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We address the robust vehicle routing problem with time windows (RVRPTW) under customer demand

and travel time uncertainties. As presented thus far in the literature, robust counterparts of standard for-

mulations have challenged general-purpose optimization solvers and specialized branch-and-cut methods.

Hence, optimal solutions have been reported for small-scale instances only. Additionally, although the most

successful methods for solving many variants of vehicle routing problems are based on the column generation

technique, the RVRPTW has never been addressed by this type of method. In this paper, we introduce

a novel robust counterpart model based on the well-known budgeted uncertainty set, which has advanta-

geous features in comparison to other formulations and presents better overall performance when solved by

commercial solvers. This model results from incorporating dynamic programming recursive equations into

a standard deterministic formulation and does not require the classical dualization scheme typically used

in robust optimization. In addition, we propose a branch-price-and-cut method based on a set partitioning

formulation of the problem, which relies on a robust resource constrained elementary shortest path problem

to generate routes that are robust regarding both vehicle capacity and customer time windows. Compu-

tational experiments using Solomons’s instances show that the proposed approach is effective and able to

obtain robust solutions within a reasonable running time. The results of an extensive Monte Carlo simula-

tion indicate the relevance of obtaining robust routes for a more reliable decision-making process in real-life

settings.

Key words : vehicle routing; time windows; robust optimization; polyhedral-interval uncertainty; compact

model; branch-price-and-cut
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1. Introduction

Vehicle routing is a cornerstone activity frequently associated with the decision-making process of

many complex logistics systems and supply chains. As a result, academics and practitioners have

devoted impressive efforts to develop models and powerful solution methods for the deterministic

vehicle routing problem (VRP) over the past decades (Braekers et al. 2016, Toth and Vigo 2014).

However, much less attention has been paid to the VRP under uncertainty, mainly because provid-

ing an optimal solution for many deterministic variants of the problem is already computationally

challenging and often impossible within an acceptable amount of time. In addition, defining a proper

uncertainty modeling approach to reflect real-world concerns without unnecessarily increasing the

difficulty of solving the problem is not trivial (Jaillet et al. 2016).

In the past few years, there has been a rapid increase in attention to vehicle routing under

uncertainty, which has led to the proposition of new models and solution strategies (Oyola et al.

2016a, Jaillet et al. 2016) mainly focused on the classic variants, such as the capacitated vehicle

routing problem (CVRP) and the vehicle routing problem with time windows (VRPTW). The vast

majority of studies rely on stochastic programming (SP) techniques based on either recourse models

or probabilistic/chance constraints to address uncertainty in demands and travel times, among

others. Broadly speaking, the recourse models assume that a set of routes is chosen according to

a given probability distribution of the stochastic parameters. In scenario-based formulations, the

underlying probability is often used to generate a finite set of outcomes or scenarios. The first-stage

design variables are thus “forced” to meet all the scenarios simultaneously, whereas the second-stage

recourse aims at ensuring a feasible completion for each single realization. In chance constraint

approaches, the so-called probabilistic constraints are supposed to hold with some probability or

reliability level instead of guaranteeing feasibility for all realizations. For example, the minimum

probability of meeting demands in a VRP should be greater than 0.95. The reader is referred to

Oyola et al. (2016a,b) for a recent review on the stochastic VRP, including a comparison of different

recourse decisions and specialized solution methods.

Defining reliable probability distributions may be difficult due to the lack of historical data

associated with many real-life applications and/or to the excessive theoretical requirements for

using the available scenario-generation methods. These drawbacks have been overcome over the

past decade by using robust optimization (RO) techniques, the utmost goal of which is to provide

solutions “immunized against uncertainty”. In this paper, we consider a class of (strict) RO prob-

lems with bounded uncertainty in the sense of Ben-Tal and Nemirovski (1999), Bertsimas and Sim

(2003) and Klamroth et al. (2017), in which the uncertain data belong to a convex set U known as

the uncertainty set in RO terminology. We are interested in finding a robust solution, i.e., a solution

that is deterministically feasible for every realization of the uncertain parameters that belongs to

U . The resulting model is optimized from a minimax or worst-case perspective according to the

decision-maker preferences towards uncertainty. Even though it might not be trivial to evaluate
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the “shape” of the uncertainty set, polyhedral-type sets provide robust counterparts as tractable

as their original formulations, which is particularly appealing to address combinatorial problems

under uncertainty. The so-called budgeted uncertainty polytope proposed by Bertsimas and Sim

(2003) is one of the most popular polyhedral-interval uncertainty sets. Despite all these potential

advantages, only a few papers have used RO techniques to handle a VRP under uncertainty.

Especially in vehicle routing activities, RO approaches can play an important operational role

in defining the routes for a particular day or even from a mid-term perspective, e.g., evaluating a

proper fleet size or staff flexibility, when uncertainty matters. The practical implication of using

the RO paradigm over the deterministic is ensuring that the planned routes will remain feasible

with high probability even after the occurrence of atypical events. Obviously, if the price for that

is overly conservative, one might prefer to adopt a contingency plan after knowing the uncer-

tainty. Consequently, proposing RO techniques that strike the right balance between robustness

and performance is of fundamental importance.

1.1. Related work

Sungur et al. (2008) were the first to apply robust optimization concepts in the CVRP to handle

demand uncertainty. The authors proposed three robust versions of the two-index CVRP formu-

lation with Miller-Tucker-Zemlin (MTZ) constraints based on convex hull, box, and ellipsoidal

uncertainty sets. All the proposed models may be perceived as worst-case instances of the determin-

istic CVRP in which the nominal demand parameter is replaced by an augmented modified demand

from the uncertainty sets. For this reason, the robust CVRP models provided overly conservative

solutions in comparison to chance constraint and/or two-stage stochastic approaches. However, the

two-stage model was significantly more difficult to solve than the robust versions with merely a

small to medium number of scenarios. Following similar ideas, Ordonez (2010) developed some RO

formulations based on bounded uncertainty to a class of VRP and discussed real-life applications

in large-scale emergencies and courier deliveries.

On the other hand, Lee et al. (2012) used the idea of RO with bounded uncertainty to adjust

the degree of conservativeness of the robust solution in a VRP with deadlines and both travel time

and demand uncertainties. The paper presented a three-index vehicle flow formulation with MTZ

constraints as well and derived the robust version for both uncertainties according to the popular

budgeted uncertainty polytope. Due to the computational intractability of the resulting model,

the authors proposed a set partitioning formulation and solved it via a branch-and-price method.

The uncertainty sources were encapsulated into the shortest-path subproblem, which was solved

by dynamic programming. The numerical results revealed a certain benefit of using RO, but even

the branch-and-price method was not able to solve several instances with 25 customers within the

time limit of one hour. The authors also noted that their algorithm cannot be directly applied to

the VRPTW.

Agra et al. (2012) applied the idea of RO with bounded uncertainty to model a heterogeneous

fleet VRPTW without capacity constraints under uncertain travel times using a formulation based
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on the concept of layered graphs. The resulting RO model was then applied to a ship routing

and scheduling problem in a maritime transportation context consisting of small instances (10 and

20 request nodes). Computational experiments showed that a commercial optimization package

was able to solve most of the instances within a time limit of one hour but failed in returning a

feasible solution for a few of those with 20 nodes. Hence, the authors concluded that this approach

is suitable to solve instances with up to 20 nodes only. Motivated by these results, Agra et al.

(2013) developed two main approaches to handle the heterogeneous fleet VRPTW with uncertain

travel times. The first one is based on the resource inequality formulation, in which uncertainty was

incorporated by adjustable RO. The second approach uses static RO implicitly via the addition

of canonical cuts. The computational results based on realistic instances from a ship routing and

scheduling problem showed that the proposed methods successfully solved instances with 50 nodes

within a reasonable running time.

Recently, De La Vega et al. (2018) applied RO to model demand uncertainty in the VRPTW

with multiple deliverymen, a variant that includes the number of service workers per route as an

endogenous decision of the problem (Pureza et al. 2012, Alvarez and Munari 2017). The authors

developed the robust counterpart problem based on a new deterministic formulation, which showed

advantages in comparison to previous models in the literature. A construction heuristic was also

devised to obtain initial robust feasible solutions, which were further used as starting points within

a general-purpose optimization software. Computational experiments based on adapted Solomon’s

instances revealed that the proposed solution approach is suitable for finding robust feasible solu-

tions for instances with up to 25 customers, but the optimality was effectively proven for only a

few instances. The advantages of the RO approach in guiding decision making in the VRPTW

with multiple deliverymen were highlighted by a Monte Carlo simulation.

Substantial contributions to modeling the robust CVRP with demand uncertainty were pre-

sented by Gounaris et al. (2013, 2016). In both efforts, customer demands were considered random

variables within a generic polyhedron. Gounaris et al. (2013) developed exact robust counterparts

of the deterministic CVRP based on well-known distinct formulations, namely, two-index vehicle

flow, MTZ-based, one-commodity flow, and two-commodity flow. For each one, the authors estab-

lished necessary and sufficient conditions to induce a robust feasible set of routes. The numerical

results confirmed that all the proposed formulations led to equally robust solutions for two differ-

ent uncertainty sets, but some of them had a clear advantage in terms of running time. Following

the theoretical results from the previous study, Gounaris et al. (2016) focused on developing an

adaptive memory programming metaheuristic for some robust CVRP under polyhedral demand

uncertainty.

The CVRP with deadlines under travel time uncertainty was studied by Adulyasak and Jail-

let (2016), who developed branch-and-cut and Benders decomposition algorithms for stochastic

programming and RO versions of the problem. The SP model was based on a known probability dis-

tribution and its main focus was to minimize the expected number of deadline violations. The RO
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model was designed to be feasible for a family of probability distributions to minimize the so-called

lateness index. The goal was to find a feasible route whose corresponding arrival times provide the

minimum lateness index. Other variants of the VRP under uncertainty were also discussed. The

computational study analyzed small instances defined on a directed graph only. The overall results

revealed that both approaches can be competitive in terms of computational effort and solution

quality under mild conditions. In a more recent contribution, Jaillet et al. (2016) proposed dis-

tributionally robust optimization approaches for a class of routing problems with uncertain travel

times and demands to incorporate some information on the probability distributions of the random

variables, thereby reducing the conservativeness of the robust solutions.

1.2. Our contributions

The contributions of this paper are threefold. First, we develop a novel compact RO formulation

to address demand and travel time uncertainties. Instead of using the so-called dualization scheme

to obtain the corresponding robust counterpart model, our formulation explicitly includes dynamic

programming (DP) recursive equations in the two-index vehicle flow formulation of the VRPTW

to evaluate the worst-case loads and earliest exact times for starting the service at the customers.

The main advantage of this novel modeling paradigm hinges on the fact that the robust coun-

terpart is straightforwardly obtained from the deterministic model without necessitating further,

(often) more expensive reformulations, thereby making it more amenable to numerical solution

schemes. Most robust VRP variants based on the dualization technique indeed had to introduce

additional constraints and variables to encapsulate the uncertainties in such a way to end up with

a less conservative formulation, e.g., Ordonez (2010), Gounaris et al. (2013), De La Vega et al.

(2018). Importantly, although the results reported in this paper are obtained for the VRPTW, the

proposed modeling approach based on DP might be applied not only to other VRP variants but

also to a myriad of operations research problems under uncertainty, making them more tractable

computationally and encouraging the usage of general-purpose optimization software.

Second, for the first time, we devise a branch-price-and-cut (BPC) method to solve a set parti-

tioning formulation of the robust VRPTW (RVRPTW). We describe how to extend the labeling

algorithm to solve the robust resource constrained shortest path problem. It involves redefining

the labels and the dominance rule to cope with the uncertainties in demands and travel times

simultaneously. As addressed in previous papers (Lee et al. 2012, Pessoa et al. 2015), the extensions

regarding the travel times are not trivial because the starting time of time windows may absorb

the worst-case deviations through the routes. The proposed BPC method relies on interior points

of the feasible set to stabilize column and cut generation. The points are obtained by a primal-

dual interior point method (Gondzio 2012), which guarantees that they are well centered. These

central points are also used for branching according to a central branching strategy. Comprehen-

sive computational experiments on the well-known Solomon’s instances reveal the effectiveness of

the proposed BPC method for solving the instances with up to 100 customers within a plausible

running time even when both uncertain parameters vary by up to 50% of their nominal values.
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Third, we perform an extensive numerical study based on a Monte Carlo simulation to assess

the relevance of the robust approach. For this purpose, we conduct a feasibility analysis to evaluate

the empirical probability distribution of the constraint violation based on 10,000 simulation runs.

In addition, we evaluate the price of robustness (Bertsimas and Sim 2003) using the solutions

provided by the BPC method. The results show that it is possible to obtain robust solutions at

the expense of only a minor increase in the optimal values. In addition, it is not necessary to

be over-conservative to achieve deterministically feasible solutions with a corresponding rather

reasonable price, suggesting that in contrast to typical deterministic solutions, the RVRPTW is

indeed appropriate to support decision making in an uncertain environment.

1.3. Organization of the paper

The remainder of this paper is structured as follows. Section 2 states the robust VRPTW under

uncertain demand and travel time and establishes some conditions for the robustness of feasible

routes. Section 3 presents a novel two-index compact formulation to cope with both sources of

uncertainty simultaneously. Section 4 describes the set partitioning formulation and develops the

BPC algorithm. Section 5 is focused on the computational results of the compact formulation and

exact method. In addition, practical insights into the usage of the RO approach are discussed.

Finally, concluding remarks and promising future research topics are provided in Section 6.

2. VRPTW via robust optimization

The VRPTW can be defined on a graph G= (N ,E), in which N = C ∪{0, n+1} is the set of nodes

associated with customers in C = {1, . . . , n} and with the depot nodes 0 and n+ 1. We use two

nodes to represent the same single depot and impose that all routes must start at 0 and return to

n+ 1. Set E contains all arcs (i, j) for each pair of nodes i, j ∈ C, with i 6= j, and all arcs (0, i) and

(i, n+ 1) for nodes i∈ C. The cost of crossing an arc (i, j)∈ E is denoted by cij.

We assume an unlimited, homogeneous fleet of vehicles with capacity Q. Each node has a demand

qi, such that qi > 0 for each i ∈ C and q0 = qn+1 = 0. In addition, there is a time window [wai ,w
b
i ]

for each node i∈N imposing that the service at this node cannot start earlier than the exact time

wai or later than wbi . If the vehicle arrives before wai , then it has to wait until this instant to start

servicing the node. To each arc (i, j) ∈ E , we assign a travel time tij, which respects the triangle

inequality. Additionally, each node i has a service time si that corresponds to the minimum amount

of time that the vehicle remains at a visited node.

The problem consists of determining a set of minimal-cost routes that satisfies the following

conditions: (i) Each route must start at the depot, visit a subset of customers and then return to

the depot; (ii) the capacity of a vehicle is not violated; (iii) time windows are not violated; (iv)

a customer is visited at most once by a route, and its demand is fulfilled by this visit; and (v) all

customers are visited exactly once. We use R to denote the set of all feasible routes, given by the

routes that satisfy conditions (i) to (iv). Any feasible solution R = (r1, . . . , rp) of the problem is

given by a set of p > 0 feasible routes rj ∈R, j = 1, . . . , p, that together also satisfy condition (v).
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In this paper, we address the RVRPTW assuming that the demands and travel times are uncor-

related uncertain values modeled as independent random variables that fall within the symmetric

and bounded ranges given by q̃i ∈ [qi− q̂i, qi+ q̂i] and t̃ij ∈ [tij− t̂ij, tij + t̂ij], respectively. Here, q̂ and

t̂ are the vectors of positive deviations of the random variables from their corresponding nominal

values qi and tij. It is also common to rewrite the random variables as a linear combination of

their nominal values and a normalized scale deviation, i.e., ξqi = (q̃i− qi)/q̂i and ξtij = (t̃ij − tij)/t̂ij,
in which both scale deviations are themselves random variables in [−1,1]. Consistent with most

studies in the literature, the data uncertainty model is represented by the well-known polyhedral

uncertainty set as follows:

U q =

{
q̃ ∈R|C|+ | q̃i = qi + q̂iξ

q
i ,

∑
i∈C

ξqi ≤ Γq, 0≤ ξqi ≤ 1, ∀i∈ C

}
, (1)

U t =

t̃∈R|E|+ | t̃ij = tij + t̂ijξ
t
ij,

∑
(i,j)∈E

ξtij ≤ Γt, 0≤ ξtij ≤ 1, ∀(i, j)∈ E

 , (2)

where the cumulative uncertainty of each random variable is bounded by its corresponding budget of

uncertainty Γq or Γt. If Γq = Γt = 0, then the uncertainties are not taken into account. On the other

hand, larger budgets express more conservative/robust solutions. The precise value for the budgets

can be evaluated via the probability of constraint violation or according to the decision-maker

preferences towards uncertainty/risk. Both uncertainty sets assume that the decision variables are

non-negative; thus, it follows that the worst case will always be achieved at the right-hand side of

the range. For this reason, we assume ξqi and ξtij in [0,1] in (1) and (2) without loss of generality.

Moreover, notice that further knowledge of the left-hand side of the range is not necessary under

such an assumption and that the confidence interval does not have to be symmetric.

Let r ∈ R be a route that sequentially visits k + 1 nodes, denoted by (v0, v1, · · · , vk), where

v0 = 0 and vk = n + 1. Following the RO paradigm, this route is robust feasible if it satisfies

conditions (i)−(iv) for all possible demand realizations q̃ ∈U q and travel time realizations t̃∈U t.

We express the set of robust feasible routes as R̃. In fact, we are interested in the feasible routes

that are simultaneously robust regarding demands and travel times. We say that a given solution

R= (r1, . . . , rp) is robust feasible if all routes rj, j = 1, . . . , p, are robust feasible and if they together

satisfy condition (v).

Due to the structure of sets (1) and (2), the robustness of a route can be defined explicitly using

recursive equations (Lee et al. 2012, Agra et al. 2013). Let uvjγ be the largest vehicle load at node

vj of the route, j = 1, . . . , k, when up to γ ≤ Γq demand values attain their worst case. This value

can be computed by the recursion:

uvjγ =


qv0 , if j = 0;
uvj−1γ

+ qvj , if γ = 0;

max{uvj−1γ
+ qvj , uvj−1,γ−1 + qvj + q̂vj}, otherwise.

(3)

To be robust feasible, the route must satisfy uvjγ ≤Q for all γ = 0,1, . . . ,Γq and j = 1, . . . , k. Since

uvjγ is nondecreasing through the nodes in the path, we can simply check uvkΓq ≤Q. In addition,
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note that uvjγ can be calculated alternatively using only the Γq largest demand deviations of the

customers visited up to uvjγ , that is:

uvjγ =

j∑
i=1

qvi + max
I⊆{1,...,j}
|I|≤γ

∑
i∈I

q̂vi . (4)

Hence, the worst-case value is always achieved by taking the largest demand deviations of the

visited customers.

Regarding the travel times, let wvjγ be the earliest exact time from which the service can start

at node vj when up to γ ≤ Γt travel times reach their worst-case values. We can compute this value

according to the following recursion:

wvjγ =


wav0 , if j = 0;
max{wavj , wvj−1γ

+ svj−1
+ tvj−1vj}, if γ = 0;

max{wavj , wvj−1γ
+ svj−1

+ tvj−1vj ,

wvj−1,γ−1 + svj−1
+ tvj−1vj + t̂vj−1vj}, otherwise.

(5)

To be robust feasible, the route must satisfy wvjγ ≤w
b
vj

for all γ = 0,1, . . . ,Γt and j = 1, . . . , k. It is

enough to check wvjΓt ≤w
b
vj

, for j = 1, . . . , k.

In contrast to the worst-case load, the value wvjγ is not necessarily obtained by taking the Γt

largest travel time deviations. Since the service can start only after the customer time window

opens, the largest deviations can be absorbed by the waiting times. Indeed, Fig. 1 illustrates this

situation for route (v0, v1, v2, v3, v4), with v0 = 0 and v4 = n+ 1. The time windows are presented

above their respective nodes, whereas travel times are shown below each arc, with their respective

deviations inside parentheses. We assume that the service times of customers v1, v2 and v3 are

equal to 1. This route is deterministic feasible, as the time windows are not violated if we take the

nominal values of travel times. For Γt = 1, we have that wv11 = 5, which is achieved either because

of the window opening time or because the travel time between v0 and v1 goes to its worst case.

At time instant 6, the vehicle is ready to go from v1 to v2, and hence, we have wv21 = 12, as the

worst case now is attained when the travel time between v1 and v2 reaches its maximum value.

Notice that in this example, the value of wv21 does not depend on the largest travel time deviation

(i.e., between v0 and v1) but rather on the smallest one. For the next nodes, we have wv31 = 17 and

wv41 = 21, as the worst case now is attained when the travel time between v2 and v3 reaches its

maximum value. Again, these values are not obtained by taking the largest travel time deviations.

This route is robust feasible for Γt = 1, but notice that if the time window of customer v3 is replaced

by [11,15], the route no longer remains robust feasible, although it is still deterministic feasible.

v
0 v

1
v

2
v

3

[0, 22] [5, 8] [8, 12] [11, 17]

2 (+3) 5 (+1) 3 (+2)
v

4

[0, 22]

3 (+1)

Figure 1 Example of a route in which the worst-case earliest time is not determined by the largest deviations.
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3. A two-index compact robust optimization formulation

In this section, we present a novel two-index vehicle flow formulation with extended MTZ con-

straints to cope with demand and travel time uncertainties simultaneously. As presented in other

papers that addressed robust formulations of VRP variants thus far in the literature, the MTZ-

based constraints make incorporating polyhedral uncertainty sets into the models difficult. Hence,

several authors have proposed reformulations for the deterministic models to obtain more tractable

robust counterpart formulations (Ordonez 2010, Agra et al. 2012, 2013, Gounaris et al. 2013,

De La Vega et al. 2018).

The formulation proposed below is a robust counterpart of the standard two-index vehicle flow

formulation of the VRPTW (Irnich et al. 2014, Desaulniers et al. 2014) with the advantage of not

requiring any reformulation of the original model. In addition, it provides a compact formulation

without the need for defining an adversarial (auxiliary) problem, which is commonly used in the RO

literature to encapsulate the uncertain parameter. Consequently, it is not necessary to apply the

typical dualization technique to obtain the robust counterpart, which would result in a prohibitive

number of additional decision variables and constraints, as noted by Lee et al. (2012) and Agra

et al. (2013).

Different from previous studies in the field, this novel robust formulation is based on the lin-

earization of the set of recursive equations defined in (3) and (5). Let xij be a usual binary decision

variable that assumes the value of 1 if and only if a vehicle traverses the arc (i, j)∈ E in the solu-

tion. For each i∈N , let uiγ and wiγ be continuous variables having the same meaning as in (3) and

(5) for γ = 0, . . . ,Γq and γ = 0, . . . ,Γt, respectively. They are similar to the continuous variables

used in the original formulation, but here they have the additional index γ to take uncertainty into

account. For example, uiγ is the load in the vehicle that services node i when up to γ demand values

attain their worst case. We can extend the MTZ-based constraints for including this worst-case

load as follows:

ujγ ≥ uiγ + qjxij −Q(1−xij), ∀(i, j)∈ E , γ = 0, . . . ,Γq, (6)

ujγ ≥ uiγ−1 + (qj + q̂j)xij −Q(1−xij), ∀(i, j)∈ E , γ = 1, . . . ,Γq, (7)

qi ≤ uiγ ≤Q, ∀i∈ C, γ = 0, . . . ,Γq. (8)

These constraints evaluate the cumulative vehicle load at customer j ∈ C if the vehicle is coming

directly from customer i, according to γ demand values attaining their worst case. Constraints

(6) and (8) are similar to the standard MTZ-based constraints used in the formulation of the

deterministic VRPTW but are defined here for all index values γ = 0, · · · ,Γq. Constraints (7) are

included to cope with the demand deviations, and they work together with (6) in a disjunctive

way: (6) models the case in which the number of demand values attaining their worst case in node

j is the same as that in node i, causing the load to increase by the nominal value qj only, whereas

(7) models the case in which the demand value at node j achieves its worst case (qj + q̂j) and then
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the number of demand values attaining their worst case at node j (γ) is one unit larger than that

in node i (γ− 1).

Following the same reasoning, we can obtain the robust counterpart of the MTZ-based con-

straints regarding the timing variables wiγ , leading to the following robust two-index vehicle flow

formulation of the RVRPTW:

min
∑

(i,j)∈E

cijxij (9)

s.t.
∑

(i,j)∈E

xij = 1, ∀j ∈ C (10)∑
(i,j)∈E

xij −
∑

(j,i)∈E

xji = 0, ∀i∈ C (11)∑
j:(0,j)∈E

x0j −
∑

i:(i,n+1)∈E

xi,n+1 = 0, (12)

ujγ ≥ uiγ + qjxij −Q(1−xij), ∀(i, j)∈ E , γ = 0, . . . ,Γq (13)

ujγ ≥ uiγ−1 + (qj + q̂j)xij −Q(1−xij), ∀(i, j)∈ E , γ = 1, . . . ,Γq (14)

qi ≤ uiγ ≤Q, ∀i∈ C, γ = 0, . . . ,Γq (15)

wjγ ≥wiγ + (si + tij)xij −Mij(1−xij), ∀(i, j)∈ E , γ = 0, . . . ,Γt (16)

wjγ ≥wiγ−1 + (si + tij + t̂ij)xij −Mij(1−xij), ∀(i, j)∈ E , γ = 1, . . . ,Γt (17)

wai ≤wiγ ≤wbi , ∀i∈N , γ = 0, . . . ,Γt (18)

xij ∈ {0,1}, ∀(i, j)∈ E . (19)

The objective function (9) consists of minimizing the overall transportation costs. Flow con-

straints (10)−(12) ensure that each customer i ∈ C is visited by exactly one vehicle and that all

vehicles depart from and return to the depot. Constraints (13)–(18) are the robust MTZ-based

constraints described previously based on the linearization of the recursive equations (3) and (5).

Finally, constraints (19) impose the domain of the xij variables. Notice that, in comparison with

the standard two-index vehicle flow formulation of the deterministic VRPTW (Irnich et al. 2014),

the proposed RO formulation has only (Γq + Γt) × |N | additional variables and two additional

sets of constraints, (14) and (17), which are similar to those already available in the deterministic

model.

We believe that the proposed formulation has a practical appeal, as it is a compact model and an

intuitive extension of the deterministic formulation, thereby encouraging its usage by non-expert

practitioners, especially those relying on general-purpose optimization software. In addition, as the

results of computational experiments presented in Section 5 indicate, it is possible to solve most

instances with 25 customers to optimality and find feasible solutions for almost all instances with

100 customers using this formulation within one hour of running time. Notably, the other compact

models proposed thus far in the literature for the RVRPTW and related variants are not effective

for instances with more than 10 or 20 customers, as reported by Lee et al. (2012) and Agra et al.

(2012) and supported by our computational experiments presented in Section 5.1.
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4. Set partitioning formulation and branch-price-and-cut method

Currently, the most effective exact methods for solving VRP variants are based on the set par-

titioning formulation (Pecin et al. 2016, 2017). The variables in this formulation correspond to

feasible routes of the problem. As previously defined in Section 2, let R̃ be the set of all robust

feasible routes regarding vehicle capacity and customer time windows. Let λr be a binary decision

variable that is equal to 1 if and only if the route r ∈ R̃ is selected in the optimal solution. The set

partitioning formulation for the RVRPTW is as follows:

min
∑
r∈R̃

crλr (20)

s.t.
∑
r∈R̃

ariλr = 1, i∈ C, (21)

λr ∈ {0,1}, r ∈ R̃. (22)

Objective function (20) consists of minimizing the total cost of the selected routes. The cost of a

route r ∈ R̃, denoted by cr, is computed straightforwardly using the arc costs cij of each arc (i, j)

in the path. Constraints (21) impose exactly one visit to each customer node. We assume that

all routes are elementary (i.e., without any cycle), so that each column ar = (ar1, . . . , arn)T is a

binary vector in which ari = 1 if and only if the corresponding route r visits customer i for each

i∈ C. This is the standard set partitioning formulation, which can be used to model different VRP

variants (Poggi and Uchoa 2014, Desaulniers et al. 2014) using an appropriate definition of the set

of feasible routes.

Generating all feasible routes to define the set partitioning formulation explicitly is impractical in

general, as a huge number of routes is typically available. Hence, we recur to the column generation

(CG) technique for solving the linear relaxation of model (20)–(22) (Lübbecke and Desrosiers 2005,

Vanderbeck and Wolsey 2010). To obtain optimal integer solutions, CG is combined with a branch-

and-bound tree, leading to a branch-and-price method. Since valid inequalities are also employed,

we obtain a branch-price-and-cut (BPC) method (Desrosiers et al. 2010). In the remainder of this

section, we develop a BPC method for the RVRPTW and describe the changes required in the CG

subproblem to generate robust feasible solutions.

4.1. Column generation

In the CG technique, we start with a relatively small subset of routes R ⊂ R̃ that leads to the

initial columns of the so-called restricted master problem (RMP), which corresponds to replacing

R̃ with R in the linear relaxation of the set partitioning formulation (20)–(22). In this context, the

original set partitioning formulation is called the master problem (MP). Since the RMP has only

a subset of the columns of the MP formulation, its optimal solution is also feasible for the linear

relaxation of the MP but is not necessarily optimal. To check its optimality for the linear relaxation

of the MP, we recur to the pricing subproblem (oracle). Let u= (u1, . . . , un) be the vector of dual

variables associated with constraints (21) in the RMP. At each iteration of the CG algorithm, we
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solve the RMP to obtain a dual solution u, where u0 := 0, which is then checked in the following

subproblem:

rc(u) := min

 ∑
(i,j)∈E

(cij −ui)xrij | r ∈ R̃

 , (23)

where xr = (xrij)(i,j)∈E is a binary vector such that xrij = 1 if and only if route r ∈ R̃ traverses

arc (i, j); i.e., it visits node i and goes directly to node j. The optimal value of rc(u) gives the

minimum reduced cost among all columns in the MP, including those that are not in the RMP.

Hence, if rc(u) is negative, we add (at least) one new column to the RMP and repeat the process.

Otherwise, the current optimal solution of the RMP is also optimal for the linear relaxation of the

MP, and the CG algorithm terminates successfully.

Recall that the columns in the set partitioning formulation correspond to routes. Therefore, the

subproblem (23) is a resource constrained elementary shortest path problem (RCESPP) (Irnich and

Desaulniers 2005). Any solution x̄r of the subproblem describes a route, which is converted to a

column as follows:

cr :=
∑

(i,j)∈E

cijx̄rij,

ari :=
∑

(i,j)∈E

x̄rij, i∈ C.

There are different strategies to solve the RCESPP, and one of most effective currently is the

labeling algorithm (Righini and Salani 2008, Pugliese and Guerriero 2013, Pecin et al. 2017). It

is a DP algorithm based on the gradual extension of feasible paths through the network while

keeping a list of labels to represent each non-dominated partial path. Dominance rules play an

important role in avoiding full enumeration of all possible routes. In addition, a few other clever

techniques have been proposed to improve the computational performance of the implementations

(Feillet et al. 2004, Righini and Salani 2008, Chabrier 2006, Desaulniers et al. 2008, Baldacci et al.

2011, Contardo et al. 2015). In its standard definition, the labeling algorithm can generate routes

for the deterministic RCESPP only. To guarantee that only robust feasible routes are generated,

we have to change the algorithm to take into account the uncertainty sets of demands and travel

times simultaneously. This consideration is addressed in the following section, based on previous

developments for related VRP variants (Lee et al. 2012, Pessoa et al. 2015, Errico et al. 2016).

4.1.1. Labeling algorithm for the robust RCESPP In the standard labeling algorithm,

each partial path from the depot to a given node i∈N is represented by a label Li = (Ci, Vi,R
q
i ,R

t
i),

where Ci is the total reduced cost of the path, Vi is the set containing all customers visited by

the path, Rq
i is the total vehicle load up to node i and Rt

i is the earliest time at which service can

start at node i. Starting from node 0, a label is initially defined with all its components equal to

zero except when the time window at the depot opens at wa0 > 0, as Rt
0 =wa0 . Then, the algorithm
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iteratively extends each label Li in a given node i ∈ C ∪ {0} to each non-visited node j such that

(i, j)∈ E , generating a new label Lj with values:

Cj = Ci + cij −ui;

Vj = Vi ∪{j};

Rq
j = Rq

i + qj;

Rt
j = max{waj ,Rt

i + si + tij}.

The extension is carried out only if the path corresponding to the resulting label Lj is feasible,

that is, j /∈ Vi, Rq
j ≤Q and Rt

j ≤wbj .

The definition presented above does not take into account the uncertainty in demands and travel

times. Hence, for the robust RCESPP, we redefine the label at node i as L̃i = (Ci, Vi,R
q
i0, . . . ,R

q
iΓq ,

Rt
i0, . . . ,R

t
iΓt). Components Ci and Vi are defined as in the deterministic case, whereas the total

vehicle load and earliest time to start servicing the node are now defined for each value γ = 0, . . . ,Γq

and γ = 0, . . . ,Γt, respectively. For a given γ, Rq
iγ is the maximum total vehicle load at node i

when the demands of up to γ customers attain their worst case. Similarly, Rt
iγ is the worst-case

earliest time for the service start time at node i, considering that up to γ travel times attain their

maximum values. Notice that Rq
i0 =Rq

i and Rt
i0 =Rt

i. With the recursive equations defined in (3)

and (5), an extension of label Li to a non-visited node j, such that (i, j) ∈ E , leads to a label Lj

computed as:

Cj = Ci + cij − ūi; (24)

Vj = Vi ∪{j}; (25)

Rq
jγ = max{Rq

iγ + qj, R
q
iγ−1 + qj + q̂j}; (26)

Rt
jγ = max{waj , Rt

iγ + si + tij, R
t
iγ−1 + si + tij + t̂ij}. (27)

The resulting label is accepted as a feasible extension only if j /∈ Vi, Rq
jγ ≤ Q, for γ = 0, . . . ,Γq;

and Rt
jγ ≤ wbj , for γ = 0, . . . ,Γt. We can define an extension in a more general way as a sequence

of single-arc extensions through a subset of nodes. We use e= (e1, . . . , ek) to denote an extension

with k nodes of a given label Li, which means that we apply (24)–(27) sequentially for each arc

(ej, ej+1), where j = 0, . . . , k− 1 and e0 := i. We use E(Li) to denote the set of all possible feasible

extensions of a given label Li.

As already mentioned, dominance rules play a crucial role in the labeling algorithm, as they

may significantly reduce the number of extensions required to find an optimal solution. Given two

labels, e.g., L1
i and L2

i , corresponding to paths that end at node i, we say that L1
i dominates L2

i if

any feasible extension e of L2
i ending at a given node j is also feasible for L1

i and satisfies C1
j ≤C2

j .

In such a case, L2
i can be eliminated, as it cannot lead to a path with a better reduced cost than L1

i .

In the deterministic RCESPP, given a feasible extension e∈E(L2
i ), we can verify if e also belongs
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to E(L1
i ) by checking the following conditions: V 1

i ⊂ V 2
i , Rq1

i ≤R
q2
i and Rt1

i ≤Rt2
i . Proposition 1

shows that similar properties can be used for the robust RCESPP to verify dominance between

two given labels.

Proposition 1. (Dominance rule for the robust RCESPP) Let L1
i and L2

i be two labels associ-

ated with paths ending at node i. L1
i dominates L2

i if the following conditions hold:

(i) C1
i ≤C2

i ;

(ii) V 1
i ⊂ V 2

i ;

(iii) Rq1
iγ ≤R

q2
iγ , ∀γ = 0,1, . . . ,Γq;

(iv) Rt1
iγ ≤Rt2

iγ , ∀γ = 0,1, . . . ,Γt.

W e need to show that, under hypotheses (i)–(iv), any feasible extension of L2
i is also feasible

for L1
i and leads to a path with smaller or equal reduced cost. Let e ∈E(L2

i ) be a robust feasible

extension of the label L2
i that visits k > 0 nodes and ends at node j, resulting in label L2

j . Let

e1, . . . , ek denote the nodes in the extension e, where ek = j. In addition, we define e0 := i. Since

e is a robust feasible extension of L2
i , for each h= 1, . . . , k, we have eh /∈ V 2

eh−1
; Rq2

ehγ
≤Q, for all

γ = 0,1, . . . ,Γq; and Rt2
ehγ
≤wbeh , for all γ = 0,1, . . . ,Γt. Let L1

j be the label resulting from applying

extension e to label L1
i . Since V 1

i ⊂ V 2
i , we also have eh /∈ V 1

eh−1
, for each h= 1, . . . , k, so the path

associated with L1
j is also elementary. Now, notice that due to condition (iii) and (26), we have

that for all γ = 1, . . . ,Γq:

Rq1
e1γ

= max{Rq1
e0γ

+ qe1 , R
q1
e0γ−1 + qe1 + q̂e1}

≤ max{Rq2
e0γ

+ qe1 , R
q2
e0γ−1 + qe1 + q̂e1}

= Rq2
e1γ
.

By sequentially applying the same reasoning for any two nodes eh−1 and eh, we obtain that Rq1
ehγ
≤

Rq2
ehγ

for all h= 1, . . . , k, and hence, Rq1
ehγ
≤Q for all γ = 0,1, . . . ,Γq. In a similar way, we obtain that

Rt1
ehγ
≤ wbeh for all h= 1, . . . , k and γ = 0,1, . . . ,Γt. Therefore, e is also a robust feasible extension

for label L1
i . By analyzing the reduced costs of the resulting labels, we obtain:

C1
j = C1

e0
+

k∑
h=1

(ceh−1eh − ūeh−1
)

≤ C2
e0

+
k∑
h=1

(ceh−1eh − ūeh−1
)

= C2
j ,

which completes the proof. �

Several strategies have been used to improve the performance of the labeling algorithm. Feillet

et al. (2004) propose identifying a set of unreachable nodes regarding vehicle capacity and customer

time windows. Customers that are unreachable can be considered visited in the dominance checking,

increasing the number of dominated labels. The same reasoning can be applied to the robust
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RCESPP, and in particular, the worst-case deviations regarding demands and travel times can be

used to check for unreachable nodes. Bi-directional extension is another significant improvement in

the labeling algorithm (Righini and Salani 2008). In addition to the forward extension described

above, a backward extension is also carried out, and both extensions stop at the middle point

of the depot time window. A backward extension of the robust RCESPP can be defined very

similarly to the forward extension described above, so we omit the details from this paper. We

have incorporated all these techniques in our BPC method, including all the heuristic strategies

proposed by Desaulniers et al. (2008) to speed up the labeling algorithm.

4.1.2. Interior point stabilization An important issue in the CG algorithm concerns the

stability of the dual solutions of the RMPs. It is widely known in the literature that optimal

dual solutions obtained by the simplex method typically oscillate unstably between consecutive

iterations of the CG algorithm (Vanderbeck 2005, Lübbecke and Desrosiers 2005, Munari and

Gondzio 2015). This leads to relatively slow progress of the algorithm, especially in the initial and

in the final iterations (heading-in and tailing-off effects). In addition, degeneracy in the RMP may

negatively affect the CG algorithm if we rely on the simplex method.

Stabilization techniques try to overcome these drawbacks by controlling the oscillation of dual

solutions, which has been shown to be successful for a variety of problems (Briant et al. 2008,

Ben Amor et al. 2009, Gondzio et al. 2013). We rely on the technique known as the primal-dual

column generation method (Gondzio et al. 2013, Munari and Gondzio 2013, Gondzio et al. 2016),

which uses a primal-dual interior point algorithm to naturally control the distance between dual

solutions. Each RMP is solved by the interior point algorithm within a given optimality tolerance

ε > 0 that is dynamically adjusted at each CG iteration according to the relative gap in the CG

method. More specifically, let gap= (UB−LB)/(1 + |UB|) be the relative gap at a given iteration

of the CG method, where UB is the smallest objective function value of the RMP in previous

iterations and LB is the largest Lagrangian bound obtained from previous dual solutions. Then,

we solve the current RMP by the interior point method using the optimality tolerance ε= gap/D,

where D > 1 is a fixed scaling parameter. Hence, the dual solutions sent to the subproblem are

suboptimal solutions that are well centered in the feasible set, as the primal-dual algorithm keeps

them inside a neighborhood of the central path (Gondzio 2012). The dynamic adjustment of the

tolerance ε guarantees the convergence of the method and brings about significant gains in relation

to the standard CG method, in particular for VRPs. As presented in the literature, in comparison

to the use of optimal dual solutions, the use of well-centered, suboptimal dual solutions obtained by

an interior point method has delivered significant reductions in computational times, particularly

for the VRPTW (Munari and Gondzio 2013). For further details on this, please see Gondzio et al.

(2013), Munari and Gondzio (2015).
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4.2. Valid inequalities

Subset row (SR) inequalities (Jepsen et al. 2008) are currently the most powerful valid inequalities

for the set partitioning formulation. Although they can adversely affect the performance of the

labeling algorithm, the lower bound provided by the linear relaxation of the MP becomes stronger,

typically leading to a significant reduction in the number of nodes in the BPC method. Therefore,

the SR inequalities are included in the state-of-the-art implementations of BPC algorithms for many

VRP variants (Desaulniers et al. 2014, Pecin et al. 2016). In our method, we use the SR inequalities

defined by subsets of three customers and stated as follows. Consider a subset S = {i1, i2, i3} ⊂ C.

The corresponding SR inequality must ensure that the number of routes that visit at least two

nodes in S is at most equal to one. This is imposed by adding the following constraint to the RMP:∑
r∈IS

λr ≤ 1,

where IS ⊂R is the set of all columns that are associated with routes that visit at least two nodes

in S.

The separation of SR inequalities is carried out by a straightforward enumeration that checks all

the columns in the RMP for each possible subset S of three nodes. We call this separation procedure

inside the CG process as soon as the CG relative gap falls below a fixed tolerance εc (set to 0.1 in

our experiments). Since we are using an interior point algorithm to solve the RMPs (see Section

4.1.2), the separation uses central primal (feasible) solutions to generate the valid inequalities,

which can lead to deeper cuts and hence reduce the total number of generated inequalities (Munari

and Gondzio 2013). To reduce the negative impact of SR inequalities on the performance of the

labeling algorithm, the separation procedure is called every three iterations of the CG method,

and we add up to three cuts at each call, given by the most violated ones. In addition, as proposed

by Desaulniers et al. (2008), a customer can be in a set S at most five times, and we add only the

valid inequalities with violations greater than 0.1.

4.3. Branching

Once the CG procedure terminates with a solution λ, we compute the corresponding arc solution

x= (xij)(i,j)∈E given by xij =
∑

r∈R xrijλr, where xr is the binary vector corresponding to the rth

route obtained from the subproblem, as defined in Section 4.1. If the components xij are integers

for all (i, j) ∈ E , then we prune the node with an integer solution of the problem. Otherwise, we

apply the following branching strategy:

• If α :=
∑

r∈R λr is not an integer, then we create two child nodes, imposing the constraint∑
r∈R λr ≤ bαc to the master problem of one node and the constraint

∑
r∈R λr ≥ dαe to the master

problem of the other;

• Otherwise, we select the component xij with most fractional value (ties are broken randomly),

and then we create two child nodes: in one node, we impose xij = 0 by removing the arc (i, j) from

the network and dropping from the master problem all columns corresponding to routes that do
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not satisfy this requirement; on the other node, we impose xij = 1 by removing all arcs (i, j′) and

(i′, j) such that i′ 6= i and j′ 6= j, whereas in the master problem, we also drop all the columns that

do not satisfy this constraint.

Additionally, we rely on a central branching strategy based on the suboptimal, well-centered

solutions provided by the interior point algorithm used to solve the RMPs. It consists of terminating

the CG procedure as soon as the relative gap falls below a threshold value εb (equal to 10−3 in

our implementation) and then applying the branching strategy described before. If the solution

suggests that the node should be pruned, then we resume the CG procedure with the standard

optimality tolerance (10−6) and apply the branching rules to the new solution. This strategy has

been used for other VRP variants and leads to reductions in the total number of nodes in the

BPC tree, as well as reducing the time spent at each node (Munari and Gondzio 2013, Munari and

Morabito 2016, Alvarez and Munari 2017).

4.4. MIP heuristic

To quickly identify integer feasible solutions of the problem, we rely on a mixed-integer program-

ming (MIP) heuristic based on the columns of the MP. At the end of each node, right before

branching, we impose integrality to all variables in the RMP of the last CG iteration. Then, to

solve the resulting MIP problem, we run a general-purpose optimization software up to a given

time limit (set to 30 seconds in our experiments). Despite its simplicity, this heuristic works well

on VRPs, as it typically identifies feasible solutions much earlier than approaches relying only on

the BPC tree (Alvarez and Munari 2017, Munari and Gondzio 2013, Joncour et al. 2010).

5. Computational results

In this section, we report on the computational performance of the proposed RVRPTW approaches.

Our specific goals are threefold. The first goal is studying the behavior of the novel compact two-

index formulation based on recursive equations via a general-purpose optimization software. The

second goal relies on evaluating the efficiency of the BPC method in providing optimal or good-

quality solutions within a plausible running time. The last goal is investigating the quality of the

robust solutions in terms of feasibility and price of robustness. We summarize the results for each

goal in the following subsections, while detailed results can be found in the supplementary material

available at http://www.dep.ufscar.br/docentes/munari/rvrptw.

We use benchmark instances proposed by Solomon (1987). These instances include 100 customers

and are classified according to the spatial distribution of customers: classes C1 and C2 follow a

clustered distribution, R1 and R2 follow a random distribution, and RC1 and RC2 follow a mixture

of both distributions. In addition, instances in classes C2, R2 and RC2 have wider time windows

and larger vehicle capacities than the other classes, so they are more challenging for BPC methods.

The demands and travel times of the instances were used as nominal values of the corresponding

parameters in the definition of the uncertainty sets (1) and (2).
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To incorporate uncertainty into Solomon’s instances, we defined q̂i = trunc(αq × qi) and t̂ij =

0.1× trunc(αt× 10× tij), in which αq and αt belong to {0.1,0.25,0.5}. We truncate the resulting

deviations in order to avoid numerical errors. Travel times are truncated after the first decimal place

to avoid perturbations equal to zero and to follow a conventional practice in the VRPTW literature.

Preliminary experiments suggest selecting both budgets of uncertainty as Γq(Γt) = 0,1,5,10.

The two-index formulation was implemented using the Concert library of the IBM CPLEX

Optimization Studio 12.7 and solved by the standard optimization solver of this package. The

BPC method was coded in C++ using the interior point BPC framework proposed by Munari

and Gondzio (2013), which relies on the interior point code HOPDM for solving the RMPs. The

optimization solver of IBM CPLEX 12.7 was also used within the BPC method but only for the

MIP heuristic. All the experiments were run on a Linux PC with an Intel Xeon E5-2680 2.7 GHz

processor and 192 GB of memory.

5.1. Computational performance of the robust two-index formulation

This section presents the results of the proposed compact robust two-index vehicle flow formulation

using the general-purpose optimization software IBM CPLEX version 12.7. We have run the model

using combinations of values for the parameters Γq and Γt in the set {0,1,5,10} and αq and

αt in the set {0,0.1,0.25,0.5}. Hence, each instance was solved 28 times: using Γq = Γt = 0 and

αq = αt = 0 (deterministic case); using Γq = 1,5,10 and Γt = 0 for each αq = 0.1,0.25,0.5 and αt = 0;

using Γq = 0 and Γt = 1,5,10 for each αq = 0 αt = 0.1,0.25,0.5; and using Γq = Γt = 1,5,10 for

each αq = αt = 0.1,0.25,0.5. A maximum running time limit of 3,600 seconds was imposed in the

experiments.

In the first experiment with the compact formulation, we consider only the 25 first customers

of the instances (experiments with 50 and 100 customers are described later in this section). This

allows the optimization software to solve most of these instances to optimality and hence leads to

more interesting analyses. Additionally, previous studies on compact models for the robust VRP

and related variants have used instances of a similar scale. Table 1 shows the average results

grouped according to the different values of the budgets of uncertainty Γq and Γt for instances

in classes C1, R1 and RC1 with 25 customers. For each pair of values for Γq and Γt (referred as

a group), we present the average results over all instances solved using the corresponding choice

of values for these parameters, as specified in the first two columns of the table. Then, for each

instance class (C1, R1 and RC1), the table shows the average objective value of the solutions (Obj ),

the average relative gap (Gap) in percentage, the average elapsed time (Time), the total number

of instances in the group (Ins), the total number of instances solved to optimality (Opt) within

the time limit of 3,600 seconds, and the number of infeasible instances (Inf ). The last row of each

table gives the average (arithmetic mean) over the results of all groups. The gap of a solution was

taken from the output given by CPLEX. When all instances are solved to optimality in a group,

we use the symbol ’−’ to express that the gap is zero. The number of instances solved in groups
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with Γq > 0 and/or Γt > 0 is three times the number of instances solved in the deterministic group

(Γq = Γt = 0) due to the three different positive deviation values 0.1, 0.25 and 0.5. Table 2 shows

the results using instances in classes C2, R2 and RC2, and its columns follow the same structure.

In Tables 1 and 2, we observe that as the budgets of uncertainty and the deviations increase,

the objective values of the solutions also increase. This is expected, as these solutions are now

immunized against the uncertainties, according to these parameters. The increase in the objective

values is justified if the risk of the solution becoming infeasible is reduced. An extensive analysis of

this behavior is carried out in Section 5.3. Notice that the running time for solving the robust model

can be significantly larger than the time required for solving the deterministic model, especially for

larger budgets and deviations, which illustrates the difficulty in solving RO models in comparison

to their deterministic counterparts. Nevertheless, the results presented in the tables indicate the

effectiveness of the proposed model for instances with 25 customers.

Table 1 Average results of the robust two-index model with different values of budgets of uncertainty using

instances of classes C1, R1 and RC1 with 25 customers.

C1 R1 RC1
Γq Γt Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf
0 0 190.59 − 0.89 9 9 0 463.37 − 64.17 12 12 0 350.24 − 4.75 8 8 0
1 0 202.68 − 2.70 27 27 0 463.37 − 94.67 36 36 0 360.14 0.014 619.17 24 20 0
5 0 238.50 0.011 551.00 27 24 0 463.37 − 200.61 36 36 0 432.36 0.121 2,457.13 24 9 0
10 0 239.11 0.020 659.30 27 23 0 463.37 0.003 435.06 36 33 0 438.27 0.132 2,687.21 24 8 0
0 1 192.34 − 0.93 27 27 0 470.33 − 66.81 36 32 4 356.87 − 10.13 24 23 1
0 5 195.83 − 2.63 27 27 0 478.16 0.002 317.28 36 31 4 382.91 0.023 526.65 24 20 1
0 10 195.83 − 5.89 27 27 0 478.49 0.005 422.63 36 30 4 392.57 0.037 744.22 24 19 1
1 1 202.86 − 3.93 27 27 0 470.33 − 139.97 36 32 4 368.53 0.014 583.65 24 20 1
5 5 238.93 0.013 598.52 27 23 0 478.19 0.006 395.44 36 30 4 444.25 0.136 2,492.00 24 8 1
10 10 239.69 0.018 716.67 27 23 0 478.48 0.011 652.59 36 28 4 446.52 0.150 2,650.48 24 8 1
Average 213.64 0.006 254.24 470.75 0.003 278.92 397.26 0.063 1,277.54

Table 2 Average results of the robust two-index model with different values of budgets of uncertainty using

instances in classes C2, R2 and RC2 with 25 customers.

C2 R2 RC2
Γq Γt Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf
0 0 214.45 − 3.50 8 8 0 382.15 − 17.36 11 11 0 319.28 0.110 1,464.25 8 5 0
1 0 214.45 − 7.46 24 24 0 382.15 − 27.82 33 33 0 319.28 0.116 1,700.25 24 15 0
5 0 214.45 − 22.29 24 24 0 382.15 − 72.91 33 33 0 319.28 0.128 1,838.00 24 12 0
10 0 214.45 − 28.75 24 24 0 382.15 − 147.06 33 33 0 319.28 0.141 1,859.96 24 12 0
0 1 214.51 − 9.04 24 24 0 383.86 − 26.42 33 33 0 319.60 0.115 1,595.58 24 15 0
0 5 214.57 − 17.83 24 24 0 384.80 − 77.82 33 33 0 319.78 0.129 1,823.13 24 12 0
0 10 214.57 − 50.38 24 24 0 384.89 − 160.52 33 33 0 319.90 0.141 1,835.96 24 12 0
1 1 214.51 − 10.88 24 24 0 383.86 − 39.03 33 33 0 319.58 0.119 1,736.96 24 14 0
5 5 214.57 − 45.00 24 24 0 384.80 − 176.00 33 33 0 319.77 0.140 1,856.67 24 12 0
10 10 214.57 − 95.83 24 24 0 384.89 0.001 430.33 33 32 0 320.08 0.152 1,900.54 24 12 0
Average 214.51 − 29.10 383.57 0.000 117.53 319.58 0.129 1,761.13

Considering all the sets, 86.86% of the instances were solved to optimality or proven to be infea-

sible using the proposed model. The average gap in classes with instances not solved to optimality

was smaller than 0.2%. For instances RC1 in the group with Γq = 10 and Γt = 10, for example, even

when only 8 of 24 instances were solved to optimality, the average gap in the remaining instances

was 0.15%. The best performance of the model is observed on instances with clustered customers,
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as 94.04% and 100% of the instances in C1 and C2 were solved to optimality with average running

times equal to 272.34 and 30.92 seconds, respectively. On the other hand, instances with mixed geo-

graphic distribution of customers were the most challenging for the model, as 63.83% and 54.02%

of the instances in RC1 and RC2 were solved to optimality with average running times of 1,373.97

and 1,782.33 seconds, respectively.

The instances of all classes, except RC2, were solved to optimality in the deterministic case

(Γq = Γt = 0). As the values of the budgets of uncertainty increase, the number of instances solved

to optimality decreases, and the average elapsed time increases. Similar behavior was also observed

when increasing the values of the deviations, although this finding is not evidenced in Tables 1

and 2 (see the supplementary material for further details). Therefore, as expected, the difficulty

in solving the model increases as the budgets of uncertainty and/or deviations also increase. This

behavior was observed even when the increase in these parameters does not change the deterministic

solution. For example, for class R1, the objective values and solutions in the group with Γq = Γt = 0

are the same as those in the group with Γq = 10 and Γt = 0, although in the latter case, we observe

a higher average elapsed time, and not all instances were solved to optimality. Infeasible instances

arise only in classes R1 and RC1 and for groups with the deviation value αt = 0.5. Thus, when

the travel time increases by 50%, no robust solution can be found for some instances in classes R1

and RC1, whereas all instances of other classes remain robust feasible. We observe more infeasible

instances in class R1 than in class RC1, as they are more sensitive to increases in the travel time.

Specifically, the infeasible instances were R101, R102, R103, R104 and RC105.

The average results for instances with 25, 50 and 100 customers are summarized in Table 3.

Regarding the instances with 50 and 100 customers, CPLEX was able to find feasible solutions

for most of them using the proposed model within the time limit of 3,600 seconds. Notice that

34.76% (21.36%) of the instances with 50 (100) customers were solved to optimality. For instances

not solved to optimality within the time limit, the average gap in classes C1, R1 and RC1 was

5.38% (11.55%), 12.73% (27.03%), and 24.58% (33.66%), respectively, for instances with 50 (100)

customers. The average gap in classes C2, R2 and RC2 was 0.75% (1.73%), 8.09% (20.27%), and

26.94% (24.95%), respectively, for instances with 50 (100) customers. Evidently, instances in group

RC were more challenging, as only 13.39% (8.93%) of the instances with 50 (100) customers were

solved to optimality. Similar to the results with 25 customers, instances with larger values of the

budgets of uncertainty and deviations were more challenging.

Table 3 Average results of the robust two-index model for instances with 25, 50 and 100 customers.

25 customers 50 customers 100 customers
Class Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf
C1 215.28 0.01 272.34 252 237 0 415.67 5.38 1,207.57 252 175 0 976.72 11.55 2,619.04 252 73 0
R1 470.93 0.01 291.32 336 300 24 780.84 12.73 2,917.41 336 63 42 1,294.60 27.03 3,273.87 336 30 42

RC1 400.68 0.07 1,373.97 224 143 6 849.60 24.58 3,147.61 224 28 6 1,555.78 33.66 3,335.55 224 19 12
C2 214.51 − 30.92 224 224 0 360.60 0.73 804.88 224 186 0 603.98 1.75 1,284.29 224 164 0
R2 383.67 0.00 124.68 308 307 0 623.92 8.09 3,017.97 308 61 0 962.54 20.27 3,319.03 308 28 0

RC2 319.60 0.13 1,782.33 224 121 0 578.66 26.94 3,131.37 224 32 0 1,099.05 24.95 3,361.90 224 21 0
Avg. 334.11 0.03 645.93 261 222 5 601.55 13.08 2,371.14 261 91 8 1,082.11 19.87 2,865.61 261 56 9
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Figures 2(a) and 2(b) show the average elapsed time and average gap of instances with 25, 50

and 100 customers for different values of the budgets of uncertainty (Γq = Γt = Γ) and deviations

(αq = αt = α). Notice that the elapsed times and gaps increase when the budgets of uncertainty and

deviation increase. Additionally, as expected, the instances are more challenging when the number

of customers grows. Detailed results using the instances with 50 and 100 costumers are reported

in the supplementary material.

(a) Average elapsed time for diferent levels of Γ(Γq = Γt = Γ) and α(αq = αt = α).

(b) Average gap for diferent levels of Γ(Γq = Γt = Γ) and α(αq = αt = α).

Figure 2 Average elapsed time and gap for different values of the budgets of uncertainty and deviations.

To verify the performance of the proposed model in relation to those of other RO (compact)

formulations reported in the literature, we extended the robust layered formulation of Agra et al.

(2012) to include demand uncertainty by adding a robust capacity constraint and dualizing it

according to the standard dualization scheme used in the RO literature. This formulation is based

on a layered representation of the graph, and as suggested in Agra et al. (2012), it is important to

recur to a preprocessing strategy to reduce the number of layers needed to represent the problem.

At first, we attempted to perform computational experiments without applying this preprocessing

strategy (i.e., setting the number of layers equal to the number of nodes), but it resulted in a

very poor performance of the model. For example, when Γt > 0, the layered formulation without

preprocessing was not able to generate feasible solutions for any instance in class R1 with 25

customers within a time limit of 3,600 seconds. For the same instances, when Γt = 0 was used, the

gap was 65.68% on average. For classes C2, R2 and RC2, the reduction in layers was not effective,

as these instances have wider time windows and larger vehicle capacities than the other classes,

which weakens the layer reduction.

Table 4 shows the average results of the robust layered formulation (with layer reduction) for

instances in classes C1, R1 and RC1 with 25 customers. The column “Ratio” shows the proportion
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of the average objective value of this formulation with respect to our robust two-index formula-

tion. The results reveal that our model is superior to the layered formulation. Indeed, the layered

formulation was not able to prove the optimality of any of the instances, while the two-index for-

mulation proved optimality for 86.86% of them. Moreover, within the time limit of 3,600 seconds,

the two-index formulation found feasible solutions or proved infeasibility for all the instances, while

the robust layered formulation found feasible solutions or proved infeasibility for 59.48% of them.

The analysis of the objective values and ratios demonstrates that considering instances in classes

C1, R1 and RC1, the robust counterpart of the layered formulation leads to upper bounds approx-

imately 2.71, 1.56 and 2.39 times worse than those obtained with our robust model, respectively.

Even the best performance of the robust layered model in class R1 for Γt = 5 yields an objective

value 1.29 times worse than the one obtained by our model.

Table 4 Average results of the robust layered formulation with different values of budgets of uncertainty using

instances in classes C1, R1 and RC1 with 25 customers.

C1 R1 RC1
Γq Γt Obj Gap Time Ins Opt Ratio1 Obj Gap Time Ins Opt Ratio1 Obj Gap Time Ins Opt Ratio1

0 0 352.99 41.10 3,600 9 0 1.85 771.90 51.74 3,600 12 0 1.67 702.46 48.43 3,600 8 0 2.01
1 0 347.96 46.83 3,600 27 0 1.72 766.40 51.43 3,600 36 0 1.65 643.94 58.89 3,600 24 0 1.79
5 0 420.93 60.05 3,600 27 0 1.76 774.25 52.10 3,600 36 0 1.67 638.94 60.09 3,600 24 0 1.48
10 0 462.15 61.40 3,600 27 0 1.93 755.66 51.22 3,600 36 0 1.63 629.29 59.29 3,600 24 0 1.44
0 1 815.81 75.12 3,600 27 0 4.24 732.33 42.56 3,600 36 0 1.56 812.34 56.91 3,600 24 0 2.28
0 5 NA NA 3,600 27 0 NA 617.54 37.14 3,600 36 0 1.29 638.11 61.54 3,600 24 0 1.67
0 10 NA NA 3,600 27 0 NA 668.94 40.50 3,600 36 0 1.40 616.10 52.22 3,600 24 0 1.57
1 1 969.49 84.01 3,600 27 0 4.78 765.69 44.18 3,600 36 0 1.63 1,829.47 86.65 3,600 24 0 4.96
5 5 NA NA 3,600 27 0 NA 743.64 41.62 3,600 36 0 1.56 1,502.72 79.10 3,600 24 0 3.38
10 10 NA NA 3,600 27 0 NA 723.81 41.40 3,600 36 0 1.51 1,501.24 77.89 3,600 24 0 3.36
Average 561.56 61.42 3,600 2.71 732.02 45.39 3,600 1.56 951.46 64.10 3,600 2.39

NA: Value is not available.
1 Ratio =

Obj layered
Obj two-index

.

We are not aware of any other RO compact model that leads to a reasonable performance in

practice for solving instances with 25 or more customers using a general-purpose optimization

software. In fact, as mentioned in previous papers and confirmed by our results, the other compact

models for the RVRPTW and related variants are not effective for instances with more than

20 customers (Agra et al. 2012, Lee et al. 2012). For example, for the three-index vehicle flow

formulation proposed by Lee et al. (2012) and applied to the VRP with deadlines, a general-

purpose optimization software was reported to fail to prove optimality for an instance with 10

customers and a budget of uncertainty equal to 1 after 10 hours of computations. They obtained

an out-of-memory error from the software in an experiment with the budget of uncertainty equal

to 2 due to the huge number of constraints in their model. The compact formulation proposed by

Agra et al. (2012) to the heterogeneous fleet RVRPTW with travel time uncertainty was suitable

for solving instances with up to 20 nodes only. For larger instances, they recommend alternative

RO techniques.
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5.2. Computational performance of the branch-price-and-cut method

This section presents the results of the proposed BPC method using the RVRPTW instances with

100 customers and a time limit of 3,600 seconds. All the instances with 25 customers used in the

previous section were solved to optimality or proven to be infeasible by the BPC within a few

seconds. Similarly, 91.13% of the instances with 50 customers were solved to optimality or proven

to be infeasible by the BPC. Detailed results obtained using the BPC to solve instances with 25

and 50 costumers are reported in the supplementary material, and thus, we omit them from this

section. We solved the instances using the same combinations of values described in Section 5.1 for

the parameters Γq, Γt, αq and αt. Following the same structure of the previous tables, Tables 5 and

6 show the results grouped by the values chosen for the budgets of uncertainty Γq and Γt. The gap

of an instance not solved to optimality within 3,600 seconds is computed as 100*(UB - LB)/UB,

where UB is the objective value of the solution obtained by the BPC and LB is the optimal value

of the linear relaxation at the root node.

Table 5 Average results of the BPC method with different values of budgets of uncertainty using instances in

classes C1, R1 and RC1 with 100 customers.

C1 R1 RC1
Γq Γt Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf
0 0 826.70 − 21.56 9 9 0 1,173.61 0.19 519.75 12 11 0 1,334.49 0.34 739.50 8 7 0
1 0 924.02 2.98 1,517.81 27 18 0 1,174.70 0.40 912.39 36 30 0 1,347.63 1.07 1,251.46 24 18 0
5 0 1,043.62 6.49 2,944.78 27 9 0 1,181.48 0.68 1,239.03 36 27 0 1,388.11 1.92 1,791.79 24 14 0
10 0 1,057.23 5.69 2,803.70 27 10 0 1,187.21 0.96 1,371.17 36 24 0 1,401.77 1.95 1,929.21 24 13 0
0 1 847.99 0.25 682.44 27 24 0 1,154.24 0.44 900.33 36 24 7 1,399.36 0.88 1,024.04 24 17 2
0 5 863.05 0.22 696.59 27 24 0 1,195.23 0.59 1,083.42 36 21 7 1,472.40 1.03 1,059.21 24 18 2
0 10 863.53 0.28 660.93 27 24 0 1,203.29 0.49 1,251.53 36 22 7 1,481.05 0.91 1,107.58 24 17 2
1 1 927.19 2.92 1,605.93 27 18 0 1,154.42 0.70 1,061.44 36 20 7 1,411.58 1.52 1,235.67 24 15 2
5 5 1,046.98 7.05 3,070.30 27 7 0 1,197.28 0.52 1,277.47 36 22 7 1,492.56 1.81 1,559.38 24 13 2
10 10 1,060.66 5.86 2,867.89 27 9 0 1,207.75 1.08 1,457.61 36 17 7 1,506.19 1.60 1,598.50 24 14 2
Average 946.10 3.17 1,687.19 1,182.92 0.61 1,107.41 1,423.51 1.30 1,329.63

Table 6 Average results of the BPC method with different values of budgets of uncertainty using instances in

classes C2, R2, RC2 with 100 customers.

C2 R2 RC2
Γq Γt Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf Obj Gap Time Ins Opt Inf
0 0 587.38 0.00 570.25 8 7 0 872.56 0.83 2,732.82 11 3 0 1,000.68 0.27 1,537.88 8 5 0
1 0 587.38 0.00 600.63 24 21 0 885.46 0.54 2,635.82 33 12 0 1,001.11 0.34 1,540.88 24 15 0
5 0 594.45 0.56 1,312.17 24 17 0 875.58 0.65 2,735.15 33 11 0 1,001.07 0.28 1,559.67 24 15 0
10 0 619.95 2.94 2,063.42 24 12 0 885.13 0.64 2,732.06 33 11 0 1,001.65 0.27 1,580.67 24 15 0
0 1 593.43 0.22 1,261.17 24 18 0 886.10 1.47 2,523.00 33 13 0 1,006.06 0.27 1,735.67 24 14 0
0 5 599.81 0.28 1,714.29 24 17 0 893.60 1.26 2,618.21 33 11 0 1,010.81 0.20 1,677.38 24 15 0
0 10 599.81 0.38 1,895.96 24 16 0 895.52 1.44 2,610.15 33 13 0 1,012.25 0.34 1,707.29 24 14 0
1 1 593.43 0.31 1,315.79 24 17 0 893.50 1.41 2,516.15 33 14 0 1,006.04 0.32 1,796.54 24 13 0
5 5 606.33 1.18 2,439.96 24 12 0 897.33 1.35 2,694.42 33 13 0 1,010.89 0.26 1,722.83 24 14 0
10 10 632.26 4.35 3,066.33 24 6 0 897.15 0.93 2,779.24 33 13 0 1,012.93 0.32 1,877.33 24 13 0
Average 601.42 1.02 1,624.00 888.19 1.05 2,657.70 1,006.35 0.29 1,673.61

The proposed BPC method solved 58% of the instances to optimality. The highest average gap

was 3.17% for instances in class C1, while the smallest one was found for instances in class RC2

with 0.29%. However, the smallest percentage of optimal solutions was achieved for class R2, in

which only 37% of the instances were solved to optimality. Thus, for the BPC, the most challenging
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instances were those in class R2. On the other hand, the method showed good performance on

instances in class R1, as it proved the optimality for 65% of these instances with an average elapsed

time of 1,062 seconds. Although the geographic distribution of customers is random in both classes,

the instances in R2 have wider time windows and larger vehicle capacities, and hence, they become

more challenging for the BPC method, as expected.

Instances with clustered customers (C1 and C2) are more sensitive to uncertainties in the cus-

tomer demands than in the travel times, as indicated by the differences between the groups with

either Γq = 0 or Γt = 0 in objective values, running times and number of instances solved to opti-

mality. For other classes, differences in the impact of uncertainties in the customer demands or in

the travel times are not so significant. We observe instances that became infeasible due to deviation

values αt = 0.25 and αt = 0.5 only in classes R1 and RC1. This means that no robust solution

can be found when the travel times increase by 25% and 50% for some instances in these classes.

The infeasible instances were R101, R102, R103, R104, and RC105, as in the experiments with 25

customers.

Similar to the results presented in the previous section for the proposed compact model, the run-

ning times of the BPC method increase significantly for some values of the budgets of uncertainty

and the deviations in comparison to those of the deterministic formulation. However, an interesting

difference is observed: as the values of the budgets of uncertainty or the deviations increase, the

instances do not necessarily become more challenging. For example, we observe similar average

running times for instances in class C1 when Γq = 0 and Γt varies (see Table 5). The BPC method

was faster and solved more instances to optimality for Γq = Γt = 10 than for Γq = Γt = 5. This

behavior can be explained by a trade-off in the labeling algorithm for the robust RCESPP. On the

one hand, for larger budgets of uncertainty, the amount of information in a label increases, and

more comparisons are needed to check the dominance rule in the algorithm. On the other hand,

larger budgets of uncertainty and deviations lead to fewer extensions, as these extensions are more

likely to result in (robust) infeasible paths than in the deterministic case.

5.3. Robustness analysis

We designed a robustness analysis based on a Monte Carlo simulation to evaluate the quality of

solutions resulting from our RO approaches. The simulation was performed by generating 10,000

random uniform realizations for demands and travel times in the half-interval [qi, qi + q̂i] for all

i ∈ C and [tij, tij + t̂ij] for all (i, j) ∈ E , respectively. Since the goal of the RVRPTW is to find

solutions that are immunized against uncertainty, one might expect that the corresponding routes

are more likely to be feasible than those from traditional deterministic approaches when demands

and/or travel times increase, which is what commonly occurs in real-life situations. Moreover,

the extra cost incurred by such a robust solution should be compensated by the gain in terms of

robustness/feasibility. To analyze the aforementioned trade-off, we pay particular attention to the

following performance measures:
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• The price of robustness (PoR), which is defined as z(xα,Γ)−z
z

· 100%, in which xα,Γ is the

(sub)optimal solution for a given pair of deviations (αq, αt) and budgets of uncertainty (Γq,Γt);

z(xα,Γ) is its corresponding objective value; and z is the (sub)optimal value of the equivalent

deterministic (nominal) problem. All these solutions were provided by the BPC method within a

running time of 3,600 seconds (thus, the solutions obtained for some of the 100 instances may not

be optimal).

• The probability of constraint violation (Risk), which is empirically evaluated as the number of

times a given optimal solution xα,Γ is infeasible out of the 10,000 generated random realizations

given by the Monte Carlo simulation. An estimate of this probability is obtained via the relative

frequency of infeasible solutions. The simulation procedure is summarized as follows:

1. Input. Solution xα,Γ.

2. For ω= 1 to 10,000, do:

— q̃ωi ∼U [qi, qi + trunc(αq × qi)], ∀i∈ C;

— t̃ωij ∼U [tij, tij + 0.1× trunc(αt× 10× stij)], ∀(i, j)∈ E ;

— Evaluate the feasibility of xα,Γ using q̃ω and t̃ωij according to conditions (i)−(v) defined

in Section 2.

3. Output. The empirical probability function for the constraint violation of a given solution

P[X(αq, αt,Γq,Γt)].

The robustness analysis takes into account the instances with 25 and 100 customers in classes

C1, R1 and RC1. We have run experiments using all integer values ranging from 0 to 10 for both

budgets of uncertainty and each value in the set {0,0.1,0.25,0.5} for both deviations. The results

for the instances with 25 and 100 customers are summarized in Tables 7 and 8, respectively. For

each class of instances and combination of budget of uncertainty and deviation, the tables show

the average price of robustness and the average probability of constraints violation, both of which

are expressed in percentage scale, over the total number of instances. Table 7 presents only the

results for Γq and Γt up to 6 because the probability of constraint violation is equal to 0 from

this value onwards in all instances. For the same reason, Table 8 presents only the results for Γq

and Γt up to 7. Average values equal to zero are represented in the tables using the symbol ’−’.

Only instances that are feasible for all the values of the budget of uncertainty and deviation were

considered in the analysis. Thus, instances R101, R102, R103, R104, and RC105 were discarded.

For the results in the columns corresponding to α% deviation, with α = 10,25,50, the BPC

method and the Monte Carlo simulation were run using αq and/or αt equal to 0.01× α. For the

BPC method, if Γq > 0 and Γt > 0, then αq = αt = α; otherwise, Γq = 0 (Γt = 0) implies αq = 0

(αt = 0). This is different from the Monte Carlo simulation, as we also need to verify the risk of the

deterministic solutions regarding different deviation values. Hence, in the first set of results, with

Γq = 0,1, . . . ,6 and Γt = 0, the risks were obtained from a Monte Carlo simulation using αq = α and

αt = 0; in the second set of results, with Γq = 0 and Γt = 0,1, . . . ,6, the risks were obtained from
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Table 7 Price of robustness (PoR) and probability of constraint violation (Risk) in percentage for instances

with 25 customers.
10% deviation 25% deviation 50% deviation

C1 R1 RC1 C1 R1 RC1 C1 R1 RC1
Γq Γt PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk
0 0 − 11.30 − − − − − 95.38 − − − 82.91 0.00 99.98 − − − 97.21
1 0 0.20 0.30 − − − − 0.20 94.91 − − − 82.91 18.63 99.21 − − 9.94 97.05
2 0 0.20 0.30 − − − − 18.63 26.80 − − 9.94 42.98 23.22 40.13 − − 32.22 11.16
3 0 18.62 − − − − − 19.80 8.06 − − 21.66 0.05 24.60 29.39 − − 32.45 1.44
4 0 18.63 − − − 9.94 − 22.90 0.01 − − 21.81 0.03 33.01 0.07 − − 33.08 0.36
5 0 18.63 − − − 9.94 − 23.22 − − − 32.22 − 33.57 0.20 − − 33.65 −
6 0 18.63 − − − 9.94 − 23.22 − − − 32.22 − 34.41 − − − 39.58 −
0 0 − − − 30.50 − 21.98 − − − 71.90 − 73.74 0.00 4.53 − 97.98 − 98.08
0 1 − − 0.95 12.15 0.23 7.82 − − 2.61 25.45 0.74 30.45 2.76 0.10 5.40 60.60 7.81 48.97
0 2 − − 1.34 11.66 0.47 0.07 − − 3.11 19.98 3.02 5.31 3.34 0.10 7.51 7.19 17.09 16.61
0 3 − − 1.55 − 0.47 0.07 − − 3.61 0.03 5.31 0.65 3.34 0.10 9.21 1.87 20.25 3.82
0 4 − − 1.55 − 0.62 − − − 3.88 − 5.40 0.09 8.24 − 9.77 1.84 21.32 0.38
0 5 − − 1.55 − 0.62 − − − 3.98 − 8.59 − 8.24 − 10.53 0.06 24.24 0.03
0 6 − − 1.55 − 0.62 − − − 3.98 − 8.59 − 8.24 − 10.78 − 29.70 −
0 0 − 11.32 − 30.36 − 21.98 − 95.40 − 71.90 − 99.14 0.00 99.98 − 98.01 − 100.00
1 1 0.20 0.25 0.95 12.39 0.23 7.85 0.20 94.79 2.61 25.36 0.74 84.27 18.92 97.71 5.40 60.47 19.03 85.50
2 2 0.20 0.25 1.34 11.68 0.47 0.10 18.92 22.05 3.11 19.76 15.16 27.65 24.01 38.89 7.51 7.29 38.80 19.77
3 3 18.71 − 1.55 − 0.47 0.10 20.40 6.59 3.61 0.03 24.64 0.05 25.77 26.66 9.21 1.74 40.36 2.90
4 4 18.75 − 1.55 − 10.75 − 23.05 0.02 3.88 − 24.71 0.04 33.30 0.08 9.77 1.71 41.54 0.01
5 5 18.75 − 1.55 − 11.69 − 23.43 − 3.98 − 34.90 0.01 33.91 0.14 10.53 0.07 42.25 −
6 6 18.75 − 1.55 − 11.69 − 23.43 − 3.98 − 34.92 − 34.22 − 10.78 − 42.78 −

Table 8 Price of robustness (PoR) and probability of constraint violation (Risk) in percentage for instances

with 100 customers.
10% deviation 25% deviation 50% deviation

C1 R1 RC1 C1 R1 RC1 C1 R1 RC1
Γq Γt PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk PoR Risk
0 0 − 100.00 − 11.98 − 85.62 − 100.00 − 49.08 − 87.98 − 100.00 − 88.38 − 99.94
1 0 8.11 0.39 0.03 − 0.78 9.92 8.70 99.95 0.11 35.02 0.94 87.62 18.71 100.00 0.20 80.80 1.72 99.84
2 0 8.11 0.39 0.03 − 0.86 1.85 18.72 67.86 0.12 17.53 1.66 43.07 22.56 99.67 0.53 60.08 3.33 84.27
3 0 12.85 − 0.12 − 0.92 − 19.80 19.28 0.18 6.53 1.99 16.09 26.08 81.27 0.66 21.27 4.67 36.73
4 0 16.71 − 0.11 − 1.36 − 20.90 0.07 0.49 0.65 2.43 0.30 29.65 17.79 1.43 1.77 5.59 4.93
5 0 17.84 − 0.12 − 1.54 − 21.92 0.01 0.73 0.03 3.03 0.01 38.95 7.87 1.78 0.12 8.85 0.19
6 0 18.06 − 0.29 − 1.69 − 24.35 − 0.71 − 3.32 − 39.74 0.07 2.56 0.01 10.04 0.01
7 0 18.03 − 0.11 − 1.71 − 24.37 − 0.74 − 3.87 − 39.92 − 3.32 − 10.34 −
0 0 − 99.82 − 100.00 − 99.97 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00
0 1 2.12 − 0.76 89.23 1.26 83.97 2.21 3.69 2.33 96.87 4.65 97.89 3.39 9.66 4.61 100.00 13.37 97.63
0 2 2.21 − 1.50 45.80 2.44 32.59 2.19 0.10 3.53 81.40 6.77 55.34 5.88 1.38 8.89 87.64 19.80 69.69
0 3 2.10 − 1.77 23.55 3.02 8.24 2.28 0.12 4.59 32.24 8.09 19.26 6.04 0.66 11.13 51.66 22.29 19.36
0 4 2.03 − 1.97 5.76 3.12 0.24 2.22 − 5.27 12.11 8.57 2.80 7.82 − 12.13 19.54 23.56 1.49
0 5 2.21 − 2.15 0.02 3.10 − 2.35 − 5.47 2.44 9.01 0.04 8.63 − 12.68 0.81 24.38 0.06
0 6 2.21 − 2.19 0.01 3.32 − 2.35 − 5.68 0.26 9.16 − 8.63 − 13.54 0.03 24.89 −
0 7 2.21 − 2.22 − 3.41 − 2.35 − 5.88 0.00 9.37 − 8.80 − 14.00 − 25.05 −
0 0 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00 − 100.00
1 1 8.45 0.83 0.78 94.82 2.15 89.43 9.04 99.96 2.26 97.11 5.23 98.42 19.22 100.00 4.71 100.00 14.76 99.71
2 2 8.45 0.86 1.53 43.42 3.65 35.98 19.20 60.57 3.68 82.55 8.07 61.27 25.29 99.67 8.98 89.15 20.87 72.12
3 3 13.54 − 1.79 21.52 3.94 4.09 20.58 18.48 4.94 29.00 9.59 10.13 28.29 76.00 11.38 54.79 23.24 33.13
4 4 17.27 − 1.97 5.68 4.32 0.12 21.57 0.08 5.29 7.57 10.70 4.41 32.11 6.98 12.42 10.34 24.77 2.72
5 5 18.41 − 2.19 0.03 4.39 0.02 22.65 0.01 5.53 2.14 11.09 0.02 39.12 0.51 13.27 2.19 25.82 0.15
6 6 18.26 − 2.24 − 4.85 − 25.18 − 5.85 0.15 11.06 − 39.81 0.06 14.08 0.01 26.84 0.03
7 7 18.53 − 2.29 − 4.59 − 24.56 − 6.26 − 11.50 − 40.38 − 14.48 − 27.53 −

Note. The cases in which PoR (Risk) does not present a monotonic increase (decrease) are justified by non-optimal
solutions.

a simulation using αq = 0 and αt = α; and finally, the risks for Γq = Γt = 0,1, . . . ,6 were obtained

from a simulation using αq = αt = α.

Unsurprisingly, the deterministic approach fails in protecting against uncertainty for all classes

of instances and deviations. The average risk metric indeed reveals that under uncertainty, most

routes will be infeasible if demands/travel times increase. Even though the average risk is at most

30.5% for the deterministic solutions with 25 customers and deviations of 10%, it significantly

increases for larger deviations, reaching at least 71.90% in RC1 instances. This behavior is more
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pronounced when 100 customers are considered in the analysis. In such cases, only the instances

in class R1 present a relatively low probability of constraint violation, 0.1198, when αq/αt = 0.1.

A careful analysis of the non-robust solutions from instances in class C1 also reveals that they

are even less likely to hedge against demand uncertainty than travel time uncertainty. When only

travel time uncertainty is considered, for example, instances in class C1 with 25 customers exhibit

robustness for 10% and 25% deviations. The opposite situation is observed for instances in R1 and

RC1, which are more affected by travel time uncertainty. In particular, the deterministic solutions

of instances in R1 with 25 customers are robust for all demand deviations considering no travel

time uncertainty: in these cases, risk and PoR are zero for all budgets. The higher impact of either

demand or travel time uncertainty is analogous for the robust solutions, but as the deviations

increase, both uncertainty sources become equally important.

It appears that the robust solutions strike a good trade-off between decreasing the probability of

constraint violation and not being too conservative. This main finding is illustrated by the plots of

risk versus PoR depicted in Figures 3 and 4. Each ordered pair highlighted in the plots (triangles

for C1, squares for R1 and circles for RC1) is associated with a different budget of uncertainty

value. The values of deviation are indicated in the figures as “Deviation: [αq, αt]”. As the trade-off

curves become more convex and nearer to the vertical axis, the robust solutions improve. In this

sense, we see only a few examples in which the curves exhibit a poor trade-off, and most of them are

related to instances in C1. In particular, we can see in Figures 3(b) and 4(f) quasi-horizontal dashed

lines, indeed showing that risk is not improved but PoR substantially increases. This behavior

is especially true for less conservative budgets. When robustness is further enforced, risk sharply

decreases accordingly, e.g., an almost zero-risk robust solution with a PoR equal to 39.81% (C1

instance with 100 customers and a 50% deviation).

On the other hand, we found many cases where the solutions are much less risky at the expense

of a negligible deterioration in average costs. For example, we have to pay a 0.20% (0.62%) higher

cost to reduce the risk from 11.30% (21.98%) to 0.30% (0.00%) for instances in C1 (RC1) with

25 customers and a 10% deviation. In some of those cases, mitigating the risk completely is not

worthwhile because PoR may increase dramatically as more robustness is enforced; see that PoR

in C1 varies from 0.20% to 18.62% to eliminate the corresponding risk. Remarkably, instances in

class RC1 with 100 customers and a 10% deviation yield a zero-risk solution with a negligible

PoR of 0.92%. Rich robust solutions that can mitigate risk while incurring a minor price are

more frequently seen for instances in class R1. This result is confirmed in Figures 3(e), 3(f),

4(a), 4(b), 4(e), and 4(f), in which the trade-off curves clearly dominate those from instances

in C1 and RC1. Interestingly, when both parameters vary, the risk is only marginally increased,

suggesting that robust strategies that encapsulate only the most significant uncertainty source end

up protecting against the remaining uncertain parameter. In those cases, decision makers might

avoid testing additional budget of uncertainty and deviation values for various uncertain parameters
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(a) PoR vs Risk for αq = 0.25 and αt = 0.00.
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(b) PoR vs Risk for αq = 0.50 and αt = 0.00.
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(c) PoR vs Risk for αq = 0.00 and αt = 0.25.
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(d) PoR vs Risk for αq = 0.00 and αt = 0.50.
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(e) PoR vs Risk for αq = 0.25 and αt = 0.25.
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(f) PoR vs Risk for αq = 0.50 and αt = 0.50.

Figure 3 Trade-off between price of robustness (PoR) and probability of constraint violation (Risk) for 100-series

set instances with 25 customers.
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(a) PoR vs Risk for αq = 0.25 and αt = 0.00.
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(b) PoR vs Risk for αq = 0.50 and αt = 0.00.
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(c) PoR vs Risk for αq = 0.00 and αt = 0.25.
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(d) PoR vs Risk for αq = 0.00 and αt = 0.50.
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(e) PoR vs Risk for αq = 0.25 and αt = 0.25.
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(f) PoR vs Risk for αq = 0.50 and αt = 0.50.

Figure 4 Trade-off between price of robustness (PoR) and probability of constraint violation (Risk) for 100-series

set instances with 100 customers.
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simultaneously. A similar discussion is introduced in Alem and Morabito (2012), Righetto et al.

(2016).

Finally, it is worth noting that the robust solutions do not suffer from the “curse of overprotec-

tion”, as noted in several papers that address demand uncertainty in practical applications (Alem

et al. 2018, Richter and Stiller 2018). In such cases, even a small demand deviation may lead

to a dramatic PoR, compromising the effectiveness of the robust approach. In our case, zero-risk

solutions are attained by paying a PoR of 42.25% in the worst-case situation (RC1 instances with

25 customers and a 50% deviation), whereas the average PoR over all the 54 average values is

less than 15%. Therefore, it is almost always beneficial to adopt robust solutions to solve real-life

problems.

5.4. Design of an optimal robust route

An interesting insight could be obtained if we examine the changes in the structures of both robust

and non-robust solutions. To this end, we depicted in Figures 5 to 7 the optimal solution of the

(arbitrarily chosen) instance RC102 with 25 customers and a 25% deviation when Γq = 0 and

Γt = 0,1,2. The schemes present the sequence of nodes visited in each route, where nodes 0 and 26

correspond to the depot. Customer time windows are shown right above each customer node, and

the depot time window is [0,240]. The service times in this instance are the same for all customers

and are equal to 10. Nominal travel times are given below the arrows connecting the nodes. Under

each customer node, the figures present the earliest exact time at which the vehicle can start service

at the node. Below these numbers, in Figures 6 and 7, we also have the worst-case earliest exact

time from which the service can start at the node, when up to Γt travel times attain their worst

case, as computed using (5).

The solution presented in Figure 5 is optimal for Γt = 0 and has an objective value of 351.8 with

a corresponding risk equal to 98.25% (evaluated according to the Monte Carlo simulation), showing

that the non-robust solution is totally unprotected against uncertainties from a practical point of

view. In fact, if a single travel time in the third route assumes its worst-case value, the solution

will become infeasible. This may happen, e.g., for the travel time between nodes 8 and 5 in the

third route. In the worst-case scenario, this parameter increases from 7 to 8.7 for a 25% deviation

(recall that we truncate the number after the first decimal place). With the time increased by 1.7,

the vehicle reaches node 5 at the exact time 129.5. As a consequence, the exact time of arrival at

node 4 becomes 171.5, 0.5 after the time window of this node has closed.

The optimal solution for Γt = 1 in Figure 6 exhibits an objective value of 352, a PoR equal to

0.06% and a risk of 50.47%. This solution is able to absorb the deviation of up to one travel time

per route, achieving its worst case rapidly. The difference between the actual and the nominal

solutions originates from the sequence in which the nodes are visited in the third route. By visiting

the first six nodes in a different order, the third route leads to an increase in the objective value,

but the worst-case deviation of the travel times is absorbed by the start time of the time window
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of node 4, as the vehicle arrives earlier than 141 at this node. The figure indeed shows that the

exact time that the vehicle can start the service at node 6 is either 120.2 (if exactly one travel time

assumes its worst-case value) or 119 (if all the travel times assume their nominal values). Then, in

the worst case, the vehicle arrives in node 4 at 135.6 (119 + 10 + 5.3 + 1.3 using (5)) but can start

the service only at the exact time 141.

The third route depicted in Figure 6 can actually absorb up to two travel times assuming their

worst-case values, as shown in Figure 7 for the case with Γt = 2. For this budget of uncertainty,

when Γt increases from 1 to 2, not only do the previous two routes change, but also a new route

is created in an attempt to reduce the risk. This solution has an optimal value of 401.8 with a

PoR of 14.21% and a risk of 0.01%, and it is almost totally immunized against uncertainties. The

trade-off curve presented in Fig. 8 clearly emphasizes the feasibility gain against the price.

From a decision maker’s standpoint, it would be problematic if the results from the robust

solutions differed significantly among each other or in comparison to non-robust solutions because

it would be necessary to re-schedule all routes and/or use a completely different number of vehicles

to serve the customers. Although there is a reasonable deterioration in the objective value in this

case, many logistics systems clearly may benefit from the robust solution for two main reasons:

first, because customers could be guaranteed higher service levels, and second, because robust

routes are not much more expensive and can be easily implemented by experts. For example, in

the second route of Figure 7, we see that the vehicle reaches node 18 at the exact time 114.4 if

the actual travel times follow their nominal values. On the other hand, if two of the actual travel

times assume their worst-case values, then the vehicle will arrive at the exact time 117, which is

tight with the closure of the time window but is enough to service the customer. This worst-case

analysis can also be helpful in guaranteeing that the total duration of a route satisfies the legal

restrictions of the driver’s shift regarding working hours.

6. Conclusion

We proposed a compact formulation and a branch-price-and-cut (BPC) algorithm for the robust

vehicle routing problem with time windows (RVRPTW) when both demands and travel times are

subjected to uncertainty. The compact formulation is based on integrating dynamic programming

(DP) recursive equations into the standard two-index vehicle flow formulation with the Miller-

Tucker-Zemlin (MTZ) constraints. It is a robust counterpart model that does not require the

commonly used dualization of constraints involving the uncertain parameters. The proposed formu-

lation has also a practical appeal, as it is an intuitive extension of the deterministic formulation and

thus encourages its usage by non-expert practitioners, especially those relying on general-purpose

optimization software. The results of computational experiments using benchmark instances from

the literature show that the model is effective in solving small-scale instances and can be used

to obtain robust feasible solutions for instances with 50 and 100 customers within a reasonable

running time. As the values of the budgets of uncertainty and deviations increase, the number of
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Figure 5 Optimal solution of instance RC102 for Γt = 0 (deterministic solution) with an optimal value of 351.8

and a risk of 98.25%.
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Figure 6 Optimal solution of instance RC102 for Γt = 1 with an optimal value of 352.0 (PoR of 0.06%) and a

risk of 50.47%.
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Figure 7 Optimal solution of instance RC102 for Γt = 2 with an optimal value of 401.8 (PoR of 14.21%) and a

risk of 0.01%.
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Figure 8 Trade-off between PoR and Risk for instance RC102.
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instances solved to optimality decreases, and the average elapsed time increases, which is a typ-

ical behavior in robust optimization (RO) models. We have also conducted additional numerical

experiments with an existing RO formulation for the VRP based on the dualization technique.

The results demonstrated the superiority of our model based on DP for solving the benchmark

instances. More importantly, we are not aware of any other RO (compact) model that leads to

a reasonable performance in practice for solving instances with 25 or more customers using a

general-purpose optimization software.

The proposed BPC method encapsulates the uncertainties in the subproblem of the column gen-

eration (CG) procedure, which is a robust resource constrained elementary shortest path problem.

We presented how to extend the labeling algorithm to solve this subproblem considering the uncer-

tainties in demands and travel times simultaneously. Computational experiments with Solomon’s

instances show that the proposed BPC method solves most of the instances with 100 customers

to optimality even for large values of budgets of uncertainty and deviations. As the results indi-

cate, the instances become more challenging to solve after incorporating uncertainties, but the

performance of the BPC remains stable as the values of the budgets of uncertainty and devia-

tions increase. This is an important feature that distinguishes the proposed method from other

approaches in the literature, which seem to degrade in performance when robust constraints are

taken into account. A robustness analysis based on the solutions provided by the BPC method and

a Monte Carlo simulation showed that the increase in the objective values of the robust routes is

small compared to the reduction in the risk of these routes being infeasible in practice. Moreover,

the robust solutions do not suffer from the “curse of overprotection”, as noted in several papers

that address demand uncertainty in practical applications. Therefore, the robust solutions may be

more suitable for supporting decision making in logistic systems.

Our findings also bring up interesting questions for future research. We would like to adapt the

methodologies proposed in this paper to other variants of the vehicle routing problem, such as the

capacitated vehicle routing problem (Pecin et al. 2016) and the pickup and delivery problem with

time windows (Furtado et al. 2017), in order to verify their performance and develop strategies that

may be required by these variants. Another interesting research topic is to develop a specialized

branch-and-cut method for the proposed compact formulation based on valid inequalities that can

improve its linear relaxation bound. The resulting solution strategy has the potential to be more

effective than the standalone model and to allow larger instances to be solved. Finally, we would

like to explore practical applications of the RVRPTW in different logistics contexts, particularly in

the last mile relief distribution, which requires efficient and effective solutions. Most papers on this

subject use stochastic programs within two-/three-index formulations to handle uncertainty, which

commonly results in intractable problems even for small-size instances. Therefore, it would be inter-

esting to apply the approaches presented in this paper to effectively solving large-scale instances,

thereby encouraging the usage of analytical models in practical disaster response operations.
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