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LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France, ngueveu@laas.fr

This paper proposes a matheuristic for solving a real-life Inventory Routing Problem introduced in the

ROADEF/EURO Challenge 2016. The method integrates a fixed-sequence mathematical program, two ran-

domized greedy algorithms, and a column-generation based heuristic. In particular, the paper discusses the

performance of the fixed-sequence mathematical program, which considers a fixed sequence of customer

visits and aims at (re)optimizing partial solutions by modifying arrival times and delivered or loaded quan-

tities. Experiments show that the proposed algorithm for the fixed-sequence sub-problem is efficient as a

post-optimization process and is even able to improve the best solutions obtained during the Challenge.
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1. Introduction

The aim of this paper is to propose a matheuristic for solving the Inventory Routing Problem

introduced in the ROADEF/EURO Challenge 2016 (simply referred to as “the Challenge” in

the sequel). In particular, the so-called Fixed-Sequence Continuous Inventory Routing Problem

(FSCIRP) is identified. FSCIRP works on a fixed sequence of visits to customers and aims at

re-optimizing the solution by modifying arrival times and delivered quantities. Experiments show

that the proposed algorithm for the solution of FSCIRP is efficient as a post-optimization process.

It is able to improve the best results obtained during the Challenge.
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The Inventory Routing Problem (IRP) is an integration of inventory management and vehicle

routing under the Vendor Managed Inventory (VMI) business model. Mainly found in road-based

and maritime supply chains, especially in the distribution of industrial gases or petrol oil using

trucks or ships, the problem considers a set of customers whose inventory is monitored by a vendor.

The vendor has to decide when and how much to deliver to each customer and how to route

vehicles so that the customers never run out of stock while total costs, induced by both inventory

management and vehicle routing operations, are minimized.

Both complex in nature and important in industrial applications, the IRP has attracted the

attention of practitioners and academic researchers since the first study by Bell et al. (1983). Our

paper does not intend to provide a complete literature review of IRPs. For a general introduction

of the problem, interested readers can refer to the tutorials of Bertazzi and Speranza (2012, 2013).

Industrial aspects of IRPs in maritime and road-based transportation are described in the review

of Andersson et al. (2010). A more recent comprehensive literature review is provided by Coelho

et al. (2013), with a detailed classification and a focus on existing solution methods.

Most studies, such as those by Archetti et al. (2007, 2012), consider the problem with a time

horizon divided into several periods (while the duration of a period is not specified). In each period,

a subset of customers is chosen to be visited and a set of vehicles is routed to make deliveries among

these customers. During each period, the inventory level of each customer is assumed constant. Each

period is also assumed long enough for each vehicle to complete one tour. Each tour starts and ends

at the depot and vehicles are automatically refilled once returned to the depot. The most common

objective is the minimization of the combined costs of inventory holding and transportation. A set

of benchmarks was provided by Archetti et al. (2007). They also proposed the first exact algorithm

to solve the problem. Larger instances were created by Coelho et al. (2012) and compatibility

issues among customers, drivers and vehicles were discussed. However, in comparison with real-life

instances used in this paper, the benchmarks proposed by Archetti et al. (2007), Coelho et al.

(2012) remain relatively small and simplified.

In the literature, IRPs with real applications are usually decomposed into several subproblems

which can be solved separately using hybrid methods relying on mathematical programming and

heuristics, called “matheuristics”. A common decomposition is to divide the whole horizon into

smaller periods. The long-term problem is reduced to several short-term sub-problems, each being

solved as a classic routing problem with some additional features regarding customer inventory

levels. Rolling-horizon approaches are often applied as in Campbell et al. (2001), Campbell and

Savelsbergh (2004). The decomposition can also be done according to different decision processes.

For example, Cordeau et al. (2015) developed a decomposition method that divides the problem

into one subproblem of inventory replenishment planning and another of route construction. The
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former subproblem is solved first using a Lagrangian-based heuristic and then vehicle routes are

built using another heuristic. Eventually, the solutions of the two subproblems are given to a post-

processing mathematical model for re-optimization. Similar ideas can be found in Grønhaug et al.

(2010), Andersson et al. (2016), where “duties” consisting of a geographical route, a schedule and

a vessel unloading plan are generated a priori. A mathematical model is then solved for selecting

the “best” duties. In Hewitt et al. (2013), a Branch–and–Price (B&P) guided search was applied

to a real-world maritime IRP where a series of small-size Mixed Integer Linear Programming

(MILP) is solved to obtain heuristic solutions. Among the matheuristics with the best performance,

Archetti et al. (2012) proposed a hybridization of a mathematical programming method with a

Tabu search. Coelho et al. (2012) used a MILP component inside the scheme of the Adapted Large

Neighbourhood Search (ALNS). Desaulniers et al. (2016) proposed a mathematical formulation for

the IRP and a Branch-Cut-and-Price algorithm, where several valid inequalities are included.

In 2016, the Challenge focused on a large-scale real-life IRP met by the French gas company Air

Liquide. The problem deals with two kinds of customers: VMI customers, having their inventory

managed by the gas company, and call-in customers, who place refilling orders directly to the

company when needed. The goal of the problem is to plan shifts for drivers using trailers to deliver

products to the customers. The inventory levels of VMI customers must never fall below a given

safety level and the orders of call-in customers must be fulfilled in time. In comparison to classic

IRPs, one main difficulty is that the routing part of the problem has to be managed in nearly

continuous time with a precision of one minute. A second complex feature is that the problem

deals with two different time scales: minutes for routing and hours for inventory level monitoring.

A third complicating factor is the need to assign each route to a pair of driver/trailer, so that

compatibility constraints are satisfied, and limits on daily working duration of drivers are also

respected. In addition, the trailers are not automatically refilled at the beginning of each route,

so the quantity in each trailer has also to be managed. One last complicating feature, not often

studied in classic IRP literature, is that the objective function aims to minimize a logistic ratio,

i.e. the ratio between the total cost (induced by shifts, drivers, and trailers) and the total delivered

quantity.

A problem similar to the Challenge problem was studied by Benoist et al. (2011), who proposed a

local search method. Some of the complex features mentioned above have also been partly addressed

in the literature. For example, combined vehicle routing and scheduling is a common topic on

Vehicle Routing Problems (VRPs) as reviewed by Laporte (2016). Although it was considered in

the initial paper of Bell et al. (1983), this combination is rare in classic IRPs. The management

of vehicle quantity and compatibility issues have also been partly studied in Coelho et al. (2012).

During and after the Challenge, variants of IRPs continue to emerge that tackle one or several
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of these features. For the time discretization, Lagos et al. (2018) studied a simplified variant of

IRP in continuous time with a homogeneous fleet of vehicles, with a constant demand rate per

customer, aiming to minimize total travel cost. They revealed interesting properties of the problem

and applied the Dynamic Discretization Discovery scheme for solving it. For optimizing the logistic

ratio, Archetti et al. (2017) adapted the classic IRP model, provided theoretical insights on bounds

of the logistic ratio and adapted Dinkelbach’s algorithm for the solution. Later, Archetti et al.

(2018) proposed an exact method for solving the problem. To the best of the knowledge of the

authors, the Challenge problem studied in this paper is original and there does not exist any

mathematical model that includes all the practical aspects of the Challenge problem.

The main contribution of this work is an integrated method that solves real-life IRP problem

instances using three components: a fixed-sequence mathematical program, two randomized greedy

algorithms, and a column-generation based heuristic. More specifically, we highlight the interest

of the fixed-sequence mathematical program, which can be successfully used as a re-optimization

method to improve any solution (in particular those provided by the other two components). It

consists in a model and an algorithm to re-optimize a solution by optimally recomputing the arrival

time and quantity of each operation, provided that the sequence of operations and the assignment

of drivers and trailers are kept unchanged. We refer to this re-optimization problem as the Fixed-

Sequence Continuous Inventory Routing Problem (FSCIRP). Our experiments show that FSCIRP

can be solved efficiently and is able to strictly improve the results obtained by the best methods

submitted during the Challenge. We also discuss the promising potential of our column-generation

based heuristic.

The paper is organized as follows. Section 2 introduces first the Challenge problem in general,

then details FSCIRP, as well as the fractional programming algorithm to solve it. Section 3 describes

a general decomposition scheme for solving the Challenge problem. Notably, it presents the greedy

algorithms that provide initial solutions for FSCIRP and the column-generation-based matheuristic

that takes advantage of the solutions given by FSCIRP. Computational experiments are conducted

and analyzed in Section 4 and conclusions are drawn in Section 5.

2. The Challenge Problem and the Fixed-Sequence Continuous
Inventory Routing Problem

This section presents the Challenge problem in general and then details FSCIRP and its solution.

2.1. Presentation of the problems

The Challenge problem is defined over a time horizon H. A set of customers Z must be visited

using a set of trailers T L driven by a set of drivers DR. Other sites include the depot, denoted

0 and a set of sources SO to refill the trailers. Given the hourly consumption forecast of each
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customer, the problem is to plan, over time horizon H, a set of shifts for each driver and trailer,

so as to avoid stock-outs at the customers and to minimize global delivery cost.

A shift is a sequence of timed operations made by a driver using a trailer. An operation is a visit

of a driver and a trailer to a site which is either a customer or a product source. An operation

must be scheduled with an accuracy of one minute and associated with a delivered (or loaded)

quantity. A trailer must be assigned to one single driver during each shift but may be reassigned

to another driver in another shift later. The sequence of shifts assigned to a driver is called a route.

Shift operations are subject to numerous constraints, including complex driver shift constraints.

For a more accurate description of the Challenge problem itself we refer to the Challenge subject1.

This paper focuses on a particular subproblem, FSCIRP, that is detailed in the remaining of this

section.

FSCIRP is a subproblem of the Challenge problem where the order of operations of each driver

is fixed, as well as the assignment of the driver/trailer pair to each shift. The arrival time at each

site and the quantity to be delivered or loaded in each operation are the remaining decisions to be

made.

The method to solve FSCIRP presented in this section can be used as a subroutine for other

methods to solve the Challenge problem, such as the one presented in Section 3. We will show

in Section 4 that solving the FSCIRP can improve the solutions obtained by the best algorithms

submitted to the Challenge.

2.2. FSCIRP Input

The input data for FSCIRP are similar to those for the Challenge problem with the addition of a

set of shifts. These inputs are described in details below. An instance for FSCIRP can easily be

obtained from an initial solution to the Challenge problem. This initial solution may not respect all

time windows or capacity constraints of the Challenge problem, since only sequences of operations

matter in the FSCIRP. In this case, the FSCIRP first decides whether the given sequences of

operations is feasible. If the answer is yes, then it optimizes the arrival time and delivered quantity

of each operation.

2.2.1. Trailers Each trailer tl ∈ T L is defined by initial loaded quantity J0
tl, maximum capac-

ity Qtl, and per-distance-unit usage cost Cdistance
tl .

2.2.2. Drivers Each driver d∈DR can only work during time windows belonging to set TWd.

Each time window tw ∈ T Wd is defined by interval [Atwd ,B
tw
d ] with Atwd and Btw

d the starting and

ending times of the time window in minutes. Cost Ctime
d must be paid for each working minute of

driver d. Driver d can only operate a subset of trailers denoted by T Ld ⊆T L.

1 http://www.roadef.org/challenge/2016/files/IRP\_AL\_Model\%20Description\%20for\%20EURO-ROADEF\

%20Challenge\%20Version\%202.2.pdf
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2.2.3. Shifts The set of shifts is denoted by SH. Each shift s∈ SH is performed by driver ds ∈

DR with one of his compatible trailers ts ∈ T Lds during one of his time windows tws ∈ T Wds . Each

shift s∈ SH is a sequence of operations Ns that starts and ends at the depot (with |Ns| the total

number of operations in the shift including starting and ending depot). Both drivers and trailers

are located at the depot at the beginning of the time horizon. In addition to the depot, there are

two other types of sites: customers and sources. These different types of sites are presented more

in details below. The ith site in shift s is denoted by Ns(i). Notably, we have Ns(1) =Ns(|Ns|) = 0.

Subset SHtwd ⊆ SH is the ordered set of shifts that takes place inside time window tw ∈ T Wd

of driver d ∈ DR. The ith shift in the set is denoted SHtwd (i). Similarly, subset SHtl ⊆ SH is the

ordered set of shifts that is assigned to trailer tl ∈ T L, with SHtl(i) the ith shift performed by

trailer tl.

Obviously, a driver or a trailer can only be assigned to at most one shift at each time instant.

Driver d ∈ DR cannot drive more than a maximum duration denoted by MDDd (in minutes) in

each of his shift. He can perform several shifts consecutively in the same time window but must

rest for a minimum inter-shift duration denoted by MISd (also in minutes) between two consecutive

shifts.

2.2.4. Sources The set of sources SO contains sites where a trailer can be refilled if needed.

Sources are always available and it is always possible to refill a trailer up to its capacity. A setup

time (in minutes) STi is required to carry out the service at each source i∈ SO. Also, only a subset

of trailers T Li ⊆T L can have access to each source i∈ SO.

2.2.5. Distance and travelling time For each pair of sites (i, j), with i, j ∈ {0}
⋃
Z
⋃
SO,

Di,j and Ti,j denote respectively the travel distance in kilometers and the travel time in minutes.

2.2.6. Customers Any delivery operation performed at customer i∈Z has service time STi.

Each customer is only compatible with a subset of trailers T Li ⊆T L. As mentioned before, the set

of customers is divided into the set of VMI customers Zvmi and the set of call-in customers Zci.

Each VMI customer i ∈ Zvmi has initial inventory level I0i and a forecast consumption of Rh
i

units of product in each hour h ∈ H. He can only be visited during one of the time windows in

set T W i. Each time window tw ∈ T W i is defined by interval [atwi , b
tw
i ], where atwi and btwi are

the starting and ending times of the time window in minutes. The inventory level of each VMI

customer i ∈ Zvmi must always remain between safety level I i and maximum tank capacity I i.

There is also a minimum delivery quantity Rmin
i for each VMI customer i∈Zvmi.

Each call-in customer i∈Zci has a set of orders ODi. Each order od∈ODi is defined by required

quantity Rod
i , delivery flexibility fodi given as a percentage, and delivery time window [aod, bod]

where starting time aod and ending time bod are expressed in minutes.
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2.2.7. Layover customers Some customers are too far to be reached within the maximum

driving duration of the drivers. These customers are referred to as layover customers, denoted by

set Zlo. A layover customer can be either VMI or call-in, so we have Zlo ⊆ Zvmi ∪ Zci. To visit

a layover customer during a shift, a layover pause must be inserted between two operations of

the shift, provided that the driving times before and after the layover pause do not exceed the

maximum driving duration of the driver in this shift. For each driver d ∈ DR, the layover pause

duration in minutes is denoted by LODd. Each layover pause by driver d induces fixed cost C layover
d .

The set of shifts containing at least one layover customer is referred to as SHl.

2.3. Decision variables

The FSCIRP can be modeled as a mixed-integer program. The decision variables are presented in

this section.

2.3.1. Arrival times at sites Binary variable vs,hi is defined for each shift s∈ SH at each hour

h∈H and for each operation i∈ [1, |Ns|]. The variable is equal to 1 if and only if site Ns(i) is visited

during hour h. Continuous variable tsi is defined for each operation i∈ [1, |Ns|] in each shift s∈ SH.

This variable is equal to the arrival time in minutes at site Ns(i). Continuous variable zsi ∈ [0,59] is

defined for each operation i∈ [1, |Ns|] in each shift s∈ SH. The variable is equal to the remaining

time in minutes in the hour when site Ns(i) is visited. The variables related to arrival times at

sites with their domains induced by the data is recapitulated in (1)–(3).

vs,hi ∈ {0,1} ∀s∈ SH,∀i∈ [1, |Ns|],∀h∈H (1)

tsi ∈ [Atwd ,B
tw
d ] ∀d∈DR,∀tw ∈ T Wd,∀s∈ SHtw,∀i∈ [1, |Ns|] (2)

zsi ∈ [0,59] ∀s∈ SH,∀i∈ [1, |Ns|] (3)

2.3.2. Trailer capacity and customer inventory levels Continuous variable Js,itl is defined

for each trailer tl ∈ T L and for each operation i ∈ [1, |Ns|] of each shift s ∈ SHtl. The variable

is equal to the quantity of product left in trailer tl after the operation at site Ns(i) in shift s.

Continuous variable qs,hi is defined for each operation i ∈ [1, |Ns|] in each shift s ∈ SH at each

hour h ∈H. If site Ns(i) is a customer, the variable is equal to the quantity delivered at hour h.

If Ns(i) is a source, the variable is equal to the quantity loaded to the trailer performing shift s at

hour h. The inventory level of each VMI customer j ∈Zvmi at each hour h is modeled by continuous

variable Ihj . The variable domains are given by Constraints (4)–(8).

Js,itl ∈ [0,Qtl] ∀tl ∈ T L,∀s∈ SHtl,∀i∈ [1, |Ns|] (4)

qs,hi ∈
[
0, INs(i)

]
∀s∈ SH,∀h∈H,∀i∈ {[1, |Ns|] :Ns(i)∈Zvmi} (5)

qs,hi ≥ 0 ∀s∈ SH,∀h∈H,∀i∈ {[1, |Ns|] :Ns(i)∈Zci} (6)
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qs,hi ≤ 0 ∀s∈ SH,∀h∈H,∀i∈ {[1, |Ns|] :Ns(i)∈ SO} (7)

Ihj ∈
[
Ij, Ij

]
∀j ∈Zvmi,∀h∈H (8)

2.3.3. Layover pauses Binary variable lsi is defined for each operation i ∈ [2, |Ns|] in each

shift s∈ SHl. Recall that SHl is the set of shifts with at least one layover customer. The variable

is equal to 1 if and only if a layover pause is scheduled just before visiting site Ns(i). In order to

check the time consistency of shifts, the exact timing of each layover pause has to be specified.

For this purpose, continuous variable psi ∈ [0,1] is defined for each operation i ∈ [2, |Ns|] of each

shift s∈ SHl. Let tsi be the arrival time at operation i∈ [2, |Ns|] in shift s∈ SHl and λs the starting

time of the layover pause if it is planned before operation i in shift s. Then, variable psi is defined

as psi =
λs−tsi−1

tsi−t
s
i−1

.

The variable domains are the following:

lsi ∈ {0,1} ∀s∈ SHl,∀i∈ [2, |Ns|] (9)

psi ∈ [0,1] ∀s∈ SHl,∀i∈ [2, |Ns|] (10)

2.4. Constraints

2.4.1. Sequence of operations The following constraints ensure that the sequence of oper-

ations defined in shifts are respected.

STNs(i) +TNs(i),Ns(i+1)+LODdl
s
Ns(i+1) ≤ tsi+1− tsi ∀d∈DR,∀s∈ SHd,∀i∈ [1, |Ns| − 1] (11)

MISd ≤ t
SHtw

d (i+1)

1 − tSH
tw
d (i)

|NSHtw
d

(i)
| ∀d∈DR,∀tw ∈ T W

d,∀i∈ [1, |SHtw
d | − 1] (12)

Constraints (11) make sure that, if there is no layover, the duration between any two consecutive

operations should be at least the setup time of the previous operation plus the travelling duration

between the two sites. If there is a layover planned before the (i + 1)th operation, the layover

duration is added to the minimum required transition time. Constraints (12) state that the duration

between two consecutive shifts inside the same time window of the same driver should be no less

than the minimum inter-shift duration of the driver.

2.4.2. Timing of arrivals at sites in minutes

tsi = 60
∑
h∈H

h vs,hi + zsi ∀s∈ SH,∀i∈ [1, |Ns|] (13)

0≤ zsi ≤ 59 ∀s∈ SH,∀i∈ [1, |Ns|] (14)∑
h∈H

vs,hi = 1 ∀s∈ SH,∀i∈ [1, |Ns|] (15)

Constraints (13)–(14) ensure the coherence between binary variables v and continuous variables t

for the scheduling of operations. If tsi is inside an hour h, then vs,hi is set to 1. Constraints (15)

ensure that each operation in a shift is scheduled at one specific hour. Note that this kind of

constraints tends to be more efficient than the classic big M constraints.
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2.4.3. VMI customer time windows

atwNs(i)
≤ tsi ≤ btwNs(i)

−STNs(i) ∀s∈ SH,∀i∈ {[1, |Ns|] :Ns(i)∈Zvmi} (16)

Constraints (16) make sure that all the operations at a VMI customer occur inside a predefined

time window.

2.4.4. Trailer capacity

Js,i+1
tl −Js,itl =−

∑
h∈H

qs,hi ∀tl ∈ T L,∀s∈ SHtl,∀i∈ [1, |Ns| − 1] (17)

J
SHtl(i+1),1
tl = J

SHtl(i),|NSHtl(i)
|

tl ∀tl ∈ T L,∀i∈ [1, |SHtl| − 1] (18)

−Qtl ≤ qs,hi ≤ 0 ∀tl ∈ T L,∀s∈ SHtl,∀i∈ {[1, |Ns|] :Ns(i)∈ SO} (19)

0≤ Js,itl ≤Qtl ∀tl ∈ T L,∀s∈ SHtl,∀i∈ [1, |Ns|] (20)

Constraints (17) maintain the coherence of the trailer quantity between consecutive operations

inside each shift. Constraints (18) enforce the coherence of the trailer quantity among consecutive

shifts performed by the same trailer. Constraints (19) ensure that the quantity obtained from

sources never exceeds trailer capacity. Finally, constraints (20) state that the quantity in each

trailer is positive and never exceeds the capacity of the trailer.

2.4.5. Customer inventory management

Ih+1
j = Ihj +

∑
s∈SH

∑
i∈{[2,|Ns|−1]:Ns(i)=j}

qs,hi −Rh
j ∀j ∈Zvmi,∀h∈H\{H}

(21)

RNs(i)v
s,h
i ≤ q

s,h
i ≤ (INs(i)− INs(i)

)vs,hi ∀s∈ SH,∀h∈H,∀i∈ {[1, |Ns|] :Ns(i)∈Zvmi}
(22)

Ij ≤ Ihj ≤ Ij ∀j ∈Zvmi,∀h∈H
(23)

Rod
j f

od
j ≤

∑
s∈SH

∑
i∈{[2,|Ns|−1]:Ns(i)=j}

∑
h∈[aod,bod]

qs,hi ≤Rod
j ∀j ∈Zci,∀od∈ODj

(24)

Constraints (21) enforce the inventory balance of each VMI customer from hour to hour. They

say that the inventory level in the next hour equals the current inventory level plus the delivered

quantity in the current hour minus the forecast demand faced by the customer in the current

hour. Constraints (22) make sure that the delivered quantity stays in the allowed limits of VMI

customers. Constraints (23) ensure that the inventory level of each VMI customer never exceeds its

capacity and always stays above its safety level. Constraints (24) are for the fulfillment of call-in

orders. They impose the delivered quantity to be at least the minimum percentage needed to satisfy

an order, without exceeding the maximum deliverable level.
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2.4.6. Layover pauses

|Ns|−1∑
i=2

lsi = 1 ∀s∈ SHl

(25)
|Ns|−1∑
i=2

lsi = 0 ∀s∈ SH\SHl

(26)

psi ≤ lsi ∀s∈ SH,∀i∈ [2, |Ns|]
(27)

|Ns|∑
j=i

|Ns|∑
k=j

TNs(j−2),Ns(j−1) l
s
k +TNs(i−1),Ns(i) p

s
i ≤MDDds ∀s∈ SH,∀i∈ [3, |Ns|]

(28)
|Ns|∑
j=2

TNs(j−1),Ns(j)− (

|Ns|∑
j=i

|Ns|∑
k=j

TNs(j−2),Ns(j−1) l
s
k +TNs(i−1),Ns(i) p

s
i )≤MDDds ∀s∈ SH,∀i∈ [3, |Ns|]

(29)

The fact that a shift with a layover customer can have one and only one layover pause is modelled

by Constraints (25). Conversely, Constraints (26) ensure that there is no layover pause inside a

shift without a layover customer. Constraints (27) set variable psi to 0 if there is no layover before

the i-th operation of each shift s (lsi = 0). Constraints (28)–(29) enforce the driving duration inside

each shift to never exceed the maximum driving duration of the driver performing this shift. If

the layover pause exists (i.e., lsi = 1), Constraints (28) and (29) allow the computation of the total

driving times before and after the layover pause, respectively; otherwise, Constraints (28) become

0≤MDDd and Constraints (29) state that the total driving time of the shift is bounded by the

maximum driving duration, which is always satisfied in the case of a feasible initial solution.

2.5. Objective Function

The goal is to minimize the distribution costs in the long term. To achieve this goal, the logistic

ratio L R is defined in Equation (30) as the total cost of all the shifts divided by the total quantity

delivered in these shifts.

The distribution costs related to each shift include: the distance cost D induced by the usage of

the trailers, the time cost T related to the total duration of the shift induced by drivers’ working

hours and the layover cost L if the shift contains a layover pause.

L R =
T + D + L

Q
(30)

The detailed computation of theses costs are given by Equations (31)–(33). The total quantity Q

delivered by all shifts is the sum of the quantities in each delivery operation of each shift. It is

given by Equation (34).
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T =
∑
d∈DR

∑
tw∈TWd

∑
s∈SHtw

Ctime
d (tsNs(|Ns|)− t

s
1−

|Ns|−1∑
i=2

lsiLODd) (31)

D =
∑
tl∈T L

∑
s∈SHtl

|Ns|−1∑
i=1

Cdistance
tl DNs(i),Ns(i+1) (32)

L =
∑
d∈DR

∑
tw∈TWd

∑
s∈SHtw

|Ns|−1∑
i=2

lsiC
layover
d (33)

Q =
∑
s∈SH

∑
h∈H

∑
i∈{[2,|Ns|−1]:Ns(i)∈Z}

qs,hi (34)

Note that since the sequences of operations are assumed known, the total distance value D is a

constant in the FSCIRP.

2.6. Fractional Programming Algorithm

Because the objective function is not linear, one cannot solve the model directly by a Mixed Integer

Linear Programming (MILP) solver. However, it is possible to employ Dinkelbach’s algorithm

in Dinkelbach (1967) as illustrated in Algorithm 1 for the FSCIRP case. In this algorithm, the

problem of finding vectors

t = (tsi )
s∈SH
i∈[1,|Ns|], l = (lsi )

s∈SH
i∈[2,|Ns|],q = (qs,hi )s∈SH,h∈Hi∈{[2,|Ns|−1]:Ns(i)∈Z}

in the feasible space S defined by the constraints above to minimize the fractional objective α=

T (t,l)+D+L (l)

Q(q)
can be linearized to minimizing (T + D + L )−αQ. In this way, the FSCIRP turns

into a MILP that can be solved iteratively. In the sequel, we refer to this MILP as Fixed-Sequence

Mixed Integer Linear Fractional Programming (FS–MILFP). The algorithm starts from an initial

value of α, solves the resulting FS–MILFP, and adjusts the value of α until a convergence criterion

is met. This algorithm is shown to converge superlinearly for MILFPs, by providing a sequence of

monotonely decreasing upper bounds on the optimal fractional objective as proved by You et al.

(2009). If the last MILP is solved to optimality, the corresponding upper bound is optimal. Note

that, provided that the input fixed sequence of shifts is feasible, the algorithm allows to obtain

upper bounds for the Challenge problem.

It should be noted that, after solving an instance of the FS–MILFP model, one can face the

situation where some of the customers in the fixed sequences are visited without any delivered

quantity. In that case, these unnecessary operations are removed from the sequences. The new

sequences without the unnecessary operations are given back to the FS–MILFP solver for re-

optimization.
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Algorithm 1 Algorithm for fractional programming
1: Initialize α with a feasible logistic ratio L R0

2: Solve the FS-MILFP model with the linearised objective function

3: Recompute the ratio α′ = T +D+L
Q

with the current solution

4: while α′ <α− ε do (ε is a tolerance for optimality)

5: α← α′

6: Repeat step 2 and 3

This model can be easily adapted to the case with an infeasible initial solution by adding slack

variables for missed orders or stock-outs and by changing the objective to minimizing the total

number of missed orders and the total missed quantity. In that case, if a feasible solution exists

after re-optimization, the logistic ratio objective function is restored.

3. Decomposition algorithm for the Challenge Problem

In this section, we present a general decomposition scheme for the solution of the Challenge prob-

lem. Recall that a route is a sequence of shifts assigned to a driver. Based on the notion of routes,

the problem can be decomposed into two parts: (D1) the generation of routes and their assignment

to drivers; (D2) the optimization of visiting time and delivered quantity for each operation, once

a route has been selected for each driver.

To find the sequence of operations and the assignment of shifts to drivers (decisions D1), two

greedy heuristics and a matheuristic based on column generation are proposed. The FS–MILFP

defined in Section 2 is used for the optimization of delivery quantity and timing of operations in

each shift (decisions D2). The complete solution method integrates these components as shown in

Figure 1.

Initialization

Heuristics+FS-MILFP

Column Generation (RT-MILFP)

FS-MILFP

Stop

Figure 1 General solution method

In the following, the heuristics for finding the best sequences of operations are presented. We start

with the randomized greedy algorithms and then present the column-generation based matheuristic.
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3.1. Randomized Greedy Algorithms

In order to obtain starting solutions for the Challenge problem, two greedy heuristics were designed.

The first one is a novel approach based on the notion of state. The second one is based on the

urgency of the customers and is adapted from the heuristic proposed by Benoist et al. (2011). Only

the state-based heuristic is detailed in the following.

Given an inventory routing system, its state at a given instant can be defined by: the position

of each trailer and each driver at this time; the driving duration spent so far by each driver; the

quantity left in each trailer and at each customer; the time of the last visit to each customer. The

algorithm starts with a list of customers to serve inside the time horizon. Then, it randomly chooses

a customer i from the list, with respect to the latest visit time λi, which is computed according to

the state of the customers and their time windows.

To add a new visit to customer i, the greedy needs to find a pair of compatible driver/trailer

(d, tl). Actually, given the current state of the system and considering a compatible pair (d, tl) that

would visit a customer i, there are 5 possible actions: (1) changing the time window of the driver;

(2) starting a new shift (without changing the time window of the driver); (3) making a layover

pause (without changing the shift); (4) visiting a source (to refill the trailer); (5) waiting (for the

customer to open). A procedure enumerates all the possible combinations of these 5 actions, which

gives a set of valid arrival times for the driver/trailer pair (d, tl) to visit the customer i, together

with the corresponding maximum quantity that can be delivered at each valid arrival time. The

slack time θd,tl,i is then computed for each triplet of driver/trailer/customer (d, tl, i) as explained

in Figure 2. The arrival time is then chosen randomly from the set of valid arrival times computed

during the previous enumeration procedure.

timecurrent time
of driver d and trailer tl

arrival time
of (d, tl) to i

stockout or latest
visit time of i

slack θd,tl,i

Figure 2 Definition of slack θd,tl,i for driver/trailer pair (d, tl) and customer i

According to the slack time θd,tl,i associated with each compatible triplet of driver/trailer/

customer (d, tl, i), a driver/trailer pair (d, tl) with positive slack is randomly chosen to visit cus-

tomer i. Since the arrival time is known (thanks to the previous phase), the visit of customer i

is added to the solution and a delivered quantity is randomly chosen between the minimum and

the maximum deliverable quantity. If nothing can be done for visiting customer i in time (before

a stockout occurs), then the customer is considered lost and is removed from the list.

The state of the system is then updated. The iteration goes on until no customer will run out

of stock or no order exists by the end of the time horizon. The complete algorithm is summarized

in Algorithm 2.
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Algorithm 2 State-based greedy heuristic
1: initialize the state of the system

2: construct the list L of customers to serve

3: for all compatible triplet of driver/trailer/customer (d, tl, i) do

4: compute the slack time for the driver/trailer pair (d, tl) to visit customer i

5: while L 6= ∅ do

6: choose randomly a customer i from L

7: choose randomly a valid driver/trailer pair (d, tl) such that θd,tl,i > 0

8: if such a pair (d, tl) exists then

9: add operation to i by (d, tl) following the actions computed in Step 4

10: else

11: remove i from L

12: if i will not have stock out in the planning horizon then

13: remove i from L

14: update the state of the system

15: repeat 3–4

3.2. Column Generation Based Heuristic

To select a promising route for each driver (decision D1), a Mixed Integer Linear Fractional Pro-

gramming with Timed Route and Aggregated Time Units (RT–MILFP) formulation is proposed.

To reduce the number of variables in this formulation, we assume that the trailer inventory bal-

ance is aggregated to the hourly level, which could possibly yield infeasible solutions. However, as

explained in section 2, feasible solutions may be derived by solving FS–MILFP to re-schedule the

operations.

In the RT–MILFP, a timed route is defined as a sequence of shifts with partially decided oper-

ations inside the whole planning horizon. Only the quantity loaded or delivered by the operations

in the route is unspecified. One timed route has to be selected for each driver. Since the total

number of timed routes is exponential, each of such variables is considered as a column in the

master problem and is generated by a pricing sub-problem.

In the column generation algorithm, the Master Problem (MP) is defined as the linear relaxation

of the RT–MILFP formulation with the complete route set RO. The Restricted Master Problem

(RMP) is the restriction of the MP to subset RO1 ⊂RO. The column generation approach begins

with an RMP defined on subset RO1 containing only a few initial routes found by the greedy

heuristics presented in Section 3.1. Then, it looks for beneficial columns with respect to the reduced

cost by solving a pricing sub-problem. If such a column exists, it is added to the RMP and the

RMP is solved again. Otherwise, the optimal solution for the RMP is also the optimal solution for

the MP and RT–MILFP is solved to obtain an integer solution.
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In our case, the master problem deals with the decisions of timed route selection and inventory

management. The sub-problem manages dual values of the timed route selection variables (com-

puted in the master problem). Its role is to generate beneficial new routes (in terms of reduced

cost), while satisfying constraints concerning working time of drivers and opening time windows

of customers. The sub-problem can be naturally decomposed, since a route can be decomposed as

a sequence of shifts.

In the following, we first present the RT–MILFP extended formulation with different aggregation

levels. Then, the pricing sub-problem is presented, as well as its further decomposition.

3.2.1. Mathematical formulation Let ROd denote the set of all possible timed routes for

each driver d∈DR. Binary parameter ur,htl equals 1 if and only if route r ∈ROd uses trailer tl ∈ T L
at hour h∈H and parameter vr,hi ∈ {0,1} equals 1 if and only if route r ∈ROd visits site i∈Z

⋃
SO

at hour h∈H.

The RT–MILFP contains the following variables. Binary variable xrd is equal to 1 if and only if

route r ∈ROd is selected for driver d∈DR. Continuous variable qhi,tl is the quantity delivered (or

loaded) at hour h ∈H at site i ∈ Z ∪SO by trailer tl ∈ T L. As for the FS–MILFP, Dinkelbach’s

algorithm is used to linearize objective (35), but here coefficient α is assumed fixed.

min
∑
d∈DR

∑
r∈ROd

Croute
r,d xrd−α

∑
i∈Z

∑
tl∈T L

∑
h∈H

qhi,tl (35)

The constraints are presented by categories. The dual variables needed by the pricing sub-problem

presented in Section 3.2.2 are introduced in the paragraphs below. They are marked on the left

side of the constraints in square brackets.

Assignment of a driver/trailer pair to each route

[ωd] −
∑

r∈ROd

xrd ≥−1 ∀d∈DR (36)

[
ψhtl
]

−
∑
d∈DR

∑
r∈ROd

xrdu
r,h
tl ≥−1 ∀tl ∈ T L, ∀h∈H (37)

Constraints (36) ensure that at most one hourly-timed route is assigned to each driver. Con-

straints (37) make sure that at most one trailer is used at each hour in a driver route. At the end

of this section, we discuss how this constraint can be adjusted to different aggregation levels.

Quantity limits[
χhi,tl

] ∑
d∈DR

∑
r∈ROd

xrdu
r,h
tl v

r,h
i Qtl ≥−qhi,tl ∀i∈ SO, ∀tl ∈ T L, ∀h∈H (38)

[
χhi,tl

] ∑
d∈DR

∑
r∈ROd

xrdu
r,h
tl v

r,h
i Qtl ≥ qhi,tl ∀i∈Z, ∀tl ∈ T L, ∀h∈H (39)

[
φhi,tl

]
−
∑
d∈DR

∑
r∈ROd

xrdu
r,h
tl v

r,h
i Rmin

i ≥−qhi,tl ∀i∈Z, ∀tl ∈ T L, ∀h∈H (40)
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Constraints (38) and (39) ensure that the quantity loaded at a source or delivered to a customer

never exceeds the trailer capacity. Note that due to aggregation of time units to hours, these two

constraints do not guarantee feasibility of the delivery. For instance, in the case where a source

and a customer are delivered during the same hour, these constraints might allow an empty trailer

to visit a customer first before visiting a source. Constraints (40) make sure that the quantity

delivered to a customer is at least the minimum delivery quantity required by the customer.

Inventory of trailers

Jhtl = Jh−1tl −
∑

i∈Z
⋃
SO

qhi,tl ∀tl ∈ T L, ∀h∈H (41)

0≤ Jhtl ≤Qtl, ∀tl ∈ T L, ∀h∈H (42)

Constraints (41) are for the inventory balance of each trailer from one hour to the other. Con-

straints (42) make sure that the tank level in the trailer is never negative and never exceeds the

trailer capacity. Time aggregation to hour makes these constraints an approximation of the actual

trailer inventory balance constraints.

Customer inventory levels or demands

Ihi = Ih−1i +
∑
tl∈T Li

qhi,tl−Rh
i , ∀i∈Zvmi, ∀h∈H (43)

bod∑
h=aod

∑
tl∈T L

qhi,tl ≥ fodRod ∀i∈Zci, ∀od∈OD (44)

bod∑
h=aod

∑
tl∈T L

qhi,tl ≤Rod ∀i∈Zci, ∀od∈OD (45)

Constraints (43) ensure the inventory balance of each VMI customer from one period to the next.

Constraints (44) check whether the quantity delivered inside the time limits of an order satisfies

the demand. Constraints (45) set limits on the quantity delivered to call-in customers.

Variable domains

I i ≤ Ihi ≤ I i ∀i∈Zvmi,∀h∈H (46)

0≤ Jhtl ≤Qtl ∀tl ∈ T L, ∀h∈H (47)

−Qtl ≤ qhi,tl ≤ 0 ∀i∈ SO, ∀tl ∈ T Li, ∀h∈H (48)

0≤ qhi,tl ≤ I i ∀i∈Z, ∀tl ∈ T Li, ∀h∈H (49)

xrd ∈ {0,1} ∀d∈DR, ∀r ∈ROd (50)

Constraints (46)—(50) define the variable domains.
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Discussion on the aggregation level The time unit in RT–MILFP can be made (approximately)

accurate to the minute by introducing parameter µr,htl ∈ [0,60], which is defined as the number of

minutes that trailer tl is used in hour h on route r. The aggregated trailer usage constraints (37)

can then be rewritten as:

−
∑
d∈DR

∑
r∈ROd

xrdµ
r,h
tl ≥−60 ∀tl ∈ T L, ∀h∈H (51)

The relation between parameters u and µ can be:

ur,htl =

{
1 if µr,htl > 0
0 otherwise

(Relation 1)

or

ur,htl =

{
1 if µr,htl = 60
0 otherwise

(Relation 2)

In the RT–MILFP formulation, trailer inventory balance constraints are relaxed to an hourly

level instead of minutes. Consequently, depending on whether Relation 1 or 2 is used, the

formulation has different properties. If Relation 1 is used, then the RT–MILFP formulation is

over-constrained in terms of trailer usage, because Relation 1 forbids one trailer to be shared by

two or more shifts in the same hour, which should be allowed in reality as long as the shifts do

not overlap in time. Therefore, the formulation is neither a relaxation nor an over-constrained

formulation of the original Challenge problem. On the other hand, if Relation 2 is applied, then

the trailer usage constraints are relaxed in the sense that a trailer is considered to be occupied in

an hour only if it is fully used in this hour. In our experiments, Relation 1 is preferred.

3.2.2. Pricing sub-problem The dual problem contains dual variables ωd ∈ R+ for each

driver d∈DR associated with constraints (36), ψhtl ∈R+ for each trailer tl ∈ T L and for each hour

h ∈H associated with constraints (37), χhi,tl ∈R+ for each source or customer site i ∈ Z
⋃
SO for

each trailer tl ∈ T L and for each hour h ∈ H associated with constraints (38), and (39) and φhi,tl

for each customer site i ∈ Z for each trailer tl ∈ T L and for each hour h ∈ H associated with

constraints (40). The value of the dual variables can be considered as additional costs for the usage

of drivers or trailers, or as benefits brought by operations to customers.

The constraints corresponding to variables x in the dual problem can then be written as:

−ωd−
∑
tl∈T L

∑
h∈H

ur,htl ψ
h
tl +

∑
tl∈T L

∑
h∈H

∑
i∈Z

⋃
SO

ur,htl v
r,h
i (Qtlχ

h
i,tl−Rmin

i φhi,tl)−Croute
r,d ≤ 0

∀r ∈ROd, ∀d∈DR
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with Croute
r,d the total cost (of distance, time and layover) of all the shifts in route r for driver d.

Assuming φhi,tl = 0 for each source i ∈ SO, the combined term Qtlχ
h
i,tl −Rmin

i φhi,tl represents the

total benefit to visit each site i∈Z
⋃
SO by trailer tl ∈ T L in each hour h∈H.

Let

f(r) =−
∑
tl∈T L

∑
h∈H

ur,htl ψ
h
tl +

∑
tl∈T L

∑
h∈H

∑
i∈Z

⋃
SO

ur,htl v
r,h
i (Qtlχ

h
i,tl−Rmin

i φhi,tl)−Croute
r,d (52)

Finding a new column amounts to finding the route r∗ for driver d such that f(r∗) is strictly

larger than ωd. Mathematically, this is equivalent to finding route r∗ for driver d such that

r∗ ∈ arg max
r∈RO

f(r)

f(r∗) > ωd

The parameters ur,htl and vr,hi used in the master problem become two sets of decision variables

for a certain route r in the sub-problem. Binary variable ur,htl equals 1 if trailer tl is used in route

r at hour h. Binary variable vr,hi for each customer or source site i ∈ Z
⋃
SO at each hour h ∈H

equals 1 if site i is visited at hour h in route r.

The objective is to maximize the profit minus the cost of the route defined by f(r) in (52). It is

non-linear with respect to variables ur,htl and vr,hi . Constraints related to driver/trailer assignments

and timing of delivery/loading activities need to be satisfied in the subproblem. Namely,

• the trailers used in the route can all be driven by driver d;

• the driving duration of d is respected;

• driver d only works in his time windows;

• each visit to customer i∈Z happens in one of the customer’s time windows;

• each customer i∈Z is visited by compatible trailer tl ∈ T Li.
Since a timed route can be defined as a sequence of timed shifts, the sub-problem can be further

decomposed. Promising timed shifts are discovered and combined to form a complete route. In this

way, the problem of finding promising timed shifts is equivalent to a Shortest Path Problem with

Resource Constraints (SPPRC) in a time-space graph with time as a resource. It can be solved

with a labeling algorithm adapted from Irnich and Desaulniers (2005). The problem of combining

shifts to form a route can be considered as a Shortest Path Problem (SPP) in a Directed Acyclic

Graph (DAG) of shifts. It can thus be solved in O(|T Wd|S) time, with |T Wd| the number of time

windows of the driver d and S the number of most profitable shifts generated in each time window.

In our implementation, in each iteration of the column generation, the maximum number of

promising shifts generated for each compatible pair of driver and trailer is 200 and at most one

route is added for each driver. The column generation stops if no route is found, the total number

of iterations is more than 1000 or the predefined time limit is exceeded.
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4. Experimentation and Discussion

In this section, we present the experimentation and the results with some discussions about the

effectiveness of solving FS-MILFP as post-optimization.

4.1. Instances and General Settings

The experimentation is based on the instance sets B and X from the Challenge. Also, additional

smaller instances have been generated to better illustrate the properties of our algorithm.

Let us first analyse the instances B and X (Table 1). The number of customers |Z| varies from

32 to 324. The number of call-in customers and layover customers is given by |Zci| and |Zlo|,

respectively. The size of the horizon |H| varies from 10 to 35 days (from 240 to 840 hours). The

number of drivers |DR| varies from 4 to 13 and the number of trailers |T L| is from 3 to 15. There

are at most 2 sources. According to the number of customers, the instances can be categorized

into 5 types (called “map” in the following part). Each map corresponds to a set of sites with

identical (or nearly identical for instances X) distance and time matrices. The column “Map” in

Table 1 identifies the type of the instances listed in the column “Instances”. All of these numbers

go beyond existing benchmarks proposed by Archetti et al. (2007) and Coelho et al. (2012).

Table 1 Characteristics of instance sets B and X

Map Instances |Z| |Zci| |Zlo| |SO| |DR| |T L| max H
I V2.24, V2.25, V2.26 32 9 0 2 5 6 840
II V2.13, V2.14, V2.19 53 0 14 1 5 5 840
III V2.15, V2.17, V2.18, X3 134 3 16 1 4 3 840
IV V2.16, V2.20, V2.21, X2 184 1 5 1 7 4 840
V V2.12, V2.22, V2.23, X1, X4, X5 324 23 12 1 13 15 504

Additional smaller instances for each type of map are generated using the following parameters.

The size of the horizon ranges from 48 hours (2 days) to 240 hours (10 days) with a step of 24 hours.

The numbers of customers remain the same as in the initial instances (from 32 to 324 according

to the corresponding map). Five instances are generated for each value of the size of the horizon

for a total of 45 instances. These instances form the set of instances H.

Finally, to test the influence of the number of customers, we have generated instances with a

fixed horizon of 360 hours (15 days) and the number of customers varying from 5 to 50 with a

step of 5. The customers are randomly chosen from the initial instances. There are 5 instances

for each category with the number of customers between 5 and 30. There are 4 instances with 35

customers and 3 instances for each type of map with 40, 45 or 50 customers. In total, 43 instances

are generated. They form the set of instances C.
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The mathematical models are coded in C++ and solved by Cplex 12.7.0 with one single thread.

All the tests were performed on a computing platform composed of Xeon E5-2695 v4 CPU and

16 Gb memory.

4.2. Effectiveness of FS-MILFP on sets H and C

FS-MILFP is solved using initial solutions returned by the two randomized greedy heuristics after

30 minutes. Tables 2 and 3 report the performance of the FS-MILFP re-optimization on instances

H and C, respectively. In these two tables, the column “Map” indicates the type of each instance.

Columns “|Z|” and “|H|” indicate the number of customers and the length of time horizon in

each instance. Columns “LR”, “TSC” and “TDQ” report the value of the logistic ratio, the total

shift cost and the total delivered quantity of each solution. Values indexed by 0 are obtained

by the heuristics only and those indexed by 1 are obtained after the FS-MILFP re-optimization.

When no feasible solution has been found, the corresponding logistic ratio, shift cost and delivery

quantity are marked by “-”. Columns under the label “Gaps” show improvements of solution

values obtained after solving FS-MILFP. The gap is computed by formula (53) and expressed

in percentage. Columns “Gap(LR)”, “Gap(TSC)”, Gap(TDQ)” indicate the gaps for the logistic

ratio, the total shift cost and the total delivered quantity, respectively. Column “Gap(LR)” is the

average gap of the logistic ratio over all the instances in the same category. If the initial solution

of an instance is not feasible, but after the FS-MILFP re-optimization, a feasible solution is found,

then “*” is marked in the gap columns.

Gap(x) =
x1−x0

x0

(%) (53)

For both instance sets H and C, the FS-MILFP component can largely improve the solutions

of the heuristics. The average reduction rate of the logistic ratio brought by FS-MILFP over all

instances H is 11.62%, which results from 7.02% decrease of the total shift cost and 2.91% increase

of the total delivery quantity. In particular, the algorithm for solving FS-MILFP is able to repair

two instances solved by the heuristics.

For instances C, under 360 hours’ time horizon, the FS-MILFP can be solved with instances of 50

customers and it can also repair some of the initial infeasible solutions. The average improvement

of the logistic ratio is 15.52% which results from 5.98% decrease of total shift coast and 8.15%

increase of the total delivery quantity.

4.3. Effectiveness of FS-MILFP on the Challenge instances

To test the limit of the FS-MILFP, we apply the FS-MILFP to the instances of the Challenge

and we use as initial solutions the results obtained by the randomized greedy heuristics after 30
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Table 2 Re-optimization by the FS-MILFP on Instances H with initial solutions of 30 min of randomized

greedy heuristics

Map |Z| |H| greedy heuristics re-optimization FS-MILFP Gaps

LR0 TSC0 TDQ0 LR1 TSC1 TDQ1 Gap(LR) Gap(TSC) Gap(TDQ) Gap(LR)

I 32 48 0.015926 1013.58 63645.02 0.015799 1013.58 64152.97 -0.80% 0.00% 0.80%

-27.37%
II 36 48 0.098906 431.20 4359.71 0.070220 350.80 4995.71 -29.00% -18.65% 14.59%
III 118 48 0.013250 106.00 8000.00 0.013250 106.00 8000.00 0.00% 0.00% 0.00%
IV 179 48 0.027029 417.50 15446.42 0.026852 417.50 15548.22 -0.65% 0.00% 0.66%
V 312 48 0.016996 3790.48 223019.28 0.015913 3610.88 226910.78 -6.37% -4.74% 1.74%

I 32 72 0.016448 1519.05 92352.97 0.015530 1519.05 97815.41 -5.58% 0.00% 5.91%

-6.73%
II 36 72 0.048993 1230.50 25116.04 0.048916 1230.50 25155.28 -0.16% 0.00% 0.16%
III 118 72 0.057257 1350.30 23583.32 0.053809 1344.70 24990.15 -6.02% -0.41% 5.97%
IV 179 72 0.016960 981.00 57841.82 0.016460 981.00 59598.11 -2.95% 0.00% 3.04%
V 312 72 0.019341 8381.48 433363.54 0.015682 7651.88 487946.33 -18.92% -8.70% 12.60%

I 32 96 0.015832 2607.84 164720.17 0.014795 2605.84 176135.37 -6.55% -0.08% 6.93%

-11.89%
II 36 96 0.037481 1419.20 37864.17 0.030279 1338.80 44215.77 -19.22% -5.67% 16.77%
III 118 96 0.041602 1551.40 37291.89 0.037742 1483.40 39303.99 -9.28% -4.38% 5.40%
IV 179 96 0.021804 1651.80 75756.39 0.020452 1562.20 76383.36 -6.20% -5.42% 0.83%
V 312 96 0.020706 10434.67 503935.17 0.016933 8982.67 530496.74 -18.22% -13.92% 5.27%

I 32 120 - - - - - - - - -
II 36 120 0.049108 2408.20 49038.52 0.045644 2408.20 52760.08 -7.05% 0.00% 7.59%

-10.32%
III 118 120 0.039229 1935.30 49332.83 0.036292 1935.30 53325.52 -7.49% 0.00% 8.09%
IV 179 120 0.022460 3008.90 133964.89 0.019458 2653.30 136358.30 -13.37% -11.82% 1.79%
V 312 120 0.021174 13861.19 654626.30 0.018344 12742.39 694643.26 -13.37% -8.07% 6.11%

I 32 144 0.017568 5253.40 299031.71 0.016278 5229.40 321265.27 -7.34% -0.46% 7.44%

-10.37%
II 36 144 0.040484 2403.20 59362.02 0.035549 2352.20 66167.77 -12.19% -2.12% 11.46%
III 118 144 0.042293 3058.00 72304.30 0.040245 3058.00 75983.90 -4.84% 0.00% 5.09%
IV 179 144 0.022460 3008.90 133964.89 0.019458 2653.30 136358.30 -13.37% -11.82% 1.79%
V 312 144 0.021654 19087.54 881463.16 0.018594 17139.54 921795.62 -14.13% -10.21% 4.58%

I 32 168 0.018744 6822.22 363963.17 0.017143 6822.22 397950.81 -8.54% 0.00% 9.34%

-9.35%
II 36 168 0.042915 3793.20 88388.92 0.036796 3741.50 101682.38 -14.26% -1.36% 15.04%
III 118 168 0.047242 4003.20 84737.57 0.046880 4003.20 85392.75 -0.77% 0.00% 0.77%
IV 179 168 0.023041 4039.87 175337.63 0.020357 3625.07 178076.06 -11.65% -10.27% 1.56%
V 312 168 0.023472 27575.40 1174799.47 0.020762 24709.30 1190094.78 -11.55% -10.39% 1.30%

I 32 192 - - - 0.016267 7595.53 466931.37 * * *

-9.16%
II 36 192 0.048119 4101.40 85234.54 0.041343 4101.40 99205.41 -14.08% 0.00% 16.39%
III 118 192 0.045484 4311.50 94791.66 0.044816 4253.90 94920.16 -1.47% -1.34% 0.14%
IV 179 192 0.022286 5461.17 245049.01 0.020379 5043.57 247491.69 -8.56% -7.65% 1.00%
V 312 192 0.022840 30954.57 1355282.97 0.019975 27543.07 1378887.12 -12.54% -11.02% 1.74%

I 32 216 0.019666 9581.09 487199.83 0.017209 9215.49 535514.28 -12.49% -3.82% 9.92%

-8.66%
II 36 216 0.042419 5197.70 122531.16 0.038402 5197.70 135350.05 -9.47% 0.00% 10.46%
III 118 216 0.047733 5563.70 116558.95 0.047664 5563.70 116727.92 -0.14% 0.00% 0.14%
IV 179 216 0.022540 6706.27 297526.05 0.020785 6267.47 301538.60 -7.79% -6.54% 1.35%
V 312 216 0.021940 35028.80 1596578.46 0.019004 30594.63 1609944.00 -13.38% -12.66% 0.84%

I 32 240 - - - 0.016530 9578.29 579434.16 * * *

-9.60%
II 36 240 0.040642 6303.90 155109.52 0.034466 6158.40 178681.11 -15.20% -2.31% 15.20%
III 118 240 0.048196 6664.70 138283.83 0.047726 6612.30 138548.01 -0.98% -0.79% 0.19%
IV 179 240 0.023689 9033.67 381343.93 0.021776 8340.87 383037.34 -8.08% -7.67% 0.44%
V 312 240 0.021994 39236.84 1783940.27 0.018884 34335.97 1818282.65 -14.14% -12.49% 1.93%

average gap -11.62% -7.02% 2.91%

minutes. We also use the solutions returned by the algorithms of the winner of the Challenge and

the winners of the scientific prize.

The results show that the FS-MILFP reoptimization is effective and can be applied to any

solution methods that provide feasible sequences of operations. Table 4 is the improvement after

solving FS-MILFP using the initial solutions given by our randomized heuristics. Table 5 shows the

improvement of the best know upper bound obtained by Ahmed Kheiri (Cardiff University, U.K.),

the winner of the Challenge. Table 6 shows the improvement of the solutions obtained by the team
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Table 3 Re-optimization by the FS-MILFP on Instances C with initial solutions of 30 min of randomized greedy

heuristics

Map |Z| |H| greedy heuristics re-optimization FS-MILFP Gaps

LR0 TSC0 TDQ0 LR1 TSC1 TDQ1 Gap(LR) Gap(TSC) Gap(TDQ) Gap(LR)

I 5 360 0.071938 417.25 5800.17 0.071656 417.25 5822.98 -0.39% 0.00% 0.39%

-8.82%
II 5 360 0.026883 952.50 35431.70 0.024109 952.50 39507.28 -11.51% 0.00% 11.50%
III 5 360 0.047094 398.70 8466.08 0.046143 398.70 8640.58 -2.06% 0.00% 2.06%
IV 5 360 0.101030 551.90 5462.76 0.092756 518.80 5593.18 -8.92% -6.00% 2.39%
V 5 360 0.044637 557.10 12480.68 0.036819 460.20 12498.90 -21.23% -17.39% 0.15%

I 10 360 0.021447 3810.42 177665.96 0.019487 3785.66 194266.98 -10.06% -0.65% 9.34%

-15.63%
II 10 360 0.025840 1429.50 55320.32 0.021702 1429.50 65870.50 -19.07% 0.00% 19.07%
III 10 360 0.062965 919.20 14598.52 0.052108 919.20 17640.12 -20.84% 0.00% 20.83%
IV 10 360 0.025329 1068.40 42180.98 0.024243 1068.00 44053.45 -4.48% -0.04% 4.44%
V 10 360 0.029531 2753.10 93226.96 0.023871 2340.90 98065.11 -23.71% -14.97% 5.19%

II 15 360 0.034749 3313.00 95341.54 0.026277 3174.20 120799.65 -32.24% -4.19% 26.70%

-23.60%
III 15 360 0.075392 2681.40 35566.15 0.065481 2412.50 36842.90 -15.14% -10.03% 3.59%
IV 15 360 0.029864 1339.10 44839.75 0.024568 1162.00 47297.60 -21.56% -13.23% 5.48%
V 15 360 0.030955 6471.09 209050.20 0.024670 5433.94 220264.97 -25.48% -16.03% 5.36%

II 20 360 0.037180 4505.90 121192.29 0.030804 4325.30 140412.16 -20.70% -4.01% 15.86%
-20.04%IV 20 360 0.030914 2161.30 69913.40 0.026797 2024.79 75560.13 -15.36% -6.32% 8.08%

V 20 360 0.031425 6392.04 203403.62 0.025331 5483.89 216486.17 -24.06% -14.21% 6.43%

I 25 360 0.017661 6195.31 350785.86 0.016217 6194.11 381957.98 -8.90% -0.02% 8.89%

-13.07%
II 25 360 0.042188 7021.70 166437.69 0.037203 6918.90 185975.36 -13.40% -1.46% 11.74%
IV 25 360 0.029093 2430.30 83534.26 0.024929 2244.50 90034.05 -16.70% -7.65% 7.78%
V 25 360 0.028982 7425.48 256206.88 0.025589 6847.23 267583.16 -13.26% -7.79% 4.44%

II 30 360 0.046598 8061.10 172990.69 0.039237 7579.40 193167.48 -18.76% -5.98% 11.66%
-14.10%IV 30 360 0.030096 2711.00 90078.05 0.027500 2711.00 98581.30 -9.44% 0.00% 9.44%

V 30 360 - - - 0.026492 7089.94 267621.39 * * *

II 35 360 0.044720 9064.00 202682.79 0.039928 9012.60 225719.39 -12.00% -0.57% 11.37%
-15.91%IV 35 360 0.028667 3529.20 123110.89 0.025625 3318.90 129520.36 -11.87% -5.96% 5.21%

V 35 360 0.023280 10800.93 463957.66 0.018798 9437.13 502019.17 -23.84% -12.63% 8.20%

IV 40 360 0.028206 4339.90 153863.08 0.024177 4107.20 169880.03 -16.66% -5.36% 10.41%
-16.66%

V 40 360 - - - 0.017956 8666.89 482666.21 * * *

IV 45 360 0.026564 4315.80 162469.13 0.025488 4249.00 166704.09 -4.22% -1.55% 2.61%
-9.55%

V 45 360 0.024165 12181.72 504114.42 0.021034 11194.37 532193.08 -14.89% -8.11% 5.57%

IV 50 360 0.025970 4371.40 168327.57 0.024617 4313.00 175203.06 -5.50% -1.34% 4.08%
-17.86%

V 50 360 0.023685 11729.53 495233.73 0.018189 9405.79 517119.80 -30.22% -19.81% 4.42%

average gap -15.52% -5.98% 8.15%

who wins the scientific prize by Nabil Absi, Diego Cattaruzza, Dominique Feillet, Frédéric Semet,

Maxime Ogier (Ecole des Mines Saint Etienne, Ecole Centrale Lille, France). In these tables, the

instances are categorized by the map type. Columns labelled by “LR”, “TSC”, and “TDQ” are

for values of the logistic ratio, the total shift cost and the total delivery quantity, as before. Values

labelled by 0 are in the initial solution and values labelled by 1 are obtained by the FS-MILFP

reoptimization.

We set a 30 minutes time limit for the solution of the FS-MILFP model. For most of the

instances, the time spent for re-optimization is less than 400 seconds. On average, the FS-MILFP

re-optimization is able to improve the logistic ratio of our randomized heuristics by 6.78%. The

average improvement of the solutions obtained by the scientific prize team is 3.49%. The average

improvement of the best upper bound is 1.95%. The improvement brought by FS-MILFP is larger

for instances of map V having a larger number of customers. This could be explained by the fact
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Table 4 Improvement of the solution of 30 min randomized heuristics by the FS-MILFP re-optimization on

intances of the Challenge

Map inst
solution by 30 min greedy heuristics reoptimized solution by FS-MILFP Gaps

time (s)
LR0 TSC0 TDQ0 LR1 TSC1 TDQ1 Gap(LR) Gap(TSC) Gap(TDQ) Gap(LR)

I
2.24 0.019026 10041.34 527773.57445264 0.017279 9386.07 543214.28721764 -9.18% -6.53% 2.93%

-3,06%
9

2.25 - - - - - - - - -
2.26 0.054344 62404.48 1148330.77055505 0,054344 62404,48 1148330,77055505 0.0% 0.0% 0.0% 1803

II
2.13 0.055549 10534 189633.71192296 0.053881 10380.4 192655.62192093 -3.00% -1.46% 1.59%

-3,12%
6

2.14 0.077024 53361.6 692790.81930113 0.074027 52130.4 704211.81311074 -3.89% -2.31% 1.65% 117
2.19 0.082765 54279.4 655821.872372527 0.080723 53611.8 664144.56999617 -2.47% -1.23% 1.27% 118

III

2.15 0.063036 8521.2 135179.73513544 0.060052 8214.8 136795.33513374 -4.73% -3.60% 1.20%
-1,18%

1
2.17 - - - - - - - - -
2.18 - - - - - - - - -
X3 - - - - - - - - -

IV

2.16 0.026034 10478.97 402504.05752936 0.024898 10048.17 403573.64368827 -4.36% -4.11% 0.27%
-4,28%

1
2.20 0.025649 49589.43 1933391.3971696 0.024292 47400.23 1951253.35263731 -5.29% -4.41% 0.92% 44
2.21 0.026353 50449.77 1914386.44922121 0.025536 48998.57 1918805.39998709 -3.10% -2.88% 0.23% 40
X2 0.026038 10480.57 402504.05752936 0.024902 10049.77 403573.64368838 -4.36% -4.11% 0.27% 1

V

2.12 0.02142 37940.99 1771254.51440135 0.017763 31662.29 1782440.91730439 -17.07% -16.55% 0.63%
-5,69%

74
2.22 - - - - - - - - -
2.23 - - - - - - - - -
X1 0.02142 37940.99 1771254.51440135 0.017763 31662.29 1782440.91730439 -17.07% -16.55% 0.63% 75
X4 - - - - - - - - -
X5 - - - - - - - - -

average gap -6,78% -5,79% 1,05%

that the methods proposed during the challenge have difficulties in managing continuous quantities

such as the driver working times and the inventory levels. From Tables 4–6, one can also see that

the influence of the instance type to the gap of the logistic ratio is not very obvious. For some

small instances on map I or II, the solution of FS-MILFP is not able to converge to optimality after

30 minutes. By analyzing the solution files, we found that the improvement of the logistic ratio

is indeed mainly due to adjustments of arrival times and delivery quantities. The layover pauses

are also successfully re-positioned by FT-MILFP such that the overall performance of each shift is

improved.

4.4. Complete decomposition method and performance of the RT-MILFP on sets
H and C

In the Challenge context, the complete decomposition method was able to obtain 13 feasible solu-

tions out of 20 instances. The infeasibility is mainly due to the fact that the greedy heuristics

could not always find a feasible solution and that RT-MILFP does not scale well on large Chal-

lenge instances. Nonetheless, our method was ranked 6 out of the 9 finalists, obtaining slightly

better results than the winners of the scientific prize. In what follows, we present the results of the

complete matheuristic on smaller instance sets, which illustrate the potential of RT-MILFP.

Tables 7 and 8 report the improvements brought by RT-MILFP on Instances H and C. In these

experiments, we start with the solutions of the combined randomized heuristics, which have been

re-optimized by FS-MILFP, and show how much RT-MILFP can improve them (after a final re-

optimization). As shown by Tables 7 and 8, RT-MILFP is also able to find solutions of good quality,

especially for smaller instances. For example, for instance H on map II with 48 hours horizon, the
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Table 5 Improvement of the best known upper bound

Map inst
best known upper bound reoptimized solution by FS-MILFP Gaps

time (s)
LR0 TSC0 TDQ0 LR1 TSC1 TDQ1 Gap(LR) Gap(TSC) Gap(TDQ) Gap(LR)

I
2.24 0.013033 8016.33 615067.038590813 0.012523 7716.23 616165.20257248 -3.91% -3.74% 0.18%

-2.49%
1

2.25 0.012411 14652.95 1180611.05703992 0.012137 14383.12 1185081.9329844 -2.21% -1.84% 0.38% 1800
2.26 0.012866 15324.29 1191049.15202624 0.012691 15167.15 1195076.95009976 -1.36% -1.03% 0.34% 1800

II
2.13 0.030768 8313.30 270192.576592003 0.029789 8075.20 271076.95696855 -3.18% -2.86% 0.33%

-2.35%
7

2.14 0.037582 28449.60 757005.958032781 0.036996 28181.50 761748.38802664 -1.56% -0.94% 0.63% 1800
2.19 0.036018 26467.70 734838.073116171 0.035183 26021.70 739616.77311049 -2.32% -1.69% 0.65% 1800

III

2.15 0.026608 7067.36 265613.54769265 0.025894 6905.06 266668.81134 -2.68% -2.30% 0.40%

-1.38%

1
2.17 0.031538 26934.65 854030.680519699 0.031260 26753.15 855818.6127211 -0.88% -0.67% 0.21% 31
2.18 0.033018 27510.50 833208.309782362 0.032700 27311.80 835220.97765779 -0.96% -0.72% 0.24% 16
X3 0.031905 27435.56 859927.474862186 0.031584 27253.36 862892.0718163 -1.01% -0.66% 0.34% 21

IV

2.16 0.012420 7800.43 628047.868720703 0.012207 7684.93 629548.20316877 -1.71% -1.48% 0.24%

-1.28%

1
2.20 0.018656 37635.23 2017275.41060711 0.018489 37472.93 2026820.10946348 -0.90% -0.43% 0.47% 64
2.21 0.017210 34639.86 2012811.83820039 0.017051 34473.76 2021817.89608588 -0.92% -0.48% 0.45% 80
X2 0.01241 7286.53 587140.465024078 0.012214 7199.23 589405.27195929 -1.58% -1.20% 0.39% 1

V

2.12 0.010266 22398.88 2181947.2958854 0.010046 22009.03 2190826.15713757 -2.14% -1.74% 0.41%

-2.31%

31
2.22 0.012992 59681.85 4593776.09874866 0.012667 58585.65 4624907.60109552 -2.50% -1.84% 0.68% 211
2.23 0.013311 62221.93 4674428.86039284 0.013003 61133.83 4701647.11295406 -2.31% -1.75% 0.58% 378
X1 0.010234 22504.99 2199123.24909978 0.01001 22116.54 2209352.44682696 -2.19% -1.73% 0.47% 24
X4 0.013015 61765.63 4745719.20105509 0.01269 60625.04 4777226.26343734 -2.50% -1.85% 0.66% 207
X5 0.013994 64727.03 4625451.62636039 0.013681 63669.68 4653731.91491192 -2.24% -1.63% 0.61% 211

average gap -1.95% -1.53% 0.43%

Table 6 Improvement of the solutions of the scientific prize winner

Map inst
initial solution reoptimized solution by FS-MILFP Gaps

time (s)
LR0 TSC0 TDQ0 LR1 TSC1 TDQ1 Gap(LR) Gap(TSC) Gap(TDQ) Gap(LR)

I
2.24 0.014175 8143.82 574523.940152157 0.013847 8101.02 585039.64024015 -2,31% -0,53% 1,83%

-1.55%
5

2.25 0.013194 15692.57 1189341.3641055 0.013113 15658.17 1194120.22416276 -0,61% -0,22% 0,40% 1799
2.26 0.013580 16854.30 1241118.04644541 0.013347 16629.55 1245979.89916813 -1,72% -1,33% 0,39% 1801

II
2.13 0.034803 8536.40 245277.562111547 0.034538 8475.60 245402.16215033 -0,76% -0,71% 0,05%

-1.21%
27

2.14 0.046737 34286.40 733604.336278942 0.045963 33988.40 739469.71159599 -1,66% -0,87% 0,80% 1800
2.19 0.041487 31597.50 761629.455928689 0.041487 31597.50 761629.455928689 0.0% 0.0% 0.0% 1800

III

2.15 0.034528 9023.50 261337.526339042 0.034155 8950.70 262060.6640195 -1,08% -0,81% 0,28%

-1.44%

1
2.17 0.049813 40549.83 814049.140787618 0.048749 39813.03 816696.30925331 -2,14% -1,82% 0,33% 48
2.18 0.047547 40215.74 845813.993534017 0.047019 39960.11 849878.794481201 -1,11% -0,64% 0,48% 255
X3 - - - - - - - - -

IV

2.16 0.016826 10368.04 616206.44733943 0.016288 10136.84 622349.85815969 -3,20% -2,23% 1,00%

-4.18%

2
2.20 0.026095 53143.61 2036507.95301131 0.024284 49593.41 2042195.11844444 -6,94% -6,68% 0,28% 128
2.21 0.025374 52100.23 2053266.23046444 0.024116 49600.43 2056785.73344054 -4,96% -4,80% 0,17% 408
X2 0.016886 10829.14 641323.36793108 0.016613 10696.74 643872.46635999 -1,62% -1,22% 0,40% 2

V

2.12 0.016290 35787.24 2196878.31889949 0.015061 33351.33 2214429.58537573 -7,54% -6,81% 0,80%

-6.23%

318
2.22 0.018819 81176.89 4313490.37037945 0.017725 76933.54 4340497.37396281 -5,81% -5,23% 0,63% 1803
2.23 - - - - - - - - -
X1 0.015974 33695.34 2109356.28342815 0.015017 31949.59 2127535.2895777 -5,99% -5,18% 0,86% 119
X4 0.018325 80909.33 4415134.05755929 0.017198 76392.73 4441915.33785093 -6,15% -5,58% 0,61% 1800
X5 0.018101 81914.75 4525508.58019449 0.017077 77786.85 4555170.33325599 -5,66% -5,04% 0,66% 1800

average gap -3.49% -2.92% 0.59%

improvement brought by RT-MILFP with the FS-MILFP reoptimization can be as high as 62.35%.

For instance C on map V with 5 customers and 360 hours’ horizon, the improvement is also as

high as 67.60%. However, when the instances get larger, the improvement is not so effective.

5. Conclusion and Perspectives

In this paper, a real-life IRP proposed by Air Liquide is presented. This problem includes features

such as the planning of driver activities in continuous time, different levels of time discretisa-

tion, continuous management of trailer quantity and the non-linear objective of the logistic ratio,

together with other business related constraints. It becomes much more complicated than clas-
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Table 7 Improvements brought by the RT-MILFP on Instances H

Map Z H
greedy heuristics + FS-MILFP RT-MILFP + FS-MILFP Gaps

LR0 TSC0 TDQ0 LR1 TSC1 TDQ1 Gap(LR) Gap(TSC) Gap(TDQ) Gap(LR)

I 32 48 0.015795 1012.02 64072.97 0.015433 988.82 64073.0 -2.29% -2.29% 0.00%

-23.25%
II 36 48 0.070220 350.80 4995.71 0.026436 2694.00 101905.8 -62.35% 667.96% 1939.87%
III 118 48 0.013250 106.00 8000.00 0.013250 106.00 8000.00 0.00% 0.00% 0.00%
IV 179 48 0.026852 417.50 15548.22 0.013204 1886.55 142878.1 -50.83% 351.87% 818.94%
V 312 48 0.014503 4260.95 293798.39 0.014389 4227.35 293798.4 -0.79% -0.79% 0.00%

I 32 72 0.015577 1560.90 100208.11 0.015577 1560.90 100208.1 0.00% 0.00% 0.00%

-8.80%
II 36 72 0.038247 1033.80 27029.76 0.025423 2906.80 114337.8 -33.53% 181.18% 323.01%
III 118 72 0.045632 1126.30 24682.02 0.043445 1072.30 24682.0 -4.79% -4.79% 0.00%
IV 179 72 0.014880 815.90 54830.81 0.014156 2434.00 171944.1 -4.87% 198.32% 213.59%
V 312 72 0.016827 8225.09 488813.36 0.016693 8156.55 488629.0 -0.80% -0.83% -0.04%

I 32 96 0.015433 2797.77 181286.27 0.015047 2728.97 181369.1 -2.50% -2.46% 0.05%

-4.88%
II 36 96 0.030020 1339.10 44606.73 0.025041 2473.90 98795.9 -16.59% 84.74% 121.48%
III 118 96 0.036421 1449.80 39806.57 0.035105 1397.40 39806.6 -3.61% -3.61% 0.00%
IV 179 96 0.018955 1477.80 77965.41 0.018955 1477.80 77965.4 0.00% 0.00% 0.00%
V 312 96 0.017628 10754.47 610081.29 0.017324 10571.97 610250.4 -1.72% -1.70% 0.03%

I 32 120 0.015482 3856.08 249062.01 0.015100 3742.14 247827.6 -2.47% -2.95% -0.50%

-5.89%
II 36 120 0.041657 2380.10 57135.46 0.031711 4446.80 140227.4 -23.88% 86.83% 145.43%
III 118 120 0.034757 1848.60 53186.72 0.033772 1796.20 53186.7 -2.83% -2.83% 0.00%
IV 179 120 0.019355 2596.50 134148.91 0.019355 2596.50 134148.9 0.00% 0.00% 0.00%
V 312 120 0.017835 13149.15 737274.97 0.017784 13112.75 737342.2 -0.29% -0.28% 0.01%

I 32 144 0.016928 5531.96 326784.77 0.016336 5340.76 326930.6 -3.50% -3.46% 0.04%

-2.06%
II 36 144 0.033790 2623.10 77630.48 0.031853 4092.60 128482.9 -5.73% 56.02% 65.51%
III 118 144 0.038552 3209.70 83255.59 0.038552 3209.70 83255.59 0.00% 0.00% 0.00%
IV 179 144 0.019714 2716.40 137791.71 0.019714 2716.40 137791.71 0.00% 0.00% 0.00%
V 312 144 0.019355 17467.08 902461.94 0.019152 17301.73 903398.5 -1.05% -0.95% 0.10%

I 32 168 0.017842 7280.21 408035.53 0.017842 7280.21 408035.5 0.00% 0.00% 0.00%

-0.20%
II 36 168 0.037818 3563.00 94214.48 0.037818 3563.00 94214.5 0.00% 0.00% 0.00%
III 118 168 0.046383 4233.40 91270.89 0.046383 4233.40 91270.89 0.00% 0.00% 0.00%
IV 179 168 0.020346 3623.07 178076.06 0.020346 3623.07 178076.06 0.00% 0.00% 0.00%
V 312 168 0.019726 23552.32 1194002.72 0.019528 23318.32 1194125.3 -1.00% -0.99% 0.01%

I 32 192 0.017262 8646.57 500906.12 0.017109 8570.17 500906.1 -0.89% -0.88% 0.00%

-2.53%
II 36 192 0.041032 4385.00 106867.37 0.036483 4942.60 135477.3 -11.09% 12.72% 26.77%
III 118 192 0.045229 4198.70 92832.33 0.045220 4197.90 92832.3 -0.02% -0.02% 0.00%
IV 179 192 0.020379 5043.57 247491.69 0.020379 5043.57 247491.69 0.00% 0.00% 0.00%
V 312 192 0.018794 26470.76 1408467.59 0.018673 26308.36 1408931.3 -0.64% -0.61% 0.03%

I 32 216 0.017894 9635.22 538458.58 0.017852 9612.42 538458.6 -0.23% -0.24% 0.00%

-0.17%
II 36 216 0.035895 5022.10 139910.67 0.035895 5022.10 139910.67 0.00% 0.00% 0.00%
III 118 216 0.047664 5563.70 116727.92 0.047664 5563.70 116727.92 0.00% 0.00% 0.00%
IV 179 216 0.020717 6176.97 298165.90 0.020717 6176.97 298165.90 0.00% 0.00% 0.00%
V 312 216 0.018321 30438.99 1661449.97 0.018208 30252.29 1661515.1 -0.62% -0.61% 0.00%

I 32 240 0.018038 10120.46 561066.94 0.017787 9979.66 561066.9 -1.39% -1.39% -0.00%

-0.67%
II 36 240 0.038095 6624.30 173890.71 0.037570 6535.10 173945.5 -1.38% -1.35% 0.03%
III 118 240 0.048735 6680.10 137070.26 0.048735 6680.10 137070.26 0.00% 0.00% 0.00%
IV 179 240 0.021776 8340.87 383037.34 0.021776 8340.87 383037.34 0.00% 0.00% 0.00%
V 312 240 0.019038 34173.88 1795023.41 0.018930 33981.44 1795132.9 -0.57% -0.56% 0.01%

sic IRPs studied in the literature. A matheuristic method is proposed to solve this problem. In

particular, a fixed-sequence sub-problem denoted FSCIRP is identified and an FS-MILFP model

is proposed to solve it with an algorithm for dealing with the non-linear objective. Given a fixed

sequence, the FS-MILFP checks whether there exists a feasible planning of delivery or not. Given

a feasible sequence, this model is experimentally proved efficient for re-optimizing the timing and

quantity of the operations. It was even able to improve the best solutions obtained so far during the

Challenge. Greedy heuristics and a mathematical model with column generation are also proposed

for sequence generation. This matheuristic method is very efficient for the solution of instances
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Table 8 Improvements brought by the RT-MILFP on Instances C with 360 hours horizon

Map Z
greedy heuristics + FS-MILFP RT-MILFP + FS-MILFP Gaps

LR0 TSC0 TDQ0 LR1 TSC1 TDQ1 Gap(LR) Gap(TSC) Gap(TDQ) Gap(LR)

I 5 0.071656 417.25 5822.98 0.071656 417.25 5822.98 0.00% 0.00% 0.00%

-23.13%
II 5 0.016458 973.20 59130.98 0.016458 973.20 59130.98 0.00% 0.00% 0.00%
III 5 0.046143 398.70 8640.58 0.039757 479.90 12070.88 -13.84% 20.37% 39.70%
IV 5 0.098191 549.20 5593.18 0.063720 329.50 5171.08 -35.11% -40.00% -7.55%
V 5 0.036672 442.20 12058.20 0.011880 264.90 22297.70 -67.60% -40.09% 84.92%

I 10 0.020793 4009.07 192810.10 0.020793 4009.07 192810.10 0.00% 0.00% 0.00%

-3.83%
II 10 0.019350 1959.40 101259.80 0.018951 1919.00 101259.80 -2.06% -2.06% 0.00%
III 10 0.052108 919.20 17640.12 0.052108 919.20 17640.12 0.00% 0.00% 0.00%
IV 10 0.023874 1070.60 44843.35 0.023874 1070.60 44843.35 0.00% 0.00% 0.00%
V 10 0.030155 2899.80 96163.57 0.024996 2402.60 96118.07 -17.11% -17.15% -0.05%

I 15 0.020428 5702.37 279138.53 0.020427 5701.97 279138.53 -0.00% -0.01% 0.00%

-3.72%
II 15 0.031386 3829.00 121995.92 0.031386 3829.00 121995.92 0.00% 0.00% 0.00%
III 15 0.061985 2399.80 38715.76 0.061985 2399.80 38715.76 0.00% 0.00% 0.00%
IV 15 0.026928 1360.60 50526.51 0.025725 1299.80 50526.51 -4.47% -4.47% 0.00%
V 15 0.030866 6102.99 197727.26 0.026509 5724.58 215945.57 -14.12% -6.20% 9.21%

I 20 0.018295 7066.90 386277.84 0.017201 6578.20 382433.54 -5.98% -6.92% -1.00%

-4.60%
II 20 0.034675 5129.70 147937.14 0.033769 4995.70 147938.04 -2.61% -2.61% 0.00%
III 20 - - - - - - - - -
IV 20 0.026679 2008.99 75301.53 0.026679 2008.99 75301.53 0.00% 0.00% 0.00%
V 20 0.033434 6989.09 209041.51 0.028618 5887.99 205747.44 -14.40% -15.75% -1.58%

I 25 0.017212 6751.55 392247.86 0.017116 6713.15 392217.66 -0.56% -0.57% -0.01%

-3.56%
II 25 0.039908 7748.40 194154.67 0.039678 7703.60 194154.67 -0.58% -0.58% 0.00%
III 25 - - - - - - - - -
IV 25 0.027023 2359.20 87303.95 0.025980 2172.80 83633.34 -3.86% -7.90% -4.20%
V 25 0.024505 6428.33 262327.23 0.021370 5560.73 260209.91 -12.79% -13.50% -0.81%

I 30 0.017869 7419.56 415218.14 0.017619 7317.61 415318.54 -1.40% -1.37% 0.02%

-2.67%
II 30 0.044091 8715.50 197671.45 0.041911 8292.70 197865.92 -4.94% -4.85% 0.10%
III 30 - - - - - - - - -
IV 30 0.027312 2896.60 106056.10 0.027312 2896.60 106056.10 0.00% 0.00% 0.00%
V 30 0.027452 7783.03 283512.80 0.025525 7236.73 283512.80 -7.02% -7.02% 0.00%

II 35 0.038618 8520.30 220632.12 0.038455 8486.70 220690.42 -0.42% -0.39% 0.03%

-1.83%
III 35 - - - - - - - - -
IV 35 0.026425 2951.50 111691.87 0.025861 2887.90 111669.37 -2.13% -2.15% -0.02%
V 35 0.024206 11989.43 495302.28 0.023050 11416.83 495302.28 -4.78% -4.78% 0.00%

III 40 - - - - - - - - -

-1.26%
IV 40 0.024447 3901.30 159578.80 0.024447 3901.30 159578.80 0.00% 0.00% 0.00%
V 40 0.022981 11710.78 509582.77 0.022113 11268.28 509574.47 -3.78% -3.78% -0.00%

III 45 - - - - - - - - -

0.00%
IV 45 0.024601 3921.10 159384.90 0.024601 3921.10 159384.90 0.00% 0.00% 0.00%
V 45 0.022738 10988.47 483275.05 0.022738 10988.47 483275.05 0.00% 0.00% 0.00%

III 50 - - - - - - - - -

-0.46%
IV 50 0.025674 4491.10 174931.19 0.025664 4489.50 174931.19 -0.04% -0.04% 0.00%
V 50 0.024910 12540.14 503415.59 0.024573 12370.24 503415.59 -1.35% -1.35% 0.00%

with a horizon shorter than 240 hours (10 days) and with the number of customers smaller than

35. Even though this method does not scale-up very well with large-size Challenge instances, it

inspires future research activities.

FSCIRP is worth further studying. First, its complexity is still undetermined. Second, it could

be interesting to determine, given a fixed feasible sequence of shifts, the best logistic-ratio improve-

ment that can be expected. Moreover, the reason of the slow convergence of the logistic ratio in

practice should be analyzed more in details. Other algorithms for accelerating the convergence of

the fractional objective need to be developed.
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The RT-MILFP model can be a start for many studies. First, other decomposition methods

with aggregation could be interesting to study. For instance, using dynamic solution techniques

such as rolling horizon or customer clustering to smaller delivery regions might be a good way to

improve the effectiveness of a column generation approach with mixed integer programming. The

relation between the linearized objective and the logistic ratio could also be further studied. In the

column generation scheme, coefficient α can influence dual values of route selection variables and

hence influence the construction of new routes. An algorithm combining column generation and

non-linear fractional programming could thus be relevant. Moreover, to solve the integer master

problem, the column generation scheme can be integrated into a Branch–and–Price method. Valid

inequalities similar to those proposed in Desaulniers et al. (2016) might also be applied.

Since the logistic ratio implies the minimization of inventory routing costs and the maximization

of delivery quantities, the problem can be studied under multiple objectives. Therefore, it is useful

to look at the maximum quantities one can expect to deliver without increasing the costs. One

can also find an efficient way to deliver, such that the minimum increase in shift costs brings the

maximum increase in delivery quantities.
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