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Abstract. This paper introduces the vehicle routing problemwith timewindows and shifts
(VRPTWS). At the depot, several shifts with nonoverlapping operating periods are available
to load the planned trucks. Each shift has a limited loading capacity. We solve the VRPTWS
exactly by a branch-and-cut-and-price algorithm. The master problem is a set partitioning
with an additional constraint for every shift. Each constraint requires the total quantity loaded
in a shift to be less than its loading capacity. For every shift, a pricing subproblem is solved by a
label-setting algorithm. Shift capacity constraints define knapsack inequalities; hence we use
valid inequalities inspired from knapsack inequalities to strengthen the linear programming
relaxation of the master problem when solved by column generation. In particular, we use a
family of tailored robust cover inequalities and a family of new nonrobust cover inequalities.
Numerical results show that nonrobust cover inequalities significantly improve the algorithm.
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2018.0885.
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1. Introduction
In the vehicle routing problem with time windows
(VRPTW), a homogeneous fleet of vehicles with limited
capacity delivers goods to a set of geographically scat-
tered customers. Each customer requires thedelivery of a
certain amountof goodswithin a specified timewindow.
The objective of the problem is to determine a set of
routes that minimizes the total operational cost while
ensuring that all customers are served, that time win-
dows are respected, and that the capacity limit of the
vehicles is not violated. It is assumed that all vehicles
start and end their routes at a common depot and that
travel cost and travel time between each pair of locations
in the problem are known.

Because of its practical relevance, the VRPTW is ex-
tensively studied in the literature (see, e.g., Gendreau
and Tarantilis 2010; Baldacci, Mingozzi, and Roberti
2012; and Desaulniers, Madsen, and Ropke 2014
for some recent surveys). Consequently, many (meta-)
heuristics and exact methods are successfully developed
to solve this problem. However, most existing models
assume that vehicles are simultaneously dispatched at
the depot. This is not always the case in real life. In some
industries, it is common to let the depot operate all or
most of the day and let different work shifts man the
depot. Eachwork shift (e.g., the day, the evening, and the

night shifts) has a limited loading capacity. A shift
loading capacity is, for instance, the number of full
truckloads that can be realized in that shift. Obviously,
when the total quantity to be delivered exceeds a shift
loading capacity,multiple shiftsmust be used to load the
planned trucks. Because shifts have different start and
end times (e.g., the day shift [0700–1500], the evening
shift [1500–2300], and the night shift [2300–0700]),
some of the planned trucks must be dispatched at a
later time. Consequently, the VRPTW model would
not be directly applicable in such cases, and the
model must be augmented with constraints that en-
sure that one does not assign too much work to a
single shift.
We consider the variant of the VRPTW whereby

multiple shifts with limited loading capacity are con-
sidered and denote this variant the VRPTW with shifts
(VRPTWS). The VRPTWS is inspired from a real-life
problem faced by a customer (i.e., a freight forwarder)
of a software logistics company with which we are
working. At the customer’s warehouse, three shifts
are available, each with a, to be respected, limited load-
ing capacity. We divide the depot’s operating period
(e.g., a day) into several nonoverlapping time zones
such that a different shift is associated with each of
these zones. Consequently, the depot’s operating pe-
riod consists of multiple shifts, each with a start and
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end time, and a limited loading capacity. In this pa-
per, we determine the set of routes that minimizes the
total distance traveled. Additionally, the assignment
of routes to the different shifts must take the shift
loading capacity into consideration. Trucks loaded
in a particular shift s are all assumed to depart from
the depot at a certain time ls. We do not impose con-
straints that force the vehicles to return in the same
shift (in the test instances considered, all routes are
supposed to have returned to the depot at a spe-
cific time).

We solve the VRPTWS to optimality using a branch-
and-cut-and-price (BCP) algorithm. In a BCP algo-
rithm, the linear relaxation of the master problem in
each branch-and-bound node is solved by column
generation. In case of the VRPTWS, the master prob-
lem of the column generation is a set partitioning with
an additional constraint for every shift, requiring its
loading capacity to be respected. For every shift, a
pricing subproblem, which is an elementary shortest-
path problem with resource constraints (ESPPRC), is
solved by means of a bidirectional label-setting algo-
rithm. To tighten the linear relaxation of the master
problem, we include several tailored valid inequalities
definedon the compact variables and several newvalid
inequalities defined directly on the master variables.
Although the former are robust inequalities that can
be easily handled in the BCP algorithm, the latter are
nonrobust inequalities that are shown to be stronger
but increase the complexity of the pricing subprob-
lems. We show how to deal with the nonrobust in-
equalities in the BCP algorithm, which is in line with
recent research on vehicle routing problems (VRPs).
Subset–row inequalities introduced by Jepsen et al.
(2008) are a good example of nonrobust inequal-
ities that are both strong and tractable at the same
time. The developed valid inequalities could be
applied to several combinatorial optimization prob-
lems in which knapsack inequalities appear in the
formulation.

The main contributions of this paper are summa-
rized as follows. First, we introduce a new problem
that extends the classic VRPTW by considering shifts-
limited loading capacity and that is inspired from a
real-life application. Second, we present an exact
solution based on a BCP algorithm. For every shift, a
separate pricing subproblem is solved by means of
a bidirectional label-setting algorithm. By exploiting
the structure of the problem, we develop new non-
robust valid inequalities to strengthen the linear pro-
gramming (LP) relaxation of themaster problemwhen
solved by column generation. The added valid in-
equalities are shown to be useful when solving the
VRPTWS and could be used in the solution of related
problems in which knapsack inequalities are part of
the formulation. Moreover, we show how to deal with

the additional complexity resulting from including the
nonrobust valid inequalities.
The paper is organized as follows. Section 2 reviews

the literature relevant to our problem. In Section 3, a
formal description of the problem along with its arc
flow formulation is provided. In Section 4, the column-
generation algorithm is described. Section 5 intro-
duces the valid inequalities used in the BCP frame-
work, and Section 6 explains the separation of the
nonrobust cover inequalities. In Section 7, we show
how the nonrobust valid inequalities are handled
in the pricing subproblems. Section 8 describes the
branching decisions. In Section 9, extensive numerical
experiments are conducted. Finally, Section 10 con-
cludes the paper.

2. Literature Review
This nonexhaustive literature review deals with two
broad topics. We discuss the relevant literature both
from an application point of view and from a related
methodology point of view. For both cases, our paper
significantly adds to the mentioned literature.
An abundant number of publications are devoted

to the vehicle routing problem (see Laporte (1992,
2007) and Toth andVigo (2014) for some reviews). For
good reviews on the VRPTW, the reader is referred to
Bräysy and Gendreau (2005a, b), Kallehauge (2008),
Gendreau and Tarantilis (2010), and Desaulniers,
Madsen, and Ropke (2014). Column generation is
successfully implemented for several combinatorial
optimization problems. For an overview of column-
generation algorithms, the reader is referred to
Lübbecke and Desrosiers (2005). Column generation
in the context of the VRPTW was first introduced by
Desrochers et al. (1992). Later, Kohl et al. (1999) in-
troduced subtour elimination constraints and two-
path cuts into the column-generation approach, and
Cook and Rich (1999) applied the more general k-path
cuts. In the 1990s, the pricing subproblem of choice
was the shortest-path problem with resource con-
straints and two-cycle elimination. In Irnich and
Villeneuve (2006), an algorithm for k-cycle elimina-
tionwas introduced, which led to tighter bounds, and
Feillet et al. (2004) and Chabrier (2006) proposed
algorithms for the ESPPRC that further improved the
lower bounds. Righini and Salani (2006, 2008) pro-
posed various techniques to speed up the ESPPRC
algorithm, including bidirectional search and decre-
mental state-space relaxation. Jepsen et al. (2008)
further improved the lower bounds by proposing a
column-generation algorithm with nonrobust valid
inequalities called subset–row inequalities and showed
how to efficiently deal with these nonrobust inequalities
in their BCP framework. To accelerate the pricing sub-
problem solution, Desaulniers, Lessard, and Hadjar
(2008) proposed a tabu search heuristic for the ESPPRC.
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Furthermore, elementarity was relaxed for a subset of
nodes, and both two-path and subset–row inequalities
were used. Baldacci, Mingozzi, and Roberti (2011b)
introduced a new route relaxation called ng-route used
to solve the pricing subproblem. Their framework
proved to be very effective in solving difficult in-
stances of the VRPTW with wide time windows be-
cause they were able to solve all but one of the 56
famous Solomon instances.

In this paper, we apply two types of valid inequalities
inspired from cover inequalities for knapsack problems.
First, we include robust cover inequalities defined on
the compact problem variables. These inequalities
were first discovered separately by Balas (1975) and
Wolsey (1975). We also include a strengthened ver-
sion of these inequalities, that is, the lifted robust
cover inequalities (see, e.g., Gu et al. 1998, Kaparis
and Letchford 2008). Second, we include nonrobust
cover inequalities, which are new valid inequalities
defined on the master problem variables. Including
nonrobust cover inequalities increases the complexity
of the pricing subproblems because each inequality
leads to an additional resource. As in Jepsen et al.
(2008), we show how to make the newly introduced
nonrobust cover inequalities tractable when imple-
mented in a BCP algorithm. The introduced non-
robust cover inequalities could be applied to several
combinatorial optimization problems when solved
by columngeneration andwhen knapsack constraints
are part of the set-partitioning formulation. Some
examples are the capacitated location routing prob-
lem (Baldacci et al. 2011a) and the more general two-
echelon capacitated vehicle routing problem (Baldacci
et al. 2013), inwhich a depot’s capacity ismodeled as a
knapsack constraint. In Muter, Cordeau, and Laporte
(2014), a branch-and-price algorithm is used to solve
the multidepot VRP with interdepot routes, where
vehicles are allowed to stop at any depot to replenish
and continue with another route. A set of routes
traversed by a vehicle is called a rotation. The rotation
duration must not exceed a maximum D; hence the
total duration of the routes included in a rotation is
bounded by D. This is again modeled by a knapsack
constraint in the set-partitioning formulation.

Closely related to the VRPTWS, Gromicho et al.
(2012) consider a combination of vehicle routing and
loading dock scheduling, including synchronized
routing. Examples of physical constraints mentioned in
their paper include a limited number of loading docks
and a limited size of loading crews. Additionally, time
windows and obedience of compulsory working-time
directives are considered aswell. This problem is solved
using a heuristic-based column generation. Cases ob-
tained from two large retailers are used to demonstrate
the value of their approach. These cases also dealt with
a heterogeneous fleet with different dock capacity

constraints. Ren, Dessouky, and Ordóñez (2010)
consider a VRPTW with multiple shifts and overtime.
Their problem was inspired by a routing problem in
healthcare, in which the vehicles continuously operate
in shifts, and overtime is allowed. They introduced a
shift-dependent tabu search-based heuristic that takes
overtime into account in the routing. The authors
developed lower bounds by solving the LP relaxation
of a mixed-integer programming (MIP) model with
a number of specialized cuts. These cuts give im-
proved bounds on the minimum number of re-
quired routes but also give insights on the minimum
overtime needed and aim at eliminating two-node
cycles.
There are also similarities between the VRPTWS

and the multidepot VRP in which the multiple shifts
are analogous to the multiple depots. However, in the
multidepot VRP, there is traditionally no limit on the
total amount of goods that can be shipped from each
depot, whereas sometimes there is a limit on the
number of vehicles available at each depot. Recent
exact methods for the multidepot VRP are described
by Baldacci and Mingozzi (2009), Bettinelli, Ceseli,
and Righini (2011), and Contardo and Martinelli
(2014), whereas a selection of heuristics for the prob-
lem are described byCordeau, Gendreau, and Laporte
(1997), Pisinger and Ropke (2007), Ho et al. (2008),
Cordeau and Maischberger (2012), and Vidal et al.
(2012). It is also relevant to mention the multiperiod
VRP (Chao, Golden, and Wasil 1995, Mourgaya and
Vanderbeck 2007, Hemmelmayr, Doerner, and Hartl
2009) because it has been shown that a multidepot
VRP instance is easily transformed into a multiperiod
VRP instance (see Cordeau, Gendreau, and Laporte
1997). Finally, we would like to mention the location–
routing problem studied by, for example, Wu, Low, and
Bai (2002), Baldacci, Mingozzi, and Calvo (2011a),
and Prodhon and Prins (2014). The problem is similar
to the multidepot VRP, but in the location–routing
problem one determines which depots, from a set of
available depots, should be active (at a fixed cost). In
relation to the VRPTWS, the location–routing prob-
lem is interesting because most models consider a
limitation on the amount of goods that can be shipped
from any depot, which is similar to the constraint on
the capacity that each shift can manage.

3. Problem Description
Consider a graphG � (V,A), whereV � {0,1, . . . ,n,n+1}
is the set of nodes and Vc �V \{0,n+1} represents the
set of customers; nodes 0 and n+1 represent the
depot, and the two nodes are the start and end, re-
spectively, of any route. Let [ai,bi] be the delivery time
window of node i. A vehicle can arrive at node i before
the opening time ai and wait to start service. Let di
be the demand and si be the service time of node i∈V.
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We assume, without loss of generality, that s0 � sn+1 �
d0 � dn+1 � a0 � 0. Let τij and cij denote the travel time (it
includes service time at i) and the travel cost, re-
spectively, from node i to node j. We consider an
unlimited fleet of homogeneous vehicles K, each
having a finite capacity Q. We can now define the set
of feasible arcs as A� {(i, j) ∈V×V : i �� j ∧ ai+τij ≤
bj ∧ di+dj ≤Q}. Furthermore, we assume that an
operating period at the depot consists of a set of shifts
S. Each shift s∈ S has a start time ls, end time us, and a
limited loading capacity Ls. We assume that vehicles
planned in shift s can be dispatched at time ls.

We present an MIP arc flow formulation based on
the flow variables xsijk, s ∈ S, k ∈ K, (i, j) ∈ A, that take
the value 1 if and only if arc (i, j) is traversed by vehicle
k that is loaded in shift s and the time variables
ωs

ik, s ∈ S, k ∈ K, i ∈ V, representing the start time of ser-
vice at node i. Furthermore, for every subset A′ ⊆ A,
vehicle k ∈ K, and shift s ∈ S, we denote xsk(A′) �∑

(i,j)∈A′xsijk, and we let γ+(i) and γ−(i) be the set of arcs
originating from i and the set of arcs ending in i, re-
spectively. The arc flow formulation of the VRPTWS
is as follows:

min z � ∑
s∈S

∑
k∈K

∑
(i,j)∈A

cijxsijk (1)

subject to∑
s∈S

∑
k∈K

xsk(γ+(i)) � 1 ∀i ∈ Vc, (2)∑
k∈K

∑
i∈V

dixsk(γ+(i)) ≤ Ls ∀s ∈ S, (3)

xsk(γ+(0)) � xsk(γ−(n + 1)) � 1 ∀s ∈ S,∀k ∈ K,

(4)

xsk(γ+(i)) � xsk(γ−(i)) ∀s ∈ S,∀k ∈ K,
∀i ∈ Vc,

(5)

xsijk ωs
ik + τij

( ) ≤ ωs
jk

∀s ∈ S,∀k ∈ K,
∀(i, j) ∈ A,

(6)

ai ≤ ωs
ik ≤ bi

∀s ∈ S,∀k ∈ K,
∀i ∈ Vc,

(7)
ls ≤ ωs

0k ≤ us ∀s ∈ S,∀k ∈ K,

(8)∑
i∈V

dixsk(γ+(i)) ≤ Q ∀s ∈ S,∀k ∈ K,

(9)

ws
ik ≥ 0 ∀s ∈ S,∀k ∈ K,

∀i ∈ V,

(10)

xsijk ∈ {0, 1}
∀s ∈ S,

∀k ∈ K,

∀(i, j) ∈ A. (11)

The objective function (1) expresses the total cost to be
minimized. Constraints (2) ensure that every cus-
tomer is assigned to exactly one vehicle. Constraints
(3) guarantee that shift loading capacity is respected.
Constraints (4) and (5) are related to the flow of arcs
on the path traversed by a vehicle k ∈ K that is loaded
in shift s ∈ S. Furthermore, constraints (6)–(8) guar-
antee feasibility with respect to time considerations.
Constraints (9)make sure that the vehicles’ capacity is
respected. Finally, constraints (10) ensure that the
time variables are nonnegative, and constraints (11)
impose binary conditions on the flow variables.

4. Set Partitioning Formulation and
Column Generation

To derive the set-partitioning formulation for the
VRPTWS, we define Ωs as the set of feasible paths
corresponding to shift s ∈ S. For a given shift, a path is
feasible if it is loaded within the shift operating period
and satisfies customers’ delivery time windows and
vehicle and shift capacity constraints.We letΩ � ∪s∈SΩs

denote the set of all feasible paths. For each path p ∈ Ω,
cp denotes its cost (i.e., the total distance traveled) and
mp its respective load. Let σip be a constant that counts
the number of times node i is visited by path p. Fur-
thermore, if yp is a binary variable that takes the value 1
if and only if the path p is included in the solution, the
VRPTWS is formulated as the following set-partitioning
problem:

min
∑
p∈Ω

cpyp (12)

subject to ∑
p∈Ω

σipyp � 1 ∀i ∈ Vc, (13)∑
p∈Ωs

mpyp ≤ Ls ∀s ∈ S, (14)

yp ∈ {0, 1} ∀p ∈ Ω. (15)

The objective function (12) minimizes the cost of the
chosen routes. Constraints (13) guarantee that each
node is visited exactly once. Constraints (14) ensure
that the shift loading capacities are respected. We use
column generation to solve the LP relaxation of (12)–(15):
startingwith a small subset of variables, we generate ad-
ditional variables for the master problem by solving, for
each shift s ∈ S, a pricing subproblem that searches for
variables with negative reduced cost. Let πi ∈ R (πi ≥ 0),
i ∈ Vc, be the dual variables associated with con-
straints (13) and μs ∈ R (μs ≤ 0), s ∈ S, the dual vari-
ables associated with constraints (14). The reduced
cost of a variable (path) p ∈ Ωs is defined as

csp � cp −
∑
i∈Vc

σipπi −mpμs. (16)
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The dual variable μs is negative and therefore will be
acting as a penalty when subtracted from the path’s
reduced cost. Ifwe let xpij be a binary variable that takes
the value 1 if and only if arc (i, j) is used in path p, the
path’s load mp can be expressed as

mp �
∑
(i,j)∈A

dix
p
ij. (17)

Hence, the reduced cost of path p is expressed as
follows:

csp �
∑
(i,j)∈A

cij − πi − diμs
( )

xpij. (18)

For an overview of column-generation algorithms, the
reader is referred to Lübbecke and Desrosiers (2005)
and Desaulniers, Desrosiers, and Solomon (2005).

5. Cover Inequalities
Cover inequalities are well-known valid inequalities
for the knapsack problem. The 0/1-knapsack poly-
topes defined by the shift capacity constraints (3) and
(14) include the polytopes defined by the compact for-
mulation (1)–(11) and the master problem (12)–(15),
respectively. Consequently, any valid inequality for
the former is also a valid inequality for the latter. We
apply valid inequalities inspired from the knapsack
problem to strengthen the LP relaxation of the master
problem when solved by column generation. We in-
troduce a family of tailored cover inequalities defined
on the compact variables and a family of new valid in-
equalities defined directly on the master variables. We
call cover inequalities expressed in the compact variables
robust cover inequalities; cover inequalities expressed
in the master variables are called nonrobust cover
inequalities.

5.1. Robust Cover Inequalities
For every shift s ∈ S, the corresponding shift capacity
constraint (3), along with the flow variables xs � {xsa :
a ∈ A} of the compact formulation (1)–(11), defines
the 0/1-knapsack structure

Xs � xs ∈ B|A| :
∑
a∈A

daxsa ≤ Ls

{ }
, (19)

in which the items are the arcs in A, the weight da of
each arc a � (i, j) ∈ A is the demand di of its start node i,
and the knapsack capacity is equal to the shift ca-
pacity Ls. Therefore, valid inequalities for the convex
hull of Xs defined on the compact variables xs can be
used to strengthen the LP relaxation of the master
problem.A subsetC ⊆ A is called a cover if

∑
a∈C da > Ls.

Moreover, C is a minimal cover if no proper subset of

C is also a cover; that is, for every a′ ∈ C, it holds that∑
a∈C\{a′} da ≤ Ls. For anyminimal coverC, the inequality∑

a∈C
xsa ≤ |C| − 1 (20)

is valid for the convex hull of Xs. It simply says that a
subset of customers with a total demand larger than
the shift loading capacity cannot all be planned on
vehicles loaded in the same shift. It can be extended by
the arcs in the set C̄ � a ∈ A \ C : da ≥ τ{ }, where τ �
max da : a ∈ C{ } is called the inequality threshold. Hence,
the inequality ∑

a∈C∪C̄
xsa ≤ |C| − 1 (21)

is also valid for the convex hull of Xs and is called a
robust cover inequality.

5.1.1. Separation of Robust Cover Inequalities. For a
given shift s ∈ S and its corresponding fractional so-
lution x∗s, the separation of the robust cover inequal-
ities (21) impliesfinding a subset of arcsC (i.e., a cover)
such that the total quantity delivered on these arcs
exceeds the shift capacity Ls, and

∑
a∈C x∗sa > |C| − 1.

Introducing the binary variable zsa that takes the value
1 if and only if arc a is included in the cover C, the
separation problem for the robust cover inequalities
is equivalent to

κ � min
∑
a∈A

(1 − x∗sa )zsa :
∑
a∈A

dazsa > Ls

{ }
. (22)

A violated robust cover inequality is found if and only
if κ< 1. The separation problem (22) is equivalent to a
knapsack problem and can be solved by dynamic
programming, as described in Pisinger (1997).

5.2. Lifted Robust Cover Inequalities
Inequalities (20) can also be strengthened by lifting up
the variables corresponding to the arcs in A \ C and
adding them to the left-hand side of the inequalities,
which results in the robust cover inequalities∑

a∈C
xsa +

∑
a∈A\C

αaxsa ≤ |C| − 1, (23)

where the nonnegative integers αa are as large as
possible. In this paper, we use simple heuristics as de-
scribed in Gu et al. (1998) and Kaparis and Letchford
(2008) to generate violated lifted robust cover in-
equalities (23).
We denote ## the set of robust cover inequalities

(21) and (23) added to the LP relaxation of the master
problem.
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5.3. Nonrobust Cover Inequalities
In this section, we introduce new families of nonrobust
valid inequalities for the VRPTWS defined directly on
the master problem variables.

5.3.1. Ordinary Nonrobust Cover Inequalities. Similar
to Section 5.1, we define nonrobust cover inequalities
on the y variables. In this case, a cover is a subset C ⊆
Ωs such that

∑
p∈C mp > Ls. For anyminimal coverC, the

inequality ∑
p∈C

yp ≤ |C| − 1 (24)

is valid and is denoted a nonrobust y-cover inequality
(or simply y-cover inequality) in the following. As in
Section 5.1, wedefine the thresholdτ � max{mp : p ∈ C},
set C̄ � p ∈ Ωs \ C : mp ≥ τ

{ }
, and define the extended

y-cover inequality ∑
p∈C∪C̄

yp ≤ |C| − 1, (25)

which is a strengthening of (24).
Unfortunately, the y-cover and extended y-cover

inequalities are not very useful in practice. Let us first
consider the y-cover inequalities (24). They avoid that
a set of variables C is used together in a feasible so-
lution. For shift s, the set C has in general very low
cardinality compared with the entire set of variables
Ωs. Consequently, even though the LP solution of the
master problem is going to change after applying a
y-cover inequality, it is likely that the new solution
will be similar to the previous one (because there are
so many, almost identical, variables to choose from in
Ωs). This means that many inequalities have to be
added before the LP solution changes significantly.
Furthermore, it is complicated to handle the con-
straints in the pricing subproblem. Each constraint is
associated with a dual variable υ that has to be sub-
tracted from the reduced cost in case the pricing ends
up constructing a path from C. This complicates the
use of dominance rules in a label-setting algorithm,
and the difficulties worsen as more constraints are
added to the master problem.

The extended y-cover inequalities are stronger be-
cause they include the set C̄ on the left-hand side, and
that set can have a considerable size. The extension
does not further complicate the pricing subproblem.
However, the difficulties in keeping track of the paths
from C in the pricing subproblem persist. We imple-
mented both versions of the inequality, but the results
were not encouraging. In the following, we present
stronger inequalities rooted in the y-cover inequalities.

5.3.2. Nonrobust k-Cover Inequalities. In this section,
we introduce a family of simple nonrobust cover in-
equalities we call the nonrobust k-cover inequalities (or

simply k-cover inequalities). For shift s ∈ S and integer
k ≥ 1, we define a k-cover

C � p ∈ Ωs : mp >
Ls
k

{ }
(26)

as the subset of paths with a load larger than the
threshold τ � Ls

k . Now we can define the k-cover in-
equalities as follows.

Definition 1. For shift s ∈ S, consider the k-cover C for
some k ≥ 1. The k-cover inequalities are defined as∑

p∈C
yp ≤ k − 1. (27)

The validity of the k-cover inequalities is formu-
lated in the following proposition.

Proposition 1. The k-cover inequalities (27) are valid for
problem (12)–(15).

Proof. Let C be a k-cover defined on shift s. A solution
that violates inequality (27) uses at least k routes from
C. Because each path in C has a load larger than Ls

k , the
solution violates the shift’s capacity Ls. □

Example 1. Consider the fractional solution in Table 1
obtained after solving the master problem for an in-
stance of 25 customers and three shifts, each with
loading capacity 200, and after adding the robust cover
inequalities found by our separation methods. The first
column shows the paths’ indices, the second column
corresponds to the paths’ weights in the LP solution,
the third column shows the shifts in which the paths are
planned, the fourth column represents the paths’ loads,
and the fifth column shows the sequence of a path.
Note that paths 5, 6, 9, and 10 have a weight 0 in the
current solution but are, however, reported in Table 1
for explanation purposes. For shift s � 1 and k � 2,
paths 7, 8, and 10 all have a load larger than the
threshold τ � 200

2 � 100 and therefore imply the two-
cover C � {7, 8, 10} that defines the violated two-cover
inequality y7 + y8 + y10 ≤ 1.

Table 1. Example of a Fractional Solution

p yp s mp Path

1 0.67 0 70 5, 3, 7, 8, 10
2 0.01 0 190 13, 17, 18, 19, 15, 16, 14, 12
3 1.00 0 100 20, 24, 25, 23, 22, 21
4 0.26 0 160 5, 3, 7, 8, 10, 11, 9, 6, 4, 2, 1
5 0.00 0 150 20, 24, 25, 23, 22, 21, 17, 18, 19
6 0.00 0 120 21, 21, 25, 8, 9, 10
7 0.99 1 190 13, 17, 18, 19, 15, 16, 14, 12
8 0.07 1 160 5, 3, 7, 8, 10, 11, 9, 6, 4, 2, 1
9 0.00 1 80 22, 23, 24, 25
10 0.00 1 120 16, 25, 21, 22
11 0.67 2 90 11, 9, 6, 4, 2, 1
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We denote}#1 as the set of k-cover inequalities (27)
addedto theLPrelaxationof themasterproblem(12)–(15).
We will return to the question of how to handle these
inequalities in the pricing subproblem in Section 7.

5.3.3. Nonrobust p-Cover Inequalities. In Section 5.3.1,
we argued that the impact of the y-cover inequality
(24) is weak. In this section, we propose a strength-
ened form denoted nonrobust p-cover inequalities (or
simply p-cover inequalities). Each p-cover inequality is
based on a y-cover inequality.

For shift s, let V(p) be the set of nodes visited along
path p ∈ Ωs. Furthermore, let us call path p a super path
of path p′ ifV(p′) ⊆ V(p). Let C be a cover defined as in
Section 5.3.1. We trim the paths in C by finding and
removing the node with the lowest demand from one
path in C that visits it, resulting in a new set C̃. Each
time a node is removed, we check whether the in-
equality is still valid by checking whether

∑
p∈C̃ mp > Ls.

If it is not, the trimming procedure backtracks to the
last definition of C̃ that resulted in a valid inequality.

Let τ � max{mp : p ∈ C}; we can define 3(C) � {p∈
Ωs : (∃p′ ∈ C̃ :V(p′) ⊆V(p)) ∨mp ≥ τ} as the set of paths
that are either a super path of one of the paths in C̃ or
have a load greater than or equal to the threshold τ.
Now we can introduce the p-cover inequalities as∑

p∈3(C)
yp ≤ |C| − 1. (28)

The validity of the p-cover inequalities is formulated
in the following proposition.

Proposition 2. The p-cover inequalities (28) are valid for
problem (12)–(15).

Proof. To see that the inequalities (28) are valid, we first
notice that if p ∈ Ωs is a super path of some path p′ ∈ C̃,
then mp ≥ mp′ . Additionally, only one of the super
paths of p′ can be used in an integer solution because
they all visit all customers in p′, and each customer can
only be visited once. If an integer solution violates the
inequality, it must be using at least |C| paths from3(C).
Let p be a path from 3(C) that is included in this so-
lution. Path p will be included either because its load
exceeds τ or because it is a super path of a path from C̃.
If p is a super path of a path p′ from C̃, we will have
mp ≥ mp′ , and p will be the only super path of p′ in-
cluded in the solution. Altogether this means that the
solution violates the shift capacity, and therefore, the
inequality is valid. □

We should note that trimming C results in stronger
inequalities because it leads to more variables being
added to the left-hand side of (28). We denote}#2 as
the set of nonrobust p-cover inequalities added to the
LP relaxation of the master problem (12)–(15).

Example 2. Consider the fractional solution of Table 1
and customers’ demand provided in Table 2. For shift
0, paths 3 and 4 define the minimal cover C � {3, 4} that
results in the violated y-cover inequality

y3 + y4 ≤ 1. (29)

The threshold for inequality (29) is τ � 160. More-
over, the subset of visited nodes on path 3 is V(3) �
{20, 21, 22, 23, 24, 25}, and the subset of visited nodes
on path 4 is V(4) � {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Every
path with a load at least equal to τ � 160 and all super
paths of paths 3 and 4must be added to the left-hand side
of inequality (29). Path 2 has load 190 > τ, and path 5 is
a super path of path 3, therefore, inequality (29) can be
strengthened to

y2 + y3 + y4 + y5 ≤ 1. (30)

The total load of the cover C � {3, 4} is 260, and the
loading capacity of shift 0 is 200. Therefore, there is
room for trimming the subsetsV(3) andV(4). Trimming
the coverC results in the trimmed cover C̃with trimmed
paths p̃3 � (21, 22, 25) and p̃4 � (5, 7, 8, 10, 11, 9, 6, 2, 1)
and a total load of 210, which is still larger than the
shift capacity 200. Now, for path p to be added to in-
equality (29), it suffices thatV(p̃3) ⊆ V(p) orV(p̃4) ⊆V(p).
From the paths in Table 1, path 6 is a super path of
the trimmed path p̃3 and therefore can be used to
strengthen inequality (30), resulting in the p-cover
inequality

y2 + y3 + y4 + y5 + y6 ≤ 1. (31)

5.3.4. Nonrobust q-Cover Inequalities. In this section,
we introduce a family of valid inequalities, denoted
the nonrobust q-cover inequalities (or simply q-cover
inequalities). These inequalities are inspired from the
p-cover inequalities by noting that the idea of super
paths can be simplified further. For a shift s ∈ S, a
customer i ∈ Vc, and an integer q ≥ 1, we define

Ωs(i, q) � {p ∈ Ωs : i ∈ V(p) ∧mp ≥ q} (32)

as the subset of paths for shift s that visit customer i
and have a load larger than or equal to q. Consider k
distinct customers ^ � { f1, . . . , fk} and k positive in-
tegers 4 � {q1, . . . , qk} (defined in general regardless

Table 2. Customers’ Demand

i di i di i di i di i di

1 10 6 20 11 10 16 40 21 20
2 30 7 20 12 20 17 20 22 20
3 10 8 20 13 30 18 20 23 10
4 10 9 10 14 10 19 10 24 10
5 10 10 10 15 40 20 10 25 40

Dabia, Ropke, and van Woensel: Cover Inequalities for the VRPTWS
1360 Transportation Science, 2019, vol. 53, no. 5, pp. 1354–1371, © 2019 INFORMS



of the demands of the customers in ^) such that∑k
i�1 qi >Ls, and set qmax � max

i�1,...,k
{qi}. We define the set

T � ⋃k
i�1

Ωs(fi, qi)
( )

∪Ωs(qmax),

whereΩs(qmax) � {p ∈Ωs :mp ≥ qmax}. We can show that
at most k−1 paths from this set can be visited in a
feasible solution that gives rise to the following valid
inequality: ∑

p∈T
yp ≤ k − 1.

This inequality can be generalized. Let η be the
maximum number of distinct items from4 that can be
packed in a knapsack with capacity Ls (η may be
smaller than k − 1). Then the q-cover inequalities with
the threshold qmax are defined as∑

p∈T
yp ≤ η. (33)

The validity of the q-cover inequalities is formulated
in the following proposition.

Proposition 3. The q-cover inequalities (33) are valid for
problem (12)–(15).

Proof. The proof of validity of the q-cover inequalities
follows that of the p-cover inequalities. If an integer
solution violates a q-cover inequality, it must be using
at least η + 1 paths from T. Let T∗ denote the paths from
T used in this solution. For any p ∈ T∗, we know that
either mp ≥ qmax or p ∈ Ωs(fi, qi) for some i ∈ {1, . . . , k}.
In the latter case, it will be the only path from Ωs(fi, qi)
because all paths in the setΩs(fi, qi) visit node fi, and we
know that a customer can only be visited once. Hence,
mp ≥ qi. This means that

∑
p∈T∗ mp >Ls owing to the def-

inition of 4 and qmax, which proves the validity of the
inequality. □

We denote }#3 as the set of nonrobust q-cover
inequalities added to the LP relaxation of the master
problem (12)–(15). In what follows, we present an ex-
ample in which no nonrobust k-cover and p-cover in-
equality is violated, but a violated nonrobust q-cover
inequality is found.

Example 3. Consider the fractional solution in Table 3
obtained after solving an instance of 25 customers and
three shifts, each with loading capacity of 190, and after
adding all violated (lifted) robust cover inequalities.
Note that path 10 has weight 0 in the current solution; it
is, however, reported for explanation purposes.

For this example, it is not possible to find a violated
nonrobust k-cover or p-cover inequality. For shift 0,
consider the nonrobust q-cover inequality defined by
the sets ^ � {3, 6, 11, 21} and 4 � {48, 38, 45, 62}.

Demands sum to 193; hence η is equal to 3, and we
have that qmax � 62. Paths {1, 3, 4, 5, 7, 8, 9, 10} define
the nonrobust q-cover inequality

y1 + y3 + y4 + y5 + y7 + y8 + y9 + y10 ≤ 3. (34)

The left-hand side takes the value 3.35. Path 10 is added
to the inequality (34) because its load is 72> qmax.

5.4. Further Robust Cuts from the VRP Literature
In addition to the already-mentioned cuts, we have also
implemented two robust cuts known from the capaci-
tated vehicle routing problem (CVRP) and VRPTW
literature; these are the rounded capacity constraints
(see, e.g., Lysgaard, Letchford, and Eglese 2004) and
two-path cuts (Kohl et al. 1999). After solving the LP
relaxation of the set-partitioning problem (12)–(15),
we recover xsij variables from the yp variables. We then
compute xij � ∑

s∈S xsij for all (i, j) ∈ A, and these values
are passed to separation routines for the two con-
straints. The separation algorithm for the rounded
capacity constraints use the heuristic described in
Lysgaard (2003), whereas for the two-path cuts we
use a simple greedy heuristic.

6. Separation of Nonrobust
Cover Inequalities

This section explains the separation procedures for
the nonrobust cover inequalities. The k-cover inequal-
ities are the easiest to separate because this can be done
through a simple and fast enumeration. The separation
procedures for the p-cover and q-cover inequalities are
more involved.
For the p-cover inequalities, the separation procedure

implemented is heuristic. The heuristic first separates a
y-cover inequality using a knapsack separation sim-
ilar to the one described in Section 5.1. If it finds a
violated y-cover inequality of the form (24), it will
simply construct an inequality as defined by (28), by
trimming the paths in C, as explained in Section 5.3.3.

Table 3. Example of a Fractional Solution

p yp s mp Path

1 0.33 0 50 7, 11, 19, 10
2 0.33 0 25 8, 10
3 0.33 0 38 18, 6, 13
4 0.02 0 65 14, 16, 6, 13
5 0.33 0 54 7, 11, 8, 17, 5
6 0.67 0 12 18
7 0.33 0 45 11, 19, 10
8 1.00 0 48 3, 9, 20, 1
9 1.00 0 62 21, 23, 24, 12
10 0.00 0 72 14, 13, 23
11 0.65 1 65 14, 16, 6, 13
12 1.00 1 58 15, 22, 4, 25
13 0.33 1 47 16, 17, 5
14 0.33 1 59 7, 19, 8, 17, 5
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The separation of the q-cover inequalities can be
defined as follows: for a shift s ∈ S, given the current
LP solution y∗s � {y∗p : p ∈ Ωs}, find the set of nodes ^
and the set of minimum loads 4 that define the most
violated nonrobust q-cover inequality.

First, we use a heuristic separation procedure to de-
tect violated nonrobust q-cover inequalities. The heu-
ristic procedure constructs a nonrobust q-cover inequality
based on a, not necessarily violated, y-cover inequal-
ity. We construct a cover C defining a y-cover in-
equality as described in Section 5.3.1 by solving a
knapsack problem. From each path p ∈ C, we ran-
domly select a node i and add it to the set of nodes ^
and add the load qi � mp corresponding to node i to
the set of minimum loads 4. Note that if the number
of nodes visited by all paths in C is larger than |C|, it
is always possible to select |C| different nodes. To be
able to add more variables to the left-hand side of
the nonrobust q-cover inequality, we trim the loads in
the set 4. The trimming procedure sorts the loads in 4
and trims the highest onesfirst as long as the total load
in 4 exceeds the shift capacity Ls. The trimming pro-
cedure tries to minimize the size of the threshold τ. It
also tries to minimize the difference between the
highest and the lowest loads in the trimmed set 4.

If the heuristic separation procedure fails to detect
a violated nonrobust q-cover inequality, we may use
an exact separation procedure. The exact separa-
tion procedure formulates and solves amixed-integer
program. Let Ωi be the set of paths in shift s visiting
customer i in the current LP solution, and let Di �
q1i , q

2
i , . . . , q

|Di |
i

{ }
be the set of possible loads to associate

with customer i. The set Di is found by taking the union
of the demands of the paths in Ωi. Furthermore, we
define Vs as the set of customers assigned to shift s in
the current LP solution, and αpk is 1 if load mp of path
p ∈ Ωi is larger than qki ; 0 otherwise. We let zi be a
binary variable that takes value 1 if and only if node i is
included in the set^, and we let ξik be a binary variable
that takes value 1 if and only if load qki ∈ Di is asso-
ciatedwith node i. Finally, we let xip be a binary variable
that takes value 1 if and only if path p is in the setΩs(i, q),
andwe let δp be a binary variable that takes the value 1
if and only if path p is included in the cover defining
the q-cover inequality we are trying to separate. The
separation problem is formulated as an MIP as follows:

max
∑
i∈Vs

∑
p∈Ωi

y∗pδp −
∑
i∈Vs

zi (35)

subject to∑
i∈Vs

∑|Di |

k�1
qki ξik ≥ Ls + 1, (36)

∑|Di |

k�1
ξik ≤ zi ∀i ∈ Vs, (37)

xip ≤
∑|Di |

k�1
αpkξik ∀i ∈ Vs,∀p ∈ Ωi, (38)

δp ≤
∑
i∈Vs

xip ∀p ∈ Ωi, (39)

zi, ξik, xip, δp ∈ {0, 1} ∀i ∈ Vs,∀p ∈ Ωi,
∀k ∈ {1, 2, . . . , |Di|}.

(40)

The objective function (35) maximizes the violation of
the found inequality. The terms

∑
i∈Vs

∑
p∈Ωi y

∗
pδp and∑

i∈Vs zi correspond to the left-hand and right-hand
sides, respectively, of the inequality (33). A violated
inequality is detected if the objective value is greater
than −1. Constraint (36) ensures that the sum of the
selected loads is larger than the shift capacity. Con-
straints (37) ensure that at most one load is selected
per customer. Constraints (38) guarantee that a path
can be included in the set Ωs(i, q) if its load is larger
than q. Furthermore, constraints (39) ensure that we
can only add a path to the cover defining q-cover
inequality we are trying to separate if it is in at least
one of the Ω(i, q) sets.

7. The Label-Setting Algorithm
Each shift defines a pricing subproblem that corre-
sponds to an ESPPRC in which the constrained re-
sources are time and vehicle capacity. Our ESPPRC
algorithm is based on a bidirectional label-setting al-
gorithm. First, we use a pricing heuristic in which we
limit the number of unprocessed labels. When the
heuristic fails to find new paths with negative reduced
cost, we call the exact labeling algorithm. Let p(L) be
the partial path associated with a label L. The label L
is coded using the following attributes:

Furthermore,wedenoteV(L) as the setV(L) extended
by the nodes that cannot be visited by label L because of
time windows and vehicle capacity. That is,

V(L) �V(L) ∪ j ∈ Vc \ V(L) : t(L){
+ τv(L),j > bj ∨ d(L) + dj >Q

}
.

In the labeling algorithm, for every label, all possible
extensions are derived and stored. It ends when all
labels are processed. However, the number of labels
that can be processed is typically very large. To re-
duce the number of labels, a dominance test is in-
troduced. LetE(L)denote the set of feasible extensions

v(L) Last node visited on the partial path p(L)
c(L) Reduced cost of the partial path p(L)
d(L) Total quantity delivered along the partial path p(L)
t(L) Ready time at node v(L) when reached through the

partial path p(L)
V(L) Set of nodes visited along the partial path p(L)
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of the label L to node n + 1. More formally, E(L) is the
set of all partial paths that can depart at node v(L) and
reach node n + 1 without violating time windows,
which have total demand of less than Q − d(L) and
which do not use nodes from V(L). If L′ ∈ E(L), we
denote L ⊕ L′ as the label resulting from extending L
by L′. Dominance is defined as follows.

Definition 2. Label L2 is dominated by label L1 if
1. v(L1) = v(L2).
2. E(L2) ⊆ E(L1).
3. c(L1 ⊕ L) ≤ c(L2 ⊕ L),∀L ∈ E(L2).
Definition 2 states that any feasible extension of

label L2 is also feasible for label L1. Furthermore,
extending L1 should always result in a better route.
However, it is not straightforward to verify the con-
ditions of Definition 2 because it requires the com-
putation and evaluation of all feasible extensions of
both labels L1 and L2. Consequently, sufficient dom-
inance criteria that are computationally less expen-
sive are desirable. Therefore, in Proposition 4, the
sufficient conditions 1–5 are introduced.

Proposition 4 (Feillet et al. 2004). Label L2 is dominated by
label L1 if

1. v(L1) = v(L2).
2. c(L1) ≤ c(L2).
3. t(L1) ≤ t(L2).
4. d(L1) ≤ d(L2).
5. V(L1) ⊆ V(L2).

7.1. Solving the Modified Pricing Subproblem
Including nonrobust cover inequalities is not straight-
forward as the pricing becomes more expensive. In par-
ticular, the standard dominance test of Proposition 4
cannot be directly used. Considering the fractional solution
of Table 1, by applying standard dominance criteria
as described in Proposition 4, partial path (0, 20, 24)
might dominate partial path (0, 19, 24). However, when
extended all the way to the end node, we might have
that (0, 19, 24, 25, 23, 22, 21, 0) is a better path than (0, 20,
24, 25, 23, 22, 21, 0) because the latter gets penalized by
the nonrobust p-cover inequality (29) dual variable,
whereas the former does not.Next, wewill focus on how
we handle the complications stemming from adding
nonrobust cover inequalities in the pricing subproblem.

7.1.1. Handling Nonrobust k-Cover Inequalities.
Nonrobust k-cover inequalities }#1 are easily han-
dled in the pricing subproblem. For every generated
path, we just need to subtract the dual variables corre-
sponding to the nonrobust k-cover inequalities in }#1
for which the inequality threshold is surpassed by the
path’s load when the end node is reached. Further-
more, we can use standard dominance test, as de-
scribed in Proposition 4. Condition 4 ensures that if
any extension of label L1 by some label L into a path

that must be added to a nonrobust k-cover inequality
in }#1, extending L2 by Lmust be added to the same
inequality. In fact, if the load of path p(L1 ⊕ L) sur-
passes the inequality threshold, the load of path
p(L2 ⊕ L) must surpass the inequality threshold as
well. So dominance does not have to know about all
the paths in the nonrobust k-cover inequalities }#1.

Example 4. Let’s consider again the fractional solution
in Table 1. For shift s � 1 and integer k � 2, the two-
cover C � {7, 8, 10} defines the nonrobust two-cover
inequality with threshold τ2 � 100, depicted by the
equation y7 + y8 + y10 ≤ 1. Furthermore, consider two
labels L1 and L2 such that p(L1) � (20, 21, 16) and
d(L1) � mp(L1) � 70 and p(L2) � (14, 15, 16) and d(L2) �
mp(L2) � 90. Moreover, we have that V(L1) � V(L1)
and V(L2) � V(L2) ∪ {10, 20, 21}. Let L be an exten-
sion of label L1 such that d(L) � 40. The total demand
of the extended label L1 ⊕ L is d(L1 ⊕ L) � 110> τ2;
hence path p(L1 ⊕ L) must be added to the two-cover
C. Obviously, p(L2 ⊕ L) must be added to C as well
because d(L2 ⊕ L) � 130> τ2. In other words, for any
label L, it will never happen that p(L1 ⊕ L) will be
penalized by the dual variable corresponding to the
two-cover inequality defined by C and p(L2 ⊕ L) will
not. Therefore, condition 2 of the standard dominance
test of Proposition 4 is still handling label cost correctly.

7.1.2. HandlingNonrobust p-Cover and q-Cover Inequalities.
For every validnonrobust inequality I ∈ }#2 ∪}#3, we
need to ensure that its dual variable is subtracted from
the reduced cost of a path p that contributes to its
violation. This is easily done by checking whether the
path’s load mp surpasses the inequality threshold
(i.e., τ if I ∈ }#2 and qmax if I ∈ }#3). Moreover, if I
defines a nonrobust p-cover inequality, p contributes
to the violation of I if it is a super path of a path in the
cover defining I. If I defines a nonrobust q-cover in-
equality, p contributes to the violation of I if it is in one
of the subsets Ωs(i, q) used to construct the cover de-
fining I. The complexity comes in the dominance test,
where we have to account for the possibility that one of
the labels that needs to be compared might contribute to
the violation of I and the other might not. Next, we will
discuss the impact of including nonrobust cover in-
equalities in }#2 ∪}#3 on the dominance criterion.
We differentiate between two cases.

Case 1. For any label L, the elementarity constraint in
the pricing subproblem is handled through the set of
visited nodes V(L); the standard dominance test will
require that V(L1) ⊆ V(L2) if label L1 should dominate
label L2. This condition, together with condition 4 of
the dominance test of Proposition 4, is sufficient for
handling nonrobust cover inequalities in }#2 ∪}#3.
In fact, if L is a feasible extension of L1 such that p(L1 ⊕ L)
contributes to the violation of a nonrobust cover
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inequality I ∈ }#2 ∪}#3, extending L2 by the same
extension L will imply that path p(L2 ⊕ L) contributes to
the violation of I as well. In fact, if p(L1 ⊕ L) is active in
I because its load surpasses its threshold, condition 4
of Proposition 4 will force p(L2 ⊕ L) to be active in I. If I ∈
}#2 and p(L1 ⊕ L) is active in I because it is a super
path of some path p′ in the cover defining I, then con-
dition 5 of Proposition 4 ensures that p(L2 ⊕ L) is a super
path of p′ and hence must be active in I. Furthermore,
if I ∈ }#3 and p(L1 ⊕ L) is active in I because p(L1 ⊕ L) ∈
Ωs(i, q) for some i ∈ Vc and integer q, then conditions 4
and 5 of Proposition 4 imply that p(L2 ⊕ L) ∈ Ωs(i, q),
and hence, p(L2 ⊕ L)must be active in I. Therefore, the
dominance criterion will be similar to the one in Prop-
osition 4, with the only difference being that condition
V(L1) ⊆ V(L2) must be relaxed to V(L1) ⊆ V(L2).
Case 2. Elementarity is handled by keeping track of
the nodes that cannot be visited by a label L (i.e., using
the set V(L)); then we need more information to do the
dominance test correctly. In fact, we need to keep the set
of nodes that are visited by the partial path p(L) to be able
to judge whether an extension of label L might lead to a
path that must be included in a nonrobust cover in-
equality in }#2 ∪}#3, and we must subtract the cor-
responding dual variable from the reduced cost of the
partial path p(L). If we consider label L2 as described in
Example 4, it is not possible, knowing only V(L2), to
judge whether an extension of L2 might, in the worst
case, lead to a path that contributes to some nonrobust
cover inequality in }#2 ∪}#3. For labels L1 and L2 of
Example 4 and the fraction solution in Table 1, it is clear
that, in theworst case, label L1 might be extended to a path
that must be penalized by the dual of the p-cover in-
equality defined by the cover C � {3, 4}. In fact, the
partial path p(L1) has already visited customers 20 and
21 that are also visited by path 3.

Let us consider anonrobust cover inequality I ∈ }#2 ∪
}#3. If I ∈ }#2, we denote C̃I as the trimmed cover and
τI as the threshold corresponding to I, as described in
Section 5.3.3. If I ∈ }#3, we denote ^I and 4I as the
sets used to construct I, as described in Section 5.3.4.
Moreover, we let υI < 0 be the dual of I. For a subset of
customer nodes 1 ⊆ Vc, we let

φ(1) � I ∈ }#2 :
⋃
p∈C̃I

V(p)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∩1 �� ∅
⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
∪ I ∈ }#3 : ^I ∩1 �� ∅{ }

be the subset of nonrobust cover inequalities in }#2 ∪
}#3 that “use a node from1.”The dominance test can
now be written as follows.

Proposition 5. Label L2 is dominated by label L1 if
1. v(L1) = v(L2).
2. c(L1) −∑

I∈φ(V(L1)\V(L2)) υI ≤ c(L2).

3. t(L1) ≤ t(L2).
4. d(L1) ≤ d(L2).
5. V(L1) ⊆ V(L2).
The idea of condition 2 in the dominance test of

Proposition 5 is that we, in the worst case, need to
subtract all the dual variables corresponding to the
nonrobust cover inequalities in }#2 ∪}#3 that are
active in the extension of label L1 but not in the ex-
tension of label L2. These inequalities are included in
the set φ(V(L1) \ V(L2)).
The dominance test can be further improved be-

cause we can determine that some of the nonrobust
cover inequalities in }#2 ∪}#3 will never be active
for a given path. Furthermore, we can also determine
that some inequalities will for sure be active for any
extension of label L2. Let

χ(L1) � I ∈ }#2 : ∀p ∈ C̃I, V(p) ∩ V(L1) \ V(L1)( ) �� ∅
{ }
∪ I ∈ }#3 : ^I ⊆ V(L1) \ V(L1){ }

be the subset of nonrobust cover inequalities that will
never be active for a path extended from label L1.V(L1) \
V(L1) is the set of nodes that have not been visited in
path p(L1) and cannot be visited in any extension of L1.
If this set intersects with all the paths defining a
nonrobust p-cover inequality in }#2 or includes the
set of nodes ^I in the case of a nonrobust q-cover
inequality in}#3, then any extension of L1 will never
contribute to the inequality. Considering Example 2,
the nonrobust p-cover inequality defined by the
p-cover C � {3, 4}will never be active in a path that is
extended from label L2.
Furthermore, let

ϕ(L2) � I ∈ }#2 ∪}#3 : d(L2) ≥ τI{ }
∪ I ∈ }#2 : ∃p ∈ C̃I,V(p) ⊆ V(L2)
{ }

∪ I ∈ }#3 : ∃(fi, qi) ∈ ^I × 4I , p(L2) ∈ Ωs(fi, qi){ }
be the subset of nonrobust cover inequalities in}#2 ∪
}#3 for which we know for sure that label L2 will be
extended into a path that will contribute to one of its
nonrobust cover inequalities. Ifwenowdefineθ(L1, L2) �
φ(V(L1) \ V(L2)) \ χ(L1) ∪ ϕ(L2)( )

, we get the improved
dominance criterion.

Proposition 6. Label L2 is dominated by label L1 if
1. v(L1) = v(L2).
2. c(L1) −∑

I∈θ(L1,L2) υI ≤ c(L2).
3. t(L1) ≤ t(L2).
4. d(L1) ≤ d(L2).
5. V(L1) ⊆ V(L2).
To summarize, we have the choice between three

possible dominance tests: the dominance of Proposi-
tion 2 but using the set V(L) instead of V(L), the
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dominance of Proposition 5, and the dominance of
Proposition 6. We have tested all three possibilities; the
best results were generated by using the dominance of
Proposition 6. Therefore, we choose the dominance of
Proposition 6 for our numerical experiments.

7.2. ng-Path Pricing
It is well known from the VRPTW that the ESPPRC
can be very time consuming to solve, and for hard
instances, a large fraction of the time spent by a BCP
algorithm may be spent on solving the pricing sub-
problem. Consequently, several papers have consid-
ered relaxations of the ESPPRC. The most successful
relaxation currently is the ng-path relaxation proposed
in Baldacci et al. (2011b). In the ng-path relaxation,
one defines a neighborhoodNi for each customer i; the
neighborhood Ni controls which customers to re-
member as the path traverses node i. Earlier visits to
nodes in Ni will be remembered, whereas visits to
nodes from Vc \Ni are forgotten. If a visit to a node j
is forgotten, it implies that the path may return to
node j and thereby create a cycle. By selecting Ni

wisely, one can make paths involving cycles rather
unlikely.

It is easy to adapt the label-setting algorithmdescribed
in Section 7.1 to solve the ng-path problem. An ng
label L contains the attributes v(L), c(L), d(L), and t(L)
that are defined in the same way as for the ESPPRC.
Furthermore, L contains a set Vng(L) that contains the
set of nodes visited by the partial path p(L) that are
remembered at node v(L). When extending a label L to
a node i, one updates Vng(·) as follows:

Vng(Lnew) � (Vng(L) ∩Ni) ∪ {i}.
If nonrobust cuts are not used, the following prop-
osition defines a domination criterion for ng-paths.

Proposition 7. Label L2 is dominated by label L1 if
1. v(L1) � v(L2).
2. c(L1) ≤ c(L2).
3. t(L1) ≤ t(L2).
4. d(L1) ≤ d(L2).
5. Vng(L1) ⊆ Vng(L2).
Handling the k-, p-, and q-cover inequalities is sim-

ilar to the ESPPRC case. Because k-cover inequalities
are straightforward, we focus on the p- and q-cover
inequalities. Given a set of p- and q-cover inequalities
}#2 ∪}#3, we define θng(L1,L2) to be the set of in-
equalities from }#2 ∪}#3 such that for each in-
equality I ∈ θng(L1,L2) there exists an extension L of L2
such that p(L2 ⊕ L) does not contribute to the left-hand
side of I, whereas p(L1 ⊕ L) does. It may be difficult
to define θng(L1,L2) exactly, but a function θ̄ng(L1,L2)
that for any pair of labels L1,L2 creates a superset of
θng(L1,L2) works as well; that is, θ̄ng should satisfy
θng(L1,L2) ⊆ θ̄ng(L1,L2) for all L1,L2. With this we can

define a domination criterion that is valid when
nonrobust cuts are included.

Proposition 8. Label L2 is dominated by label L1 if
1. v(L1) � v(L2).
2. c(L1) −∑

I∈θ̄ng(L1,L2) υI ≤ c(L2).
3. t(L1) ≤ t(L2).
4. d(L1) ≤ d(L2).
5. Vng(L1) ⊆ Vng(L2).
To compute θ̄ng(L1,L2), we extend the set of

label attributes with a set V(L) that contains all nodes
visited by path p(L), and we define two functions
processPCover and processQCover in Algorithms 1
and 2. processPCover goes through the active p-cover
cuts and returns the ones that belong to θ̄ng(L1,L2).
In Algorithm 1, the symbol 3(CI) denotes the paths
that occur on the left-hand side of p-cover inequal-
ity I, and C̃I is the set of trimmed paths that de-
fine inequality I (see definition of 3(C) and C̃ in
Section 5.3.3).
The check in line 4 of Algorithm 1 ensures that if

p(L2) and all extensions p(L2) belong to 3(CI), then I
will not be added to θ̄ng. The check in line 6 of
Algorithm 1 ensures that I only is added to θ̄ng if there
is a chance that an extension of p(L1)will contribute to
I, whereas the same extension of p(L2) potentially is
not contributing. The same inequality may be added
several times in line 7 of Algorithm 1, but set oper-
ations ensure that it only appears once in θ̄ng.

Algorithm 1 (Find p-Cover Inequalities That Should Be
Added to θ̄ng(L1, L2))
1: function PROCESSPCOVER(}#2, L1, L2)
2: θ̄ng � ∅
3: for (I ∈ }#2) do
4: if p(L2) /∈3(CI), then
5: for p ∈ C̃I do
6: if (V(L1) \ V(L2)) ∩ v(p) �� ∅), then
7: θ̄ng � θ̄ng ∪ {I}
8: end if
9: end for

10: end if
11: end for
12: return θ̄ng

13: end function

processQCover is similar to processPCover but han-
dles q-cover inequalities. In the pseudocode,^I and4I
denote the set of nodes and demands that define
inequality I, whereas f Ii and qIi denote the ith element
in ^I and 4I , respectively.
The checks in lines 4 and 6 of Algorithm 1 ensure

that inequalities that any path extended from p(L2)
will contribute to are not returned. The check in line
10 of Algorithm 1 ensures that I only is added to θ̄ng

if there is a chance that an extension of p(L1) will
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contribute to I, whereas the same extension of p(L2)
potentially is not contributing.

With these functions, we can define

θ̄ng(L1,L2) � processPCover(}#2,L1,L2)
∪ processQCover(}#3, L1, L2).

The algorithm for solving the ng-path pricing prob-
lem is embedded in a bidirectional label-setting al-
gorithm (see Righini and Salani 2006) to speed up
computations.

Algorithm 2 (Find q-Cover Inequalities That Should Be
Added to θ̄ng(L1,L2))
1: function PROCESSQCOVER(}#3, L1,L2)
2: θ̄ng � ∅
3: for I ∈ }#3 do
4: if d(L2)< max{q : q ∈ 4I}, then
5: for i � 1 to |^I | do
6: if (( f Ii ∈ V(L2)) ∧ (d(L2)> qIi )), then
7: skip to next I ∈ }#3
8: end if
9: end for

10: if (V(L1) \ V(L2)) ∩^I) �� ∅, then
11: θ̄ng � θ̄ng ∪ {I}
12: end if
13: end if
14: end for
15: return θ̄ng

16: end function

8. Branching
The branch-and-bound tree is explored using a best-
bound strategy. First, the algorithm branches on the
arc variables xsij. It looks for pairs (i, j), i, j ∈ Vc and
shifts s ∈ S such that xs∗ij + xs∗ji is close to 0.5 (x∗ is the
current fractional solution expressed in the arc vari-
ables) and imposes two branches xsij + xsji ≤ 0 and xsij +
xsji ≥ 1. If xs∗ij + xs∗ji is an integer for all pairs (i, j), i, j ∈ Vc
and shifts s ∈ S, then the algorithm looks for an arc
(i, j) ∈ A and a shift s ∈ S for which xs∗ij is fractional and
branches on that instead. Strong branching is used;
that is, the impact of branching on several candidates
is investigated every time a branching decision has to
be made. For each branch candidate, we estimate the
lower bound in the two child nodes by solving the
associated LP relaxation using a quick pricing heu-
ristic. The branch that maximizes the primal bound in
the weakest of the two child nodes is chosen. We con-
sider 30 branch candidates in the first 20 nodes of the
branch-and-bound tree and 20 candidates in the rest.

9. Computational Results
The BCP algorithm is implemented in C++ on an Intel
Xeon central processing unit (CPU), 2.67 GHz. For all
experiments, we use a time limit of 1 hour. The LP
solver CLP from the open-source framework COIN

(COIN CLP 2011) is used to solve the LP relaxation of
the master problem. For our numerical study, we use
the well-known Solomon data sets (Solomon 1987).
Instances with 25, 50, and 100 customers are tested.
For each instance size, six categories of instances are
tested, R1,R2,C1,C2,RC1, and RC2, according to the
geographic distribution and the tightness of time win-
dows. The geographic distribution of the customers is
randomly generated for sets R1 and R2, are clustered
for sets C1 and C2, and are a mix of random and
clustered for setsRC1 and RC2. The timewindows are
tight in sets R1,C1, and RC1 and wide in sets R2,C2,
and RC2, which allow more customers per route. In
this paper, the Solomon instances are represented
using the notation DTm. D is the geographic distri-
bution of the customers, which can be R, C, or RC. T is
the instance type, which can be either 1 (instances
with tight time windows) or 2 (instances with wide
time windows), and m denotes the number of in-
stance. For all instances, we consider three shifts with
equal loading capacity, which is calculated as

ρ
∑

i∈Vc di
3

,

where ρ ∈ {1.05, 1.2, 1.5}. Furthermore, the depot’s
operating period is divided into three equally long
periods with length bn+1

3 such that each period is
assigned to a different shift. We note that our in-
stances do not cover situations in which shifts have
different operating period lengths and loading capac-
ities. The developed algorithm can, however, deal with
these types of instances. Furthermore, the real-life ap-
plication that inspired us to research this problem has
three shifts with equal operating period lengths.
We organize the computational experiments in two

phases. First, we experiment with different route re-
laxations in the pricing problem to determine the route
relaxation that is most efficient for our problem.
Second, and once the route relaxation to be used in the
pricing problem is decided on, we run all the instances
using six different algorithm settings (see Table 4).
Algorithm !1 is the basic algorithm in which we do
not include any of the valid inequalities. Algorithm
!2 implements (lifted) robust cover inequalities (##)
but none of the nonrobust cover inequalities. Algo-
rithm !3 implements, in addition to ##, classic VRP
valid inequalities, that is, capacity and two-path in-
equalities (-). Algorithm !4 implements, in addition
to ##, nonrobust k-cover inequalities (}#1). Fur-
thermore, algorithm !5 supports nonrobust p-cover
inequalities (}#2), and algorithm !6 supports non-
robust q-cover inequalities (}#3). We also tested a
configuration that implements all cover inequalities,
but no clear performance improvements were ob-
served, and therefore, the results are not reported. At
any point during the search, we limit the number of
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active nonrobust cover inequalities in the master
problem to 50. The algorithm has a buffer that is used
to track the number of inequalities already added at
any point during the search. The buffer’s capacity is
set to 50. We note that during execution of the al-
gorithm, inequalities that are deemed to be inefficient
are deleted, implying that new inequalities can be
added instead as some capacity is freed in the buffer.
The deleted nonrobust cuts are lost and are regen-
erated if it turns out to be violated again. The non-
robust cover inequalities are global inequalities,
meaning that they are valid for all problems solved in
each node of the branch-and-bound tree.

9.1. Comparison of the Different Pricing Problems
In the first phase of the computational experiments,
we run different versions of the algorithm using dif-
ferent route relaxations in the pricing problem. We
experiment with four different pricing algorithms:
a pricing problem with elementary paths (denoted
Elem) and a pricing problem with ng-paths. For the
pricing problem with ng-paths, we experiment with
threedifferentng-neighborhood sizes (i.e., 5, 10, and15).
We denote the corresponding pricing problems NG-5,
NG-10, and NG-15, respectively. We test the different
route relaxations on instances with 25 and 100 cus-
tomers and ρ � 1.2. Table 5 reports results for each
algorithm and for each pricing problem configuration.
We report the average running time (“t̄[s]”) over in-
stances that are solved by all algorithm configurations
and the number of instances solved to optimality
(“#Opt”) by each algorithm configuration. From the
highlighted results (in bold), NG-10 andNG-15 seem to
provide the best performances. By further looking at
the detailed results, it turns out that NG-10 is able to
find a lower boundmore often than NG-15. Therefore,
we decide to choose NG-10 as our pricing problem
for the remaining computational experiments.

9.2. Impact of the Nonrobust q-Cover Inequalities
Separation Procedure

In the remaining computational experiments, all the
algorithms implement NG-10 as the pricing problem.
In Table 6, we compare the performance of algorithm
!6 when the exact separation procedure is activated

(i.e., solving the MIP (35)–(40)) after the heuristic
procedure fails finding any violated nonrobust q-
cover inequalities against the case in which only the
heuristic separation procedure is used. We use CPLEX
to solve the nonrobust q-cover inequalities separation
problem (35)–(40). The first column (“Inst.”) indicates
the name of the instance. The columns denoted as “t[s]”
show the time (in seconds) spent to solve an instance.
The columns denoted as “LBr” show the lower bounds
in the root node. In the columns labeled “Tree,” we
report the size of the branching trees. The columns
denoted as “LBgap” and “tgap” show, respectively, by
how much the lower bound worsens and how much
CPU time is gained by applying only the heuristic
separation. We report results for the instance with
25 customers and ρ � 1.05, for which both imple-
mentations couldfind a lower bound and observe that
although, in many cases, the lower bound in the root
node of the branch-and-bound tree improves slightly
(0.05% on average) and the size of the branch-and-
bound tree decreases when the exact procedure is
activated, the runtime increases (by 7.1% on aver-
age). Therefore, in all tables that follow, we only
report results for an !6 algorithm that supports only
the heuristic separation procedure.

Table 4. Algorithm Overview

## - }#1 }#2 }#3

!1

!2 U

!3 U U

!4 U U U

!5 U U U U

!6 U U U U

Table 5. Impact of Route Relaxation (ρ � 1.2)

|Vc | 25 100

Algorithm Relaxation t̄[s] #Opt t̄[s] #Opt

!1 Elem 308 47 1,247 8
NG-15 342 49 1,012 9
NG-10 261 48 1,203 9
NG-5 313 49 1,017 9

!2 Elem 293 47 1,061 9
NG-15 343 49 928 10
NG-10 284 49 1,000 10
NG-5 320 49 982 9

!3 Elem 281 47 1,171 9
NG-15 339 49 928 11
NG-10 354 50 962 11
NG-5 313 49 1,093 11

!4 Elem 271 49 1,300 10
NG-15 315 51 914 11
NG-10 264 51 989 11
NG-5 278 51 955 10

!5 Elem 213 49 1,325 11
NG-15 208 50 1,075 12
NG-10 208 51 950 11
NG-5 216 51 998 10

!6 Elem 190 49 1,275 12
NG-15 219 51 851 12
NG-10 173 51 1,017 12
NG-5 178 51 895 12
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Table 6. Exact vs. Heuristic Separation in !6

Heuristic separation Exact separation

Inst. t[s] LBr Tree t[s] LBr Tree tgap(%) LBgap(%)
R101 16 697.8 214 21 698.9 152 22.0 −0.15
R102 18 573.8 146 24 573.8 138 25.1 0.00
R103 105 485.6 592 119 485.6 476 11.4 0.00
R104 287 467.7 966 265 468.9 770 −8.1 −0.26
R105 18 582.4 148 37 584.9 168 50.6 -0.43
R106 21 477.4 92 35 477.4 108 38.8 0.00
R107 21 442.3 46 31 442.6 54 33.2 −0.08
R108 78 421.1 130 71 421.1 102 −10.3 0.00
R109 94 470.8 474 118 471.2 480 20.9 −0.10
R110 121 446.3 332 134 446.3 282 10.2 0.00
R111 48 455.7 134 63 455.7 132 24.3 0.00
R112 230 404.1 378 250 404.1 356 8.0 0.00
C101 41 263.9 158 46 263.9 134 11.7 −0.01
C102 42 246.0 68 48 246.0 66 12.8 0.00
C103 120 236.9 90 109 236.9 82 −9.6 0.00
C104 970 231.2 582 1,110 231.2 640 12.6 0.00
C105 16 246.6 46 18 246.6 42 13.0 0.00
C106 50 263.9 180 67 263.9 182 25.5 0.00
C107 23 244.9 60 44 244.9 88 46.4 0.00
C108 154 243.9 214 105 244.9 164 −46.6 −0.39
C109 529 235.7 440 373 235.7 352 −41.8 0.00
RC101 — 546.2 14,444 — 546.2 18,568 — 0.00
RC102 631 406.0 1,156 747 406.0 1,450 15.5 0.00
RC103 565 384.1 934 537 384.1 870 −5.1 0.00
RC104 — 346.6 1,810 — 346.6 2,298 — 0.00
RC105 383 501.0 1,884 528 501.0 1,934 27.4 0.00
RC106 77 451.2 148 88 451.2 148 12.5 0.00
RC107 2,534 407.6 2,444 2,251 409.1 2,460 −12.6 −0.36
RC108 — 347.5 1,876 — 347.5 2,140 — 0.00
R201 15 490.6 54 22 490.6 60 30.5 0.00
R202 28 422.1 48 37 425.4 48 24.2 −0.77
R203 13 399.0 6 15 399.0 6 9.3 0.00
R204 30 369.6 8 32 369.6 8 6.0 0.00
R205 100 404.9 146 109 404.9 154 8.1 0.00
R206 22 380.2 20 24 380.2 20 6.5 0.00
R207 101 368.9 46 105 368.9 46 3.6 0.00
R208 150 361.2 60 153 361.2 60 2.2 0.00
R209 5 381.1 2 5 381.1 2 5.8 0.00
R210 51 414.1 22 57 414.1 24 10.3 0.00
R211 4 364.9 0 4 364.9 0 0.5 0.00
C201 16 287.2 44 18 287.2 44 11.0 0.00
C202 36 280.2 30 39 280.2 30 5.8 0.00
C203 159 277.4 38 169 277.4 38 6.1 0.00
C204 570 274.1 90 562 274.1 90 −1.4 0.00
C205 27 286.4 44 28 286.4 44 6.3 0.00
C206 37 283.9 44 40 283.9 44 6.2 0.00
C207 115 282.7 16 119 282.7 16 3.1 0.00
C208 60 283.0 30 64 283.0 30 6.0 0.00
RC201 1,460 459.3 1,820 672 459.3 994 −117.4 0.00
RC202 822 347.4 230 1,032 347.4 236 20.3 0.00
RC203 — 340.5 346 — 340.5 332 — 0.00
RC204 — 309.2 134 — 309.2 134 — 0.00
RC205 270 347.7 132 293 347.7 150 7.8 0.00
RC206 473 346.7 290 471 346.7 284 −0.5 0.00
RC207 — 313.4 540 — 313.4 556 — 0.00
RC208 — 304.5 72 — 304.5 74 — 0.00
Average 7.1 −0.05
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9.3. General Findings
As expected, adding shift loading capacities to the
vehicle routing problem with time windows adds to
its complexity. However, it is remarkable how com-
plicated the resulting problem (i.e., the VRPTWS)
becomes. This complexity is reflected by the solution
running times and the large size of the branching
trees, especially when shift loading capacities are
binding (e.g., instances RC101, RC104, and RC108 for
ρ = 1.05 and 25 customers; see the online appendix).
Furthermore, the shift loading capacities have a sig-
nificant impact on the costs. Table 7 shows the impact,
for different instance sizes, of shift loading capacity
on solution complexity and cost. The row “#Opt”
shows the number of instances that could be solved to
proven optimality by at least one of the algorithms.
The rows “t̄[s]” and “Cost” show, for each instance
size, the average running time and average solution
value over all instances solved to proven optimality
by at least one algorithm, respectively. Decreasing ρ
clearly results, on average, in an increase in cost. In
fact, tightening shift loading capacity enforces planning
customers on later shifts. Ensuring route feasibility with
regard to time windows comes at the expense of trav-
eling cost. Furthermore, tightening shift loading capac-
ity results in more difficult instances because running
times increase on average. Table 8 reports details for
the number of instances solved to proven optimality
by each of the algorithms. Clearly, in most cases, al-
gorithms implementing nonrobust cover inequalities
perform better. However, in some cases, there are a few
instances that can be solved by algorithms not sup-
porting nonrobust cover inequalities but not by algo-
rithms supporting nonrobust cover inequalities (e.g.,
instances RC203 for ρ = 1.05 and 25 customers and
C103 and C106 for ρ = 1.05 and 100 customers; see the
online appendix).

9.4. Impact of the Valid Inequalities
Table 9 provides a comparison of all the implemented
algorithms. The columns “LBr” and “LBb” indicate,
respectively, the average of the root lower bound and
the average of the best lower bound of the instances
for which all algorithms are able to produce a lower
bound. Moreover, the average computation time (in
seconds) and the average number of nodes in the
branch-and-bound trees over all the instances solved
to optimality by all algorithms are reported in the
columns “t̄[s]” and “Tree,” respectively. Again, al-
gorithms!5 and!6 outperform the other algorithms.
We note that algorithm !6 outperforms !5. Table 10
shows that the root node of only very few in-
stances with 100 customers could not be solved by

Table 7. Impact of Shift Loading Capacity

ρ 1.05 1.2 1.5

|Vc| 25 50 100 25 50 100 25 50 100

#Opt 50 32 15 52 33 12 50 25 19
t̄[s] 42.3 9,518.6 13,640.6 3,745.6 8,946.3 12,922.2 3,531.6 5,768.1 12,416.7
Cost 50.8 183.8 225.6 38.5 149.7 130.2 29.8 79.0 124.5

Table 8. Number of Instances Solved to Optimality by Each
Algorithm

|Vc | 25 50 100

ρ 1.05 1.2 1.5 1.05 1.2 1.5 1.05 1.2 1.5

!1 46 48 46 18 21 24 9 9 13
!2 46 49 46 18 22 24 10 10 14
!3 46 50 46 19 20 23 14 11 18
!4 47 51 47 19 25 22 11 11 18
!5 48 51 48 24 29 24 12 11 19
!6 49 51 50 30 32 25 12 12 19

Table 9. Aggregate Comparison Between Pricing
Algorithms with Different Cuts

Algorithm LBr LBb t̄[s] Tree

!1 652.8 667.5 406.6 451.6
!2 652.8 667.5 384.6 374.4
!3 656.4 668.3 364.6 349.1
!4 657.4 669.2 350.7 297.0
!5 657.5 669.5 302.4 185.4
!6 658.3 670.2 272.1 151.1

Table 10 Number of Instances with non solved root node

R instances C instances RC instances

|Vc| ρ !1 !2 !3 !4 !5 !6 !1 !2 !3 !4 !5 !6 !1 !2 !3 !4 !5 !5

100 1.2 1 1 1 1 1 1 1 1 1 1 1 1 1
1.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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the algorithms. Detailed results are reported in the
online appendix.

10. Conclusions
In real life, loading vehicles is constrained by the shift
loading capacities at the warehouses. In this paper,
we explicitly consider shift loading capacity, which,
in our context, leads to the vehicle routing problem
with time windows and shifts. Limited shift loading
capacities are modeled by knapsack inequalities,
where the knapsacks are the shifts and the items to
pack are either the customers or the paths. Inspired
by valid inequalities for the knapsack problem, we
developed tailored robust and new nonrobust cover
inequalities. Nonrobust cover inequalities defined
on the master variables are clearly stronger but sig-
nificantly complicate the pricing subproblem, which is
consistent with previous research on VRP algorithms
that includenonrobust inequalities. Theymaybeapplied
to other problems and benefit from ideas introduced in
previous research, such as the introduction of a weak-
ened version of the inequalities based on the limited-
memory techniques (e.g., Pecin et al. 2017a, b) proven
useful for other families of nonrobust inequalities such
as the subset–row inequalities. However, further re-
search and implementations are needed to investigate
the value of such techniques for the newly introduced
nonrobust cover inequalities and to show their value
when applied in another context than the VRPTWS.We
succeed in handling the nonrobust inequalities in an
efficient way and show their value in extended com-
putational experiments. The algorithm can handle some
instances with up to 100 customers and three shifts.
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