorithm 2

9: Set Vχ,ψ = Vχ,ψ −Z∗1 +Z∗2 , which is the minimal reduced cost of the scenario

10: end for

11: end for

12: Solve min(Vχ,ψ|∀ψ ∈ [min (hp),max(hp) ] ,∀χ ∈ [af , bf − ψ + 1], ) − π, which is the minimal

reduced cost of the pricing problem of the vessel, and the new optimal assignment plan for the

vessel can be extracted from the values of the decision variables (i.e., ε∗bt, ϕ
∗
k and ζ∗t ) in the

optimal scenario (the combination of the starting time step χ∗ and of the dwelling time ψ∗).

In the second stage (i.e., the yard assignment), given the berth position of the vessels (i.e., ωib),513

we can derive the decisions for the yard assignment by solving another model denoted as M9,514

which is formulated as follows:515

[M9] minimize co
∑
i∈V

∑
b∈B

∑
k∈K

[
θikbD

L
kb

(
li
ri

)]
(103)

subject to: Constraints (2), (3), (23), (32) and (33).516

After the two stages have been solved, a feasible solution for the problem is obtained, and an517

initial set of feasible assignment plans can be added into the RMP to invoke the CG procedure.518

6. A Column Generation-based Heuristic519

The proposed CG procedure only solves the linear relaxation of the set covering model, and does520

not guarantee that integer solutions will be found. Therefore, we propose a CG-based heuristic to521

compute near-optimal integer solutions by using different assignment plan selection strategies. The522

assignment plans are chosen from the subset of feasible assignment plans maintained in RMP (i.e.,523

P′).524

6.1. Framework of the CG-based heuristic525

Here, we describe the framework of our proposed CG-based heuristic. The outer procedure is the526

selection heuristic used to obtain an integer solution. The strategies for the selection procedure will527
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be detailed in Section 6.2. The inner procedure is the CG procedure proposed in Section 5. Before528

elaborating on the framework of the algorithm, we define three port resources limited in the RMP529

and we initially set their values. These are Berth timebt = 1, ∀b∈B,∀t∈ T (i.e., berth resource over530

time), Subblockk = 1, ∀k ∈K (i.e., subblock resource) and QCst = Qt, ∀t ∈ {1, . . . ,H} (i.e., QC531

resource over time). These three resources correspond to the right-hand sides of Constraints (48),532

(49), (50) and (51) in the RMP, respectively, and are set as input parameters for the right-hand533

sides of the constraints in the algorithm. The detailed framework of our algorithm is as follows:534

Step 0: Initialize a vessel waiting list, which includes all the vessels that have not been designated535

with an assignment plan Pi. Initialize the set Ω for the final solution plans as empty. Pass the initial536

three port resources (i.e., Berth timebt = 1, Subblockk = 1 and QCst =Qt) to the right-hand sides537

of the constraints in the RMP.538

Step 1: Invoke the CG procedure. When the CG procedure ends, a LP solution is obtained539

by solving the RMP. Update a column pool with assignment plans whose corresponding decision540

variables λPi
are not equal to zero.541

Step 2: Test whether the assignment plans in the column pool satisfy Constraints (48), (49),542

(50) and (51) with the current port resources. If not, delete these assignment plans.543

Step 3: Select one assignment plan Pi from the column pool based on the strategies proposed544

in Section 6.2, and pass it to the set Ω. Remove the corresponding vessel i from the vessel waiting545

list.546

Step 4: Update the three port resources based on the selected assignment plan. For exam-547

ple, if the selected assignment plan Pi occupies Berth b
′

in time steps t
′

and t+ 1
′
, then set548

Berth timeb′ t′ = 0 and Berth timeb′ t+1
′ = 0.549

Substep 4.1: Assume the selected assignment plan is for Vessel i, its arrival time step is α550

(i.e., the handling start time), and its departure time step is β (i.e., the handling end time).551

To guarantee periodicity, we further update the berth resource (i.e., Berth timebt) as follows: If552

β − (H − 1) ≥ 1, we set Berth timebτ = 0, ∀τ ∈ [1, β − (H − 1)]. If α+ (H − 1) ≤H +E, we set553

Berth timebτ = 0, ∀τ ∈ [α+ (H − 1) ,H +E].554

After the update, pass the current three port resources to the right-hand sides of the constraints555

in the RMP.556

Step 5: Repeat Steps 1-4 until the vessel waiting list is empty. At the end of the algorithm,557

an integer solution for the problem can be derived from the set Ω.558

Note that in Section 5.2, the berth allocation periodicity cannot be considered in the RMP since559

the problem is an LP relaxation. Here, we insert Substep 4.1 to guarantee periodicity in the560

final solution. Periodicity enforces the condition that the time gap between the start time step %b561

for Berth b and the end time step ςb for Berth b is less than H − 1 (i.e., Constraint (20)), which562
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essentially implies that the time gaps between all the arrival time steps of the vessels allocated to563

Berth b and all the departure time steps of the vessels allocated to Berth b are less than H−1. The564

principle behind Substep 4.1 is that if a vessel has been allocated to Berth b in the solution set565

Ω, we must ensure that no other assignment plan can be selected if the assignment plan allocates566

its corresponding vessel to Berth b and the gaps between its dwelling time steps and α or β are567

greater than H − 1. Thereafter, periodicity in the final solution can be ensured.568

6.2. Strategies to select the assignment plan569

After Step 2 of the heuristic algorithm, the column pool with feasible assignment plans is obtained.570

We propose four heuristic strategies to select an assignment plan from the pool.571

Strategy 1: Select from the column pool the assignment plan corresponding to the largest572

fractional value of the decision variables λPi
. If there are two assignment plans with the same573

fractional value, select the one with lower plan cost. The principle behind this strategy is that the574

assignment plan with the highest fractional value is more likely to be part of an optimal solution.575

Strategy 2: Select from the column pool the assignment plan corresponding to the lowest plan576

cost (i.e., CP). If there are two assignment plans with the same plan cost, select the one with the577

higher fractional value of the decision variable. The principle behind this strategy is to select the578

assignment plan that contributes least to the total cost under current port resources.579

Strategy 3: Select from the column pool the assignment plan corresponding to the lowest580

reduced cost with the current values of the dual variables. The reduced cost can be calculated as581

CP−
(
πi +

∑
b∈B
∑

t∈T $bt ·APi
bt +

∑
k∈K ρk ·R

Pi
k +

∑
t∈T φt ·U

Pi
t

)
. If there are two assignment plans582

with the same reduced cost, select the one with the lower cost. The principle of this strategy is to583

find the assignment plan that has the lowest sum of the contribution cost to the total cost and to584

the usage cost of port resources.585

Strategy 4: To implement this strategy, we initially rank all Berths b∈B from lowest to highest,586

based on their average distance to all the subblocks in the yard (i.e., the input parameter DU
b ).587

Under this strategy, we first pick all the assignment plans from the column pool that allocate its588

vessel to the lowest berth. If no assignment plan exists, we further check the assignment plans with589

the next lowest berth until the assignment plans are picked. If there is more than one assignment590

plan picked with the lowest berth, select the one with the lowest reduced cost. The principle of this591

strategy is to maximize the utilization of the berths that are close to the subblocks in the yard.592

Thus the transportation cost in the yard can be reduced.593

6.3. Accelerating the CG procedure by dual stabilization594

In the proposed algorithm, CG is the core procedure to derive an LP solution. However, CG is595

known to suffer from instability, which causes slow convergence. The instability of CG is due to the596
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following reason. Suppose that we can build the master problem (MP) with all possible columns597

and the dual problem for the master problem (DMP). At each iteration of the CG procedure, an598

RMP is solved with a subset belonging to the full set of all possible columns, which means that599

some columns are missing from the RMP compared with MP. A column in MP denotes a constraint600

in DMP, which suggests that the dual problem of RMP lacks some constraints in DMP. Thus, the601

optimal dual solution Π = (πi,$bt, ρk, φt, ιbt, κbt) obtained by the RMP could be feasible for DMP,602

and thereafter optimal, or could be infeasible super-optimal for DMP.603

To overcome such a problem in the CG procedure and to improve the efficiency of our algorithm,604

we have designed an ad hoc dual stabilization method, which is inspired from Addis et al. (2012).605

This method aims to pass a dual vector Π̃= (π̃i, $̃bt, ρ̃k, φ̃t, ι̃bt, κ̃bt) to the pricing problem, which606

is close to the optimal dual vector of DMP. To obtain a near-optimal dual vector (i.e.,Π̃), we607

maintain a stability center Π = (πi,$bt, ρk, φt, ιbt, κbt), which represents our incumbent best guess608

for the optimal dual vector. Initially, we set Π with zeros in all components of the vector, which609

is a feasible solution for DMP. At each iteration of the CG procedure, we obtain a dual vector610

by solving an RMP (i.e., computing Π) and pass a modified dual vector (i.e., Π̃) to the pricing611

problems by the updated equation:612

Π̃ = (π̃i, $̃bt, ρ̃k, φ̃t, ι̃bt, κ̃bt) = a ·Π + (1− a) · Π , (104)

where a ∈ [0,1]. Initially, we set a = 0.5. Given a specific a, the CG procedure is executed with613

all negative reduced cost columns added to the RMP. When no columns can be added with the614

current setting of a, this means that Π̃ satisfies all the constraints in the dual problem and is615

a feasible dual solution. Thus, we update the Π = Π̃ for the incumbent best guess, and we then616

increase a by 0.05 for a new iteration of above process. The CG procedure terminates when a= 1617

and no negative reduced cost columns can be found.618

7. Computational experiments619

We have conducted extensive numerical experiments to validate the effectiveness of the proposed620

model and the efficiency of the CG-based heuristic. The experiments were run on a PC equipped621

with 3.30GHz of Intel Core i5 CPU and 16GB of RAM. All the algorithms were programmed in622

C# (VS2012), and the RMP was solved by CPLEX 12.5. The time limit for all test instances was623

three hours (10,800 seconds).624

7.1. Generation of the test instances625

The planning horizon considered is one week. Each day is divided into six time steps of four hours626

each. In total, there are 42 time steps for the planning horizon (i.e., H = 42). In the computational627
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Table 1 Scale of instance groups in experiments

Group ID # of vessels (|V |) # of berths (|B|) # of QCs (Q) # of subblocks (|K|) # of time steps (H)

ISG1 15 2 5 80 42

ISG2 20 3 7 120 42

ISG3 30 4 11 160 42

ISG4 35 5 12 200 42

ISG5 45 6 16 240 42

ISG6 50 7 18 280 42

ISG7 60 8 21 320 42

experiments, we randomly generated test instances with seven different scales. The parameter628

settings for the seven instance groups are listed in Table 1.629

All the incoming vessels are classified into three classes, i.e., feeder vessels, medium vessels and630

jumbo vessels. Table 2 illustrates the QC-profile generation for the three vessel classes. The available631

QC-profiles for each vessel are random generated based on the table. We can calculate the average632

handling time for all the vessels as (3 + 4 + 5)/3 = 4, and the average workload for all the vessels633

as (3.5 + 10.0 + 17.5)/3 = 10.3.634

Table 2 QC-profile generation for different vessel classes

Vessel QC-profile specifications

Class Proportion
Range of
used QCs

Range of handing time
(time step)

Average handling time
(time step)

Range of workload
(QC × time step)

Average workload
(QC × time step)

Feeder 1/3 1 to 3 2 to 4 3 2 to 5 3.5

Medium 1/3 2 to 4 3 to 5 4 6 to 14 10.0

Jumbo 1/3 3 to 5 4 to 6 5 15 to 20 17.5

Given the QC-profile generation table, it can be concluded that each vessel will occupy a berth for635

four time steps on average and use QC resources for 10.3 QC × time steps on average. Thereafter,636

for all the instance groups, the berth utilization rate and the QC utilization rate, when all incoming637

vessels are served, can be calculated as shown in Table 3. As can be seen, the berth utilization rate638

and QC utilization rate for all instance groups are in the 63%–74% range, which is realistic.639

The coefficient cpi for the penalty cost for each vessel is randomly generated in the ranges of640

[2, 6], [6, 10] and [10, 14] for feeder vessels, medium vessels and jumbo vessels, respectively (Meisel641

and Biewirth, 2009). The coefficient for the operation cost in the yard is set as co = 5×10−6 (Zhen642

et al., 2011). The workload of each vessel is generated based on Table 1 with the unit of QC ×643

time step. Here, we assume that a QC can handle about 30 containers per hour. Thus, the total644

number of handled containers for each vessel can be calculated by multiplying its workload, four645
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Table 3 Berth and QC utilization rates of the instances in experiments

Group ID

Berth utilization QC utilization

Vessel usage
(|V | × 4)

Port resource
(|B| ×H)

Utilization rate
Vessel usage
(|V | × 10.3)

Port resource
(Q×H)

Utilization rate

ISG1 60 84 71.4% 154.5 210 73.6%

ISG2 80 126 63.5% 206.0 294 70.1%

ISG3 120 168 71.4% 309.0 462 66.9%

ISG4 140 210 66.7% 360.5 504 71.5%

ISG5 180 252 71.4% 463.5 672 69.0%

ISG6 200 294 68.0% 515.0 756 68.1%

ISG7 240 336 71.4% 618.0 882 70.1%

hours, and 30 containers. For example, the average number of handled containers for all vessels is646

10.3× 4× 30 = 1236 (10.3 is the average workload). We further assume that for each vessel, there647

is a random ε ∈ [40%,60%] proportion of loading containers and a 1− ε proportion of unloading648

containers among all handled containers, which provide the input data for li and ui. The number649

of subblocks that are reserved for each vessel (i.e., ri) is generated in the sets of {2, 3}, {4, 5, 6, 7}650

and {8, 9, 10} for the three vessel classes, respectively.651

7.2. Efficiency of two column generators652

We initially conducted some experiments to compare the efficiency of two ways to solve the pricing653

problems. The first way is to use CPLEX to solve the pricing model M5 directly. The second654

way is to use the proposed exact algorithm to solve the pricing model (i.e., Algorithm 1). Both655

ways are called the column generators for the CG procedure. To compare the efficiency of the two656

column generators, the RMP was solved to optimality during the CG procedure (i.e., there is no657

column can be added into the RMP). Based on the column generators, the optimal result of LP658

relaxation for the problem (i.e., LP-optimal) and the computational time (i.e., CPU time) were659

recorded and are listed in Table 4 by group of instances, where each group contains five instances660

with the same problem scale.661

As can be seen from Table 4, both column generators obtain the same optimal objective values662

for the LP relaxation over all instances, which means that Algorithm 1 can solve the pricing663

problems to optimality. However, the efficiencies of the two column generators are significantly664

different. According to the ‘time ratio’ in Table 4, Algorithm 1 only needs seven percent of the665

CPU time of CPLEX, which demonstrates that the proposed exact algorithm is highly efficient666

to solve the pricing problems. The reason for this high performance is probably that solving the667

pricing problems by the CPLEX needs to invoke the procedure to build a model in the MILP solver,668

which is time-consuming. However, solving the pricing problems by Algorithm 1 only needs a669

simple circulation procedure in programming without invoking any MIP solver, which leads to a670

higher efficiency.671
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Table 4 Comparison on the efficiency of two ways to solve pricing problems

Instance Solving PP by CPLEX Solving PP by Algorithm 1
Time ratio

Group ID LP-optimum CPU time (s) LP-optimum CPU time (s)

ISG1 4-1 43.45 159 43.45 10 0.06

4-2 35.62 118 35.62 8 0.07

4-3 32.65 133 32.65 9 0.07

4-4 44.75 161 44.75 8 0.05

4-5 31.43 150 31.43 11 0.07

ISG2 4-6 47.17 351 47.17 22 0.06

4-7 44.64 247 44.64 13 0.05

4-8 47.70 283 47.70 17 0.06

4-9 45.05 308 45.05 23 0.07

4-10 54.03 236 54.03 14 0.06

ISG3 4-11 79.70 656 79.70 54 0.08

4-12 78.99 402 78.99 42 0.10

4-13 77.53 566 77.53 36 0.06

4-14 84.66 594 84.66 51 0.09

4-15 77.38 551 77.38 40 0.07

Average 328 24 0.07

Notes: ‘Time ratio’ equals the computational time of solving PP by Algorithm 1 divided by the computational time of
solving PP by CPLEX.

7.3. Comparison of the four proposed selection strategies672

In Section 6.2, we proposed four assignment plan selection strategies for the CG-based heuristic.673

Here, we conduct extensive numerical experiment to test the efficiency and the effectiveness of674

the algorithm by using the four strategies. In order to test whether our proposed algorithm can675

identify near-optimal solutions within reasonable computational times, we also use CPLEX to solve676

model M2 optimally. Small-scale instance groups (i.e., ISG1, ISG2 and ISG3) were used in this677

experiment.678

Table 5 illustrates the comparisons between CPLEX and the proposed algorithm using different679

strategies. As can be seen, CPLEX can only solve the problem for some small-scale instances, i.e.,680

Instance 5-1 to Instance 5-11. The majority of instances in ISG3 cannot be solved to optimality681

by CPLEX within three hours, which means that the optimal solution is only achievable for the682

instances in ISG1 and ISG2. However, all instances in the table can be solved efficiently by the683

proposed algorithm under different strategies. The choice of a strategy has nearly no effect on the684

computational time of the proposed algorithm, but has a significant effect on the quality of the685

solution obtained by the algorithm. Strategy 3 and Strategy 4 outperform Strategy 1 and686

Strategy 2 since using the former two strategies leads to average small optimality gaps of 1.02%687

and 1.22% compared with 5.15% and 4.39%. This demonstrates that using a tailored strategy in688

the CG-based heuristic can yield near-optimal solutions.689
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7.4. Effectiveness of the proposed CG-based heuristic algorithm690

To validate the effectiveness of the proposed model and of the CG-based heuristic, we further691

conducted experiments to compare our algorithm by applying the two strategies with the FCFS692

(first come first served) rule and the SWO (squeaky wheel optimization) metaheuristic on large-693

scale instance groups (i.e., ISG4, ISG5, ISG6 and ISG7), which are commonly used in berth and694

yard allocation problems (Lim and Xu 2006, Meisel and Bierwirth 2009, Zhen et al. 2011). The695

implementations of FCFS and SWO for the problem in this paper are similar to those of Zhen696

et al. (2011).697

Table 6 Comparison with FCFS rule and SWO metaheuristic for large-scale instances

Instance FCFS SWO Strategy 3 Strategy 4

Group ID Obj Obj Gap Seconds Obj Gap Seconds Obj Gap Seconds

ISG4 6-1 130.91 118.80 9.25% 1386 116.53 10.98% 1119 116.86 10.73% 1073

6-2 135.62 123.83 8.69% 1517 122.83 9.43% 1046 122.50 9.68% 1228

6-3 137.35 123.94 9.76% 1414 122.85 10.55% 996 124.09 9.65% 1137

6-4 134.42 120.64 10.25% 1276 119.15 11.36% 876 118.89 11.55% 1045

6-5 129.29 118.72 8.17% 1257 117.33 9.25% 1058 117.46 9.15% 997

ISG5 6-6 194.56 175.32 9.89% 3782 174.43 10.35% 2750 175.48 9.81% 3012

6-7 191.10 174.70 8.58% 3532 172.98 9.48% 2672 173.32 9.31% 2977

6-8 186.67 168.34 9.82% 3398 162.20 13.11% 2828 162.51 12.94% 2764

6-9 184.82 165.97 10.20% 4078 163.56 11.50% 2499 163.33 11.63% 2542

6-10 188.98 171.21 9.40% 3123 168.46 10.86% 2375 167.93 11.14% 2212

ISG6 6-11 232.34 213.21 8.23% 6732 210.20 9.53% 5534 212.06 8.73% 5768

6-12 237.37 213.47 10.07% 7071 213.81 9.92% 5774 212.52 10.47% 5423

6-13 231.53 208.88 9.78% 7290 207.50 10.38% 4632 206.99 10.60% 4212

6-14 233.97 211.74 9.50% 6786 207.51 11.31% 5654 207.93 11.13% 6043

6-15 225.58 202.77 10.11% 7343 201.02 10.88% 5850 201.28 10.77% 5723

ISG7 6-16 292.30 — — — 262.61 10.16% 9190 262.25 10.28% 9289

6-17 302.87 — — — 273.71 9.63% 8928 274.12 9.49% 9813

6-18 294.21 — — — 264.37 10.14% 9561 265.04 9.92% 8972

6-19 300.90 — — — 272.25 9.52% 9821 270.78 10.01% 9312

6-20 302.12 — — — 273.24 9.56% 8722 274.33 9.20% 8834

Average 9.45% 10.40% 10.31%

Notes: (i) ‘SWO’ shows the solution method for SWO metaheuristic; (ii) ‘Strategy III’ and ‘Strategy IV’ show the solution
methods for the proposed CG-based heuristic by using the two proposed assignment plan selection strategies respectively;
(iii) ‘Obj’ is the objective value of the solution obtained by the corresponding solution method; (iv) ‘Gap’ lists the objective
gap between the solution obtained by FCFS rule and the solution obtained by the CG-based heuristic by using the
corresponding strategy; (v) ‘Seconds’ is the number of CPU seconds needed for the solution method to obtain the solution;
(vi) ‘—’ means the computational time for the instance is more than 10,800 seconds (i.e., three hours).

Table 6 provides comparisons between the proposed CG-based heuristics, the FCFS rule, and the698

SWO-based metaheuristic. From Table 6, we can see that the CG-based heuristics and the SWO-699

based metaheuristic significantly outperform the commonly used FCFS decision rule. The SWO700

based metaheuristic can improve the objective by 9.45% on average. However, the proposed CG-701

based heuristics under Strategy 3 and Strategy 4 improve it by 10.40% and 10.31%, respectively.702
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The results demonstrate that the CG-based heuristic outperforms the SWO-based metaheuristic703

for the integrated problem with respect to both the computation time and the solution quality. The704

SWO-based metaheuristic cannot converge within three hours each of the instances in ISG7. This705

shows that the proposed heuristic algorithm is more efficient than the SWO-based metaheuristic.706

8. Conclusions707

We have considered an integrated optimization problem arising in container terminals. A MILP708

model was built for this problem, which takes account of the decisions of berth allocation, QC709

assignment, and yard subblock assignment for arrival vessels. In addition, the periodicity of the710

plan was also considered. A CG-based heuristic was then developed to solve the model on large-711

scale problem instances; some accelerating techniques for the algorithm were also investigated. We712

performed extensive numerical experiments based on realistic instances in order to validate the713

effectiveness of the proposed model and the efficiency of the algorithm. The results show that the714

CG-based solution algorithm can obtain a good solution with an approximate 1% optimality gap715

within a much shorter computation time than a direct application of CPLEX.716

The contribution of this study lies mainly in the following two aspects: (i) we have proposed an717

integrated model on optimizing periodical plans of three key types of resources (berths, QCs and718

subblocks) in container terminals; (ii) a CG-based heuristic as well as some accelerating techniques719

can solve the model in a more efficient manner than some of metaheuristic that are commonly used720

for the optimization of port operations.721

Appendix A: Pseudo-codes for the two sub-algorithms722

Sub-algorithm 1 Exact polynomial algorithm for model M6

1: Input: A given set of QC-profile P , a dwelling time ψ and a starting time step χ

2: Output: An optimal selection of a QC-profile

3: for all the p, p∈ P do

4: Define OBJ1
p as the objective for QC-profile p when this profile is selected

5: if hp 6=ψ then

6: Set OBJ1
p =−∞

7: Calculate QCs used in each time step for QC-profile p, denoted as ζt, ∀t∈ T

8: end if

9: Set OBJ1
p =

∑
t∈T φt · ζt

10: end for

11: Solve max(OBJ1
p|∀p∈ P ), which is the objective for model M6, and the solution is p∗
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Sub-algorithm 2 Exact polynomial algorithm for model M7

1: Input: A given set of Berth B, Subblock K, a dwelling time ψ and a starting time step χ

2: Output: An optimal selection of a berth and r subblocks

3: for all the b, b∈B do

4: Define OBJ2
b as the objective for Berth b when it is selected

5: Set OBJ2
b = coDU

b u−
∑

t∈[χ, χ+ψ−1]$bt

6: for all the k, k ∈K do

7: Define OBJ3
k as the objective for Subblock k when it is selected

8: Set OBJ3
k = coDL

kb

(
l
r

)
− ρk

9: end for

10: Rank OBJ3
k from the smallest to the largest, and record it as Sk (S1 ≤ · · · ≤ SK)

11: Set OBJ2
b =OBJ2

b +
∑

k∈[1,r]Sk, the objective to select Berth b and best r subblocks

12: end for

13: Solve min(OBJ1
b |∀b ∈ B), which is the objective for model M7, and the solution is b∗ with

the best r subblocks selected

Appendix B: Procedure for the first stage of the initial heuristic723

Assume that the sequence of vessels is (v1, . . . , vn, . . . , vN), where n is the index for the sequence and N724

is the number of vessels. The sequential method solve the N vessels sequentially by multiple iterations. In725

the nth iteration, the berth-QC assignment problem is solved for the nth vessel in the sequence by model726

M8. Here, we define a parameter DS = 7 which indicates the depth of search. In the nth iteration, for727

model M8, all the variables related to v1, . . . , vn−1 are set as the input data, and all the variables related to728

vn, . . . , vn+DS are defined as decision variables. Once the model is solved for the nth iteration, the obtained729

values of the decision variables for the nth vessel are transferred to the input data for the (n+ 1)
st

iteration.730

In total, there are N −DS iterations, and the last iteration solves model M8 with the decision variables of731

vN−DS, . . . , vN . Before formulating the model for the nth iteration, two sets are defined: V F
n = {v1, . . . , vn−1}732

and V B
n = {vn, . . . , vn+DS}, where n∈ {1, . . . , N−DS}. For the first iteration, V F

1 = ∅. The set of V F
n provides733

the input data for the model M8 in the nth iteration, which is formulated as follows:734

[M8] minimize
∑
i∈V

cpi (τa+
i + τ b+

i ) + co
∑
i∈V

∑
b∈B

ωibD
U
b ui (105)

subject to: Constraints (9)–(11); (15)–(20); (22); (27)–(31),735 ∑
p∈Pi

γip = 1 ∀i∈ V B
n , (106)

736 ∑
b∈B

ωib = 1 ∀i∈ V B
n , (107)

737 ∑
t∈{1,...,H}

µit = 1 ∀i∈ V B
n , (108)
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738 ∑
t∈T

µitt= αi ∀i∈ V B
n , (109)

739

αi +
∑
p∈Pi

γiphip− 1 = βi ∀i∈ V B
n , (110)

740

αi≥ afi ∀i∈ V B
n , (111)

741

βi≤ bfi ∀i∈ V B
n , (112)

742

ηipt ≥ γip +µit− 1 ∀i∈ V B
n ,∀p∈ Pi, ∀t∈ T, (113)

743

ωib ∈ {0, 1} ∀i∈ V B
n ,∀b∈B, (114)

744

γip ∈ {0, 1} ∀i∈ V B
n ,∀p∈ Pi, (115)

745

µit ∈ {0, 1} ∀i∈ V B
n ,∀t∈ T, (116)

746

ηipt ∈ {0, 1} ∀i∈ V B
n ,∀p∈ Pi,∀t∈ T. (117)
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