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The Split Delivery Vehicle Routing Problem with Time Windows (SDVRPTW) is a notoriously hard combi-

natorial optimization problem. First, it is hard to find a useful compact Mixed-Integer Programming (MIP)

formulation for the SDVRPTW. Standard modeling approach either suffer from inherent symmetries (MIPs

with a vehicle index) or cannot exactly capture all aspects of feasibility. Due to the possibility to visit

customers more than once, the standard mechanisms to propagate load and time along the routes fail. Sec-

ond, the lack of useful formulations has rendered any direct MIP-based approach impossible. Up to now,

the most effective exact algorithms for the SDVRPTW are branch-and-price-and-cut approaches using a

path-based formulation. In this paper, we propose a new and tailored branch-and-cut algorithm to solve the

SDVRPTW. It is based on a new relaxed compact model, in which some integer solutions are infeasible to

the SDVRPTW. We use known and introduce some new classes of valid inequalities in order to cut off such

infeasible solutions. One new class is path-matching constraints that generalize infeasible-path constraints.

However, even with the valid inequalities, some integer solutions to the new compact formulation remain to

be tested for feasibility. For a given integer solution, we built a generally sparse subnetwork of the original

instance. On this subnetwork, all time-window feasible routes can be enumerated and a path-based residual

problem is then solved in order to decide on the selection of routes, the delivery quantities, and herewith the

overall feasibility. All infeasible solutions need to be cut off. For this reason, we derive some strengthened

feasibility cuts exploiting the fact that solutions often decompose into clusters. Computational experiments

show that the new approach is able to prove optimality for several previously unsolved instances from the

literature.

Key words : Vehicle routing problem; split delivery; time windows; valid inequalities

1



Bianchessi and Irnich: Branch-and-Cut for the SDVRPTW
2 Article submitted to Transportation Science; manuscript no. TS-2016-0295.R1

1. Introduction

The Split Delivery Vehicle Routing Problem (SDVRP) is the relaxation of the classical Vehicle

Routing Problem (VRP, Toth and Vigo 2014), in which multiple visits (split deliveries) to a cus-

tomer are allowed. The SDVRP has been introduced in the literature by Dror and Trudeau (1989,

1990), who showed that very significant savings are possible when allowing split deliveries, both in

terms of the total distance traveled and the number of vehicles employed. In particular, Archetti

et al. (2006b) proved that savings up to 50 % are possible in distance traveled, and this bound is

tight (assuming the validity of the triangle inequality). In the last decade, the interest towards the

class of vehicle routing problems with split deliveries was rapidly increasing. The reader is referred

to the recent surveys by Archetti and Speranza (2012) and Irnich et al. (2014) on the topic.

Similarly, the relaxation of the Vehicle Routing Problem with Time Windows (VRPTW,

Desaulniers et al. 2014) allowing split deliveries is the Split Delivery Vehicle Routing Problem with

Time Windows (SDVRPTW). Compared to the SDVRP, the SDVRPTW has received limited

attention: Frizzell and Giffin (1995), Mullaseril et al. (1997), and Sepúlveda et al. (2014) addressed

the problem by means of constructive and improvement heuristics. In (Ho and Haugland 2004),

a tabu search algorithm is presented. Gendreau et al. (2006) introduced the first exact algorithm

to solve the problem. Their branch-and-price-and-cut algorithm was able to solve instances with

up to 50 customers. Later, Desaulniers (2010) proposed an alternative branch-and-price-and-cut

algorithm. While Gendreau et al. (2006) decide on the quantities to deliver at the master problem

level, Desaulniers (2010) handles the quantities to deliver at the subproblem level, avoiding the

dynamic insertion of an exponential number of constraints in the master problem, that is, one

capacity constraint for each generated route. The new branch-and-price-and-cut algorithm was able

to solve 176 benchmark instances to optimality within one hour of computational time, including

one 100-customer instance. Afterwards, Archetti et al. (2011b) proposed an enhanced version of

the algorithm of Desaulniers (2010). The authors proposed a tabu search algorithm for accelerating

the solution of the subproblem. To improve the value of the lower bounds computed in the search

tree, they introduced extensions of several classes of valid inequalities together with a new heuris-

tic separation algorithm for the k-path cuts, originally proposed by Kohl et al. (1999). Thanks

to these enhancements, the number of benchmark instances solved to optimality within one hour

of computational time increased from 176 to 262. A recent paper by Luo et al. (2016) considers

a generalization of the SDVRPTW in which linear weight-related costs are considered. To test

their branch-and-price-and-cut algorithm on the SDVRPTW benchmark, the authors disregard

any weight-related costs so that their approach becomes very similar to the one of Archetti et al.

(2011b), finally delivering 264 of 504 optimally solved instances.
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In this paper, we propose a new and tailored branch-and-cut algorithm to solve the SDVRPTW.

It is based on a new compact formulation, which in fact defines a relaxation of the problem. This

means that some integer solutions to the relaxed formulation are infeasible to the SDVRPTW. We

use known valid inequalities in order to strengthen the relaxed compact formulation. In addition,

for the specific purpose of cutting off infeasible SDVRPTW solutions, we introduce two new classes

of valid inequalities. The first is the extension to the SDVRPTW of the infeasible-path constraints

proposed in Ascheuer et al. (2000, 2001) for the asymmetric Traveling Salesman Problem with

Time Windows (TSPTW). The other new class is the path-matching constraints that generalize

infeasible-path constraints. However, even with these valid inequalities, integer solutions to the new

compact formulation remain to be tested for feasibility. Any given integer solution to the relaxed

formulation induces a generally sparse subnetwork of the original instance. On this subnetwork, all

time-window feasible routes can be enumerated. An extended set covering problem is then solved

to decide on the selection of routes, the delivery quantities, and herewith the overall feasibility.

All proved infeasible solutions are cut off from the feasible region of the relaxed problem. The

solution approach extends and improves the branch-and-cut algorithm proposed by Archetti et al.

(2014a) for the SDVRP. One important improvement is that we derive strengthened feasibility cuts

exploiting the fact that solutions often decompose into clusters. Computational experiments show

that our new solution approach is able to solve several previously unsolved benchmark instances,

increasing overall the number of benchmark instances solved to optimality within one hour of

computational time.

The remainder of the paper is organized as follows. In Section 2, we recall the definition of the

SDVRPTW and summarize several properties that are known to hold for some optimal SDVRPTW

solutions. In Section 3, we present the branch-and-cut algorithm for solving the SDVRPTW. Exper-

imental results are presented in Section 4 before final conclusions are drawn in Section 5.

2. Problem Definition

The SDVRPTW can be defined on a directed graph G= (V,A) with vertex set V and arc set A.

The vertex set V consists of the set N = {1, . . . , n} that represents the n customers and vertices

0 and n+ 1 that both represent the depot where vehicle routes start and end, respectively. Each

customer i ∈ N has a positive demand di that has to be fulfilled by one or more visits starting

within a given time window [ei, li]. Note that split deliveries are inevitable when the demand of

some customers exceeds the capacity of every available vehicle. If a vehicle arrives at customer

i prior to ei, it must wait until ei before starting the delivery. The planning horizon is modeled

with the help of the time window [e0, l0] = [en+1, ln+1] of the depot. Each arc (i, j) ∈A represents

a feasible movement of a vehicle from the location of i to the location of j characterized by a
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non-negative travel time tij and travel cost cij. As common practice, the additional arc (0, n+ 1)

is used to model idle vehicle. We assume that the travel time tij includes the service time (if any)

at i. For each pair of vertices i, j ∈ V, i 6= j, there can exist an arc (i, j)∈A if ei + tij ≤ lj. A fleet of

K homogeneous vehicles each with a capacity of Q is available. The vehicles are initially housed

at depot 0 and have to return to depot n+ 1 at the end.

A route is modeled as a path from 0 to n+ 1 in G. It is feasible if the total demand delivered

at the visited customers does not exceed the vehicle capacity and the time window constraints

are respected at the visited locations. The SDVRPTW consists of determining a set of least-cost

feasible routes such that all customers’ demands are met.

From now on, throughout the paper we will assume that the triangle inequality holds for travel

times tij and costs cij, and that the service times at the customers are constant and, in particular,

independent of the quantity delivered. Given these assumptions, it is possible to prove that there

exists an optimal solution to the SDVRP(TW) in which:

Property 1. Two routes share at most one split customer (Dror and Trudeau 1990);

Property 2. Each arc between two vertices representing customers is traversed at most once (Gen-

dreau et al. 2006);

Property 3. For each pair of reverse arcs between two customers at most one of them is traversed

(Desaulniers 2010);

Property 4. All routes are elementary (Desaulniers 2010).

Moreover, we will assume that all customer time windows are reduced so that ei ≥ e0 +t0i and li ≤

ln+1− ti,n+1 holds for all customers i∈N . Standard pre-processing of time windows automatically

ensures this relation so that any feasible partial path to which 0 and n+ 1 are attached, in the

front and at the end, respectively, gives a feasible route.

If the vehicle capacity Q and all demands di for i ∈N are integer, then there exists an optimal

solution to the SDVRPTW fulfilling Properties 1–4 and

Property 5. All delivery quantities are positive integers (Archetti et al. 2006a, 2011a).

3. Branch-and-Cut Algorithm

In this section, we present the branch-and-cut algorithm we devised for solving the SDVRPTW.

In Section 3.1, we define the relaxed compact formulation for the SDVRPTW and show how an

optimal solution to this formulation may not be feasible to the original problem. In Section 3.2, we

recall the old and introduce the new feasibility checking procedure and feasibility cuts. Finally, in

Section 3.3, we present the valid inequalities used in order to strengthen the relaxed formulation

and to cut off solutions which are infeasible to the SDVRPTW.
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3.1. Relaxed Compact Formulation

The fundamental difficulty of developing a good compact formulation for the SDVRPTW comes

from several sources. First, as we want to use such a formulation within a MIP solver, it should not

have variables with vehicle indices (three-index formulation). Otherwise, the inherent symmetry

makes any known branching scheme ineffective. For example, computational results in (Belenguer

and Benavent 2003) and (Ahr 2004) show that the vehicle-indexed formulation of the capacitated

arc-routing problem works well for small fleets of five or less vehicles, but it is not suited for a

larger fleet. Symmetry breaking constraints (see, e.g., Fischetti et al. 1995) can only mitigate the

negative effects of symmetry, e.g., analyzed for some inventory routing VRPs in (Adulyasak et al.

2014, Archetti et al. 2014b). Second, the fact that customers can be visited by several vehicles

make it impossible to attach unique resource variables to the vertices, e.g., variables indicating the

accumulated customer demand and the service time. Hence, MTZ-like formulations (see Miller et al.

1960) are not directly applicable in the split-delivery context. Third, the formulation proposed by

Maffioli and Sciomachen (1997) for the sequential ordering problem shows that resource variables

may be associated with arcs. Even if we can exploit Property 2 and associate time variables with

arcs between customers, there remains the problem that arcs between depot and customers (or

vice versa) may be traversed by more than one vehicle. Hence, no unique time variables can be

associated with these arcs.

Our relaxed compact formulation is a two-commodity flow formulation with additional variables

and constraints. The first commodity represents the available vehicles and the second represents

the service time imposed by the routes. The formulation uses

(i) integer variables zi indicating the number of times vertex i∈N is visited by the vehicles,

(ii) integer flow variables xij indicating the flow of vehicles along arc (i, j)∈A, and

(iii) non-negative continuous flow variables Tij indicating the service start time at i∈N if a vehicle

directly travels from i∈N to j ∈N .

Note that the continuous flow variables are defined only for arcs in N ×N . In this sense, time flows

originate and terminate at vertices in N . In the remainder, we will refer to Tij as service time flow

variables.

We use the following notation. Symbols Γ+(S) and Γ−(S) denote the forward and backward star

of S ⊆N , respectively. For the sake of simplicity, we write Γ+(i) and Γ−(i) for singleton sets S = {i}.
We define A(N) = {(i, j) ∈A : i ∈N,j ∈N}, Γ+

N(S) = Γ+(S)∩A(N), and Γ−N(S) = Γ−(S)∩A(N).

Again, we write Γ+
N(i) and Γ−N(i) for singleton sets S = {i}. Finally, we define KS = d

∑
i∈S di/Qe

as the minimum number of vehicles required to serve customers in set S ⊆N .

The relaxed two-commodity flow formulation for the SDVRPTW is as follows:

min
∑

(i,j)∈A

cijxij (1a)
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(h,i)∈Γ−(i)

xhi =
∑

(i,j)∈Γ+(i)

xij = zi i∈N (1b)

∑
(0,j)∈Γ+(0)

xij =K (1c)

∑
(i,j)∈Γ+(S)

xij ≥KS S ⊆N, |S| ≥ 2 (1d)

eix0i +
∑

(h,i)∈Γ−
N

(i)

Thi +
∑

(h,i)∈Γ−
N

(i)

thixhi ≤
∑

(i,j)∈Γ+
N

(i)

Tij + lixin+1 i∈N (1e)

eixij ≤ Tij ≤ lixij (i, j)∈A(N) (1f)

zi ≥ ddi/Qe and integer i∈N (1g)

xij ∈ {0,1} (i, j)∈A(N) (1h)

xij ≥ 0 and integer (i, j)∈A \A(N) (1i)

The objective function (1a) calls for the minimization of the total travel costs. Constraints (1b)

impose flow conservation for the vehicle flow variables. The fleet size constraint is (1c). Con-

straints (1d) partially impose capacity constraints and prevent the generation of paths that are

not connected to the depot; an example showing that (1d) is not sufficient is discussed below.

Constraints (1e) and (1f) impose conservation for the service time flow, ensure consistency between

the Tij and xij variable values, and partially ensure time window prescriptions. Finally, con-

straints (1g)–(1i) define the domains of the integer variables. Note that the binary requirement

in (1h) results from Property 2.

An optimal solution to (1) may not be feasible for the SDVRPTW as illustrated in Figure 1. The

instance depicted in Figure 1(a) shows that time window constraints can be violated by an integer

solution to (1). In this instance, the depicted arcs have cost and travel time equal to 1, while all other

arcs (not shown) have cost and travel time equal to 2. The demand di and the time window [ei, li] of

the n= 5 customers are presented close to each customer i∈ {1,2, . . . ,5}. The depot time window

is assumed to be non-constraining, i.e., [e0, l0] = [en+1, ln+1] = [0,10]. The capacity of the vehicles is

Q= 10. The depicted arcs having flow 1 form the unique optimal solution to the relaxed model (1).

With regard to demands and vehicle capacity, this solution can be converted into a feasible SDVRP

solution, e.g., using the two routes (0,1,3,4, n+1) and (0,2,3,5, n+1). Nevertheless, as the partial

route (0,1,3) cannot be extended in any feasible way with regard to time-window constraints, there

exists no feasible SDVRPTW solution. In particular, customer 1 cannot be visited by a feasible

route using exclusively arcs with positive flow. However, the following assignments T13 = 3, T23 = 1,

and T34 = T35 = 3 to the service time flow variables are feasible for model (1).

In Figure 1(b), we present another example showing that integer solutions to (1) can violate

the capacity constraints. We consider the same setting as in Figure 1(a) except that time windows
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0

1

[e1, l1] = [3,4]

d1 = 3

2

[e2, l2] = [1,3]

d2 = 4

3

[e3, l3] = [2,4]

d3 = 5

4

[e4, l4] = [3,4]

d4 = 4

5

[e5, l5] = [3,4]

d5 = 4

6

(a)

0

1

d1 = 4

2

d2 = 4

3

d3 = 4

4

d4 = 7

5

d5 = 1

6

(b)

Figure 1 Optimal solutions to formulation (1) that are infeasible for the SDVRPTW.

are not binding and demands have changed according to the depicted values. Note first that the

solution does not violate any capacity constraints (1d). However, neither route (0,1,3,4, n + 1)

nor route (0,2,3,4, n+ 1) is feasible, since the demand of the customers with only one visit, i.e.,

d1 + d4 = d2 + d4 = 11 exceeds the capacity Q= 10. Hence, customer 4 cannot be serviced by any

feasible SDVRPTW route resulting from arc flows equal to 1 in the depicted solution.

3.2. Feasibility Checking

Recall that every time a feasible integer solution to the relaxed formulation (1) is found, a procedure

must check if the solution is also feasible to the SDVRPTW. If not, a feasibility cut must be

inserted to cut off the proved infeasible solution from the feasible region of the relaxed problem.

In Section 3.2.1, we first describe how the approach proposed by Archetti et al. (2014a) for the

SDVRP can be extended to the SDVRPTW. Then, in Section 3.2.2, we present improvements to

this basic approach.

3.2.1. Basic Approach Let s̄= (x̄, z̄, T̄) be an integer solution to the relaxed formulation (1),

possibly augmented by branching and cutting constraints. Let w̄ = c̄>x̄ denote the cost of the

solution.

For any subset V̄ ⊆ V , we define a residual network induced by the active vehicle flow variables.

We will do this not only for V̄ = V but also for partial solutions as explained in the next section.

Moreover, let H(V̄, x̄) = (V̄, Ā) be defined by Ā= {(i, j) ∈A∩ (V̄ × V̄ ) : x̄ij ≥ 1}. Let R̄ be the set
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of all elementary 0-(n+ 1)-paths (routes) in H(V̄, x̄) satisfying all time-window constraints. We

generate the route set R̄ by exploring H(V̄, x̄) in a depth-first way.

An instance of the SDVRPTW, defined on the basis of V̄ and x̄ imposing the route set R̄, can

be modeled by a path-based formulation. Some additional notation is required. Let cr be the cost

of route r ∈ R̄ and N̄(r)⊆ N̄ be the subset of customers visited by route r ∈ R̄ using the definition

N̄ = V̄ \ {0, n+ 1}. We distinguish between routes R̄s visiting a single customer, i.e., routes of the

form (0, v,n+ 1) for v ∈N , and routes R̄m visiting more than one customer. Note that routes in

R̄m can be performed at most once due to Property 2, while routes R̄s can be performed multiple

times. Obviously, R̄= R̄m ∪ R̄s and R̄m ∩ R̄s =∅. Moreover, let brij be a binary arc indicator equal

to 1 if arc (i, j)∈ Ā(N̄) is used in route r ∈ R̄, and 0 otherwise.

The path-based formulation for the SDVRPTW, defined relatively to V̄ and x̄, uses

(i) nonnegative integer and binary variables λr indicating the number of vehicles assigned to

route r ∈ R̄s and R̄m, respectively, and

(ii) non-negative continuous variables δri indicating the quantity delivered to customer i ∈ N̄(r)

by route r ∈ R̄,

and it reads as follows:

w̄R̄ = min
∑
r∈R̄

crλr (2a)

s.t.
∑

r∈R̄:i∈N̄(r)

δri ≥ di i∈ N̄ (2b)

∑
i∈N̄(r)

δri ≤Qλr r ∈ R̄ (2c)

∑
r∈R̄

λr ≤K (2d)∑
r∈R̄

(brij + brji)λ
r ≤ 1 (i, j), (j, i)∈ Ā(N̄), i < j (2e)

δri ≥ 0 i∈ N̄, r ∈ R̄ (2f)

λr ∈ {0,1} r ∈ R̄m (2g)

λr ≥ 0 and integer r ∈ R̄s (2h)

The objective function (2a) minimizes the cost of all routes in use. If the model (2) is infeasible, we

set w̄R̄ =∞. Constraints (2b) ensure that customer demands are met. Vehicle capacity constraints

are imposed by (2c). Constraint (2d) guarantees that the fleet size is respected. Property 3 implies

constraints (2e). Finally, constraints (2f)–(2h) define the domains of the δri and λr variables.

Note that constraints (2b)–(2h) do not impose that each arc (i, j) ∈ Ā is traversed exactly x̄ij

times by the selected routes. Hence, alternative SDVRPTW solutions are possible, and improving
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solutions are found whenever w̄R̄ < w̄. Moreover, customer visits with zero deliveries are possible

in (2), i.e., λr > 0 but δri = 0 for some i ∈ N̄(r). Due to the validity of the triangle inequality,

improving (or at least not worse) feasible solutions can be derived by removing customers with a

delivery quantity of 0 from the routes in a solution to (2). Thus, we apply a greedy post-processing

procedure in order to identify high quality solutions as early as possible in the course of the branch-

and-cut. For the sake of exposition, we assume that w̄R̄ is updated to the value of such an improving

solution whenever one is detected.

We strengthen formulation (2a)–(2h) by the following additional constraint:∑
r∈R̄

crλr ≤ w̄∗ (2i)

This constraint imposes an upper bound on the objective value w̄R̄, where w̄∗ is the upper bound

to the SDVRPTW stored in the branch-and-cut algorithm.

In the basic approach, we restrict ourselves to residual networks H(V̄, x̄) for the complete vertex

set V̄ = V and x̄ values that are the arc flow variables of a solution s̄ = (x̄, z̄, T̄) to the relaxed

model. We summarize what actions the possible outcomes of formulation (2) impose:

(i) w̄R̄ ≤ w̄: Since also w̄≤ w̄∗ holds, a new and globally improving feasible integer solution to the

SDVRPTW has been found. The best known solution (value) can be updated by w̄∗ := w̄R̄

and the branch-and-bound node can be terminated.

(ii) w̄R̄ > w̄: The current integer solution s̄ is infeasible. A feasibility cut must be added (see

below). Moreover, the resulting branch-and-bound node must be further examined. It is worth

noting that the upper bound w̄∗ can however be updated by w̄∗ := w̄R̄ if w̄R̄ < w̄
∗ holds.

As in the branch-and-cut of Archetti et al. (2014a) for the SDVRP, the feasibility cut that

excludes the current integer solution s̄= (x̄, z̄, T̄), here independent from the time schedule given

by T̄, is ∑
(i,j)∈A\Ā

xij ≥ 1. (3)

Inequality (3) imposes that the set of active vehicle flow variables must be different from the one

defining the solution s̄. The inequality is globally valid for formulation (1).

3.2.2. Improvements Three types of improvements compared to the basic approach are pro-

posed in our branch-and-cut implementation. We present them now.

Extended Arc Set Ā Increasing the underlying arc set Ā defining the residual network H(V̄, x̄) =

(V̄, Ā) leads to a larger set of routes R̄ and herewith to generally better feasible integer SDVRPTW

solutions when solving the path-based formulation (2). At the downside, the size of the the path-

based formulation (2) increases leading to generally longer computation times. However, we found
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that adding all depot arcs is often beneficial because the resulting formulation (2) remains solvable

and often more and better improving integer solutions (w.r.t. the current objective value w̄) are

found. Hence, we enlarge Ā and define it as

Ā= {(i, j)∈A : x̄ij ≥ 1}∪ {(0, j) : j ∈ N̄}∪ {(i, n+ 1) : i∈ N̄}.

The resulting larger set of routes R̄ offers the possibility to use subroutes of the original routes

generated from the residual network H(V̄, x̄).

Reduced Path-Based Formulation In order to accelerate the solution of (2) by the MIP solver,

we can significantly reduce the number of continuous variables δri in this formulation. Let S̄ =

{i ∈ N̄ : z̄i ≥ 2} be the set of customers receiving split deliveries (split customers) in solution s̄.

We can define variables δri only for split customers i ∈ S̄ and routes r ∈ R̄ with i ∈ N̄(r). For the

non-split customers i ∈ N̄ \ S̄, we know that the delivery quantity (before modeled by a variable

δri ) is identical to diλ
r. Hence, we can reformulate demand fulfillment and capacity constraints (2b)

and (2c) and variable domains (2f) as∑
r∈R̄ :i∈N̄(r)

δri ≥ di i∈ S̄ (4a)

∑
r∈R̄ :i∈N̄(r)

λr
i ≥ 1 i∈ N̄ \ S̄ (4b)

∑
i∈S̄∩N̄(r)

δri +
∑

i∈(N̄\S̄)∩N̄(r)

diλ
r
i ≤Qλr r ∈ R̄ (4c)

δri ≥ 0 r ∈ R̄, i∈ S̄ ∩ N̄(r) (4d)

so that the improved formulation becomes (2a), (2d), (2e), (2g)–(2h), and (4). While (4a) is the

pendant to (2b) for the split customers, constraints (4b) ensure that each non-split customer

receives its entire demand when visited once (note that we assume that travel costs and times fulfill

the triangle inequality). The new vehicle capacity constraints are given by (4c). Note that routes

in R̄ must satisfy the time-window constraints. In addition, the limited capacity of the vehicles

is taken into consideration without knowing the actual delivery amounts of a route: Non-split

customers i receive their entire demand di, and according to Property 5, a minimum delivery of

α∈ {0,1} is assumed for split customers i∈ S̄, with α= 1 if di ∈Z+ for all i∈N , and Q∈Z+.

Lifting of Feasibility Cuts We now show how the feasibility cuts (3) can be lifted. Integer solu-

tions s̄ to (1) often consist of independent clusters. Formally, let {N̄ c : c∈ C} be the set of weakly

connected components of H(V̄, x̄)(N), i.e., of the vertex-induced subgraph of H(V̄, x̄) induced by

the customers N . Smaller SDVRPTW instances can now be defined by V̄ c = N̄ c ∪{0, n+ 1}.
An example of an integer solution to the relaxed formulation (1) which is infeasible for the

SDVRPTW is displayed in Figure 2(a). Here, one can see H(V̄, x̄) and the three weakly connected

components consist of N̄ 1 = {1,2,3,4,12}, N̄ 2 = {5,6,7,8,9}, and N̄ 3 = {10,11,13}.
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Figure 2 (a) An integer solution to the relaxed formulation which is infeasible for SDVRPTW and the associated

residual network H(V, x̄), (b) Arcs that occur in the left-hand side of the standard feasibility cut (3)

but not in the left-hand side of the lifted feasibility cut (5).

The lifting procedure considers each weakly connected component: For each c ∈ C, we build

H(V̄ c, x̄) = (V̄ c, Āc), generate the routes R̄c over H(V̄ c, x̄), and solve the resulting formulation (2).

Note that, in order to speed up the solution process, we do not consider an extended arc set here,

and we impose using each arc (i, j)∈ V̄ c× V̄ c exactly x̄ij times. The additional constraints to insert

into formulation (2) are of the form
∑

r∈R̄c brijλ
r = x̄ij, (i, j) ∈ Āc. The objective value w̄R̄c must

be compared against w̄c := c̄>x̄c. If (2) is infeasible or w̄R̄c > w̄c, then we add the following lifted

feasibility cut defined w.r.t. the weakly connected component N̄ c:∑
(i,j)∈Âc

xij ≥ 1, (5)

where the arc set Âc defining the left-hand side is

Âc = {(i, j)∈A∩ (V̄ c× V̄ c) : x̄ij = 0}∪Γ+
N(N̄ c)∪Γ−N(N̄ c).

The lifted feasibility cut (5) imposes that either the set of active vehicle flow variables associated

with the internal arcs of the component N̄ c must be different from the ones positive in the solution

s̄ or the component N̄ c itself must change. The inequality is globally valid. Note that Âc ⊆A \ Ā
holds by definition of Ā. Therefore, the left-hand side of (5) comprises less variables (in case of

two or more components) as the original feasibility cut (3). In the example of the infeasible integer

solution depicted in Figure 2(a), the first weakly connected component N̄ 1 = {1,2,3,4,12} imposes

a lifted feasibility cut. The relationship between the two arc sets is displayed in Figure 2(b), where

the dashed arcs are those present in the left-hand side of the standard but not the lifted feasibility

cut.
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The lifting procedure is run whenever the approach proposed in Archetti et al. (2014a), enhanced

by the first two improvements described in this section, proves that a solution s̄ is infeasible to

the SDVRPTW. This solution s̄ is then cut off by imposing to change the current solution for at

least one connected component c′ ∈ C. It happens regularly that lifted feasibility cuts for several

components can be added at the same time.

3.3. Valid Inequalities

In classical branch-and-cut algorithms the valid inequalities are used to strengthen the formulation

of the problem addressed. Since (1) is a relaxed formulation, in our algorithm the valid inequalities

are also used to cut off integer solutions to (1) that are infeasible to the SDVRPTW. While the

inequalities presented in Sections 3.3.2–3.3.5 are known from the literature, the inequalities pro-

posed in Sections 3.3.6 and 3.3.7 are new. The infeasible-path constraints proposed in Ascheuer

et al. (2000, 2001) for the TSPTW are adapted to the SDVRPTW in Section 3.3.6. These inequal-

ities are then generalized to so-called path-matching constraints in Section 3.3.7. The separation

algorithms for infeasible-path and path-matching constraints that we present are exact for integer

solutions in the sense that at least one violated constraint is found if one exists. For fractional

solutions, the separation algorithms are heuristics.

The inequalities presented in Section 3.3.2 are static in the sense that we insert them right from

the beginning into (1). All the other inequalities are dynamically separated at each node of the

branch-and-cut tree.

Our overall separation strategy can be summarized as follows: Only inequalities exceeding a

violation of ε are inserted. The classes of valid inequalities are hierarchically considered according

to the order with which they are presented in this section. The separation procedure stops as soon

as violated inequalities are found in a given class. A maximum of MAX CUTS cuts is added in each

call of the separation algorithm.

3.3.1. Preliminaries Let P be the polyhedron formed by feasible solutions to the SDVRPTW

fulfilling Properties 2–5. The polyhedron formed by solutions to the relaxed formulation (1) is

denoted by PR and fulfills PR ⊇P. While the inequalities presented in Sections 3.3.3 and 3.3.5 are

valid for P and PR, all other presented inequalities are valid only for P.

In order to introduce valid inequalities, some additional notation is required: A path P =

(v0, v1, . . . , v`) is any sequence of vertices with (vi−1, vi) ∈ A for i ∈ {1, . . . , `}. The start vertex of

the path is s(P ) = v0 and the end vertex is t(P ) = v`. The length of the path is `= `(P )≥ 1. The

arcs of P are denoted by A(P ), and we define AN(P ) =A(P )∩A(N). The vertices of P are V (P ) =

{v0, . . . , v`} and the internal vertices are V int(P ) = {v1, . . . , v`−1}. Note that in the SDVRPTW

the internal vertices of a feasible route are customers, i.e., V int(P ) ⊆N . For the demand of the
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internal vertices we use the shorthand notation d(V int(P )) for
∑

v∈V int(P ) dv. Paths of length 1

have V int(P ) =∅.

A path P with |{v1, . . . , v`}| = |{v0, v1, . . . , v` − 1}| = ` is said to be almost-elementary. All the

internal vertices of an almost-elementary path are distinct. It is worth noting that, in a solution

to the SDVRPTW, an almost-elementary path represents a subpath of a route in which all the

internal vertices are non-split customers. An almost-elementary path P = (v0, v1, . . . , v`) is time-

window infeasible if there do not exist numbers T0, T1, . . . , T` such that evi ≤ Ti ≤ lvi holds for

all i = 0,1, . . . , ` and Ti−1 + tvi−1,vi ≤ Ti holds for i = 1, . . . , `. Given an almost-elementary path

P = (v0, v1, . . . , v`), we define the minimum quantity d(P ) to deliver along the path as

d(P ) = α
(
1− δs(P ),0

)
+ d(V int(P )) +α

(
1− δt(P ),n+1

)
, (6)

where δxy ∈ {0,1} is the Kronecker delta which is equal to 1 if x= y and 0 otherwise, and α∈ {0,1}
is equal to 1 if di ∈ Z+ for all i ∈N , and Q ∈ Z+. The α-terms defining the minimum quantity to

deliver exploit Property 5. An almost-elementary path P with P 6= (0, i, n+1) for any i∈N is load

infeasible if d(P )>Q. Also assume that all paths P = (0, i, n+ 1), i ∈N , of length `(P ) = 2 are

feasible even if d(P ) = di >Q.

An almost-elementary path P = (v0, v1, . . . , v`), is said to be infeasible (for the SDVRPTW) if

it does not occur as a subpath in any route of a feasible solution to the SDVRPTW fulfilling

Properties 2–5.

Definition 1. An almost-elementary path P = (v0, v1, . . . , v`), is infeasible if at least one of the

following condition is satisfied:

(i) P is time-window infeasible;

(ii) P is load infeasible;

(iii) P is a cycle, i.e. s(P ) = t(P ).

Definition 2. For a path P = (v0, v1, . . . , v`−1, v`) in G, the associated depot-reduced path is

dr(P ) equal to

(i) P = (v0, v1, . . . , v`−1, v`) if v0 6= 0 and v` 6= n+ 1,

(ii) (v1, . . . , v`−1, v`) if v0 = 0 and v` 6= n+ 1,

(iii) (v0, v1, . . . , v`−1) if v0 6= 0 and v` = n+ 1, and

(iv) (v1, . . . , v`−1) if v0 = 0 and v` = n+ 1.

Lemma 1. Given an infeasible almost-elementary path P = (v0, v1, . . . , v`) with

(a) v0 = 0 and v` 6= n+1. Then, any almost-elementary path P ′ of the form (S,dr(P )) is infeasible

for any path S, `(S)≥ 1.

(b) v0 6= 0 and v` = n+1. Then, any almost-elementary path P ′ of the form (dr(P ), T ) is infeasible

for any path T , `(T )≥ 1.
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(c) v0 = 0 and v` = n + 1. Then, any almost-elementary path P ′ of the form (S,dr(P ), T ) is

infeasible for any pair of paths S, `(S)≥ 1, and T , `(T )≥ 1.

Proof: (a): P is time-window infeasible or load infeasible. Defining S = (0, v1) would result in

P ′ = P . Any other path S would lead to the definition of almost-elementary path P ′ which is

time-window infeasible if P is time-window infeasible and such that d(P ′)≥ d(P ).

(b) and (c): Straightforward using similar arguments. �

For the presentation of separation procedures, we assume that the current (fractional) solution

of (1) is given by s̄= (x̄, z̄, T̄). Moreover, for any customer i∈N such that z̄i < 1.5, π(i) and σ(i)

denote a predecessor and a successor of i in the graph induced by s̄, respectively. The different

separation procedures use individual tie-breaker rules if predecessors or successors are not unique.

For all the customers i∈N such that z̄i ≥ 1.5, predecessors and successors remain undefined.

3.3.2. Static Inequalities Due to Property 3, the inequalities

xij +xji ≤ 1 (i, j), (j, i)∈A(N) : i < j (7)

can be imposed.

3.3.3. Capacity Cuts Capacity cuts (1d), i.e., inequalities
∑

(i,j)∈Γ+(S) xij ≥KS for all S ⊆N ,

|S| ≥ 2, have been stated as a part of formulation (1). We separate violated capacity cuts by

applying two shrinking heuristics presented in (Belenguer et al. 2000) and (Ralphs et al. 2003),

namely the extended shrinking heuristic and the greedy shrinking heuristic. The reader is referred

to the latter reference for details.

3.3.4. 2-Path Cuts Kohl et al. (1999) introduced 2-path cuts in order to strengthen path-

based formulations of the VRPTW. However, these inequalities solely refer to the vehicle flow on

the arcs, and thus they can also be applied to arc-based formulations. Whenever a subset S ⊆N
of the customers cannot be served with a single vehicle, the 2-path cuts∑

(i,j)∈Γ+(S)

xij ≥ 2 (8)

is valid. The precondition is fulfilled if KS > 1, i.e., the demand of the customers S exceeds the

vehicle capacity, or S ∪{0, n+ 1} cannot be visited by a single vehicle due to time window restric-

tions. The latter means that the TSPTW induced by S ∪ {0, n + 1} is infeasible. We separate

violated 2-path cuts with the help of the greedy heuristic proposed in Kohl et al. (1999). Given

the current arc-flow values x̄, the heuristic first identifies inclusion-maximal candidate sets S with∑
(i,j)∈Γ+(S) x̄ij < 2. Then, for each candidate set S, an exact dynamic programming algorithm for

the associated TSPTW over S ∪ {0, n + 1} is applied. If no feasible TSPTW solution exists, a

violated 2-path cut is identified.



Bianchessi and Irnich: Branch-and-Cut for the SDVRPTW
Article submitted to Transportation Science; manuscript no. TS-2016-0295.R1 15

3.3.5. Connectivity Cuts Already the capacity cuts ensure that any subset of customers is

connected to the depot. A more general type of connectivity cuts has been used in three-index

VRP formulations (Toth and Vigo 2002, p. 15). In the SDVRPTW, connectivity cuts are of the

form ∑
(i,j)∈Γ+(S)

xij ≥ zu S ⊆N, |S| ≥ 2, u∈ S. (9)

We identify violated connectivity cuts by solving a maximum flow problem for each customer

i ∈ N using the software library devised by Boykov and Kolmogorov (2004). Only the violated

connectivity cuts with u= arg maxu′∈S{zu′} are inserted into (1).

3.3.6. Infeasible-Path Constraints The generalization of infeasible-path constraints first

introduced by Ascheuer et al. (2000, 2001) for the TSPTW is as follows:

Proposition 1. For all infeasible almost-elementary paths P with `(P )≥ 3, the infeasible-path

constraint ∑
(i,j)∈AN (P )

xij −
∑

v∈V int(P )

zv ≤−δs(P ),0− δt(P ),n+1 (10)

is valid for the polyhedron P.

Proof: Note first that if s(P ) = 0, i.e., the path P starts at the depot, then the first arc of the

path does not contribute to the left-hand side, since only arcs in AN(P ) are considered. At the

same time the right-hand side decreases by 1 due to the term −δs(P ),0. The respective statement

is true if t(P ) = n+ 1, i.e., when the path ends at the depot n+ 1.

In any case, a violation
∑

(i,j)∈AN (P ) x̄ij−
∑

v∈V int(P ) z̄v >−δs(P ),0−δt(P ),n+1 of the above inequal-

ity (10) by an integer solution is only possible if x̄ij = 1 for all (i, j) ∈ AN(P ) and z̄v = 1 for all

vertices v ∈ V int(P ). This means that the vertices in V int(P ) are visited only once and exactly in

the sequence defined by path P . Hence, dr(P ) must be a subpath of a feasible SDVRPTW route,

which is impossible due to the infeasibility of P and Lemma 1. �

Infeasible-path constraints (10) are separated as follows. Recall we assume that predecessors π(i)

and successors σ(i) are undefined for customers i ∈N such that z̄i ≥ 1.5 (see Section 3.3.1). For

the other customers, predecessors and successors are initialized using one of the following rules:

π(i) = arg min
h∈N

{|1− x̄hi|}, σ(i) = arg min
j∈N

{|1− x̄ij|}; (Rule 1)

π(i) = arg max
h∈N

{max(ei, eh + thi)x̄hi}, σ(i) = arg max
j∈N

{max(ej, ei + tij)x̄ij}; (Rule 2)

π(i) = arg max
h∈N

{dhx̄hi}, σ(i) = arg max
j∈N

{djx̄ij}. (Rule 3)

After the initialization step, for each customer i ∈N , we start with the almost-elementary path

P = (i) and extend it iteratively adding predecessors of s(P ) or successors of t(P ) to the respective
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endpoint. The extension stops when s(P ) has an undefined predecessor and t(P ) has an undefined

successor. The resulting almost-elementary path P , if infeasible (see Definition 1), is then checked

to violate the corresponding infeasible-path constraint (10) that is eventually added. Each time

a load infeasible almost-elementary path P is found, we also check if the corresponding capacity

cut (1d) for S = V int(P ) is violated. If so, we add the violated capacity cut. The separation heuristic

is run once for each of the available initialization rules.

3.3.7. Path-Matching Constraints Path-matching constraints generalize infeasible-path

constraints (10). We introduce them in order to cut off infeasible configurations such as those

depicted in Figure 1.

Definition 3. Let i∈N , p≥ 1, and P in
1 , P in

2 , . . . , P in
p and P out

1 , P out
2 , . . . , P out

p be paths with the

following properties:

(i) All paths P in
1 , P in

2 , . . . , P in
p have end vertex i (in-paths), i.e., t(P in

j ) = i for 1≤ j ≤ p.

All paths P out
1 , P out

2 , . . . , P out
p have start vertex i (out-paths), i.e., s(P out

k ) = i for 1≤ k≤ p.

(ii) Internal vertices of all in- and out-paths are disjoint: V int(P in
j )∩V int(P in

j′ ) =∅ for 1≤ j, j′ ≤ p,

j 6= j′; V int(P out
k ) ∩ V int(P out

k′ ) = ∅ for 1 ≤ k, k′ ≤ p, k 6= k′; V int(P in
j ) ∩ V int(P out

k ) = ∅ for

1≤ j, k ≤ p. This implies that all concatenations of in-paths and out-paths, in the following

denoted by (P in
j , P

out
k ), are almost-elementary for all 1≤ j, k≤ p.

(iii) If there is an in-path P in
j = (0, i), then (P in

j , P
out
k ) is not infeasible for all out-paths P out

k for

1≤ k≤ p.

If there is an out-path P in
k = (i, n+ 1), then (P in

j , P
out
k ) is not infeasible for all in-paths P in

j

for 1≤ j ≤ p.

(iv) In-paths P in
j = (0, i) and out-paths P in

k = (i, n+ 1) do not occur together.

Such a set of in-paths P in = {P in
1 , P in

2 , . . . , P in
p } and out-paths P out = {P out

1 , P out
2 , . . . , P out

p } is called

a stretched star and denoted by S(i, p,P in, P out).

Examples of five different stretched stars are depicted in Figure 3.

Given a stretched star S(i, p,P in, P out), any concatenated path (P in
j , P

out
k ) for 1≤ j, k ≤ p can

be tested for infeasibility. While we use identical definitions of time-window infeasible paths and

cycles as in Definition 1, a modified definition of load infeasible paths is required here. It is based

on another definition of the minimum quantity d(P ) to deliver along a path P , cf. (6), now defined

as

d(P in
j , P

out
k ) = α(1− δs(P in

j ),0) + d(V int(P in
j )) +α+ d(V int(P out

k )) +α(1− δt(Pout
k

),n+1). (11)

Thus, a path (P in
j , P

out
k ) is load infeasible if d(P in

j , P
out
k )>Q.
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Figure 3 Examples of stretched stars S(i,3, P in, P out).

Definition 4. Let (mij) =M ∈ {0,1}m×n be any binary matrix. We define the associated bipar-

tite graph B(M) = (P ∪ W,EM) by vertices P = {p1, . . . , pm} and W = {w1, . . . ,wn} (the bi-

partition), and edges EM = {{pi,wj} :mij = 1 for 1≤ i≤m,1≤ j ≤ n}.
Let M(P in, P out) = (mjk) denote the compatibility matrix between the in-paths and out-paths,

with mjk = 0 if path (P in
j , P

out
k ) is infeasible, and mjk = 1 otherwise. We define the compatibility

number nM = nM(P in, P out) as the size of a maximum-cardinality matching in the bipartite graph

B(M(P in, P out)).

Definition 5. A stretched star S(i, p,P in, P out) is called infeasible if nM(P in, P out)< p.

Define the number nD = nD(P in, P out) of paths with a depot in the stretched star S(i, p,P in, P out)

by nD = |{j : 1≤ j ≤ p, s(P in
j ) = 0}|+ |{k : 1≤ k≤ p, t(P out

k ) = n+ 1}|.

Theorem 1. For all infeasible stretched stars S(i, p,P in, P out), the path-matching constraint

p∑
j=1

 ∑
(g,h)∈AN (P in

j )

xgh−
∑

v∈V int(P in
j )

zv

+

p∑
k=1

 ∑
(g,h)∈AN (Pout

k
)

xgh−
∑

v∈V int(Pout
k

)

zv

− zi ≤ nM −nD (12)

with nM = nM(P in, P out) and nD = nD(P in, P out) is valid for the polyhedron P.

Proof: For convenience, we define the number of short-depot paths (length 1) and long-depot

paths (length greater than 1) as

nshort
D := |{1≤ j ≤ p : P in

j = (0, i)}|+ |{1≤ k≤ p : P out
k = (i, n+ 1)}|
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nlong
D := |{1≤ j ≤ p : s(P in

j ) = 0, `(P in
j )> 1}|+ |{1≤ k≤ p : t(P out

k ) = n+ 1, `(P out
k )> 1}|.

Then, nD = nshort
D +nlong

D .

Let s̄= (x̄, z̄, T̄) be a feasible integer solution to the SDVRPTW. The multiset A(x̄) comprises

exactly x̄ij copies of each arc (i, j) ∈A. We will show that s̄ is not cut off by any path-matching

constraint associated with an infeasible stretched star S(i, p,P in, P out). For the sake of exposition,

we distinguish the following two cases for the infeasible stretched star:

(i) All in-paths and out-paths consist of single arcs;

(ii) Arbitrary in-paths and out-paths.

Case (i): All in-paths are of the form P in
j = (vj, i) with vj ∈ V and all out-paths are of the form

P out
k = (i, vk) with vk ∈ V as shown in Figure 3(a–c). With the definitions A(N)in = {(vj, i) : 1≤ j ≤
p, vj ∈N} and A(N)out = {(i, vk) : 1≤ k≤ p, vk ∈N}, the path-matching constraint (12) reduces to∑

(h,i)∈A(N)in

xhi +
∑

(i,h)∈A(N)out

xih− zi ≤ nM −nD.

Moreover, we know that in the given feasible integer solution the customer i is visited exactly z̄i

times. Consider the star S(i, z̄i,Γ
−(i)∩A(x̄),Γ+(i)∩A(x̄)) imposed by the integer feasible solution.

It induces a compatibility matrix M̄ = (m̄jk) of dimension z̄i × z̄i and a maximum-cardinality

matching of value nM̄ = z̄i = |Γ−(i)∩A(x̄)|= |Γ+(i)∩A(x̄)|.
Since the value of the left-hand side of the path-matching constraint, excluding zi, is |A(N)in ∩

A(x̄)|+ |A(N)out∩A(x̄)|, we now consider the submatrix M ′ of M̄ corresponding to the rows/arcs

A(N)in∩A(x̄) and the columns/arcs A(N)out∩A(x̄). Note that M ′ results from M̄ by the elimina-

tion of exactly nin = |Γ−(i)∩A(x̄)| − |A(N)in ∩A(x̄)| rows and nout = |Γ+(i)∩A(x̄)| − |A(N)out ∩
A(x̄)| columns. This operation is equivalent to the removal of nin vertices from the first and of

nout vertices from the second partition of B(M̄). The maximum-cardinality matching in B(M̄) of

size z̄i hence induces a matching in B(M ′) of size not smaller than z̄i − nin − nout. (Note that in

general, the elimination of exactly w vertices from a graph cannot remove more than w edges from

any matching.)

Consider then the submatrix M̂ of M = M(P in, P out) resulting from the elimination of nshort
D

rows or columns associated with the arcs (0, i) or (i, n + 1). (Note that condition (iv) in the

Definition 3 of a stretched star ensures that it is either rows or columns but not both.) According

to condition (iii) of Definition 3, the nshort
D arcs are part of the maximum-cardinality matching in

B(M), since otherwise the matching would not have had maximum cardinality. Then, the size of

a maximum-cardinality matching in B(M̂) is exactly nM −nshort
D .

Since M ′ is a submatrix of M̂ , it follows

nM −nshort
D = nM̂ ≥ nM ′ ≥ z̄i−nin−nout. (13)
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Now, we have

∑
(h,i)∈A(N)in

x̄hi +
∑

(i,h)∈A(N)out

x̄ih

= |A(N)in ∩A(x̄)|+ |A(N)out ∩A(x̄)|

= (z̄i−nin) + (z̄i−nout) (14a)

= z̄i + z̄i−nin−nout

≤ z̄i +nM −nshort
D (14b)

= z̄i +nM −nD (14c)

where (14a) results from the definition of nin and nout using z̄i = |Γ−(i)∩A(x̄)|= |Γ+(i)∩A(x̄)|,

(14b) uses (13), and (14c) is the assumption nD = nshort
D of Case (i). Subtracting z̄i from (14) shows

that the feasible integer solution satisfies the path-matching constraint in Case (i).

Case (ii): This is the case of in-paths and out-paths of arbitrary length as shown in Figure 3(d–e).

Consider the largest star S(i, z̄i, P̄
in, P̄ out) fulfilling conditions (i)–(iii) of Definition 3 imposed by

the integer feasible solution. Such a star is unique because condition (ii) imposes that all internal

vertices are non-split customers so that in a largest star all in-paths/out-paths either start/end

at the depot 0/n+ 1 or at split customers. Moreover note that condition (iii) is not restrictive

for the definition of the largest star. Indeed, if condition (iii) would not be fulfilled, then at least

one in-path or out-path would be infeasible, i.e., the integer solution s̄ would be infeasible, which

contradicts with our assumption of a feasible integer solution. The star S(i, z̄i, P̄
in, P̄ out) induces

a compatibility matrix M̄ = (m̄jk) of dimension z̄i × z̄i and a maximum-cardinality matching of

value nM̄ = z̄i = |P̄ in|= |P̄ out|.

We now consider the star S(i, p,P in, P out) defining the path-matching constraint (12). For each

in-path P in
j 6= (0, i), its depot-reduced path dr(P in

j ) may occur as a subpath of the integer solution

s̄. We define the set of these in-paths by

P ′
in

:= {P in
j : 1≤ j ≤ p,P in

j 6= (0, i), P̄ in
j′ = (Sj′ , dr(P

in
j )) for some j′ and some path Sj′ , `(Sj′)≥ 1}.

Similarly, for each out-path P out
k 6= (i, n + 1), its depot-reduced path dr(P out

k ) may occur as a

subpath of the integer solution, and we define the corresponding set

P ′
out

:={P out
k : 1≤k≤p,P out

k 6=(i, n+1), P̄ out
k′ =(dr(P out

k ), Tk′) for some k′ and some path Tk′ , `(Tk′)≥ 1}.

We remark that all paths P in
j ∈ P in \P ′in and P out

k ∈ P out \P ′out are disregarded, since they provide

a non-positive contribution to the left-hand side of (12).
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Note that by definition both P ′in and P ′out do not include short-depot paths. Now, one can

define P̄
in

and P̄
out

so that each in-path P in
j ∈ P ′

in is uniquely associated with an in-path P̄ in
j′ ∈

P̄ ′
in ⊆ P̄ in, and vice versa, and each out-path P out

k ∈ P ′out is uniquely associated with an out-path

P̄ out
k′ ∈ P̄ ′

out ⊆ P̄ out, and vice versa. The following equalities hold:

|P ′in| = |P̄ ′in|, (15a)

|P ′out| = |P̄ ′out|. (15b)

We will consider the submatrix M ′ of M̄ corresponding to the rows inducing P ′in and the

columns inducing P ′out. It results from M̄ by the elimination of exactly nin = |P̄ in|−|P̄ ′in| rows and

nout = |P̄ out| − |P̄ ′out| columns. There is also a submatrix ̂̂M of M =M(P in, P out) corresponding

to the rows P ′in and the columns P ′out. Since compatibility is conserved on subpaths, the relation

M ′ ≤ ̂̂M holds (componentwise) so that we know nM ′ ≤ n̂̂
M

. Similar to Case (i), we define a

submatrix M̂ of M resulting from the elimination of nshort
D rows (or columns) associated with the

short depot-paths (0, i) and (i, n+ 1). The matrix ̂̂M is a submatrix of M̂ so that n̂̂
M
≤ nM̂ holds.

Also here the nshort
D arcs are part of the maximum-cardinality matching in B(M) so that the size

of a maximum-cardinality matching in B(M̂) is nM −nshort
D . Putting all these results together, we

get

nM −nshort
D = nM̂ ≥ n̂̂

M
≥ nM ′ ≥ z̄i−nin−nout, (16)

which is the analogue to (13) of Case (i).

For the jth in-path P in
j with P in

j 6= (0, i), the term∑
(g,h)∈AN (P in

j )

xgh−
∑

v∈V int(P in
j )

zv + δs(P in
j ),0 (17a)

is bounded by 1 (from above) and is 1 if x̄gh = 1 for all (g,h) ∈ AN(P in
j ) and z̄v = 1 for all v ∈

V int(P in
j ). This means that all internal vertices are customers that are visited exactly once and

exactly in the sequence defined by P in
j , which is equivalent to the condition P in

j ∈ P ′
in. Note the

similarity of the arguments to those used in the proof of the infeasible-path constraints (10) (proof

of Proposition 1).

The same can be said for the term∑
(g,h)∈AN (Pout

k
)

xgh−
∑

v∈V int(Pout
k

)

zv + δt(Pout
k

),n+1 (17b)

of the kth out-path P out
k , P out

k 6= (i, n+ 1). A contribution of 1 occurs only if the internal vertices

are non-split customers that are served exactly in the sequence defined by P out
k , equivalent to

P out
k ∈ P ′out; otherwise the contribution is 0 or negative.
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The following inequalities result:

p∑
j=1

 ∑
(g,h)∈AN (P in

j )

x̄gh−
∑

v∈V int(P in
j )

z̄v

+

p∑
k=1

 ∑
(g,h)∈AN (Pout

k
)

x̄gh−
∑

v∈V int(Pout
k

)

z̄v

+nlong
D

=
∑

P in
j 6=(0,i)

 ∑
(g,h)∈AN (P in

j )

x̄gh−
∑

v∈V int(P in
j )

z̄v + δs(P in
j ),0


︸ ︷︷ ︸
=1, if dr(P in

j ) is in the solution s̄; ≤ 0, otherwise

(18a)

+

p∑
Pout
k
6=(i,n+1)

 ∑
(g,h)∈AN (Pout

k
)

x̄gh−
∑

v∈V int(Pout
k

)

z̄v + δt(Pout
k

),n+1


︸ ︷︷ ︸
=1, if dr(P out

k ) is in the solution s̄; ≤ 0, otherwise

≤ |P ′in|+ |P ′out| (18b)

= |P̄ ′in|+ |P̄ ′out| (18c)

= (z̄i−nin) + (z̄i−nout) (18d)

= z̄i + z̄i−nin−nout

≤ z̄i +nM −nshort
D (18e)

Equality (18a) holds because short-depot paths P in
j = (0, i) and P out

k = (i, n+ 1) contribute with 0

to the sum, and nlong
D is identical to the sum of the δ-values of the non-depot paths in the star.

Inequality (18b) follows from the definition of P ′in and P ′out, (18c) from (15), and (18d) from the

definition of M ′ having dimension (z̄i−nin)× (z̄i−nout). For the inequality (18e), we use (16), i.e.,

z̄i−nin−nout ≤ nM −nshort
D .

Subtracting nlong
D and z̄i from (18) and using the equality nD = nshort

D + nlong
D shows that the

path-matching constraint (12) does not cut off the feasible integer solution s̄ in Case (ii). �

Example 1. Consider the infeasible integer solution to the 5-customer SDVRPTW depicted in

Figure 1(a). Defining the stretched star S(i = 3, p = 2, P in, P out) with P in
1 = (1,3), P in

2 = (2,3),

P out
1 = (3,4), and P out

2 = (3,5), we can immediately see that (P in
1 , P out

1 ) = (1,3,4) and (P in
1 , P out

2 ) =

(1,3,5) are time-window infeasible, while (P in
2 , P out

1 ) = (2,3,4) and (P in
2 , P out

2 ) = (2,3,5) are time-

window feasible. This leads to

M =

(
0 0
1 1

)
with nM = 1< p= 2

and the associated path-matching constraint is

x13 +x23 +x34 +x35− z3 ≤ 1− 0 = 1,
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which cuts off the infeasible integer solution.

Now consider the instance and solution given in Figure 1(b). Using the same stretched star, we

compute d(P in
1 , P out

1 ) = d(P in
1 , P out

2 ) = d(P in
2 , P out

1 ) = d(P in
2 , P out

2 ) = 1 + 1 + 1 = 3. With a capacity

Q= 10, all in-paths are compatible with all out-paths leading to nM = 2. Hence, the stretched star

is not infeasible in this case. Indeed, the above constraint x13 +x23 +x34 +x35−z3 ≤ 1 is not valid for

the polyhedron P of the second instance. For example, the routes (0,1,3,4, n+ 1), (0,2,3,5, n+ 1),

and (0,1,4, n+ 1) with appropriate delivery quantities form a feasible integer solution that does

not fulfill the inequality.

However, we can define the larger stretched star S(i = 3, p = 2, P in, P out) with P in
1 = (0,1,3),

P in
2 = (0,2,3), P out

1 = (3,4, n+ 1), and P out
2 = (3,5, n+ 1) for the second instance. Then, the mini-

mum quantities to deliver are

d(P in
1 , P out

1 ) = d(P in
2 , P out

1 ) = 0 + 4 + 1 + 7 + 0 = 11>Q

d(P in
1 , P out

2 ) = d(P in
2 , P out

2 ) = 0 + 4 + 1 + 1 + 0 = 6≤Q.

We get

M =

(
0 1
0 1

)
with nM = 1< p= 2 and nD = 4,

and the associated path-matching constraint is

(x13− z1) + (x23− z2) + (x34− z4) + (x35− z5)− z3 ≤ 1− 4 =−3,

which cuts off the infeasible integer solution (−2 6≤ −3). However, the feasible solution with routes

(0,1,3,4, n+ 1), (0,2,3,5, n+ 1), and (0,1,4, n+ 1) is not cut off because the left-hand side is -4

(note that z̄1 = z̄4 = 2 in this solution).

For p= 1, properties (i), (ii) and (iv) of Definition 3 impose the stretched star S(i,1, P in, P out)

to be an almost-elementary path P = (P in
1 , P out

1 ) = (v0, v1, . . . , v`) such that `(P ) ≥ 2. Moreover,

property (iii) ensures that P is not infeasible if v1 = i and v0 = 0, or v`−1 = i and v` = n + 1.

The set of infeasible almost-elementary paths induced by the stretched stars S(i,1, P in, P out) is

thus included in the set of all infeasible almost-elementary paths. For this reason, path-matching

constraints (12) are separated only for infeasible stretched stars with p≥ 2.

Separation proceeds as follows: For each customer i ∈ N , we define p = p(i) = bzi + 1
2
c, and if

p≥ 2 we try to find violated inequalities for stretched stars of the form S(i, p,P in, P out). Tentative

in-paths P in
1 , . . . , P in

p and out-paths P out
1 , . . . , P out

p are iteratively constructed. Initially, all in-paths

and out-path consist of single arcs only (like in Figure 3(a–c)) resulting from the p arcs (v, i) ∈

Γ−(i) and the p arcs (i, v) ∈ Γ+(i) with maximum flow x̄vi and x̄iv (depot arcs with flow greater

than 1 can lead to multiple copies of these arcs). In each iteration, it is first tested whether the
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current stretched star S(i, p,P in, P out) imposes a violated path-matching constraint. To do this, the

difference between left-hand and right-hand side of (12) is computed. This requires to determine

nM for M = M(P in, P out) for which we compute the compatibility matrix M and then solve a

(small) matching/assignment problem using a network flow solver. If nM = p the next steps for

computing the possible violation of (12) can be skipped. Otherwise (the stretched star is infeasible

in this case), the values of the left-hand side of (12) and of nD = nD(P in, P out) are computed,

and separation terminates if the inequality is violated. This latter computation is rather simple

because from one iteration to the next we always add only a single arc to only one of the in-paths

or out-paths. This next arc is one giving the highest contribution to the left-hand side of the path-

matching constraint (12). More precisely, for arcs (g,h) ∈A that can extend an in-path P in
j , i.e.,

h = s(P in
j ) for some j ∈ {1,2, . . . , p}, the contribution is x̄gh − z̄h, while arcs (g,h) ∈ A that can

extend an out-path P out
k , i.e., g = t(P out

k ) for some k ∈ {1,2, . . . , p}, the contribution is x̄gh − z̄g.

Moreover, we require g = π(h) for in-paths and σ(g) = h for out-paths to make the extensions

unique, where predecessors and successors are defined as in Section 3.3.6 by Rule 1; this also

includes that all internal vertices v ∈ V int(P in
j )∪V int(P out

k ) fulfill z̄v < 1.5. Iterations stop as soon

as a violated constraint is found or all in-paths have no predecessor π(s(P in
j )) of their start vertex

s(P in
j ) and all out-paths have no successor σ(t(P out

k )) of their last vertex t(P out
k ).

Example 2 (continued from Example 1). For the infeasible integer solution depicted in

Figure 1(a), the separation algorithm loops over all five vertices i∈N , checks whether z̄i > 1 (only

for i= 3 here), and creates for i= 3 the initial infeasible stretched star already discussed in the first

part of Example 1. Hence, the separation algorithm terminates with the violated path-matching

constraint x13 +x23 +x34 +x35− z3 ≤ 1.

For the infeasible integer solution depicted in Figure 1(b), again only vertex i = 3 is visited

more than once, giving the initial stretched star S(i = 3, p = z̄3 = 2, P in, P out) with P in
1 = (1,3),

P in
2 = (2,3), P out

1 = (3,4), and P out
2 = (3,5). Recall from Example 1 that all in-paths are compatible

with all out-paths so that

M =

(
1 1
1 1

)
with nM = 2 6< p= 2 and nD = 0,

and this initial stretched star is not infeasible. The separation algorithm therefore considers the set

of arcs possibly extending one of the in- or out-paths: (0,1), (0,2), (4, n+1), and (5, n+1). All arcs

give the same contribution to the left-hand side of the path-matching constraint (12). Thus, the

algorithm selects any of these arcs, say arc (0,1) first, to extend in-path P in
1 . Since P in

1 = (0,1,3)

is still compatible with all out-paths, also the stretched star defined at the second iteration is not

infeasible. Then, in the third iteration the algorithm selects another arc, say arc (0,2), and defines
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P in
2 = (0,2,3), but again the resulting stretched star is not infeasible. When the algorithm defines

P out
1 = (3,4, n+ 1) in the fourth iteration, the compatibility matrix becomes

M =

(
0 1
0 1

)
with nM = 1< p= 2 and nD = 3.

The stretched star is thus infeasible, but the associated path-matching constraint

(x13− z1) + (x23− z2) + (x34− z4) + (x35− z5)− z3 ≤ 1− 3 =−2

is not violated (−2 ≤ −2) so that the separation algorithm continues. In the last iteration, the

stretched is exactly the one considered in the second part of Example 1 so that the separation

algorithm terminates with this violated inequality.

4. Experimental Analysis

We test the branch-and-cut algorithm on the same benchmark instances also considered by Gen-

dreau et al. (2006), Desaulniers (2010), and Archetti et al. (2011b). These instances have been

derived from the VRPTW benchmark of Solomon (1987) by allowing split deliveries. The 56

instances are divided into six classes R1, C1 , RC1, R2, C2, and RC2 with 100 customers each,

where customers in the C instances are clustered in a 100 x 100 square, in the R instances they are

randomly located, and in the RC instances the locations are mixed. The time window constraints

of the R1, C1, and RC1 instances are more restrictive than those of the R2, C2, and RC2 instances.

For each of the 100-customer instances, smaller instances have been constructed by considering

the first 25 and 50 customers only. For defining SDVRPTW instances with different split char-

acteristics, the vehicle capacity is varied by Q= 25, 50 and 100. The total number of benchmark

instances for the SDVRPTW is thus 504 = 56× 3× 3.

The branch-and-cut algorithm is implemented in C++ using CPLEX 12.6.0.1 with Concert Tech-

nology, compiled in release mode with MS Visual C++ 2013, experiments are carried out on a 64-bit

Windows 10 PC with the Intel Xeon processor E5-1650v3, 3.50 GHz, and 64 GB of RAM allowing a

single thread for each run. CPLEX built-in cuts have been used in all experiments. Due to numerical

instability we set IloCplex::NumericalEmphasis = CPX ON and IloCplex::EpGap = 1.0e-5.

CPLEX’s default values are kept for all the remaining parameters. We set the design parameters

of the separation algorithm to the following values: the minimum violation threshold is ε = 0.05

and the maximum number of cuts to add at each call is MAX CUTS= 500.

Recall that the triangle inequality is assumed to hold for travel times and costs. In order to

fulfill these assumptions, we followed the approach proposed in Luo et al. (2016). They keep the

distinction between travel and service times, and therefore they do not add service times to the

travel times. Hence, travel times and costs are both identical to distances. To ensure the validity of
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Table 1 Results obtained with the Baseline branch-and-cut algorithm not using the new classes of valid

inequalities.

Instances Results

Class Q # Solved Time z∗ Nodes Feas. checks

R1 30 12 3 1 588.1 15 470.8 14 518.2 82.8
50 12 2 1 554.4 10 682.1 18 608.7 70.8

100 12 2 1 501.2 7 639.1 17 724.7 19.3
C1 30 9 4 1 245.7 15 987.8 11 631.3 2 342.1

50 9 6 689.1 10 131.8 12 947.6 915.3
100 9 7 607.7 5 837.8 10 606.7 317.0

RC1 30 8 8 9.7 27 395.1 167.4 16.9
50 8 8 72.1 16 995.9 4 486.6 163.9

100 8 6 601.5 9 392.6 31 914.4 17.1
R2 30 11 0 1 800.1 15 340.5 15 073.7 84.5

50 11 1 1 691.8 10 501.3 17 157.2 171.5
100 11 1 1 643.9 7 112.5 15 284.8 53.4

C2 30 8 0 1 800.1 17 526.6 14 182.4 455.6
50 8 1 1 641.9 11 443.9 17 447.9 200.9

100 8 5 1 227.6 6 850.6 17 843.8 865.3
RC2 30 8 8 14.8 27 395.0 315.4 19.0

50 8 8 92.4 16 996.3 7 325.4 159.4
100 8 8 78.8 9 348.1 4 451.0 28.5

Total/Weighted Average (WA) 168 78 1 067.9 13 109.3 13 301.4 315.8

the triangle inequality, at pre-processing time, distances are replaced by shortest-path distances.

Then, costs are set equal to the new distances, and service times are added to the new distances

to define travel times.

Finally, at each run, we provide an initial feasible solution computed with a straightforward

greedy constructive heuristic described in Appendix A of the e-Companion.

4.1. Analysis of New Components of Branch-and-Cut

For the analysis of the new branch-and-cut components, we restrict ourselves to the 168 instances

with 50 customers because the other instances are generally either very easy or prohibitively hard

to solve. We define Baseline as the version of the branch-and-cut algorithm in which all the

classical valid inequalities, i.e., static inequalities (7), capacity cuts (1d), 2-path cuts (8), and

connectivity cuts (9) are available, but no infeasible-path and no path-matching constraints are

separated. Regarding feasibility, the improved feasibility cuts (5) are used. Here and in the following

experiments, the run time for each SDVRPTW instance is limited to 1,800 seconds.

The results of the Baseline branch-and-cut algorithm are presented in Table 1. We report,

for each group of instances, the number of instances solved to proven optimality (Solved), the

average computation time (Time) in seconds, the average lower bound (z∗), the average number of

branch-and-bound nodes inspected (Nodes), and the average number of feasibility checks performed

(Feas. checks). In total, 78 of the 168 instances are solved to optimality with the Baseline branch-

and-cut algorithm.
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Table 2 Results obtained without using the new classes of valid inequalities and by using feasibility cuts (3)

instead of (5).

ClassicalFeasCut

Instances Ratio

Class Q # Solved Time Nodes Feas. checks

R1 30 12 3 1.06 1.05 1.35
50 12 2 1.01 1.03 0.91

100 12 2 1.00 1.00 1.15
C1 30 9 4 0.85 0.65 1.58

50 9 1 4.42 1.96 5.30
100 9 5 1.68 1.17 2.17

RC1 30 8 8 1.96 1.74 5.03
50 8 1 21.41 4.63 17.36

100 8 3 5.08 3.66 14.35
R2 30 11 1 1.00 1.00 0.82

50 11 1 1.00 1.07 1.55
100 11 1 1.04 1.07 1.01

C2 30 8 0 1.00 0.80 2.56
50 8 0 1.16 1.08 2.00

100 8 4 0.83 0.80 1.37
RC2 30 8 8 1.17 1.14 3.06

50 8 3 7.04 3.79 9.41
100 8 7 3.76 4.55 6.69

Total/Geom. Mean 168 54 1.69 1.38 2.41

In a first experiment, we compare Baseline against ClassicalFeasCut, that is, the branch-and-

cut algorithm with classical feasibility cuts (3) instead of improved cuts (5). Table 2 summarizes

values for computation time (Time), number of branch-and-bound nodes (Nodes), and number of

feasibility checks (Feas. checks) as average ratios relative to Baseline. More precisely, the numbers

presented under columns Ratio are geometric means of the ratios of Time, Nodes, and Feas. checks

taken over the eight to twelve instances of each class. For example, the number 1.06 in the first

row means that the average ratio TimeClassicalFeasCut/T imeBaseline is above 1, indicating that the

use of strengthened feasibility cuts accelerates the branch-and-cut by this factor on average for the

group R1 with 50 customers and with capacity Q= 30. The last row of Table 2 is the geometric

mean over all 168 instances.

The most striking result is that only 54 of the 168 instances are solved to optimality with classical

feasibility cuts compared to 78 instances solved with the Baseline algorithm. Moreover, compu-

tation times of the version with classical cuts are consistently longer, on average the factor is 1.69.

The impact on run times however strongly depends on the group of instances. It is most pronounced

for the groups RC1 and RC2. The effect on the number of feasibility checks is also substantial as

for groups RC1 with Q = 50 and Q = 100, and group RC2 with Q = 50, the average number of

feasibility checks is reduced by about a factor 10 when improved feasibility cuts (5) are applied.

Summing up, closing the very last percentages of the optimality gap often requires a large number
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of feasibility tests because many integer solutions are then found close the optimum. When many

of them are infeasible, feasibility cuts have to be applied. What distinguishes our branch-and-cut

from previous branch-and-cut algorithms such as the one by Archetti et al. (2014a) for the SDVRP

is that the new feasibility cuts keep lower bounds improving, while with the classical feasibility

cuts (3) the process is often stalling. The results shown in Table 2 are a very clear indication that

strengthening feasibility cuts is crucial for branch-and-cut using relaxed formulations. All following

results therefore compare with Baseline, which includes the improved feasibility cuts (5).

In the next series of experiments, we analyze how much the new classes of valid inequalities

contribute to the performance of the branch-and-cut algorithms. We compare Baseline against

branch-and-cut algorithms in which (a) only infeasible-path constraints (InfPathOnly), (b) only

path-matching constraints (PathMatchOnly), and (c) both types of constraints (Both) are sepa-

rated. Table 3 is composed as Table 2. Note that values are still reported as average ratios relative

to Baseline. This implies that InfPathOnly, PathMatchOnly, or Both, improves upon Baseline

when ratios are smaller than 1.

Table 3 Effectiveness of the new classes of valid inequalities.

Instances InfPathOnly PathMatchOnly Both

Ratio Ratio Ratio

Class Q # Sol. Time Nodes Feas. ch. Sol. Time Nodes Feas. ch. Sol. Time Nodes Feas. ch.

R1 30 12 3 1.05 0.97 0.46 3 1.07 1.03 0.41 3 1.00 0.94 0.26
50 12 3 0.82 0.81 0.70 2 0.92 0.89 0.24 3 0.79 0.79 0.24

100 12 2 0.99 0.92 0.85 2 1.02 0.97 0.46 2 1.00 0.89 0.61
C1 30 9 8 0.32 0.26 0.09 8 0.71 0.90 0.71 8 0.36 0.29 0.08

50 9 9 0.28 0.21 0.09 8 0.56 0.52 0.30 9 0.25 0.20 0.03
100 9 9 0.59 0.60 0.22 8 0.64 0.68 0.17 9 0.48 0.45 0.05

RC1 30 8 8 1.46 1.27 1.36 8 1.09 1.08 1.07 8 1.27 0.90 0.76
50 8 8 0.09 0.01 0.05 8 0.23 0.16 0.09 8 0.09 0.02 0.03

100 8 7 0.51 0.37 0.72 7 0.66 0.61 0.51 7 0.45 0.34 0.37
R2 30 11 1 1.00 0.95 0.44 1 0.97 1.05 0.25 1 0.99 0.91 0.29

50 11 1 0.93 0.98 0.87 2 0.90 0.94 0.47 2 0.89 0.94 0.31
100 11 2 1.00 1.08 0.84 1 1.01 1.03 0.23 1 1.00 1.00 0.29

C2 30 8 1 1.00 0.91 0.31 0 1.00 1.00 0.74 0 1.00 0.93 0.33
50 8 2 1.01 0.89 0.66 2 1.04 1.11 0.30 1 0.99 0.86 0.23

100 8 6 0.53 0.56 0.26 6 0.49 0.62 0.19 6 0.51 0.54 0.10
RC2 30 8 8 0.88 0.29 1.01 8 1.10 1.26 1.24 8 0.91 0.38 1.01

50 8 8 0.17 0.01 0.11 8 0.30 0.25 0.11 8 0.15 0.01 0.06
100 8 8 0.68 0.52 0.55 8 0.83 0.86 0.31 8 0.53 0.42 0.23

Total/Geom. Mean 168 94 0.64 0.46 0.40 90 0.77 0.78 0.34 92 0.61 0.44 0.20

Overall, Baseline solves only 78 instances, while all variants using new valid inequalities solve

94, 90, and 92 instances to proven optimality. The worst-performing variant among the three of

them is PathMatchOnly. The combination of infeasible-path constraints (10) and path-matching

constraints (12) in Both allows to be faster on average, reducing the average runtime by a factor of
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0.61 compared to Baseline. Moreover, with Both, the average number of feasibility checks is halved

when compared to InfPathOnly, and is limited to one fifth with respect to Baseline. Finally, it

is worth mentioning that, for the instances not solved by means of InfPathOnly and Both, the

remaining optimality gap is less than 1% in 12 and 17 cases, respectively.

We originally planned to also include a comparison of the best lower bounds z∗ into Table 3.

However, it turned out that the best lower bounds z∗ do not differ much between the Baseline

setup and the variants InfPathOnly, PathMatchOnly, and Both. Indeed, all ratios are 1.00, possibly

different in the following digits.

We conclude our study of the different classes of valid inequalities with an overview of the

performances of the corresponding separation procedures. The overall separation strategy is the

one described at the beginning of Section 3.3. In Table 4, we report, for each group of instances

and each class of valid inequalities (all classes are available), the average number of times the

separation procedure is called (#calls), the average number of generated cuts (#cuts), and the

percentage of time (%t) spent with separation (note that, for the lifted feasibility cuts (5), %t

includes the time for enumerating routes in set R̄ and solving the improved version of (2)). In the

block associated with the lifted feasibility cuts, the additional column (|R̄|) reports the average

cardinality of set R̄. It is clearly shown in the table that, with a few exceptions, capacity cuts are

most frequently separated, which does not seem unusual because they are on the first level of the

separation hierarchy. However, the average time for capacity cut separation remains below 3.1 %

never exceeding 14.2 % in the maximum. For all the other classes of valid inequalities than lifted

feasibility cuts, the average number of calls to the separation procedure is slightly smaller, the

cuts are less frequently separated, and with the exception of 2-path cuts separated in shorter time.

In contrast, the separation procedure for the lifted feasibility cuts is rarely called. The average

numbers of calls is 28.1, never exceeding 80.1 in the maximum. Moreover, the average time for the

separation never exceeds 3.9 % in the maximum, and it is not directly correlated with the average

cardinality of R̄ varying between 91.9 and 296.8. The average remaining computing time of 89.4 %

is consumed by internal procedures of the CPLEX solver for LP re-optimization, internal cuts

separation, and primal heuristics etc.
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4.2. Comparison with Branch-and-Price-and-Cut Algorithms

Up to now, the predominant exact solution algorithms for the SDVRPTW are based on path-

based formulations solved with branch-and-price (see Section 1). We compare our new branch-

and-cut approach (Both) against the currently leading branch-and-price(-and-cut) implementations

presented by Archetti et al. (2011b) and Luo et al. (2016). In line with their experimental setups,

we extend the computation time and set the run time limit to 1 hour. All 504 instances with n= 25,

50, and 100 customers are considered. The results are summarized in Table 5, again with one entry

for each group of instances, i.e., grouped by n, classes (R1, C1, RC1, R2, C2, RC2), and capacity

Q= 30, 50, 100. In addition to the already introduced indicators, we report the average number

vehicles/routes (Veh.), and the average number of split customers (Splits). Reported values are

averages per group and solved instances.

The total number of 277 optimally solved instances compared to 262 and 264 optimal solutions

in the respective branch-and-price algorithms clearly shows that our branch-and-cut approach is

competitive. In summary, 23 instances are solved to proven optimality for the first time. Looking

into the details, all three approaches solve all 168 instances with 25 customers. Compared to

Archetti et al. (2011b), our computation times on these small-sized instances are most of the

time significantly smaller or at least comparable with the exception of group R1 with Q = 100.

Here, outliers r102, r103, and r110 consume 812, 141, and 272 seconds, respectively. Moreover, our

solutions seem to tend towards less split customers, while the number of employed vehicles is most

of the time identical to the results of Archetti et al. (2011b).

For the 50-customer instances, there is no clear picture regarding a comparison of computation

times. However, our algorithm clearly outperforms the others on this subset (18 and 13 more

instance solved). Moreover, for 7(10) instances with 50 customers for which an optimal solution is

unknown, the optimality gap is below 0.5 % (1 %). Detailed results for every 50-customer instance

are reported in Appendix B of the e-Companion.

As for the 100-customer instances, the branch-and-price of Archetti et al. (2011b) wins with

three more instances solved. Nevertheless, we have been able to solve to proven optimality two

new instances in this subset, i.e., C101 and C105 for Q = 100, with optimal values 13,911 and

13,893, respectively. This subset, with only 10 out of 168 solved instances, is a hard challenge for

all algorithms.

Finally, in order to validate the conclusions drawn in the last paragraph of Section 4.1, and to

better understand the behavior of the proposed branch-and-cut algorithm, we analyze its perfor-

mances on all 50- and 100-customer instances. Table 6 shows the average values of the performance

indicators analyzed in Table 4, together with the average number of branch-and-bound nodes

explored (Nodes). Results concerning the performances of the separation procedures are in line
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Table 5 Comparison with branch-and-price-and-cut algorithms.

Instances Archetti et al. (2011b) Luo et al. (2016) Our method

n Class Q # Sol. Veh. Splits Time Sol. Sol. Veh. Splits Time

25 R1 30 12 12 12.0 3.8 48 12 12 12.0 2.8 2.4
50 12 12 7.2 1.1 5 12 12 7.3 0.3 1.2

100 12 12 4.9 0.1 2 12 12 5.1 0.1 115.1
C1 30 9 9 16.0 5.2 9 9 9 16.0 4.0 2.6

50 9 9 10.0 2.1 5 9 9 10.0 1.0 1.0
100 9 9 5.0 0.0 15 9 9 5.0 0.0 0.6

RC1 30 8 8 17.8 7.1 5 8 8 18.0 6.3 0.5
50 8 8 10.6 1.8 5 8 8 11.0 1.0 0.6

100 8 8 6.0 0.4 2 8 8 6.0 0.0 0.2
R2 30 11 11 12.0 3.9 165 11 11 12.0 1.9 3.3

50 11 11 7.0 1.1 15 11 11 7.0 0.1 0.3
100 11 11 3.8 0.1 24 11 11 4.0 0.0 3.3

C2 30 8 8 16.0 6.4 9 8 8 16.0 4.0 16.3
50 8 8 10.0 2.5 11 8 8 10.0 1.0 5.8

100 8 8 5.0 1.0 19 8 8 5.0 0.0 1.6
RC2 30 8 8 18.0 6.6 9 8 8 18.0 6.0 0.5

50 8 8 10.8 1.8 12 8 8 11.0 1.0 0.7
100 8 8 6.0 0.4 4 8 8 6.0 0.0 0.2

50 R1 30 12 0 — — — 0 4 25.0 12.8 1 291.7
50 12 2 15.0 4.0 533 1 4 15.0 4.3 926.2

100 12 6 9.7 0.8 553 6 2 10.5 0.0 5.7
C1 30 9 3 29.0 10.7 219 9 9 29.0 4.0 492.2

50 9 9 18.0 4.3 114 9 9 18.0 2.8 119.4
100 9 8 8.8 1.0 353 7 9 9.0 0.2 308.8

RC1 30 8 8 33.0 8.9 50 8 8 33.0 6.8 14.1
50 8 8 20.0 4.4 11 8 8 20.0 2.5 3.1

100 8 8 10.0 1.0 22 8 8 10.0 0.5 291.9
R2 30 11 0 — — — 0 2 25.0 13.0 1 791.5

50 11 0 — — — 0 3 15.0 6.3 1 324.6
100 11 1 8.0 1.0 134 2 2 8.0 0.5 1 682.6

C2 30 8 0 — — — 0 2 29.0 6.0 2 499.8
50 8 7 18.0 7.1 395 8 2 18.0 3.0 1 673.6

100 8 2 9.0 3.0 1 314 1 8 9.0 0.3 981.2
RC2 30 8 8 33.0 9.2 161 8 8 33.0 7.0 12.5

50 8 8 20.0 4.8 30 8 8 20.0 2.6 3.2
100 8 8 10.0 0.9 94 8 8 10.0 0.6 13.1

100 R1 100 12 1 20.0 0.0 5 1 1 20.0 0.0 5.1
C1 100 9 5 19.0 2.4 1 667 4 4 19.0 0.5 271.9
C2 100 8 2 19.0 5.5 1 407 0 0 — — —

Total 262 264 277

with those reported in Table 4. The average remaining computing time is equal to 89.9% and 95.7%

for the 50- and 100-customer instances, respectively. Switching from the 50- to the 100-customer

instances, the average cardinality of R̄ is more than doubled. However, the computation time for

the separation of the lifted feasibility cuts remains almost irrelevant. What is worth noting is that

both the average number of nodes explored and the average number of integer solutions found (i.e.,

the average number the separation procedure for the lifted feasibility cuts is called) decrease by an

order of magnitude. It seems that the CPLEX solver becomes less effective when the number of
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customers raises from 50 to 100: In particular, CPLEX’s internal primal heuristics have difficulties

to compute integer feasible solutions.
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5. Conclusions

In this paper, we presented a new branch-and-cut-based algorithm for the SDVRPTW. The pro-

posed algorithm and its components were thoroughly tested and it was shown to be competitive

with recent branch-and-price-and-cut algorithms. We computed 23 new optimal solutions in the

standard SDVRPTW benchmark derived from Solomon’s (1987) VRPTW instances. Overall, we

increased of about 5% the number of instances solved to optimality with respect to previous exact

methods proposed in the literature, improving also several lower and upper bounds. As shown in

Appendix C of the e-Companion, the results are not affected by the kind of pre-processing used to

ensure the validity of the triangle inequality for travel times and costs.

While path-based formulations of Desaulniers (2010), Archetti et al. (2011b), and Luo et al.

(2016) underlying the branch-and-price-and-cut approaches can easily ensure feasible routes, fea-

sibility modeling is the fundamental problem of any two-index formulation for the SDVRPTW.

The major complication is that customers can or must be visited several times so that time and

load-related attributes cannot be directly attached to the vertices of the associated digraph. Our

new two-index formulation exploits several properties known to be valid for at least some opti-

mal solution to an SDVRP(TW) instance. In particular, we attach time-related attributes to arcs

because one property guarantees that no arc is traversed more than once. However, the model we

propose is still a relaxation of the SDVRPTW.

Although being an SDVRPTW relaxation, our new formulation is fairly compact, enabling short

LP re-optimization times, and it is free of symmetries making branching more effective com-

pared to three-index formulations. Overall, the success of the new branch-and-cut algorithm can

be attributed to two major innovations: First, we found a new way to cut off infeasible integer

solutions. Our strengthened feasibility cuts refer to individual clusters that are induced by the

infeasible integer solution at hand. Former approaches for the SDVRP considered the entire vertex

set instead of a generally much smaller cluster to define a feasibility cut. Second, we introduced two

new classes of valid inequalities for the SDVRPTW, namely infeasible-path constraints and path-

matching constraints. They both have the purpose to strengthen the formulation so that fractional

solutions as well as infeasible integer solutions are cut off from the solution space. While the gen-

eralization of infeasible-path constraints must exclude any interaction of the considered path with

other routes, the path-matching constraints focus on the interdependency of routes that share a

customer receiving split deliveries. Indeed, what path-matching constraints are cutting off is infea-

sible configurations formed by two or more routes. As far as we know, this is the first class of valid

inequalities in the vehicle routing context that addresses infeasibilities resulting from violations of

timing and capacity constraints provoked by more that one route. We think that such a technique

may also be helpful for other variants of vehicle routing problems, in which certain vertices or arcs
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are traversed more than once, e.g., in VRPs with intermediate replenishment (Muter et al. 2014)

or for routing battery electric vehicles that can be recharged at recharging stations (Desaulniers

et al. 2016).
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Appendix A: Simple Construction Heuristic

The following greedy algorithm is used for computing initial feasible SDVRPTW solutions: Customers are

considered in the sequence according to their identifiers (from the smallest to the largest). A set of routes

defining a feasible solution is then built incrementally. When a new route is created, the first customer in

the sequence not completely served is inserted into the route. When the route is non-empty, the customer

remaining unfulfilled demand that can be feasibly visited along the route at the cheapest cost is selected and

inserted into the route. Each time a customer is inserted into a route, the quantity delivered to the customer

is set to the minimum of the residual demand of the customer and the residual capacity of the vehicle. These

residual quantities are then updated accordingly. The construction of a route terminates when no further

customer can be feasibly inserted. When all the customers are fully served, a feasible solution is available.

The solution computed by the constructive heuristic depends on the sequence in which customers are

considered. Therefore, we execute the constructive heuristic n times, retaining the best among the n computed

solutions. In the kth iteration, customers are cyclicly exchanged so that the sequences then begins with

customer k instead of customer 1.

Appendix B: Detailed Computational Results

We report in Tables EC.1–EC.6 the detailed results for the 50-customer instances. Each table shows the

vehicle capacity (Q), the name of the instance (Name), the known optimal value (Opt.), the final upper bound

(z̄∗) and lower bound (z∗) computed by the branch-and-cut algorithm, the percentage gap 100%(z̄∗−z∗)/z∗

(Gap (%)), the number of vehicles/routes (Veh.) and split customers (Splits) in the upper bound solution,

and, when the optimality gap is null, the computation time (Time) required to solve the instance to optimality

(in seconds). The apex a (b) indicates that the optimal value was found by Archetti et al. (2011b) (Luo et al.

(2016)). When our branch-and-cut algorithm is able to solve an instance to optimality for the first time,

the corresponding upper and lower bounds as well as the optimality gap are highlighted in bold. Conversely,

when our branch-and-cut algorithm is not able to solve an instance for which an optimal value is known, the

optimal value is highlighted in bold.

Finally, whenever our values in columns z∗ and z̄∗ are inconsistent with what was reported in previous

papers, the symbol * is attached. This happens in 16 out of 92 cases. To explain this discrepancy, recall that

the triangle inequality is assumed to hold for travel times and costs. Archetti et al. (2011b) informed us that

they assumed the validity of the triangle inequality, but they did however not pre-process the instances.

Appendix C: Alternative Pre-Processing

The results reported in Luo et al. (2016) and Archetti et al. (2011b) have been obtained assuming the triangle

inequality to hold for travel times and costs, and then performing or not, respectively, the pre-processing

of the instances as described in Section 4. An alternative approach to ensure the validity of the triangle

inequality lies in considering travel times including service times from the beginning, and to apply at pre-

processing time, e.g., the Floyd-Warshall algorithm to travel times and costs independently. For the sake of
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Table EC.1 Detailed results for class R1 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 r101 16 189 16 189.0 0 25 9 963
r102 15 813 15 813.0 0 25 14 2 704
r103 15 679 15 502.0 1.14 25 15
r104 15 789 15 267.3 3.42 26 10
r105 15 801 15 801.0 0 25 14 453
r106 15 596 15 596.0 0 25 14 1 047
r107 15 520 15 334.3 1.21 25 14
r108 16 934 15 185.8 11.51 29 5
r109 15 785 15 512.6 1.76 25 12
r110 15 923 15 276.1 4.23 26 9
r111 15 621 15 312.7 2.01 25 13
r112 15 999 15 183.8 5.37 27 8

50 r101 11911a/11 907b 11 907 * 11 907.0 0 15 3 8
r102 11142a 11 142 11 088.7 0.48 15 5
r103 10 815 10 674.8 1.31 15 7
r104 10 597 10 348.8 2.40 15 2
r105 11 323 11 323.0 0 15 5 694
r106 10 802 10 802.0 0 15 5 226
r107 10 639 10 531.6 1.02 15 6
r108 10 640 10 291.2 3.39 15 4
r109 10 818 10 740.6 0.72 15 3
r110 11 846 10 347.8 14.48 17 3
r111 10 615 10 615.0 0 15 4 2 777
r112 10 730 10 237.7 4.81 16 3

100 r101 10 440a/10 438b 10 438 * 10 438.0 0 12 0 0

r102 9132a,b 9 132 8 427.8 8.36 11 0

r103 8047a,b 8 078 7 405.2 9.09 10 1
r104 7 148 6 880.4 3.89 8 4

r105 9 182a/9 181b 9 181 * 9 181.0 0 9 0 11

r106 8215a,b 8 247 7 745.7 6.47 10 2
r107 7 655 7 032.8 8.85 9 1
r108 7 324 6 780.0 8.02 8 0

r109 8042a/8041b 8 104 7 644.8 6.01 9 0
r110 7 621 6 948.9 9.67 9 1
r111 7 584 7 063.5 7.37 9 1
r112 7 270 6 715.8 8.25 8 1

completeness, in this appendix we provide Tables EC.7 and EC.8–EC.13, similar to Tables 5 and EC.1–EC.6,

respectively, describing the results obtained by means of Both when the alternative pre-processing is applied.

Results reported in corresponding tables are very similar, and the overall performances of Both are not

affected by the kind of pre-processing used. Note that, in Tables EC.8–EC.13, whenever the values in columns

z∗ and z̄∗ are inconsistent what was reported in previous papers, the symbol * is attached. This happens in

18 out of 92 cases. Again, the discrepancy among the results can be explained by the different preprocessing

approaches. First, Archetti et al. (2011b) did not pre-process the instances. Second, when the Floyd-Warshall

algorithm is applied to travel times and costs independently, the resulting travel times can be higher than

the times computed with the approach of Luo et al. (2016).
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Table EC.2 Detailed results for class C1 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 c101 15 995b 15 995 15 995.0 0 29 4 98

c102 15 995b 15 995 15 995.0 0 29 4 404

c103 15 983a,b 15 983 15 983.0 0 29 4 1 015

c104 15 983a,b 15 983 15 983.0 0 29 4 1 736

c105 15 995b 15 995 15 995.0 0 29 4 164

c106 15 995b 15 995 15 995.0 0 29 4 142

c107 15 995b 15 995 15 995.0 0 29 4 223

c108 15 983b 15 983 15 983.0 0 29 4 404

c109 15 983a,b 15 983 15 983.0 0 29 4 246

50 c101 10 158a,b 10 158 10 158.0 0 18 3 31

c102 10 130a,b 10 130 10 130.0 0 18 3 96

c103 10 123a,b 10 123 10 123.0 0 18 3 456

c104 10 102a,b 10 102 10 102.0 0 18 2 229

c105 10 158a,b 10 158 10 158.0 0 18 3 15

c106 10 158a,b 10 158 10 158.0 0 18 3 42

c107 10 158a,b 10 158 10 158.0 0 18 3 44

c108 10119a/10118b 10 118 * 10 118.0 0 18 3 88

c109 10 101a,b 10 101 10 101.0 0 18 2 73

100 c101 5 876a/5 875b 5 875 * 5 875.0 0 9 0 9

c102 5847a/5 846b 5 846 * 5 846.0 0 9 0 73
c103 5 821a 5 821 5 821.0 0 9 0 909
c104 5 788 5 788.0 0 9 0 1 570

c105 5876a/5 875b 5 875 * 5 875.0 0 9 0 4

c106 5876a/5 875b 5 875 * 5 875.0 0 9 0 9

c107 5876a/5 875b 5 875 * 5 875.0 0 9 0 4

c108 5841a/5 840b 5 840 * 5 840.0 0 9 1 42

c109 5 798a,b 5 798 5 798.0 0 9 1 160
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Table EC.3 Detailed results for class RC1 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 rc101 27 395a,b 27 395 27 395.0 0 33 7 4

rc102 27395a,b 27 395 27 395.0 0 33 7 10

rc103 27395a,b 27 395 27 395.0 0 33 7 10

rc104 27395a,b 27 395 27 395.0 0 33 7 15

rc105 27396a,b 27 396 27 396.0 0 33 6 6

rc106 27395a,b 27 395 27 395.0 0 33 7 7

rc107 27395a,b 27 395 27 395.0 0 33 6 47

rc108 27395a,b 27 395 27 395.0 0 33 7 16

50 rc101 17 083a,b 17 083 17 083.0 0 20 2 1

rc102 17005a,b 17 005 17 005.0 0 20 1 3

rc103 16968a,b 16 968 16 968.0 0 20 3 3

rc104 16967a,b 16 967 16 967.0 0 20 3 3

rc105 17001a,b 17 001 17 001.0 0 20 1 3

rc106 16990a,b 16 990 16 990.0 0 20 3 3

rc107 16986a,b 16 986 16 986.0 0 20 3 4

rc108 16967a,b 16 967 16 967.0 0 20 4 4

100 rc101 9 905a,b 9 905 9 905.0 0 10 2 10

rc102 9 602a,b 9 602 9 602.0 0 10 1 229

rc103 9 362a,b 9 362 9 362.0 0 10 0 1 876

rc104 9 159a,b 9 159 9 159.0 0 10 0 2

rc105 9 574a,b 9 574 9 574.0 0 10 0 203

rc106 9 364a,b 9 364 9 364.0 0 10 1 13

rc107 9 151a,b 9 151 9 151.0 0 10 0 2

rc108 9 119a,b 9 119 9 119.0 0 10 0 1
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Table EC.4 Detailed results for class R2 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 r201 15 784 15 784.0 0 25 12 2 064
r202 15 596 15 596.0 0 25 14 1 519
r203 15 916 15 248.9 4.37 25 12
r204 15 707 15 201.8 3.32 25 9
r205 15 654 15 495.6 1.02 25 14
r206 15 569 15 492.9 0.49 25 14
r207 15 562 15 262.9 1.96 25 13
r208 16 278 15 202.5 7.07 26 7
r209 15 719 15 332.2 2.52 25 12
r210 15 613 15 419.3 1.26 25 13
r211 16 638 15 180.4 9.60 26 8

50 r201 11 077 11 077.0 0 15 6 392
r202 10 802 10 802.0 0 15 6 707
r203 10 592 10 456.0 1.30 15 5
r204 10 686 10 264.5 4.11 15 4
r205 10 931 10 729.8 1.88 15 6
r206 10 715 10 715.0 0 15 7 2 874
r207 10 775 10 413.4 3.47 15 4
r208 11 250 10 242.7 9.83 16 6
r209 10 633 10 399.0 2.25 15 5
r210 10 729 10 665.2 0.60 15 6
r211 10 632 10 273.8 3.49 15 4

100 r201 8 430b 8 430 8 430.0 0 8 0 80
r202 7 827 7 508.0 4.25 8 3
r203 7 367 6 977.8 5.58 8 1
r204 6 919 6 825.1 1.38 8 4

r205 7 589a/7 588b 7 588 * 7 588.0 0 8 1 3 286
r206 7 281 7 195.9 1.18 8 2
r207 7 120 6 914.7 2.97 8 5
r208 6 919 6 738.2 2.68 8 4
r209 7 254 7 028.4 3.21 8 1
r210 7 457 7 224.5 3.22 8 2
r211 7 158 6 743.9 6.14 8 0
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Table EC.5 Detailed results for class C2 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 c201 17 783 17 783.0 0 29 6 3 137
c202 17 783 17 721.2 0.35 29 6
c203 17 842 17 650.9 1.08 29 7
c204 17 803 17 608.5 1.10 29 6
c205 17 783 17 783.0 0 29 6 1 863
c206 17 783 17 761.5 0.12 29 6
c207 17 783 17 716.0 0.38 29 6
c208 17 787 17 716.7 0.40 29 6

50 c201 11 598a/11 594b 11 594 * 11 594.0 0 18 3 465

c202 11573a/11569b 11 569 * 11 424.4 1.27 18 3

c203 11571a/11569b 11 592 11 445.1 1.28 18 3

c204 11569b 11 750 11 370.5 3.34 18 2

c205 11571a/11569b 11 569 * 11 549.1 0.17 18 3

c206 11571a/11569b 11 627 11 493.3 1.16 18 3

c207 11 571a/11 569b 11 569 * 11 569.0 0 18 3 2 882

c208 11571a/11569b 11 569 * 11 484.5 0.74 18 3

100 c201 6 931 6 931.0 0 9 2 263
c202 6 862a 6 862 6 862.0 0 9 0 447
c203 6 854 6 854.0 0 9 0 2 338
c204 6 848 6 848.0 0 9 0 2 759
c205 6 848a 6 848 6 848.0 0 9 0 121
c206 6 848 6 848.0 0 9 0 439
c207 6 848 6 848.0 0 9 0 1 117
c208 6 848 6 848.0 0 9 0 365

Table EC.6 Detailed results for class RC2 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 rc201 27 395a,b 27 395 27 395.0 0 33 7 5

rc202 27395a,b 27 395 27 395.0 0 33 7 8

rc203 27395a,b 27 395 27 395.0 0 33 7 9

rc204 27395a,b 27 395 27 395.0 0 33 7 14

rc205 27395a,b 27 395 27 395.0 0 33 7 26

rc206 27395a,b 27 395 27 395.0 0 33 7 12

rc207 27395a,b 27 395 27 395.0 0 33 7 7

rc208 27395a,b 27 395 27 395.0 0 33 7 18

50 rc201 17 083a,b 17 083 17 083.0 0 20 2 3

rc202 17005a,b 17 005 17 005.0 0 20 1 6

rc203 16968a,b 16 968 16 968.0 0 20 3 3

rc204 16967a,b 16 967 16 967.0 0 20 4 3

rc205 17004a,b 17 004 17 004.0 0 20 1 2

rc206 16990a,b 16 990 16 990.0 0 20 3 2

rc207 16986a,b 16 986 16 986.0 0 20 4 3

rc208 16967a,b 16 967 16 967.0 0 20 3 4

100 rc201 9 662a,b 9 662 9 662.0 0 10 2 2

rc202 9 465a,b 9 465 9 465.0 0 10 1 64

rc203 9 264a,b 9 264 9 264.0 0 10 1 22

rc204 9 159a,b 9 159 9 159.0 0 10 0 1

rc205 9 467a,b 9 467 9 467.0 0 10 1 4

rc206 9 408a,b 9 408 9 408.0 0 10 0 1

rc207 9 241a,b 9 241 9 241.0 0 10 0 8

rc208 9 119a,b 9 119 9 119.0 0 10 0 1
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Table EC.7 Comparison with branch-and-price-and-cut algorithms when the alternative pre-processing is

applied.

Instances Archetti et al. (2011b) Luo et al. (2016) Our method

n Class Q # Sol. Veh. Splits Time Sol. Sol. Veh. Splits Time

25 R1 30 12 12 12.0 3.8 48 12 12 12.0 2.8 2.3
50 12 12 7.2 1.1 5 12 12 7.3 0.3 1.4

100 12 12 4.9 0.1 2 12 12 5.1 0.1 108.7
C1 30 9 9 16.0 5.2 9 9 9 16.0 4.0 4.1

50 9 9 10.0 2.1 5 9 9 10.0 1.0 1.2
100 9 9 5.0 0.0 15 9 9 5.0 0.0 0.6

RC1 30 8 8 17.8 7.1 5 8 8 18.0 5.8 0.4
50 8 8 10.6 1.8 5 8 8 11.0 1.3 0.7

100 8 8 6.0 0.4 2 8 8 6.0 0.0 0.3
R2 30 11 11 12.0 3.9 165 11 11 12.0 2.1 3.5

50 11 11 7.0 1.1 15 11 11 7.0 0.1 0.4
100 11 11 3.8 0.1 24 11 11 4.0 0.0 3.7

C2 30 8 8 16.0 6.4 9 8 8 16.0 4.0 10.3
50 8 8 10.0 2.5 11 8 8 10.0 1.0 5.6

100 8 8 5.0 1.0 19 8 8 5.0 0.0 2.2
RC2 30 8 8 18.0 6.6 9 8 8 18.0 6.1 0.5

50 8 8 10.8 1.8 12 8 8 11.0 1.0 0.7
100 8 8 6.0 0.4 4 8 8 6.0 0.0 0.2

50 R1 30 12 0 — — — 0 4 25.0 12.8 1 331.1
50 12 2 15.0 4.0 533 1 5 15.0 4.0 1 638.3

100 12 6 9.7 0.8 553 6 2 10.5 0.0 7.8
C1 30 9 3 29.0 10.7 219 9 9 29.0 4.0 460.8

50 9 9 18.0 4.3 114 9 9 18.0 2.8 128.0
100 9 8 8.8 1.0 353 7 9 9.0 0.2 297.9

RC1 30 8 8 33.0 8.9 50 8 8 33.0 6.6 24.4
50 8 8 20.0 4.4 11 8 8 20.0 2.6 3.9

100 8 8 10.0 1.0 22 8 8 10.0 0.5 123.0
R2 30 11 0 — — — 0 2 25.0 13.0 3 004.1

50 11 0 — — — 0 3 15.0 6.3 1 249.9
100 11 1 8.0 1.0 134 2 2 8.0 0.5 928.7

C2 30 8 0 — — — 0 1 29.0 6.0 1 160.5
50 8 7 18.0 7.1 395 8 3 18.0 3.0 1 557.3

100 8 2 9.0 3.0 1 314 1 7 9.0 0.3 840.9
RC2 30 8 8 33.0 9.2 161 8 8 33.0 6.5 10.4

50 8 8 20.0 4.8 30 8 8 20.0 2.8 3.3
100 8 8 10.0 0.9 94 8 8 10.0 0.6 24.7

100 R1 100 12 1 20.0 0.0 5 1 1 20.0 0.0 2.1
C1 100 9 5 19.0 2.4 1 667 4 4 19.0 0.8 441.5
C2 100 8 2 19.0 5.5 1 407 0 0 — — —

Total 262 264 277
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Table EC.8 Detailed results for class R1 and n = 50 customers when the alternative pre-processing is applied.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 r101 16 191 16 191,0 0 25 9 912
r102 15 813 15 813.0 0 25 14 3 059
r103 15 679 15 511.5 1.08 25 15
r104 15 522 15 234.4 1.89 25 14
r105 15 803 15 803.0 0 25 14 545
r106 15 596 15 596.0 0 25 14 809
r107 15 624 15 316.8 2.01 25 13
r108 15 855 15 174.6 4.48 25 13
r109 15 628 15 523.2 0.68 25 11
r110 15 877 15 247.3 4.13 25 10
r111 15 649 15 371.2 1.81 25 14
r112 16 119 15 156.1 6.35 27 9

50 r101 11 911a/11 907b 11 911 11 911.0 * 0 15 3 25
r102 11142a 11 142 11 112.3 0.27 15 4
r103 10 868 10 615.8 2.38 15 10
r104 10 787 10 327.0 4.45 15 7
r105 11 325 11 325.0 0 15 5 1 129
r106 10 802 10 802.0 0 15 5 741
r107 10 846 10 496.2 3.33 15 6
r108 10 637 10 254.3 3.73 16 5
r109 10 818 10 818.0 0 15 3 3 577
r110 12 381 10 335.5 19.79 17 5
r111 10 615 10 615.0 0 15 4 2 719
r112 10 711 10 290.5 4.09 16 4

100 r101 10 440a/10 438b 10 440 10 440.0 * 0 12 0 0

r102 9132a,b 9 144 8 404.7 8.8 11 0

r103 8047a,b 8 113 7 419.4 9.35 10 0
r104 7 268 6 865.1 5.87 8 2

r105 9182a/9 181b 9 182 9 182.0 * 0 9 0 15

r106 8215a,b 8 238 7 731.1 6.56 9 1
r107 8 132 7 011.4 15.98 9 1
r108 7 417 6 766.4 9.62 8 2

r109 8042a/8041b 8 105 7 664.4 5.75 9 0
r110 7 697 6 940.3 10.9 8 0
r111 7 659 7 097.7 7.91 8 1
r112 8 205 6 696.5 22.53 8 1



ec10 e-companion to Bianchessi and Irnich: Branch-and-Cut for the SDVRPTW

Table EC.9 Detailed results for class C1 and n = 50 customers when the alternative pre-processing is applied.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 c101 15 995b 15 995 15 995.0 0 29 4 187

c102 15 995b 15 995 15 995.0 0 29 4 296

c103 15 983a,b 15 983 15 983.0 0 29 4 1 911

c104 15 983a,b 15 983 15 983.0 0 29 4 853

c105 15 995b 15 995 15 995.0 0 29 4 102

c106 15 995b 15 995 15 995.0 0 29 4 170

c107 15 995b 15 995 15 995.0 0 29 4 107

c108 15 983b 15 983 15 983.0 0 29 4 421

c109 15 983a,b 15 983 15 983.0 0 29 4 100

50 c101 10 158a,b 10 158 10 158.0 0 18 3 44

c102 10 130a,b 10 130 10 130.0 0 18 3 132

c103 10 123a,b 10 123 10 123.0 0 18 3 322

c104 10 102a,b 10 102 10 102.0 0 18 2 249

c105 10 158a,b 10 158 10 158.0 0 18 3 18

c106 10 158a,b 10 158 10 158.0 0 18 3 37

c107 10 158a,b 10 158 10 158.0 0 18 3 54

c108 10119a/10 118b 10 119 10 119.0 * 0 18 3 82

c109 10 101a,b 10 101 10 101.0 0 18 2 215

100 c101 5 876a/5 875b 5 876 5 876.0 * 0 9 0 8

c102 5 847a/5 846b 5 847 5 847.0 * 0 9 0 77
c103 5 821a 5 821 5 821.0 0 9 0 814
c104 5 788 5 788.0 0 9 0 1 220

c105 5 876a/5 875b 5 876 5 876.0 * 0 9 0 4

c106 5 876a/5 875b 5 876 5 876.0 * 0 9 0 3

c107 5 876a/5 875b 5 876 5 876.0 * 0 9 0 12

c108 5 841a/5 840b 5 841 5 841.0 * 0 9 1 58

c109 5 798a,b 5 798 5 798.0 0 9 1 485



e-companion to Bianchessi and Irnich: Branch-and-Cut for the SDVRPTW ec11

Table EC.10 Detailed results for class RC1 and n = 50 customers when the alternative pre-processing is applied.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 rc101 27 395a,b 27 395 27 395.0 0 33 7 5

rc102 27395a,b 27 395 27 395.0 0 33 7 7

rc103 27395a,b 27 395 27 395.0 0 33 7 8

rc104 27395a,b 27 395 27 395.0 0 33 6 113

rc105 27396a,b 27 396 27 396.0 0 33 6 10

rc106 27395a,b 27 395 27 395.0 0 33 7 14

rc107 27395a,b 27 395 27 395.0 0 33 7 5

rc108 27395a,b 27 395 27 395.0 0 33 6 34

50 rc101 17 083a,b 17 083 17 083.0 0 20 2 2

rc102 17005a,b 17 005 17 005.0 0 20 1 8

rc103 16968a,b 16 968 16 968.0 0 20 3 3

rc104 16967a,b 16 967 16 967.0 0 20 3 3

rc105 17001a,b 17 001 17 001.0 0 20 1 4

rc106 16990a,b 16 990 16 990.0 0 20 3 6

rc107 16986a,b 16 986 16 986.0 0 20 4 3

rc108 16967a,b 16 967 16 967.0 0 20 4 4

100 rc101 9 905a,b 9 905 9 905.0 0 10 2 10

rc102 9 602a,b 9 602 9 602.0 0 10 1 183

rc103 9 362a,b 9 362 9 362.0 0 10 0 652

rc104 9 159a,b 9 159 9 159.0 0 10 0 4

rc105 9 574a,b 9 574 9 574.0 0 10 0 121

rc106 9 364a,b 9 364 9 364.0 0 10 1 12

rc107 9 151a,b 9 151 9 151.0 0 10 0 1

rc108 9 119a,b 9 119 9 119.0 0 10 0 1



ec12 e-companion to Bianchessi and Irnich: Branch-and-Cut for the SDVRPTW

Table EC.11 Detailed results for class R2 and n = 50 customers when the alternative pre-processing is applied.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 r201 15 786 15 786.0 0 25 12 2 989
r202 15 596 15 596.0 0 25 14 3 019
r203 15 661 15 264.0 2.6 25 11
r204 16 030 15 196.5 5.48 25 10
r205 15 666 15 480.8 1.2 25 11
r206 15 569 15 493.3 0.49 25 13
r207 15 553 15 312.9 1.57 25 14
r208 15 937 15 188.3 4.93 26 10
r209 15 587 15 368.3 1.42 25 13
r210 15 688 15 422.3 1.72 25 14
r211 16 180 15 186.2 6.54 26 10

50 r201 11 078 11 078.0 0 15 6 263
r202 10 802 10 802.0 0 15 6 645
r203 10 644 10 447.7 1.88 15 5
r204 10 676 10 312.5 3.52 15 7
r205 10 859 10 749.2 1.02 15 5
r206 10 715 10 715.0 0 15 7 2 841
r207 10 629 10 413.5 2.07 15 11
r208 10 535 10 264.3 2.64 15 5
r209 10 545 10 437.5 1.03 15 4
r210 10 729 10 646.9 0.77 15 4
r211 10 909 10 249.3 6.44 16 5

100 r201 8 430b 8 432 8 432.0 * 0 8 0 71
r202 7 716 7 500.8 2.87 8 2
r203 7 206 6 983.7 3.18 8 2
r204 6 919 6 754.2 2.44 8 4

r205 7589a/7 588b 7 588 * 7 588.0 0 8 1 1 786
r206 7 281 7 247.5 0.46 8 2
r207 7 086 6 923.0 2.35 8 5
r208 7 196 6 700.4 7.4 8 3
r209 7 204 7 021.5 2.6 8 1
r210 7 454 7 227.1 3.14 8 1
r211 7 024 6 706.7 4.73 8 0



e-companion to Bianchessi and Irnich: Branch-and-Cut for the SDVRPTW ec13

Table EC.12 Detailed results for class C2 and n = 50 customers when the alternative pre-processing is applied.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 c201 17 790 17 790.0 0 29 6 1 161
c202 17 788 17 709.5 0.44 29 6
c203 17 785 17 639.0 0.83 29 6
c204 17 788 17 583.8 1.16 29 6
c205 17 786 17 731.4 0.31 29 6
c206 17 784 17 718.4 0.37 29 6
c207 17 784 17 730.0 0.3 29 6
c208 17 784 17 737.7 0.26 29 6

50 c201 11 598a/11 594b 11 597 * 11 597.0 * 0 18 3 204

c202 11 573a/11 569b 11 572 * 11 572.0 * 0 18 3 2 893

c203 11571a/11569b 11 576 11 417.5 1.39 18 3

c204 11569b 11 682 11 384.3 2.62 18 4

c205 11 571a/11 569b 11 570 * 11 570.0 * 0 18 3 1 575

c206 11571a/11569b 11 570 * 11 484.9 0.74 18 3

c207 11571a/11569b 11 570 * 11 464.0 0.92 18 3

c208 11571a/11569b 11 570 * 11 532.1 0.33 18 3

100 c201 6 931 6 931.0 0 9 2 166
c202 6 862a 6 862 6 862.0 0 9 0 803
c203 6 854 6 827.7 0.38 9 0
c204 6 848 6 848.0 0 9 0 2 703
c205 6 848a 6 848 6 848.0 0 9 0 223
c206 6 848 6 848.0 0 9 0 594
c207 6 848 6 848.0 0 9 0 896
c208 6 848 6 848.0 0 9 0 501

Table EC.13 Detailed results for class RC2 and n = 50 customers when the alternative pre-processing is applied.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 rc201 27 395a,b 27 395 27 395.0 0 33 7 7

rc202 27395a,b 27 395 27 395.0 0 33 7 7

rc203 27395a,b 27 395 27 395.0 0 33 6 5

rc204 27395a,b 27 395 27 395.0 0 33 6 14

rc205 27395a,b 27 395 27 395.0 0 33 7 14

rc206 27395a,b 27 395 27 395.0 0 33 6 9

rc207 27395a,b 27 395 27 395.0 0 33 6 15

rc208 27395a,b 27 395 27 395.0 0 33 7 13

50 rc201 17 083a,b 17 083 17 083.0 0 20 2 2

rc202 17005a,b 17 005 17 005.0 0 20 1 4

rc203 16968a,b 16 968 16 968.0 0 20 3 6

rc204 16967a,b 16 967 16 967.0 0 20 4 4

rc205 17004a,b 17 004 17 004.0 0 20 1 2

rc206 16990a,b 16 990 16 990.0 0 20 4 1

rc207 16986a,b 16 986 16 986.0 0 20 4 2

rc208 16967a,b 16 967 16 967.0 0 20 3 4

100 rc201 9 662a,b 9 662 9 662.0 0 10 2 1

rc202 9 465a,b 9 465 9 465.0 0 10 1 151

rc203 9 264a,b 9 264 9 264.0 0 10 1 33

rc204 9 159a,b 9 159 9 159.0 0 10 0 1

rc205 9 467a,b 9 467 9 467.0 0 10 1 3

rc206 9 408a,b 9 408 9 408.0 0 10 0 2

rc207 9 241a,b 9 241 9 241.0 0 10 0 5

rc208 9 119a,b 9 119 9 119.0 0 10 0 1


