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The consistent vehicle routing problem (ConVRP) aims to design synchronized routes on multiple days

to serve a group of customers while minimizing the total travel cost. It stipulates that customers should

be visited at roughly the same time (time consistency) by several familiar drivers (driver consistency).

This paper generalizes the ConVRP for any level of driver consistency and additionally addresses route

consistency, which means that each driver can traverse at most a certain proportion of different arcs of routes

on planning days, which guarantees route familiarity. To solve this problem, we develop two set-partitioning-

based formulations, one based on routes and the other based on schedules. We investigate valid lower bounds

on the linear relaxations of both of the formulations that are used to derive a subset of columns (routes and

schedules); within the subset are columns of an optimal solution for each formulation. We then solve the

reduced problem of either one of the formulations to achieve an optimal solution.

Numerical results show that our exact method can effectively solve most of the medium-sized ConVRP

instances in the literature, and can also solve some newly generated instances involving up to 50 customers.

Our exact solutions explore some managerial findings with respect to the adoption of consistency measures

in practice. First, maintaining reasonably high levels of consistency requirements does not necessarily always

lead to a substantial increase in cost. Second, a high level of time consistency can potentially be guaranteed

by adopting a high level of driver consistency. Third, maintaining high levels of time consistency and driver

consistency may lead to lower levels of route consistency.

Key words : vehicle routing, generalized consistency requirements, exact method, service efficiency.

History : April 6, 2021

1



Wang et al.: Routing Optimization with Generalized Consistency Requirements

2 Article submitted to Transportation Science; manuscript no. TS-2020-0209

1. Introduction

Small-package shipping companies collect and distribute packages among diverse customers

throughout the days of a given period (e.g., one week). The number of deliveries and pickups (or

demands) associated with each customer varies from day to day. To fulfill these multi-day demands

in a cost-efficient manner, service providers optimize their working routes for a given period such

that total travel cost (or time) can be minimized. In practice, service providers offer synchronized

services, meaning that the routes operated on different days are coordinated for customer conve-

nience, because customers usually prefer to be served at roughly the same time (time consistency,

TC) by the same driver or a small set of drivers (driver consistency, DC) on different days. Embed-

ding this synchronization feature within the vehicle routing decision yields a new class of problems

called consistent vehicle routing problems (ConVRPs) (e.g., see Groër et al. 2009, Kovacs et al.

2015a); a survey on ConVRPs can be found in Kovacs et al. (2014a).

Synchronization should not only aim to increase customer satisfaction but also to improve service

reliability by designing consistent working routes for drivers. Unfamiliar routing plans and service

tasks lead to costly operations of routes for drivers (Kovacs et al. 2014a). In world-class small-

package shipping companies, such as United Parcel Service (UPS), drivers usually work on fixed

routes for many years (Smilowitz et al. 2013), making them familiar with the road and traffic

conditions and effectively reducing service delays. To formalize this route familiarity concept, we

define a new consistency requirement, called route consistency (RC), that aims to design routes

consisting of more common arcs for drivers. Specifically, we evaluate the RC level of a driver as

the proportion (n1/n2) of the number of different arcs (n1) traversed over the total number of all

arcs (n2) traversed over all days. Clearly, the value of n1/n2 measures the difference between routes

operated by a driver in the context of the number of common arcs traversed over all days. With

this RC definition, for a planning horizon of D days we have n1/n2 ∈ [1/D,1], where n1/n2 = 1/D

corresponds to the highest level of RC, where the driver operates the same route on all the D days,

and n1/n2 = 1 suggests the lowest level of RC, where the routes operated on different days share

no common arcs.

Nowadays, under the product return policy offered by online retailers, reverse flows of packages

that need to be collected from customers are growing rapidly. In response, shipping companies

adopt simultaneous distribution and collection operations, in order to increase vehicle utilizations.

In practice, UPS has adopted the solution of simultaneous distribution and collection operations.

Such operational flexibility has also been implemented in the ORION system, which is a newly

developed smart system that optimizes routing decisions for delivery operations and in which

consistency issues are also considered (UPS 2019, Holland et al. 2017).
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Figure 1 An example of consistent schedules

This paper studies a generalized ConVRP by jointly considering TC, DC, and RC, together with

the simultaneous distribution and collection operations, defined as the vehicle routing problem

with generalized consistency requirements and simultaneous distribution and collection (VRPGCR-

SDC). VRPGCR-SDC aims to design routes on multiple days and combine them into “consistent

schedules” for drivers such that demands are satisfied and total travel time is minimized. In our

problem, a schedule is a driver’s work sheet over planning days, which includes all route information

on each day (i.e., visiting sequence and arrival timetable for customers). Operating schedules are

consistent if the maximum arrival time difference at each customer on different days is restricted

by L time units (TC level), each customer is served by at most E different drivers (DC level), and

for each driver, the proportion of the number of different arcs traversed over the total number of

all arcs traversed over all days is no greater than F.

Figure 1 gives an example of consistent schedules in a three-day planning period. It maintains

TC level L = 30 minutes (customers 9, 10, and 11 have the maximum arrival time difference of

30 minutes), DC level E = 1 (each customer is served by one driver), and RC level F = 3/7 (each

driver operates routes with 6 different arcs and 14 total arcs on the three days).

The VRPGCR-SDC is computationally challenging because it can be specialized into known

NP-hard ConVRPs; for example, a special case of the VRPGCR-SDC, with E = 1 and F = 1 (for

which RC is relaxed), is the problem proposed by Groër et al. (2009). This problem is further

transformed into the version of Kovacs et al. (2015a) by slightly increasing E to any integer greater

than one and by addressing TC as an objective penalization rather than a hard constraint. Table

1 summarizes the recent works on ConVRPs, as well as those on the traveling salesman problem

(TSP) and periodic vehicle routing problem (PVRP), which only consider TC or DC.

As shown in Table 1, ConVRPs have been studied with many heuristic algorithms. Some of them

treat the consistency constraints as soft constraints. For example, partial consistency requirements
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Table 1 Summary of the contributed works on routing problems with consistency requirements

Problem Reference Consistency Objective Constraints Algorithm

ConVRP Groër et al. (2009);
Tarantilis et al. (2012);
Kovacs et al. (2014b)

TC, DC
(E = 1)

Minimize total travel
cost

Hard constraints on
TC and DC in model,
but no guarantee on
TC by algorithm

Template route-
based algorithms

Goeke et al. (2019) Minimize total travel
cost

Hard constraints on
TC and DC

Exact algorithm
based on a set-
partitioning formu-
lation

Kovacs et al. (2015a) TC, DC Minimize total travel
cost and TC in a sin-
gle objective

Soft constraints on
TC, hard constraints
on DC

Large neighbor-
hood search

Kovacs et al. (2015b);
Lian et al. (2016)

Minimize total travel
cost, TC, and DC in
multi-objectives

Soft constraints on
TC and DC

Multi-directional
large neighborhood
search or local
search

TSP Subramanyam and
Gounaris (2016);
Subramanyam and
Gounaris (2018)

TC Minimize total travel
cost

Hard constraints on
TC

Exact algorithms
based on the
branch-and-bound
framework

PVRP Smilowitz et al. (2013) DC Minimize total travel
cost and optimize DC
in separated phases

Soft constraints on
DC

Tabu search

TWAVRP Spliet and Gabor
(2015); Subramanyam
et al. (2018)

DC Minimize total travel
cost

Hard constraints on
TC (based on time
window assignment)

Exact algorithms
based on the
branch-and-bound
framework

may be moved to the objectives (e.g., see Kovacs et al. 2015a,b, Lian et al. 2016), whereas some

requirements are regulated using template routes in the algorithms (e.g., see Groër et al. 2009,

Tarantilis et al. 2012, Kovacs et al. 2014b). The template routes are based on a simple precedence

principle, which requires that the order of two customers visited by the same driver must be the

same on all days when both customers require service.

Despite its practical benefits on improving service efficiency, RC has not been studied well in

existing ConVRPs. To improve drivers’ familiarity with their provided services, Smilowitz et al.

(2013) take into account drivers’ familiarity with working regions. Moreover, in the proposed heuris-

tic algorithms for solving ConVRP (e.g., see Groër et al. 2009, Kovacs et al. 2015a), the idea of

template routes has been used to maintain a high level of DC, which indeed improves driver’s

familiarity on customers at the same time. However, these efforts do not really capture driver’s

preferences on operating routes on days with similar routes to increase familiarity with road and

traffic conditions—referring to the concept of RC that has not been addressed in any ConVRPs.
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1.1. Literature Review

Groër et al. (2009) first defined the ConVRP by addressing both TC and DC. The proposed DC

states that each customer must be served by the same driver over the planning days (i.e., E = 1).

They developed a record-to-record algorithm using a given set of template routes to explore highly

synchronized routes to meet TC and DC. But the algorithm had no guarantee of TC in the output

solution. The authors provided a set of benchmark instances with up to 199 customers to analyze

the efficiency of their algorithm. Based on template routes, a tabu search method (Tarantilis et al.

2012) and an adaptive large neighborhood search method (Kovacs et al. 2014b) were developed to

iteratively improve the routing decisions. The concept of template routes benefits the TC. Because

working routes on different days are generated from a template route for a driver (following DC

level E = 1), the working routes will have small arrival-time differences for each customer served

by the same driver. Kovacs et al. (2014b) allowed for an adjustment of departure times at the

depot to synchronize the arrival times at each customer over the planning days. In a subsequent

work, Kovacs et al. (2015a) further generalized the ConVRP by considering a relaxed DC: each

customer can be serviced by a few drivers instead of just one considering that drivers could be

absent during the planning horizon (e.g., on leave for a vacation). They penalized the arrival-time

difference in the objective function. As an alternative to using template routes, they proposed

exploring new routes with a large neighborhood search (LNS) method, which is embedded with a

greedy time-adjustment procedure to improve TC. Multi-objective models and LNS-based methods

for the ConVRPs have been investigated by Kovacs et al. (2015b) and Lian et al. (2016).

In contrast to heuristic methods, exact methods have seldom been considered for ConVRPs. To

the best of our knowledge, Goeke et al. (2019) is the only work that has solved the ConVRP with

E = 1 in an exact fashion. Considering the DC level E = 1, they posited that each driver serves a

disjoint subset (i.e., a cluster) of customers over the planning period, based on which they proposed

a set-partitioning formulation by enumerating all possible customer clusters (a special structure of

E = 1). A column-and-cut generation procedure was developed to find a valid lower bound on the

proposed formulation. Given an upper bound computed from an LNS-based algorithm, they found

a subset of clusters that includes optimal ones for the problem. An optimal solution is returned

by solving the reduced problem using the obtained customer clusters. Their algorithm solves the

problem, with up to 5 days and 30 customers, to optimality. In addition to the practical importance

of the RC level, our work is further motivated by the following reasons: (i) The solution framework

of Goeke et al. (2019) is based on the special structure of E = 1 that is hardly extendable to

generalized cases; (ii) a DC level E = 1 is restrictive in practice (Kovacs et al. 2015a) and the

general case of E ≥ 1 studied by other ConVRP works all focused on heuristics; (iii) even if we

slightly extend the DC level to E = 2, there could be significant operational benefits.
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In addition to the exact algorithm for a special case of the ConVRP, Subramanyam and Gounaris

(2016) and Subramanyam and Gounaris (2018) have developed exact algorithms based on the

branch-and-bound framework to solve a TSP that considers TC for a multi-period setting (known

as ConTSP), where one route per period (i.e., per day) is designed and, thus, DC is not involved.

Spliet and Gabor (2015) studied the time window assignment vehicle routing problem

(TWAVRP) that determines a fixed length time window for each customer under different demand

realization scenarios. This relates to time consistency in the ConVRP in the sense that the service

time of each customer under any scenario must be within the proposed time window, thus ensuring

a small arrival time difference. Different from time consistency in the ConVRP, the TWAVRP has

an exogenous time window for each customer, and then narrows it down to a small one of fixed

length. Meanwhile, waiting at a customer is allowed in the TWAVRP. In their model, the vehicle

route and service time are modeled within a single column, being determined and generated simul-

taneously when solving a pricing problem. A branch-price-and-cut algorithm is developed to solve

to optimality problem instances with up to 25 customers and 3 scenarios.

Subramanyam et al. (2018) proposed a branch-and-bound framework to solve the TWAVRP

that is similar to the exact method proposed in Subramanyam and Gounaris (2018) for solving

the ConTSP. In contrast to Spliet and Gabor (2015), the proposed solution method is able to

tackle both continuous and discrete sets of time window assignments, and can solve more general

scenario-based models capturing uncertainties. Their experimental results showed that the exact

method solves to optimality the problem instances with up to 25 customers and 15 scenarios.

To improve drivers’ efficiency in logistics operations, Smilowitz et al. (2013) enhanced workforce

management by focusing on drivers’ familiarity with both customers and regions. The degree of

familiarity is evaluated using the number of repeated visits by each driver to each customer and

region; they maximized the sum of these numbers in their model. Notably, the region familiarity

considered in their work motivates drivers to work among roughly fixed regions each day. This is

similar to our goal of using RC to improve drivers’ familiarity with the road conditions. In our

problem, the familiarity of roads for a driver depends on the traversed common arcs among the

routes. This can be seen as a supplementary way of describing drivers’ familiarity with the route, in

contrast to the way used in Smilowitz et al. (2013) that minimized the number of different regions

traversed by the drivers.

Allowing simultaneous distribution and collection in VRPs improves vehicle utilization and re-

duces operating costs. This consideration complicates the solution, mainly because the selection of

customers to visit together with the visiting sequence will jointly determine the minimum capacity

required by a route. Existing VRPs with simultaneous distribution and collection operations have
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mainly been studied heuristically (e.g., see Subramanian et al. 2010, Liu et al. 2013, Avci and

Topaloglu 2016). However, Dell’Amico et al. (2006) designed an exact method for addressing it

with a branch-and-price algorithm that optimally solves the problem with up to 40 customers.

1.2. Contributions of This Paper

In this paper, we study the VRPGCR-SDC, the most generalized version of the ConVRP to date,

to investigate the influences of TC, DC, and RC on the multi-day routing optimization. Our work

makes the following major contributions:

(i) The VRPGCR-SDC extends the scope of existing ConVRP studies, by generalizing the con-

sistency requirements considered. From a managerial point of view, by introducing RC, the

problem for the first time extends the utility of consistency to improve service reliability

in addition to customer satisfaction. By exploring this problem, it is convenient to study

the impacts of the consistency requirements and to look into the trade-offs behind customer

satisfaction and service efficiency/reliability with respect to multi-day routing decisions.

(ii) Exploration of VRPGCR-SDC calls for an exact solution strategy for dealing with the gener-

alized consistency requirements, while existing ConVRP studies have been shown to be very

challenging. In this paper, we develop an exact algorithm that is indeed the first exact method

for the ConVRP that considers any level of DC and also the requirement of RC. Extensive

numerical experiments are conducted to attest the efficiency and effectiveness of the proposed

exact method. Results show that our exact method performs effectively in finding optimal

solutions for various ConVRPs, including the specialized problems studied in the literature

and the generalized problem studied in this paper.

(iii) By leveraging the exact solutions of VRPGCR-SDC, we obtain the following managerial

findings on imposing the consistency requirements. First, maintaining reasonable levels of

consistency requirements, rather than very high levels of consistency requirements, does not

necessarily lead to a substantial increase in cost. Second, a high level of TC can potentially

be guaranteed by adopting a high level of DC. Third, maintaining high levels of TC and

DC does not actually motivate the assignment of similar routes with more common arcs to

drivers, thus showing the necessity of introducing RC in the multi-day routing optimization.

Our exact algorithm is based on a a route-based formulation F1 and a schedule-based formulation

F2, both of which are developed in a set-partitioning fashion. We investigate valid lower bounds

on both formulations by using a column-and-cut generation (CCG) algorithm. Given the obtained

lower bounds, we generate a set of routes and a set of schedules that contain the routes and schedules

in the optimal solutions for F1 and F2, respectively, and directly solve the reduced problem of F1
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(using only the generated routes) or F2 (using only the generated schedules) by using a generic

mixed integer programming (MIP) solver based on the sizes of the optimal sets computed. The

generation of routes and schedules for F1 and F2 uses the enumeration-based solution framework

proposed in Baldacci et al. (2008) for the capacitated VRP whereas F1 and F2 are combined in the

exact method following the approach proposed by Mingozzi et al. (2013) for the multitrip VRP.

We summarize other specific methodological contributions as follows:

• We develop new constraints to address TC in our formulations (similar to Spliet and De-

saulniers (2015)), using Big-M-based constraints in contrast to existing formulations. The idea

behind the new TC constraint reformulations can be adapted to many existing routing problems

where the time of each customer visit has to be precisely captured in set-partitioning-based for-

mulations.

• To address all generalized consistency requirements, the proposed set-partitioning-based for-

mulations feature binary and continuous variables, as well as exponentially many route-dependent

constraints. To our knowledge, our work is the first attempt at applying this route enumeration-

based solution framework to solve such complicated set-partitioning-based models, especially on

developing new relaxations for valid lower bounding and on implementing an efficient CCG algo-

rithm for solving the relaxations.

The remainder of this paper is organized as follows. In §2, we formally define the VRPGCR-SDC

and specify the two formulations F1 and F2. In §3, we describe the exact method by introducing

optimality conditions and two relaxations R1 and R2 based on F1 and F2, respectively. §4 and §5

describe the algorithms used to solve R1 and R2, respectively. Numerical experiments are conducted

in §6. Sensitivity analysis and managerial findings are explored in §7. Conclusions are drawn in

§8. Supplementary material is provided in the e-companion (EC) to this paper, and all proofs of

statements in this paper are presented in the EC.

2. Problem Description and Mathematical Formulations

In this section, we first define the VRPGCR-SDC in §2.1. Then, we give two formulations for the

VRPGCR-SDC, these being a route-based formulation (F1) and a schedule-based formulation (F2)

in §2.2 and §2.3, respectively.

2.1. Problem Description

In the VRPGCR-SDC, a set of customers N = {1, ...,N} is served by a set of homogeneous drivers

K= {1, ...,K} using identical vehicles with capacity Q that are based at a single depot (denoted by

0). Drivers and vehicles share a one-to-one relationship, and hereafter we use them interchangeably.
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Given the set of days D = {1, ...,D}, a customer i ∈ N has pid delivery demands and qid pickup

demands on day d ∈D. Let gid be a binary parameter equal to 1 if customer i ∈N on day d ∈D

needs a service (i.e., pid > 0 or qid > 0) and 0 otherwise. If pid = 0 and qid = 0, then customer i does

not require service on day d. We defineNd as the subset of customers needing a service on day d, and

N+
d =Nd∪{0}. The problem can be defined on a graph G = (N+,A) with node set N+ =∪d∈DN+

d

and arc set A=∪d∈DAd, where the set Ad = {(0, j)|j ∈Nd}∪{(i,0)|i∈Nd}∪{(i, j)|i, j ∈Nd : i 6= j},

d ∈ D, represents the set of arcs associated with day d. We denote by tij ≥ 0 the vehicle’s travel

time on arc (i, j) ∈A and by sid ≥ 0 the service time for customer i ∈N+
d on day d ∈D (s0d = 0).

Each vehicle has a driving time limit T .

The objective of the VRPGCR-SDC is to design a set of multi-day routes while minimizing

the total travel time over the planning horizon, subject to the following constraints: (C.1) each

customer is visited exactly once on each day when service is required; (C.2) each driver operates

at most one route per day, where each route is subject to both capacity and maximum duration

limits; (C.3) the arrival time difference at a customer is less than or equal to L; (C.4) each customer

is served by at most E different drivers; and (C.5) each driver operates routes on D days with at

most F proportion of different arcs (over the total number of all arcs traversed).

In the VRPGCR-SDC, we allow possible adjustments to the departure time of a vehicle from

the depot, in order to achieve a high level of TC. Note that a further relaxation on adjusting

the departure times from visited customers may bring extra flexibility to satisfy TC. However, as

shown by Goeke et al. (2019), such benefits can be very marginal. In practice, vehicles waiting at

customers need to occupy public or third-party parking areas outside the depot, and this may incur

new costs to offset the potential revenues. Therefore, like most existing ConVRP studies (e.g., see

Groër et al. 2009, Tarantilis et al. 2012, Kovacs et al. 2014b, 2015a, Goeke et al. 2019), we assume

that vehicles are not allowed to wait at the customers.

For the VRPGCR-SDC, apart from models (F1) and (F2), we have also developed an arc-

based model (F0) with a number of variables and constraints that are polynomial in the instance

size. The details of F0 are given in the e-companion to this paper (see §EC.1). Due to the weak

relaxation of F0, only a small-sized formulation can be solved by using a general-purpose mixed-

integer programming (MIP) solver. In this paper, F0 is mainly used to provide benchmark results

for some small-sized instances, which are later compared with the proposed exact method in §6.

2.2. Route-based Formulation F1

Let Rd be the index set of all routes on day d satisfying both capacity and maximum duration

constraints, and define R= ∪d∈DRd. Each route r ∈Rd on day d has a duration denoted by tRrd.
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Define a binary parameter ari that equals 1 if route r visits customer i and that equals 0 otherwise.

Let erij be a binary parameter that equals 1 if route r passes the arc (i, j) and equals 0 otherwise.

By defining the sets of decision variables: (i) uk
i , a binary variable that equals 1 if customer i∈N

is served by driver k ∈K at least once during the planning horizon and 0 otherwise; and, (ii) vid,

a nonnegative continuous variable showing the arrival time at customer i∈N+ on day d∈D; and,

(iii) ξkrd, a binary variable that equals 1 if route r ∈Rd is operated by driver k ∈ K on day d ∈ D
and 0 otherwise, and (iv) wk

ij, a binary variable that equals 1 if arc (i, j)∈A is traversed by driver

k ∈K at least once on D days and 0 otherwise, the route-based formulation F1 is as follows:

z(F1) = min
∑
d∈D

∑
k∈K

∑
r∈Rd

tRrdξ
k
rd (1a)

s.t.
∑
k∈K

∑
r∈Rd

ariξ
k
rd = gid i∈N , d∈D, (1b)∑

r∈Rd

ξkrd ≤ 1 k ∈K, d∈D, (1c)∑
r∈Rd

ariξ
k
rd ≤ uk

i k ∈K, i∈Nd, d∈D, (1d)∑
k∈K

uk
i ≤E i∈N , (1e)∑

r∈Rd

erijξ
k
rd ≤wk

ij k ∈K, (i, j)∈A, d∈D, (1f)∑
(i,j)∈A

wk
ij ≤F

∑
d∈D

∑
(i,j)∈A

∑
r∈Rd

erijξ
k
rd k ∈K, (1g)

vjd ≥ vid +
∑
k∈K

∑
r∈Rd

erijξ
k
rd(sid + tij)− (1−

∑
k∈K

∑
r∈Rd

erijξ
k
rd)T

d∈D, (i, j)∈A, j 6= 0,

(1h)

vjd ≤ vid +
∑
k∈K

∑
r∈Rd

erijξ
k
rd(sid + tij) + (1−

∑
k∈K

∑
r∈Rd

erijξ
k
rd)T

d∈D, (i, j)∈A, j 6= 0,

(1i)

vid + sid + ti0 ≤ T i∈Nd, d∈D, (1j)

(vid− vid′)gidgid′ ≤L i∈N , d, d′ ∈D : d 6= d′, (1k)

ξkrd ∈ {0,1} r ∈Rd, k ∈K, d∈D, (1l)

wk
ij ∈ {0,1} k ∈K, (i, j)∈A, (1m)

uk
i ∈ {0,1} k ∈K, i∈N , (1n)

vid ≥ 0 i∈Nd, d∈D. (1o)

Objective (1a) aims at minimizing the total travel time. Constraints (1b) enforce that each

customer is visited exactly once on each day on which service is required. Constraints (1c) impose

that each driver can be assigned to at most one route on each day. Constraints (1d)–(1e) link
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the variables ξ and u to define the DC: the maximum number of different drivers to serve a

customer is limited by E. Constraints (1f)–(1g) link the variables ξ and w to define the RC: for

each driver, at most F proportion of different arcs of routes can be traversed over the planning

horizon. Constraints (1h) and (1i) determine the arrival times at the customers. Constraints (1j)

impose that each driver must return to the depot before time T . Constraints (1k), together with

(1h)–(1j), define the TC by ensuring that the maximum arrival time difference at a customer is

limited by L. Constraints (1l)–(1o) define the domain of the decision variables.

Note that constraints (1h) and (1i) used to define TC are with big-M coefficients in F1. For the

continuous relaxation of F1, these constraints will probably be inessential to the problem optimality,

making the TC constraints substantially relaxed and leading to a weak relaxation bound (see §6.2).

To enhance the influence of TC on the relaxation tightness of F1, we propose a new reformulation to

enhance the TC-related constraints. The reformulation requires the following additional parameters

and variables. Let brid be the accumulated time of a vehicle traveling from the depot to customer i

by route r on day d, which also includes the service times of the visited customers (we set brid = 0

for each d∈D if customer i is not visited by route r). Let lrd be the latest departure time of route

r on day d from the depot to respect the duration time limit T , where lrd = T − tRrd. Consider a new

variable φk
rd, which is a nonnegative continuous variable that records the departure time of route

r ∈Rd operated by driver k ∈K on day d∈D. Based on the above notations, constraints (1h) and

(1i) can be replaced by the following reformulated constraints (2a)–(2c) to address TC:

vid =
∑
k∈K

∑
r∈Rd

ariφ
k
rd +

∑
k∈K

∑
r∈Rd

bridξ
k
rd i∈Nd, d∈D, (2a)

φk
rd ≤ lrdξkrd r ∈Rd, k ∈K, d∈D, (2b)

φk
rd ≥ 0 r ∈Rd, k ∈K, d∈D. (2c)

Similar ways may also be found that are used to model arrival times at customers in a set-

partitioning-like formulation for VRPs (e.g., see Spliet and Gabor 2015). In the remainder of this

paper, we refer to F1 with the route-based formulation using the enhanced TC constraints (2a)–

(2c). We denote by LF1 the LP-relaxation of F1, and by z(LF1) the corresponding optimal cost.

2.3. Schedule-based Formulation F2

Let H be the index set of feasible schedules, where each schedule h∈H is a collection of D routes

to be operated by a driver over the planning horizon. Let Ψh = {rh1 , rh2 , ..., rhD} denote the vector

of working routes in schedule h, where rhd ∈ Rd indicates the index of routes operated on day

d ∈ D in schedule h, and rhd = 0 indicates that no route is operated on day d. To model RC, a

proportion of at most F of different arcs of routes in each schedule h ∈ H can be traversed, i.e.,
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∑
(i,j)∈Aw

h
ij ≤F

∑
d∈D

∑
(i,j)∈A erhd ij

, where for each arc (i, j) ∈A, wh
ij = 0 if erh

d
ij = 0 for all d ∈D

and wh
ij = 1 otherwise. Each schedule h∈H has total travel duration tHh =

∑
d∈D t

R
rh
d
,d

. Let ahid be a

binary parameter that equals 1 if schedule h serves customer i on day d and equals 0 otherwise. In

addition, a binary parameter ohi is introduced that equals 1 if schedule h serves customer i on at

least one day and equals 0 otherwise. Similar to F1, values bhid and lhd denote the accumulated time

and latest departure time, respectively, which are used to define the enhanced constraints for TC.

By defining the additional sets of variables: (i) ξh, a binary variable that equals 1 if schedule h∈H

is operated and equals 0 otherwise and (ii) φhd, a nonnegative continuous variable that determines

the departure time of the route operated on day d ∈ D of schedule h ∈ H, the schedule-based

formulation F2 is as follows:

z(F2) = min
∑
h∈H

tHh ξh (3a)

s.t.
∑
h∈H

ahidξh = gid i∈N , d∈D, (3b)∑
h∈H

ξh ≤K, (3c)∑
h∈H

ohiξh ≤E i∈N , (3d)

vid =
∑
h∈H

ahidφhd +
∑
h∈H

bhidξh i∈Nd, d∈D, (3e)

φhd ≤ lhdξh h∈H, d∈D, (3f)

vid + sid + ti0 ≤ T i∈Nd, d∈D, (3g)

(vid− vid′)gidgid′ ≤L i∈N , d, d′ ∈D : d 6= d′, (3h)

ξh ∈ {0,1} h∈H, (3i)

φhd ≥ 0 h∈H, d∈D, (3j)

vid ≥ 0 i∈Nd, d∈D. (3k)

Objective (3a) is to minimize the total travel time. Constraints (3b) guarantee that each customer

must be served on each day that requires a service. Constraint (3c) limits the number of schedules

selected in the solution to the number of available drivers. Constraints (3d) model the DC level

E for each customer, whereas constraints (3e)–(3h) link variables v, φ, and ξ to model the TC

level L for each customer. Constraints (3i)–(3k) define the domain of the decision variables. In the

formulation, RC is implicitly modeled by the definition of each schedule h.

We denote by LF2 and z(LF2) the LP-relaxations of F2 and its optimal solution cost, respectively.
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3. Overview of the Exact Method

This section provides an overview of the exact method proposed to solve the VRPGCR-SDC that

relies on route and schedule generation–based approaches (similar to Baldacci et al. 2008, Mingozzi

et al. 2013). A set-partitioning model with exponentially many integer columns can be equivalently

solved by a reduced one with a smaller column set that includes any columns used for an optimal

solution. The method consists of combining different dual ascent procedures to find a near optimal

dual solution of the set-partitioning model used to generate a reduced problem containing all

optimal integer solutions. A general integer programming (IP) solver is then used to solve the

reduced problem, using a known upper bound as a cutoff. The key observation is that a route can

only be part of a solution that improves the best upper bound if its reduced cost is smaller than

the gap between the upper bound and the cost of the dual solution.

The following proposition extends this observation to MIPs, whose continuous variables all have

zero coefficients in the objective function, which is the case for formulations F1 and F2.

Proposition 1. Let P be an MIP defined as z(P) = min{cx|s.t.Ax+By= b,x∈ {0,1}n1 ,y ∈

Rn2
+ }. Let x be a primal feasible solution of cost ub, and let ω be a dual feasible solution of the

LP-relaxation of P of cost z′(ω). Any optimal solution x∗ of cost z(P) less than or equal to ub

cannot contain a variable x∗i = 1 having a reduced cost c′i (computed with respect to the dual solution

ω) greater than ub− z′(ω). (See §EC.2.1 for the proof)

Let Π1 be a dual feasible solution of LF1 of cost z′(Π1), and let ub represent an upper bound

on the optimal solution cost of the VRPGCR-SDC. Let R̄d denote the subset of routes on day d,

where the reduced cost of each variable ξkrd with k ∈K, d ∈D, and r ∈ R̄d is less than or equal to

ub−z′(Π1). Based on Proposition 1, the route set R̄=∪d∈DR̄d is a candidate optimal route set for

F1, which contains all routes of any optimal solution of cost less than or equal to ub. Given that the

optimal route set R̄ represents a subset of H in F2, each schedule h∈ Ĥ is composed of routes rhd

from R̄d∪{0} on day d∈D. Hence, we can define a reduced schedule-based formulation RF2, which

is obtained from F2 by replacing the schedule set H with the optimal schedule set Ĥ. Let (LRF2)

be the LP-relaxation of formulation RF2. Clearly, we have z(RF2) = z(F2) and z(LRF2)≥ z(LF2).

In the exact method, the generation of schedules for RF2 is based on the optimal route set R̄. In

addition, based on Proposition 1, we can further reduce the size of the resulting schedule set Ĥ.

Indeed, given a dual feasible solution Π2 of LRF2 of cost z′(Π2) and an upper bound ub, we define

H̄ ⊆ Ĥ as the candidate optimal schedule set, where the reduced cost of each variable ξh for h∈ H̄

with respect to Π2 is no greater than ub− z′(Π2). Given the generated optimal route set R̄ and

optimal schedule set H̄, the VRPGCR-SDC can be solved to optimality by the direct use of an
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MIP solver applied to formulation F1 over the route set R̄ or to formulation RF2 over the schedule

set H̄. The efficiency of this approach is related to the cardinality of the final sets R̄ and H̄, whose

sizes depend on the gap between the ub and the costs of the dual solutions.

We next introduce two relaxations in §3.1 and the exact method is described in §3.2.

3.1. Relaxations R1 and R2

In this section, we describe two LP relaxations of formulations F1 and RF2 that can be used to

compute tight lower bounds on the optimal solution cost of the VRPGCR-SDC.

Relaxation R1 of F1. The first relaxation R1 is obtained from formulation LF1 as follows.

i) Let Cd = {C ⊆Nd : |C|= 3} be the set of all triplets of the customers requiring service on day

d, and let C(r) be the set of all triplets for which at least two customers are visited by route

r (a subset of C =∪d∈DCd). We add to LF1 the following subset-row (SR3) inequalities:∑
r∈Rd:C∈C(r)

∑
k∈K

ξkrd ≤ 1,C ∈ Cd, d∈D, (4)

which correspond to a subset of subset-row inequalities proposed by Jepsen et al. (2008).

ii) We define continuous variables ζrd in [0,1] and continuous variables ηrd ≥ 0 that represent

whether route r is selected in the solution on day d and the departure time of route r on day

d, respectively. Due to constraints (1b) (the same route r can be operated by at most one

driver on each day d), we have ζrd =
∑

k∈K ξ
k
rd and ηrd =

∑
k∈K φ

k
rd. We also define variables w̃ij

such that w̃ij =
∑

k∈Kw
k
ij. We replace all of the constraints in LF1 with surrogate constraints,

where “surrogate constraints” mean aggregated (or reformulated) constraints that remove the

dimension of drivers k ∈K.

iii) We aggregate the column-dependent rows (2b) for all r ∈Rd.

Full details of these steps are given in the e-companion to this paper (see §EC.3). The resulting

relaxation R1 is as follows:

z(R1) = min
∑
d∈D

∑
r∈Rd

tRrdζrd (5a)

s.t.
∑
r∈Rd

ariζrd = gid i∈N , d∈D, (5b)∑
r∈Rd

ζrd ≤K d∈D, (5c)∑
r∈Rd

erijζrd ≤ w̃ij (i, j)∈A, d∈D, (5d)∑
(i,j)∈A

w̃ij ≤F
∑
d∈D

∑
(i,j)∈A

∑
r∈Rd

erijζrd, (5e)



Wang et al.: Routing Optimization with Generalized Consistency Requirements

Article submitted to Transportation Science; manuscript no. TS-2020-0209 15

vid =
∑
r∈Rd

ariηrd +
∑
r∈Rd

bridζrd i∈Nd, d∈D, (5f)∑
r∈Rd

ηrd ≤
∑
r∈Rd

lrdζrd d∈D, (5g)

vid + sid + ti0 ≤ T i∈Nd, d∈D, (5h)

(vid− vid′)gidgid′ ≤L i∈N , d, d′ ∈D : d 6= d′, (5i)∑
r∈Rd:C∈C(r)

ζrd ≤ 1 C ∈ Cd, d∈D, (5j)

ζrd ∈ [0,1] r ∈Rd, d∈D, (5k)

w̃ij ∈ [0,1] (i, j)∈A, (5l)

ηrd ≥ 0 r ∈Rd, d∈D, (5m)

vid ≥ 0 i∈Nd, d∈D. (5n)

Note that it is sufficient to define variable w̃ij to take binary values due to constraints (5b), (5d)

and (5e). Relaxation R1 avoids the use of the driver dimension k ∈K, a drawback of formulation

LF1 being symmetric in the vehicles (the fleet is homogeneous). As a result, DC restriction is not

handled in R1, and RC restriction is partially relaxed (constraints (5d) and (5e)). It is worth noting

that the resulting formulation is similar to the model formulation proposed in Spliet and Gabor

(2015) for the time windows assignment vehicle routing problem considering no exogenous time

windows. In addition, column-dependent rows are not present in the formulation, thus simplifying

the corresponding column generation procedure. Note that our aggregation technique of handling

column-dependent rows will not lose optimality in our exact solution method as shown by the

following theorem. The main intuition is that R1 is a relaxation of LF1 (with SR3 inequalities) in

the aggregated fashion, and thus any feasible dual solution to R1 can be leveraged to reconstruct

a feasible one to LF1.

Theorem 1. Given any dual feasible solution Π1 of R1, one can always construct a corre-

sponding dual feasible solution Π′1 for LF1 strengthened with SR3 inequalities such that their dual

objective values are equal. (See §EC.2.2 for the proof)

Based on this result and given an upper bound on the optimal solution cost, the dual solution

Π′1 of LF1 with SR3 inequalities can be used to perform route generation to derive the reduced

route set R̄.

Relaxation R2 of RF2. Relaxation R2 is obtained from formulation LRF2 (i.e., from formu-

lation LF2 by replacing the schedule set H with the schedule set Ĥ generated using the reduced
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route set R̄ from F1), replacing continuous variables ξh and φhd with ζh and ηhd for clarity, respec-

tively, and aggregating constraints (3f) into constraints (6f) to avoid column-dependent rows. The

resulting formulation, further strengthened with SR3 inequalities, is as follows:

z(R2) = min
∑
h∈Ĥ

tHh ζh (6a)

s.t.
∑
h∈Ĥ

ahidζh = gid i∈N , d∈D, (6b)

∑
h∈Ĥ

ζh ≤K, (6c)

∑
h∈Ĥ

ohiζh ≤E i∈N , (6d)

vid =
∑
h∈Ĥ

ahidηhd +
∑
h∈Ĥ

bhidζh i∈Nd, d∈D, (6e)

∑
h∈Ĥ

ηhd ≤
∑
h∈Ĥ

lhdζh d∈D, (6f)

vid + sid + ti0 ≤ T i∈Nd, d∈D, (6g)

(vid− vid′)gidgid′ ≤L i∈N , d, d′ ∈D : d 6= d′, (6h)∑
h∈Ĥ:C∈C(rh

d
)

ζh ≤ 1 C ∈ Cd, d∈D, (6i)

ζh ∈ [0,1] h∈ Ĥ, (6j)

ηhd ≥ 0 h∈ Ĥ, d∈D, (6k)

vid ≥ 0 i∈Nd, d∈D. (6l)

The following proposition shows the relation between relaxations R1 and R2, resulting from

the fact that feasible schedule in R2 always can be decomposed to individual feasible routes on

planning days in R1.

Proposition 2. The following inequality holds: z(R2)≥ z(R1). (See §EC.2.3 for the proof)

The computational results reported in §6 show that, in practice, the inequality can be strict,

especially for problems with more constrained consistency requirements.

Given that R2 is a relaxation of LF2 (with SR3 inequalities), any feasible dual solution to R2

can be leveraged to reconstruct a feasible solution of LF2. This leads to the following theorem,

which shows the correctness of using R2 for our exact algorithm.

Theorem 2. Given any dual feasible solution Π2 of R2, one can always construct a correspond-

ing dual feasible solution Π′2 for LRF2 strengthened with SR3 inequalities such that their dual

objective values are equal. (See §EC.2.4 for the proof)
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Based on this result and given an upper bound on the optimal solution cost, the dual solution Π′2

of LRF2 with SR3 inequalities can be used to perform a schedule generation to derive the reduced

schedule set H̄, by using the optimal routes from R̄.

3.2. An Exact Algorithm

Based on the two relaxations introduced in the previous section, the exact method performs the

following four major steps.

Step 1. Solve R1 via a CCG procedure to obtain its dual optimal solution Π∗1 of cost z′(Π∗1) (see

§4). Set lb1 = z′(Π∗1) and ub= (1 + ε) · lb1, where ε∈ (0,1] is an assumed gap.

Step 2. Given Π∗1, lb1 and ub, compute the candidate optimal route sets R̄d for d ∈ D (see

§4.2). If | ∪d∈D R̄d| is large (e.g., greater than 5,000), go to Step 3; otherwise, solve the reduced

problem of F1 with the candidate optimal route set by an MIP solver. Let ub1 be the optimal

solution cost of the reduced problem of F1. We have the following cases: (i) If ub1 ≤ ub, then

the algorithm terminates with ub= ub1 as the optimal solution cost of the VRPGCR-SDC; (ii) If

ub1 >ub, set ub= ub1, and repeat Step 2; (iii) If no feasible solution is found and ub≤ 2 · lb1, then

set ub= 1.05 ·ub, and repeat Step 2; otherwise, the algorithm terminates without having found any

feasible solution.

Step 3. Define set Ĥ using the set of routes R̄= ∪d∈DR̄d, and solve R2 via a CCG procedure

to obtain its dual optimal solution Π∗2 of cost z′(Π∗2) (see §5). Set lb2 = z′(Π∗2).

Step 4. Given Π∗2, lb2, and ub, compute the optimal schedule set H̄ (see §5.2). Solve the problem

obtained from RF2 (or F2) by replacing set Ĥ (or H) with set H̄ using an MIP solver, and let ub2

be the corresponding optimal solution cost. We have two cases: (i) If ub2 ≤ ub, then the algorithm

terminates with ub= ub2 as the optimal solution cost for the VRPGCR-SDC; (ii) If ub2 > ub, set

ub= ub2, and go to Step 2; (iii) If no feasible solution is found and ub≤ 2 · lb1, then set ub= 1.05 ·ub,
and go to Step 2; otherwise, the algorithm terminates without having found any feasible solution.

Note that this algorithm does not require the computation of an initial feasible solution and its

corresponding upper bound value. It assumes that the gap between the lower bound and the optimal

solution cost is less than ε; for example, ε= 10% used in our experiments is a sufficient assumption.

With this assumption, we only encountered case (i) in Step 2 or Step 4 in our experiments such

that the optimal solution was obtained without repeating any steps. It is worth noting that if

the algorithm terminates without finding any feasible solution in Step 4, one could still refer to

an alternative method based on some of the current algorithmic components for the solution.

For instance, the proposed CCG procedure can be embedded in a branch-and-bound framework,

formally known as a branch-price-and-cut algorithm, that serves as another exact solution method

for our problem.
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4. Column-and-Cut Generation Procedure for R1 and Route Set R̄

In this section, we describe a CCG algorithm based on the simplex method to solve relaxation R1

and the procedure used to generate the optimal route set R̄.

The route set R′d, d∈D, of the initial restricted master problem (denoted as RMP1) is initialized

with a dummy route containing all customers on day d and with an extremely large route cost. The

initial set of SR3 inequalities (5j) is set to equal the empty set, and the inequalities are separated

by complete enumeration.

The dual vectors associated with constraints (5b)–(5j) of R1 are denoted by λ = {λid ∈ R|i ∈
N , d ∈ D}, µ= {µd ≤ 0|d ∈ D}, γ = {γijd ≤ 0|(i, j) ∈ A, d ∈ D}, ε≤ 0, π = {πid ∈ R|i ∈Nd, d ∈ D},
τ = {τd ≤ 0|d ∈ D}, ι = {ιid ≤ 0|i ∈ Nd, d ∈ D}, κ = {κidd′ ≤ 0|i ∈ N , d, d′ ∈ D : d 6= d′}, and χ =

{χCd ≤ 0|C ∈ Cd, d∈D}.

Let c′(ζrd) = tRrd −
∑

i∈N ariλid − µd −
∑

(i,j)∈A erijγijd + Fε
∑

(i,j)∈A erij −
∑

i∈Nd
bridπid + lrdτd −∑

C∈C(r)χCd denote the reduced cost of variable ζrd, and let c′(ηrd) =−τd−
∑

i∈Nd
ariπid denote the

reduced cost of variable ηrd. At each iteration of CCG, the dual solution of the RMP1 is used to

check whether min{c′(ζrd), c′(ηrd)} ≥ 0 is satisfied for each d ∈D and r ∈Rd. The CCG algorithm

is as follows:

Algorithm 1 Column-and-Cut Generation for R1

Step 0: Initialize the RMP1;

Step 1: Solve the RMP1 to obtain its optimal primal and dual solutions;

Step 2: Solve the pricing problem PP1, that is, minr∈Rd\R′
d
{c′(ζrd)} for d ∈ D, using a DP-based

approach (see §4.1);

Step 3: If minr∈Rd\R′
d
{c′(ζrd)} ≥ 0 for all d ∈ D, go to Step 4; otherwise, add to the RMP1 the

route having the most negative reduced cost c′(ζrd) to R′d, d∈D, and go to Step 1;

Step 4: If minr∈Rd
{−

∑
i∈N ′

d
ariπid}−τd ≥ 0 for d∈D, that is, c′(ηrd)≥ 0, where N ′d = {i∈Nd|πid >

0}, go to Step 5; otherwise, set τd = minr∈Rd
{−

∑
i∈N ′

d
ariπid} for d∈D (dual adjustment),

and go to Step 2;

Step 5: If SR3 inequalities (5j) are all satisfied by the primal solution of the RMP1, the algorithm

terminates; otherwise, add all violated SR3 inequalities to the RMP1, and go to Step 1.

To prove the optimality of the dual solution, our CCG algorithm for R1 (see Algorithm 1) solves

the D pricing subproblems of variables ζrd (denoted as PP1), that is, minr∈Rd
{c′(ζrd)} for d ∈ D

followed by a dual adjustment operation to guarantee minr∈Rd
{c′(ηrd)} ≥ 0 for d ∈ D, where the

term minr∈Rd
{−

∑
i∈N ′

d
ariπid} can be easily computed as a minimum-cost cycle for customer set

N ′d with customer weight −πid for all i∈N ′d on day d using dynamic programming (DP).
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If min{c′(ζrd)} ≥ 0 and min{c′(ηrd)} < 0, the dual adjustment operation changes τd within its

feasible dual region to construct a new dual solution having the same dual bound, because the

coefficient of variable τd is 0 in the dual objective function. This new dual solution will force c′(ηrd)

to satisfy the dual optimality condition. However, it may induce that c′(ζrd)< 0, and PP1 needs

to be solved again.

In general, the DP aims to check the satisfaction of the dual constraints corresponding to variables

ζrd, and the dual adjustment operation aims to enforce the satisfaction of the dual constraints

corresponding to variables ηrd. The correctness of Algorithm 1 is shown by the following proposition.

Proposition 3. Algorithm 1 solves the relaxation R1 to optimality. (See §EC.2.5 for the proof)

4.1. Solving the Pricing Problem PP1

Let Gd = (N+
d ,Ad) be a subgraph of graph G associated with day d. PP1 decomposes into D

elementary shortest paths with resource constraints on weighted subgraphs Gd, whose node and

arc weights depend on the current dual solution of the RMP1. Our pricing subproblem generalizes

the one proposed by Dell’Amico et al. (2006) because the node cost depends on the arrival time at

the node. The mathematical formulation of PP1 is given in the e-companion (see §EC.4.1).

In this section, we extend the DP approach of Dell’Amico et al. (2006) by embedding sophisti-

cated exploration strategies and dominance rules. We describe the algorithm for a given d∈D, and

thus we omit the use of the index d. Hereafter, we refer to customers and nodes interchangeably.

Define Ḡ = Gd with the node set N̄+ = N̄ ∪ {0}=N+
d and the arc set Ā=Ad, and set C̄ = Cd.

Each node i ∈ N̄ has delivery demand p̄i = pid, pickup demand q̄i = qid, and service time s̄i = sid.

Let π̄i = −πid, t̄ij = tij − γijd + Fε − τdtij, λ̄i = −λid − τdsid, and χ̄C = −χCd, where −τdtij and

−τdsid aim to calculate τdl in the reduced cost function. For a path with time length L and with

the latest departure time l, we have τdl = τd(T − L) = τdT − τdL. Because L includes arc travel

times and node service times along the path, term −τdL can be split into terms −τdtij and −τdsid
for each traversed arc and node. Then, combining the constant term τdT and −µd, we define the

fixed cost of a path by µ̄ = τdT − µd. Overall, the DP aims to find the minimum-cost cycle on

graph Ḡ passing through depot 0 subject to capacity and travel time upper limits Q and T . In the

following, we describe forward and backward DP algorithms with dominance rules and acceleration

strategies to solve PP1.

Bidirectional Labeling. A bidirectional labeling algorithm (i.e., a bidirectional DP algorithm)

combining forward and backward labels is adopted to generate routes for PP1 (see Righini and

Salani (2006)). We denote a label that represents a partial forward path departing from the depot
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and ending at customer i by (i,ψ,ω,S, b), where the vehicle holds ψ available capacity to collect

packages from future customers and holds ω available capacity to distribute packages to future

customers after serving customer i. Set S denotes the group of nodes visited by the current partial

path, and parameter b indicates the time from the departure at the depot to the arrival at node i

in the partial path. Let σ(i,ψ,ω,S, b) be the reduced cost associated with the label (i,ψ,ω,S, b). A

label (i,ψ,ω,S, b) with i= 0 and S 6=∅ represents a route in Ḡ.

The forward extension starts from the initial label (i0,ψ0, ω0,S0, b0), where i0 = 0, ψ0 =Q, ω0 =Q,

S0 = ∅, b0 = 0, and its reduced cost σ(i0,ψ0, ω0,S0, b0) = 0. A partial path is extended by linking

its end node i to another node j via an arc (i, j) to generate a new label (j,ψ′, ω′,S′, b′). Each

extension involves the following updates: (i) S′ = S∪{j}; (ii) b′ = b+ s̄i + tij; (iii) ψ′ = ψ− q̄j; (iv)

ω′ = min{ω− p̄j,ψ′}; and (v) σ(j,ψ′, ω′,S′, b′) = σ(i,ψ,ω,S, b)+ t̄ij + λ̄j + π̄jb
′+

∑
C∈C̄:|S∩C|=1,j∈C χ̄C .

Each extension is admissible if j /∈ S, b+ s̄i + tij + s̄j + tj0 ≤ T and min{ω− p̄j,ψ′} ≥ 0, as shown

by Proposition 4. The forward extension stops when no new labels can be generated.

Proposition 4. Given a label (i,ψ,ω,S, b) and an arc (i, j) with j /∈ S and b+ s̄i + tij + s̄j + tj0 ≤

T , extending the forward path to node j is feasible if and only if ψ− q̄j ≥ 0 and min{ω− p̄j,ψ′} ≥ 0.

(See §EC.2.6 for the proof)

Backward labels are generated similarly; the details are omitted for the sake of brevity.

A speed-up in solving PP1 can be obtained by removing dominated (forward/backward) paths.

A dominated path is either a path that cannot lead to a feasible route or a path such that any

route containing it cannot be part of any optimal solution.

The following dominance rules are defined by also incorporating the SR3 inequalities.

Proposition 5. Given two labels L1 = (i,ψ1, ω1,S1, b1) and L2 = (i,ψ2, ω2,S2, b2), if (i) S1 ⊆ S2,

(ii) ω1 ≥ ω2, (iii) b1 ≤ b2, and (iv) σ(i,ψ1, ω1,S1, b1)−σ(i,ψ2, ω2,S2, b2)≤
∑

j∈N̄\S2 [π̄j]
−(b2− b1) +∑

C∈C̄:|S1∩C|=1,|S2\S1∩C|=1,|N̄ \S2∩C|=1 χ̄C, then label L1 dominates label L2. (See §EC.2.7 for the proof)

A similar dominance holds for backward labels. State control techniques are also used to speed

up the CCG procedure. The corresponding details can be found in the e-companion (see §EC.4.2).

4.2. Generating the Route Set R̄d

At the end of CCG Algorithm 1, the optimal dual solution of R1 Π∗1 =

(λ∗,µ∗,γ∗, ε∗,π∗,τ ∗, ι∗,κ∗,χ∗) is transformed into an equivalent dual solution Π′1 of LF1

strengthened with the same SR3 inequalities identified by CCG Algorithm 1 (see Theorem 1).
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To generate the route set R̄d used by the exact algorithm given the dual solution Π′1 and the

current upper bound ub, we use a pure forward DP procedure based on the forward strategy

described in Section 4.1 in which the dominance rule described in Proposition 5 is not used.

The candidate optimal route set R̄=∪d∈DR̄d contains any route r for a day d having a reduced

cost c′(ξkrd) computed with respect to the dual solution Π′1 less than or equal to ub− z′(Π∗1).

5. Column-and-Cut Generation Procedure for R2 and Schedule Set H̄

In this section, we describe a CCG algorithm based on the simplex method to solve the relaxation

R2 that uses the route set R̄ generated after solving R1. The section also describes the procedure

used to generate the final schedule set H̄.

The schedule set Ĥ′ of the initial restricted master problem (denoted RMP2) is initialized with

a dummy schedule covering all customers over all days and with an extremely large route cost. The

initial set of SR3 inequalities (6i) is set equal to the empty set, and the inequalities are separated

by complete enumeration.

The dual vectors associated with constraints (6b)–(6i) are denoted by λ̂= {λ̂id ∈R|i∈N , d∈D},
µ̂= {µ̂≤ 0}, β̂ = {β̂i ≤ 0|i ∈ N}, π̂ = {π̂id ∈ R|i ∈ Nd, d ∈ D}, τ̂ = {τ̂d ≤ 0|d ∈ D}, ι̂= {ι̂id ≤ 0|i ∈
Nd, d∈D}, κ̂= {κ̂idd′ ≤ 0|i∈N , d, d′ ∈D : d 6= d′}, and χ̂= {χ̂Cd ≤ 0|C ∈ Cd, d∈D}.

In the CCG algorithm (see Algorithm 2), the pricing problem (denoted as PP2) aims to find a

schedule h ∈ Ĥ \ Ĥ′ having the most negative reduced cost c′(ζh) = tHh −
∑

d∈D
∑

i∈N ahidλ̂id− µ̂−∑
i∈N ohiβ̂i−

∑
d∈D

∑
i∈Nd

bhidπ̂id +
∑

d∈D lhdτ̂d−
∑

d∈D
∑

C∈C(rh
d

) χ̂Cd for variable ζh. The algorithm

performs a dual adjustment operation similar to the operation performed for solving the relaxation

R1 (see Step 4). The correctness of Algorithm 2 is shown by the following proposition.

Proposition 6. Algorithm 2 solves the relaxation R2 to optimality. (See §EC.2.8 for the proof)

5.1. Solving the Pricing Problem PP2

In this section, we formulate an integer program to solve the pricing problem PP2. Given d ∈ D
and r ∈ R̄d, let σ̂rd be a parameter defined as σ̂rd = tRrd −

∑
i∈N ariλ̂id −

∑
i∈Nd

bridπ̂id + lrdτ̂d −∑
C∈C(r) χ̂Cd. Let yrd denote a binary variable that equals 1 if route r is operated on day d in a

schedule and 0 otherwise. Let ui denote a binary variable that equals 1 if customer i is visited at

least once in a schedule and 0 otherwise. Let wij denote a binary variable that equals 1 if arc (i, j)

is traversed at least once in a schedule and 0 otherwise. Given R̄= ∪d∈DR̄d, the pricing problem

PP2 can be formulated as the following IP problem:

z(PP2) = min
∑
d∈D

∑
r∈R̄d

σ̂rdyrd−
∑
i∈N

β̂iui− µ̂ (7a)
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Algorithm 2 Column-and-Cut Generation for R2

Step 0: Initialize the RMP2;

Step 1: Solve the RMP2 to obtain its optimal primal and dual solutions;

Step 2: Solve the pricing problem PP2, that is, minh∈Ĥ\Ĥ′{c′(ζh)} (see §5.1);

Step 3: If minh∈Ĥ\Ĥ′{c′(ζh)} ≥ 0, go to Step 4; otherwise, add to RMP2 the schedule having the

most negative reduced cost c′(ζh), and go to Step 1;

Step 4: If minr∈R̄d
{−ariπ̂id} − τ̂d ≥ 0 for d ∈ D, that is c′(ηhd) ≥ 0, go to Step 5; otherwise, set

τ̂d = minr∈R̄d
{−ariπ̂id} for d∈D (dual adjustment), and go to Step 2;

Step 5: If SR3 inequalities (6i) are all satisfied by the primal solution of the RMP2, the algorithm

terminates; otherwise, add all violated inequalities to the RMP2, and go to Step 1.

s.t.
∑
r∈R̄d

yrd ≤ 1 d∈D, (7b)

∑
r∈R̄d

ariyrd ≤ ui i∈Nd, d∈D, (7c)

∑
r∈R̄d

erijyrd ≤wij (i, j)∈A, d∈D, (7d)

∑
(i,j)∈A

wij ≤F
∑
d∈D

∑
(i,j)∈A

∑
r∈R̄d

erijyrd, (7e)

ui ∈ {0,1} i∈N , (7f)

yrd ∈ {0,1} r ∈ R̄d, d∈D, (7g)

wij ∈ {0,1} (i, j)∈A. (7h)

The objective function (7a) corresponds to the reduced cost of a schedule. Constraints (7b) allow

at most one route on each day. Constraints (7c) link variables y and u. Constraints (7d) and (7e)

impose the RC requirement at level F.

Solving PP2 with F = 1. PP2 has a special structure that is worth investigating when F = 1,

namely, the problem is specialized by excluding RC. In this case, the pricing problem can be

reformulated as follows:

z(PP2) = min
∑
d∈D

∑
r∈R̄d

σ̂rdyrd−
∑
i∈N

β̂iui− µ̂ (8a)

s.t.
∑
r∈R̄d

yrd ≤ 1 d∈D, (8b)

ariyrd ≤ ui r ∈ R̄d, d∈D, i∈Nd, (8c)

ui ∈ {0,1} i∈N , (8d)

yrd ∈ {0,1} r ∈ R̄d, d∈D. (8e)
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The reformulated PP2 can now be decomposed into a master problem with decisions on {ui,∀i∈

N} and a subproblem with decisions on {yrd,∀r ∈ R̄d, d ∈ D}. Note that constraints (8c) are

reformulated from (7c), due to the fact that at most one route is to be selected for each day. With

such reformulation, the subproblem is a binary IP model whose coefficient matrix of the constraints

is totally unimodular, and a Benders decomposition-based approach can be used to solve PP2 to

optimality. Additional details are given in the e-companion (see §EC.5).

5.2. Generating the Schedule Set H̄

At the end of CCG Algorithm 2, the optimal dual solution of R2 Π∗2 = (λ̂
∗
, µ̂∗, β̂

∗
, π̂∗, τ̂ ∗, ι̂∗, κ̂∗, χ̂∗)

of cost z(Π∗2) is transformed into an equivalent dual solution of LRF2 strengthened with the same

SR3 inequalities identified by CCG Algorithm 2 (see Theorem 2).

Based on the following proposition, to generate the candidate optimal schedule set H̄, we also

make use of the dual solution Π∗1 = (λ∗,µ∗,γ∗, ε∗,π∗,τ ∗, ι∗,κ∗,χ∗) provided by the relaxation R1

to further reduce the size of the final schedule set H̄.

Proposition 7. Let Υ2
h be the reduced cost of a schedule h computed with respect to solution Π∗2,

and let Υ1
h =

∑
d∈D σ

∗
rh
d
,d

, where rhd denotes the index of the route operated on day d∈D in schedule

h, and σ∗rd denotes the reduced cost of the corresponding route r ∈ R̄d computed with respect to

solution Π∗1. Then, set H̄ contains all schedules h such that Υ2
h ≤ ub− z(Π∗2) and Υ1

h ≤ ub− z(Π∗1).

(See §EC.2.9 for the proof)

The algorithm used to generate the schedule set H̄ relies on this proposition and is a straight-

forward extension of the DP algorithm mentioned in Section 5.1; additional details are omitted for

the sake of brevity.

6. Numerical Experiments

This section provides the computational results of our exact method. The exact algorithm is coded

in C# and runs on a PC equipped with an Intel Core i5 CPU 3.30 GHz and 16 GB of RAM. We

used ILOG CPLEX 12.5 as an LP solver to tackle the RMPs of both CCGs and as an IP solver

to tackle F0 and the reduced formulations F1 and F2. The computation time limit for the CCG

was one hour to solve R1 and two hours to solve R2. The computation time limit for solving all

formulations by the IP solver was three hours. All computation times are reported in seconds.

6.1. Benchmark Instances and Settings

Several datasets for ConVRPs are available in the literature to test heuristic algorithms, with in-

stances including 10 to 199 customers; we mainly used small and medium datasets (≤ 50 customers)
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to examine our exact method. The experiments were based on the three datasets {SA, SB, SC},

where SA and SB were taken from the literature and SC was newly generated.

Dataset SA was taken from Groër et al. (2009), which includes 10 instances with 10 or 12

customers. These instances are specified with D = 3 days, K = 3 drivers, route time duration

T = 30, and vehicle capacity Q= 15. The average travel time on arcs ranges from 4.5 to 5.8. The

probability that a customer requires service on a given day (the service frequency) is set to 70%.

Pickup demands are not considered—that is, qid = 0 for each customer i on day d. The service time

for customer i on day d is set equal to 1, or sid = 1. For the experiments based on this dataset, we

set the consistency levels at L = 5, E = 1 and F = 1.

Dataset SB was taken from Goeke et al. (2019), which contains 144 instances with 20 or 30

customers and D = 5 days. The instances are classified into groups with service frequencies of

{50%,70%,90%}. Half of the instances in each group set different values of T (ranging from 160 to

230), and the other half have no route-duration restrictions (i.e., T →+∞). The vehicle capacity

Q ranges from 140 to 200. The average travel time on arcs ranges from 25.0 to 30.1. The demands

of customers range from 0 to 41. The service time sid for customer i on day d is set to 10. In

agreement with the results reported in Goeke et al. (2019), the experiments based on dataset SB

were carried out with E = 1 and F = 1; L was selected from {0.4 ·Lmax,0.6 ·Lmax,0.8 ·Lmax,L+∞},

where L+∞ → +∞ and Lmax, ranging from 62 to 104, is the maximum arrival time difference

derived when each instance is solved with L+∞.

Dataset SC consists of 50 new instances generated to examine our exact method in a general

consistency setting. These new instances involve 20 to 50 customers whose information (i.e., loca-

tions, service times, and delivery demands) is based on the datasets of Groër et al. (2009) for the

instances with 70% service frequency and the datasets of Kovacs et al. (2014b) for the instances

with 50% and 90% service frequency. In each instance, we suppose that each customer also has

a pickup demand, the volume of which equals the amount of the delivery demand multiplied by

a random ratio in [0.7,1.3]. These instances are specified with D = 5 days, route time duration

T = 180, and vehicle capacity Q= 140. The average travel time on arcs ranges from 32.2 to 35.1.

The driver number K in the instances ranges from 4 to 9. The service time for customer i on

day d is set to a constant sid = 10. Similar to the SB dataset, each instance of SC is specified

with a service frequency of {50%,70%,90%}. We first tested consistency levels with L = 55, E = 3

and F = 0.8 to derive some computational results. Then, we tested every possible combination

of the three consistency levels with some changed parameters to obtain managerial insights into

opportunities for improving services for the VRPGCR-SDC.
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Table 2 Computational results of dataset SA

Instance ID
Solving F0 Our Method

t∗/t
Lower Bound Improvement Extended case E = 2

ub∗ t∗ ub t gapM gapN gap1 gap2 ubE rdc tE tE/t

A1 3 0.7 10 142.03 1752 142.03 3 584.00 6.88% 4.91% 2.50% 1.44% 142.03 0.00% 3 1.00

A2 3 0.7 10 121.07 372 121.07 18 20.67 9.71% 4.66% 3.11% 1.75% 120.72 0.29% 14 0.78

A3 3 0.7 10 149.41 2562 149.41 22 116.45 7.59% 5.20% 2.80% 1.38% 149.13 0.19% 21 0.95

A4 3 0.7 10 150.89 1287 150.89 10 128.70 10.96% 8.11% 4.14% 1.84% 150.89 0.00% 8 0.80

A5 3 0.7 10 132.31 1056 132.31 36 29.33 10.10% 7.03% 3.75% 1.79% 127.05 4.14% 32 0.89

A6 3 0.7 12 171.02 15203 171.02 100 152.03 5.79% 4.01% 2.68% 1.14% 169.22 1.06% 75 0.75

A7 3 0.7 12 111.54 5085 111.54 280 18.16 9.39% 6.02% 2.76% 1.18% 105.28 5.95% 135 0.48

A8 3 0.7 12 145.69 8487 145.69 51 166.41 14.18% 9.83% 5.44% 2.45% 140.68 3.56% 32 0.63

A9 3 0.7 12 166.37 16621 166.37 178 93.38 10.00% 6.98% 4.94% 1.83% 162.33 2.49% 120 0.67

A10 3 0.7 12 140.42 3882 140.42 27 143.78 14.90% 9.61% 5.33% 2.48% 133.15 5.46% 23 0.85

Average 145.29 9.95% 6.64% 3.74% 1.73% 2.31% 0.78

All vehicles are required to start their routes at time zero in datasets SA and SB, and no waiting

is allowed between customer visits for all three datasets.

We represent each instance by “a b c d”, where “a” is the instance ID, “b” is the number of

available drivers, “c” is the service frequency, and “d” is the number of customers.

6.2. Results of Datasets SA and SB

We evaluate the performance of our algorithms on dataset SA from Groër et al. (2009) and dataset

SB from Goeke et al. (2019) by setting E = 1 in our exact algorithm (also with relaxed RC F = 1).

We also compare our algorithms with the results of the exact method of Goeke et al. (2019) that

was run on an AMD FX-6300 processor at 3.5 GHz with 8 GB of RAM. Further, due to the fact

that the existing exact algorithm is tailored for solving the case E = 1, we also conduct additional

experiments on testing the extended case E = 2, to show our algorithmic advantages and the

benefits on E = 2.

Results of Dataset SA. We first compare our exact algorithm with the solution of the arc-

based formulation F0 (see §EC.1) on solving the traditional ConVRP (under E = 1), investigate

the lower bound improvement of reformulations, and explore benefits of the extended case E = 2.

Table 2 reports the results of dataset SA, where each instance is associated with the following

columns: the optimal solution cost computed by solving F0 using CPLEX (ub∗) and the corre-

sponding computation time (t∗), the solution cost computed by our exact algorithm (ub) and the

corresponding total computation time (t), the ratio between t∗ and t (t∗/t), the percentage gap of

the lower bound lbM (gapM) of R1 with the big-M-based constraints (1h)–(1i) and without SR3

inequalities, the percentage gap of the lower bound lbN provided by R1 without SR3 inequalities
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(gapN), the percentage gap of the lower bound lb1 (gap1) provided by R1, and the percentage

gap of the lower bound lb2 provided by R2 (gap2) (all gaps computed with respect to the optimal

solution cost ub∗ or our ub). In addition to the above results on solving the case E = 1, the table

also reports the optimal solution cost of E = 2 (ubE) on solving the same instance, the percentage

of cost reduction compared with E = 1 (rdc), the computation time spent solving E = 2 (tE), and

the ratio of the computation time over that of E = 1 (tE/t).

From Table 2, it can be seen that our exact algorithm is much faster than directly solving F0. On

average, solving F0 with CPLEX needs about 145 times more computation time than solving it with

the exact algorithm. Table 2 shows the improved lower bound after the big-M-based constraints

(1h)–(1i) have been replaced with the (2a)–(2c) TC constraints. As can be seen, lbN is tighter

than lbM , and the average lower bound gap is improved from 9.95% to 6.64%. In the following

section describing the results for dataset SB in greater detail, we will show the impacts of different

TC levels on the lower bound. Meanwhile, lower bounds lb1 and lb2 provided by R1 and R2 are

even tighter (see gap1 and gap2) given the SR3 inequalities and the structure of the schedule-based

formulation. All the instances of dataset SA have also been solved to optimality by the method of

Goeke et al. (2019) with an average computing time equal to 3.3 seconds.

Table 2 also reports the solutions of E = 2. As discussed by Kovacs et al. (2015a), the most

restricted DC level E = 1 is impractical in some cases, because it is hard to request a single

driver to be on duty on all days. By extending the DC level to E = 2, significant cost savings and

computational benefits are achieved. On average, the travel cost reduces by 2.31%, and at the same

time the solution time reduces by 22%, since the reduced problem formulation based on optimal

route/schedule sets can be solved faster at E = 2.

Results of Dataset SB. Goeke et al. (2019) generated dataset SB to test the largest problem

size that could be solved by their exact algorithm for solving the special case of the ConVRP.

Tables 3 and 4 provide an overview of the results of our solving the 144 instances of SB from

two perspectives. Table 3 groups by different TC levels (i.e., different values of the maximum

arrival time difference), and Table 4 groups by different values of the service frequency. The TC

level and the service frequency are given in the first column of Table 3 and Table 4, respectively.

The columns of the two tables show the following information: the number of customers (N), the

presence/absence of route-duration constraints (T = yes/no), and the number of instances solved

to optimality by our algorithm (O) and by Goeke et al. (2019) (OG) out of the 9 and 12 instances

in each group in tables 3 and 4, respectively. Columns gapG and tG give the percentage gap of the

lower bound and the computing time in seconds of the method of Goeke et al. The middle seven
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Table 3 Results overview of the TC level of dataset SB

TC level N T O/OG gapG tG
CCG for R1 CCG for R2

t
Extended case E = 2

gap1 t1 |R̄| gap2 t2 |H̄| OE rdc tE/t

0.4 ·Lmax

20 yes 9/9 0.0 164.0 4.69% 14.3 6476 1.86% 3785.5 279261 4677.7 9 2.32% 0.64

20 no 7/5 2.2 3410.8 3.24% 41.6 6071 1.80% 3551.0 143872 4337.0 9 2.73% 0.30

30 yes 6/8 0.4 1159.0 4.06% 110.3 11139 1.61% 6032.0 314945 8860.2 9 2.02% 0.63

30 no 3/4 0.8 3482.1 3.94% 757.3 9035 2.03% 3832.0 166228 9313.7 8 2.25% 0.52

0.6 ·Lmax

20 yes 9/9 0.0 105.8 3.79% 13.3 6198 1.53% 3111.5 225161 3278.2 9 1.86% 0.64

20 no 7/9 0.0 633.5 2.97% 44.6 5874 1.60% 2277.8 113548 2887.3 9 1.90% 0.40

30 yes 6/9 0.0 290.7 3.42% 115.4 11047 1.25% 4412.3 275042 6516.2 9 1.59% 0.65

30 no 3/7 0.0 541.0 3.86% 745.3 10295 1.72% 2799.0 154119 6285.7 8 2.23% 0.61

0.8 ·Lmax

20 yes 9/9 0.0 86.0 3.70% 15.0 6127 1.43% 2628.0 199719 2622.4 9 2.10% 0.58

20 no 7/9 0.0 194.8 2.77% 40.9 5713 1.59% 1554.3 90684 1831.4 9 1.72% 0.40

30 yes 6/9 0.0 266.0 3.36% 110.6 10641 1.22% 2904.3 229363 4601.0 9 1.71% 0.63

30 no 3/7 0.0 466.0 3.68% 705.4 9044 1.63% 1610.0 110540 3578.0 8 2.12% 0.42

L+∞

20 yes 9/9 0.0 59.4 3.66% 10.9 5835 1.33% 1671.5 189546 1224.6 9 2.56% 0.45

20 no 7/9 0.0 81.9 2.67% 36.7 5465 1.44% 1102.0 77247 1071.4 9 1.49% 0.36

30 yes 6/9 0.0 187.5 3.34% 65.8 10554 1.21% 2413.0 174557 2710.8 9 2.01% 0.25

30 no 3/7 0.0 406.0 3.45% 499.5 8991 1.56% 1067.0 89627 2362.7 8 1.90% 0.26

columns show the average values of the major outputs of our algorithm for the solved instances

in each group, including the percentage gap of the lower bound lb1 (gap1) provided by R1, the

computation time of R1 (t1), the size of the candidate optimal route set (|R̄|), the percentage gap

of the lower bound lb2 (gap2) provided by R2, the computation time of R2 (t2), the size of the

candidate optimal schedule set (|H̄|), and the time used by our exact algorithm (t). The remaining

columns show the results of resolving instances by setting E = 2: the number of instances solved to

optimality (OE), the cost reduction compared with E = 1 (rdc), and the ratio of the computation

time over that of E = 1 (tE/t). Detailed results on the solution of SB by our algorithm are listed

in the e-companion (see §EC.6), for a detailed comparison with Goeke et al. (2019).

Based on the two tables, our method solves 100 of the 144 instances of dataset SB to optimality

for the traditional ConVRP (E = 1), relative to the 128 instances solved by Goeke et al. (2019).

The instances not solved by our method had intractable schedule sets given the large size of the

candidate optimal route sets generated. This limitation will be explored in §6.3. With respect to the

solution performance, our exact algorithm shares some features with Goeke et al. (2019). Solving

instances with 30 customers (36 solved) is obviously more difficult than instances with 20 customers

(64 solved). Meanwhile, instances with unlimited route-time duration restrictions are even more

difficult to solve. In our algorithm, an appropriate restriction on T would limit the number of

feasible routes, possibly reducing the size of the candidate optimal route set—thus making our

algorithm more effective. Similarly, in Goeke et al. (2019), an appropriate restriction on T also

reduces the number of possible customer clusters that can be served by each driver.
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Table 4 Results overview of the service frequency of dataset SB

Frequency N T O/OG gapG tG
CCG for R1 CCG for R2

t
Extended case E = 2

gap1 t1 |R̄| gap2 t2 |H̄| OE rdc tE/t

50%

20 yes 12/12 0.0 76.3 3.44% 4.2 1039 ==> 25.3 12 1.56% 0.70

20 no 12/11 0.6 970.5 3.01% 5.8 1143 ==> 49.7 12 1.84% 0.62

30 yes 12/12 0.0 260.0 3.64% 21.7 4321 ==> 2317.4 12 2.46% 0.55

30 no 12/7 0.1 1208.1 3.73% 43.1 9342 1.74% 2327.0 130129 5385.0 12 1.88% 0.45

70%

20 yes 12/12 0.0 108.1 4.56% 12.5 4103 ==> 2396.5 12 3.23% 0.54

20 no 12/11 0.5 793.4 3.34% 19.7 8780 1.78% 1902.3 97932 3913.8 12 2.46% 0.13

30 yes 8/12 0.0 272.5 3.21% 62.6 16136 1.31% 3641.5 226959 7757.9 12 1.06% 0.50

30 no 0/11 0.2 1221.0 — — — — — — — 12 2.86% **

90%

20 yes 12/12 0.0 127.0 3.88% 23.5 13335 1.54% 2799.1 223422 6430.4 12 1.84% 0.50

20 no 4/10 0.6 1476.9 1.33% 97.3 10696 1.10% 2778.0 131555 5832.0 12 1.58% 0.33

30 yes 4/11 0.3 894.9 3.93% 217.3 19837 1.35% 4538.3 291511 11564.3 12 1.97% 0.61

30 no 0/7 0.3 1243.6 — — — — — — — 8 1.39% **

Notes: (i) “—”: no feasible solution is found by CPLEX within the imposed time limit; (ii) “==>”: instance solved to
optimality using formulation F1. (iii) “**”: no comparison with E = 1 due to the lack of results on solving E = 1.

However, in Tables 3 and 4, as well as in the detailed results, we can see solution performance

differences between our method and theirs. In Table 3, when solving instances with more restricted

TC levels and holding other parameters unchanged, the computation efficiency of their algorithm

degenerates rapidly, especially for instances with 0.4 ·Lmax. Comparatively, our algorithm performs

more stably, with only moderate increases in computation time. The reason may be that our

algorithm holds the enhanced TC constraints in our major formulations R1 and R2, which maintain

the TC of the route- and schedule-generation processes. However, Goeke et al. (2019) use an

independent procedure, rather than their set-partitioning formulation, to adjust TC. In Table 4, we

see another remarkable difference. Our algorithm performs better for instances with lower service

frequency. Specifically, we solve all instances with 50% service frequency to optimality, in which

six instances are not solved to optimality by Goeke et al. (2019), and 75% of those instances are

solved by our method without even involving the schedule-generation process (i.e., directly solving

F1 with R̄). The reason is that with a lower service frequency, the subgraph Gd of day d becomes

smaller such that R̄d obtained for day d will be reduced in our algorithm, raising the computation

efficiency. However, since the set-partitioning formulation of Goeke et al. (2019) relies on all of the

customer clusters in the entire graph, the service frequency does not affect the number of clusters.

Apart from the above discussion showing our competitiveness on solving E = 1 instances with

Goeke et al. (2019), the two tables also verify our advantages in solving the extended case E = 2.

When E = 2, there is a robust operational benefit, in that the travel cost reduces by about 2%, and

for some extreme cases, the cost reduction is up to 6.58%, shown in Table EC.5 in the e-companion.

In addition, our algorithm is much more efficient at solving E = 2, since we can solve 140 out of

144 instances to optimality and the solution time also becomes much shorter.
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Table 5 Computational results for instances of dataset SC with 20 customers

Instance ID
CCG for R1 Solving F1

t1 + t̄1
Solving F0

lb1 gap1 t1 |R̄| ub1 t̄1 ub0 gap0

C1 4 0.5 20 1266.05 0.85% 6 1171 1276.97 80 86 1512.60 18.45%

C2 4 0.5 20 1315.15 1.13% 8 822 1330.13 18 26 1692.28 27.23%

C3 4 0.5 20 1351.65 3.21% 6 1089 1396.52 97 103 — —

C4 4 0.5 20 1249.14 1.28% 6 1109 1265.38 62 68 1503.84 18.85%

C5 4 0.5 20 1313.96 1.40% 7 987 1332.66 22 29 1537.53 15.37%

C6 4 0.5 20 1229.10 0.64% 7 973 1237.07 61 68 — —

C7 4 0.5 20 1315.31 1.53% 6 785 1335.70 16 22 1644.97 23.15%

C8 4 0.5 20 1350.78 2.18% 8 1285 1380.91 44 52 — —

C9 4 0.5 20 1245.24 1.11% 9 1313 1259.18 103 112 — —

C10 4 0.5 20 1243.84 2.62% 6 850 1277.32 18 24 — —

Average 1.60% 7 1038 52 59 20.61%

C11 5 0.7 20 2119.39 1.58% 14 3202 2153.40 1398 1412 — —

C12 5 0.7 20 1877.57 1.55% 15 3265 1907.17 2302 2317 — —

C13 5 0.7 20 2179.15 0.85% 15 1627 2197.91 599 614 — —

C14 5 0.7 20 2228.45 2.08% 16 2865 2275.76 3585 3601 — —

C15 5 0.7 20 2064.47 0.89% 14 3828 2082.97 869 883 — —

C16 5 0.7 20 1905.06 3.55% 12 3746 1975.25 4134 4146 — —

C17 5 0.7 20 1967.64 0.48% 19 4516 1977.19 2917 2936 — —

C18 5 0.7 20 2095.65 0.38% 16 2782 2103.56 191 207 — —

C19 5 0.7 20 1931.45 3.85% 20 4742 2008.87 5843 5863 — —

C20 5 0.7 20 2089.80 1.59% 18 4029 2123.55 567 585 — —

Average 1.68% 16 3460 2241 2256 — —

Notes: “—”: no feasible solution is found by CPLEX within the imposed time limit.

6.3. Results of Dataset SC

We tested the performance of our exact method on the new instances of SC , which were generated

with a general consistency setting (i.e., L = 55, E = 3 and F = 0.8). The tests were conducted in

two parts. First, we compared our exact method with the formulation F0 solved using CPLEX on

a set of 20 instances, each including 20 customers. The size of the yielded candidate optimal route

sets R̄ for F1 of these instances was less than 5000; thus, we directly solved the reduced problem

of F1 to find an optimal solution. In the second part, we tested the solution performance based on

30 larger instances, with 25 to 50 customers. For all larger instances, the size of set |R̄| was greater

than 5000, and the exact algorithm solved the reduced problem of F2.

Table 5 shows the following columns: the lower bound value provided by R1 (lb1) and its corre-

sponding percentage gap (gap1) computed with respect to the cost of the optimal solution (ub1)

found by solving F1, the computation time spent solving R1 (t1), the size of the candidate optimal

route set (|R̄|), the computation time spent solving the reduced problem of F1 (t̄1), the total com-

putation time of the exact method (t1 + t̄1), the cost of the solution obtained by solving F0 (ub0),

and the percentage gap (gap0) provided by CPLEX after reaching the time limit of three hours.
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Table 6 Computational results for instances of dataset SC with 25 to 50 customers

Instance ID
CCG for R1 CCG for R2 Solving F2

t1 + t2 + t̄2

lb1 gap1 t1 |R̄| lb2 gap2 t2 |H̄| ub2 t̄2

C21 7 0.5 40 2357.37 3.34% 92 13504 2387.74 2.10% 2493 188284 2438.90 3822 6407

C22 7 0.5 40 2381.58 2.90% 184 11996 2418.10 1.41% 1587 142313 2452.80 1982 3753

C23 9 0.5 50 3151.70 3.91% 96 17442 3199.70 2.45% 2008 283563 3280.09 5279 7383

C24 9 0.5 50 2755.89 1.93% 246 26426 2778.90 1.11% 1967 374241 2810.00 6055 8268

C25 7 0.5 40 2295.12 1.86% 78 10283 2301.19 1.60% 1626 171450 2338.55 3131 4835

C26 7 0.5 40 2338.90 2.70% 66 12099 2347.85 2.33% 2255 330379 2403.77 5389 7710

C27 7 0.5 40 2391.80 2.81% 40 11196 2422.63 1.56% 2160 257913 2460.93 4884 7084

C28 9 0.5 50 3154.44 3.86% 90 17390 3205.53 2.31% 3346 217346 3281.20 5943 9379

C29 7 0.5 40 2355.22 2.19% 230 17289 2365.49 1.77% 2754 304555 2408.05 4845 7829

C30 7 0.5 40 2345.70 2.13% 57 13689 2379.45 0.72% 1483 176365 2396.77 4096 5636

Average 2.76% 118 15131 1.73% 2168 244641 4543 6828

C31 7 0.7 35 2990.18 1.96% 146 24082 3011.00 1.28% 2780 353433 3050.00 6301 9227

C32 6 0.7 30 2704.06 2.62% 45 13384 2732.21 1.61% 1676 195495 2776.81 3221 4942

C33 8 0.7 40 3561.74 2.20% 266 23837 3581.34 1.66% 2326 295326 3641.74 5650 8242

C34 7 0.7 35 3233.33 3.58% 154 26223 3256.00 2.91% 3408 372371 3353.42 5253 8815

C35 7 0.7 35 3245.02 2.14% 104 19667 3277.38 1.16% 2554 233082 3316.00 6198 8856

C36 6 0.7 30 2510.93 2.94% 84 17043 2534.10 2.05% 2487 285631 2587.02 3770 6341

C37 6 0.7 30 2737.92 3.15% 310 23092 2778.72 1.71% 2872 242637 2827.01 4736 7918

C38 6 0.7 30 2711.05 1.97% 84 13141 2741.44 0.87% 1554 131989 2765.48 2376 4014

C39 8 0.7 40 3466.72 2.17% 243 24697 3502.53 1.16% 2195 356195 3543.75 8659 11097

C40 8 0.7 40 3383.66 2.87% 325 27499 3432.44 1.47% 1877 294993 3483.66 7732 9934

Average 2.56% 176 21267 1.59% 2373 276115 5390 7939

C41 6 0.9 25 2563.36 2.34% 101 23171 2593.50 1.19% 2784 171506 2624.69 4298 7183

C42 6 0.9 25 2727.51 1.09% 44 14461 2737.36 0.73% 1715 129515 2757.52 2030 3789

C43 6 0.9 25 2825.60 2.69% 48 12736 2860.09 1.50% 1979 193541 2903.65 2419 4446

C44 6 0.9 25 2559.05 1.98% 112 25023 2578.90 1.22% 2591 264241 2610.81 5216 7919

C45 6 0.9 25 2755.44 2.37% 64 18967 2800.92 0.75% 3026 143486 2822.22 4199 7289

C46 6 0.9 25 2498.48 2.35% 67 21371 2515.82 1.67% 2358 189286 2558.48 3913 6338

C47 6 0.9 25 2722.80 2.50% 56 13351 2758.79 1.21% 2460 178338 2792.58 4266 6782

C48 6 0.9 25 2807.08 3.30% 44 15380 2845.06 1.99% 3360 255946 2902.89 5037 8441

C49 6 0.9 25 2568.18 1.91% 116 28340 2589.05 1.11% 3465 328150 2618.18 6951 10532

C50 6 0.9 25 2652.24 2.16% 57 13797 2656.02 2.02% 1985 197209 2710.75 2845 4887

Average 2.27% 71 18660 1.34% 2572 205122 4117 6761

The first 10 instances in Table 5 have their service frequency fixed at 50%. The candidate optimal

route set for each instance contains 1038 routes on average. Given the limited size of R̄, the reduced

problem of F1 could be solved very quickly (52 seconds on average) to optimality. The total time

used by the exact method was near 1 minute on average, including the computation time for solving

R1. When solving F0 for these instances, however, CPLEX could only find feasible solutions for 5

of the 10 instances within the time limit, and the gap from each obtained solution to the optimal

value was as large as 20.61% on average. In comparison, CPLEX failed to find any feasible solution

for the second ten instances (with a service frequency of 70%) because of the larger number of
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customers involved in the route planning on each day. This increase resulted in a larger R̄ (3460

routes on average) such that solving the reduced problem of F1 took more time (2241 seconds on

average). Compared with the optimal solutions reported in ub1, the lower bound gaps derived by

the CCG based on R1 (see lb1) were as tight as approximately 1.6–1.7% on average.

Table 6 displays the results of the 30 instances of SC , in which the number of customers ranges

from 25 to 50. For these instances, CPLEX failed to find any feasible solution. The first five

columns of Table 6 report the same information as those in Table 5. The next four columns report

information on R2, including the lower bound provided by R2 (lb2) and its corresponding percentage

gap (gap2) computed with respect to the cost of the solution obtained by solving F2 (ub2), the

computation time (t2) of lb2, and the number of generated candidate optimal schedules (|H̄|). The

last two columns (t̄2) and (t1 + t2 + t̄2) give the time spent solving F2 and the total computation

time of the exact method, respectively.

Table 6 shows that the proposed exact algorithm can solve medium-size problems to optimality.

The maximum problem size that can be solved is determined mainly by the size of the set R̄. Our

exact algorithm has a bottleneck when |R̄| reaches 30,000, which will lead to an intractable size

of H̄. The results in this table also verify Proposition 2 and show that lb2 from R2 is tighter than

lb1 from R1. More specifically, the lower bound gap is reduced from 2.76% to 1.73%, from 2.56%

to 1.59% and from 2.27% to 1.34% based on instances with service frequencies from 50% to 90%.

When we solve SB for the special case with E = 1, the lower bound gap is reduced from 3.5% to

1.5%. These results indicate that for the VRPGCR-SDC, the lower bound of R2 is more stable

than the lower bound of R1. Relaxation R1 cannot capture DC; thus, with a more restricted DC

requirement, R1 becomes a looser lower bound, leading to a larger-size optimal route set.

7. Sensitivity Analysis and Managerial Findings

In this section, we conduct sensitivity analysis to see the impact of different consistency settings on

the obtained solutions. With the obtained results, we derive some managerial insights by studying

the trade-offs between the consistency requirements.

The experiments were based on the first 20 instances of SC (10 instances with 50% service

frequency and 10 instances with 70% service frequency), each of which involves 20 customers and

a planning horizon of 5 days. By relaxing TC (i.e., L→ +∞), we first investigated the impact

of different DC and RC levels on the obtained solutions. Given certain DC and RC levels, we

then looked into the impact of different TC levels. Lastly, we tested the impacts of the considered

consistency requirements on route familiarity.
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7.1. Sensitivity Analysis on DC and RC Levels

Given a planning horizon of 5 days, we differentiated the DC and RC levels by the values taken

from {1,2,3,4,5} and {0.6,0.7,0.8,0.9,1.0}, respectively,1 generating a total of 25 (E, F) combi-

nations. For each combination, the number of available drivers K was initialized to guarantee the

existence of feasible solutions. Tables 7 and 8 report the computational results under different (E,

F) combinations, which are obtained by solving the two groups of instances with service frequen-

cies of 50% and 70%, respectively. In the tables, the upper left part (Driver Number) shows the

number of drivers initialized for the test of each combination. The upper right part (Total Cost)

reports the average total travel cost over the 10 instances under different combinations. The lower

left part (Average Cost) indicates the average travel cost per driver over the planning horizon (i.e.,

Total Cost divided by Driver Number). The lower right part (Cost Ratio) defines a benchmark

setting (with E = 5 and F = 1) and reports the ratio of the results under different combinations

with respect to that under the benchmark setting.

Table 7 Results based on different DC and RC levels with 50% service frequency

Driver
Number

F = 0.6 F = 0.7 F = 0.8 F = 0.9 F = 1.0
Total
Cost

F = 0.6 F = 0.7 F = 0.8 F = 0.9 F = 1.0

E = 1 4 4 4 3 3 E = 1 1523.09 1378.92 1359.91 1353.80 1344.54

E = 2 4 4 4 3 3 E = 2 1496.91 1346.50 1307.07 1305.01 1300.16

E = 3 4 4 4 3 3 E = 3 1496.91 1346.50 1306.36 1305.01 1300.16

E = 4 4 4 4 3 3 E = 4 1496.91 1346.50 1306.02 1305.01 1300.16

E = 5 4 4 4 3 3 E = 5 1496.91 1346.42 1306.02 1305.01 1300.16

Average
Cost

F = 0.6 F = 0.7 F = 0.8 F = 0.9 F = 1.0
Cost
Ratio

F = 0.6 F = 0.7 F = 0.8 F = 0.9 F = 1.0

E = 1 380.77 344.73 339.98 451.27 448.18 E = 1 117.15% 106.06% 104.60% 104.13% 103.41%

E = 2 374.23 336.62 326.77 435.00 433.39 E = 2 115.13% 103.56% 100.53% 100.37% 100.00%

E = 3 374.23 336.62 326.59 435.00 433.39 E = 3 115.13% 103.56% 100.48% 100.37% 100.00%

E = 4 374.23 336.62 326.50 435.00 433.39 E = 4 115.13% 103.56% 100.45% 100.37% 100.00%

E = 5 374.23 336.60 326.50 435.00 433.39 E = 5 115.13% 103.56% 100.45% 100.37% 100.00%

Notes: (i) The baseline for “Cost Ratio” is the result of the combination of E = 5 and F = 1.0. (ii) The “Average Cost” is
equal to “Total Cost” divided by “Driver Number”.

The benchmark setting implies a special case without considering any consistency requirements.

The total travel costs for this special case remain the same for some (E, F) combinations with F = 1

(e.g., travel costs are equal to 1300.16 in Table 7 and are equal to 2186.51 in Table 8). In addition,

maintaining the consistency requirements at reasonably high levels is not costly. For example,

supposing that a 1% increase in total travel cost is acceptable, 12 and 15 of 25 combinations are

acceptable for 50% and 70% service frequencies, respectively. However, when a higher DC level

1 Note that we do not test the highest RC level 0.2 (1/5), because it will be infeasible for our instances. Since our
instances have 50% and 70% service frequencies, some customers do not require services on all five days, and thus it
is impossible to operate the same route on all days for each driver (corresponding to the highest RC level 0.2).
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Table 8 Results based on different DC and RC levels with 70% service frequency

Driver
Number

F = 0.6 F = 0.7 F = 0.8 F = 0.9 F = 1.0
Total
Cost

F = 0.6 F = 0.7 F = 0.8 F = 0.9 F = 1.0

E = 1 4 4 4 4 4 E = 1 2304.16 2281.70 2258.37 2246.89 2235.48

E = 2 4 4 4 4 4 E = 2 2226.92 2210.02 2197.48 2193.94 2186.51

E = 3 4 4 4 4 4 E = 3 2226.43 2207.22 2197.48 2193.93 2186.51

E = 4 4 4 4 4 4 E = 4 2225.58 2205.22 2197.48 2193.93 2186.51

E = 5 4 4 4 4 4 E = 5 2225.58 2205.22 2197.48 2193.93 2186.51

Average
Cost

F = 0.6 F = 0.7 F = 0.8 F = 0.9 F = 1.0
Cost
Ratio

F = 0.6 F = 0.7 F = 0.8 F = 0.9 F = 1.0

E = 1 576.04 570.43 564.59 561.72 558.87 E = 1 105.38% 104.35% 103.29% 102.76% 102.24%

E = 2 556.73 552.51 549.37 548.48 546.63 E = 2 101.85% 101.08% 100.50% 100.34% 100.00%

E = 3 556.61 551.81 549.37 548.48 546.63 E = 3 101.83% 100.95% 100.50% 100.34% 100.00%

E = 4 556.40 551.31 549.37 548.48 546.63 E = 4 101.79% 100.86% 100.50% 100.34% 100.00%

E = 5 556.40 551.31 549.37 548.48 546.63 E = 5 101.79% 100.86% 100.50% 100.34% 100.00%

Notes: (i) The baseline for “Cost Ratio” is the result of the combination of E = 5 and F = 1.0. (ii) The “Average Cost” is
equal to “Total Cost” divided by “Driver Number”.

(i.e., E = 1) or a higher RC level (i.e., F = 0.6) is required, it is not surprising that a significantly

higher cost is incurred. In essence, E = 1 implies that each driver must serve a disjoint subset of

customers over the planning horizon, and F = 0.6 imposes traversing more common arcs of routes

over the planning days. Both consistency requirements that have very high levels substantially

limit the availability of cost-efficient routes, and thus are not suggested in practice. At the same

time, imposing high RC levels sometimes requires more drivers to obtain feasible schedules, which

decreases the utilization of the vehicle fleet (as seen from the average cost per driver in Figure 7).

By comparing the cost ratio results in Tables 7 and 8, we find that with different service frequency

scenarios (i.e., 50% and 70%), the cost increase due to the DC and RC requirements under the

70% service frequency scenario is obviously lower than the 50% service frequency scenario. The

reasoning behind this observation is that with a higher service frequency, customers are more likely

to request a service every day, and thus drivers are more likely to traverse common arcs from day

to day. This suggests that if a company serves a group of customers with a high service frequency,

a high RC level can be targeted without incurring a high route cost.

7.2. Sensitivity Analysis on TC Levels

The sensitivity to TC levels is analyzed under five representative combinations of DC and RC: (i)

E = 5,F = 1, the relaxation of both DC and RC (i.e., the sensitivity to TC without considering

DC and RC); (ii) E = 3,F = 0.8, middle levels of DC and RC; (iii) E = 1,F = 0.6, high levels of

DC and RC; (iv) E = 1,F = 1, a high level of DC and the relaxation of RC; and (v) E = 5,F = 0.6,

the relaxation of DC and a high level of RC. For each combination, we increase the maximum

arrival time difference L from 20 to 70 in increments of 5 and test the two groups of instances with
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service frequencies of 50% and 70% for the average total cost. Because the average total cost of

each combination of DC and RC levels in Tables 7 and 8 is the cost without considering TC, we

use that as the benchmark. We then calculate for each combination the comparative ratio of the

average total cost for different L to investigate how the cost varies.

Figure 2 Sensitivity Analysis of TC for 50% Service Frequency.

Figure 3 Sensitivity Analysis of TC for 70% Service Frequency.

Figures 2 and 3 depict the variations of the total travel cost in response to changes in the

maximum arrival time difference for 50% service frequency and 70% service frequency, respectively.

The sensitivity to TC generally presents a similar picture for different combinations of DC and RC

levels. In both figures, the total travel cost has the highest sensitivity to TC at the middle levels

of both DC and RC (i.e., E = 3,F = 0.8), and has the lowest sensitivity to TC at the high levels of

both DC and RC (i.e., E = 1,F = 0.6).
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Starting from E = 5,F = 1, as DC increases to the highest level (for the combination of E =

1,F = 1), certain high levels of TC will be awarded; the total travel cost will not be affected if

L≥ 35 (resp., L≥ 40) for the 50% service frequency (resp., the 70% service frequency) for the case

of E = 1,F = 1. This may reflect the effectiveness of using the principle of the ConRTR heuristic

(developed by Groër et al. (2009)) to address TC; that is, keeping the highest level of DC will result

in a small arrival time difference. However, it is important to note that although certain high levels

of TC will be granted for the combination of E = 1,F = 1, if a very high level of TC is targeted,

the total travel cost will further increase, as shown by L = 20 in both figures. This phenomenon

may be attributed to the fact that the highest level of DC indicates the special solution structure

that each driver will serve a disjoint subset of customers, and the operated route of the driver on

each day only traverses customers from the subset that requires service on that day. Thus, when

considering TC for each customer, we only focus on the routes operated by the same driver who

serves the customer. Because these operated routes are derived from the same subset of customers,

certain high levels of TC can easily be granted. However, when pursuing a very high level of TC,

we may seek another way to divide customers into K disjoint subsets of customers, which may

perhaps raise the total travel cost.

Above E = 1,F = 1, if RC reaches to the level of 0.6 for the combination of E = 1,F = 0.6, the

total travel cost will be further less affected by the TC requirement. This is due to the fact that

a high RC level requires more common arcs to be traversed over several days, and thus similar

customer visiting sequences are more likely to be kept over days, which benefits the TC requirement.

The same phenomenon can be observed from E = 5,F = 1 to E = 5,F = 0.6 that imposes the RC

level of 0.6 on the combination of both relaxed RC and DC.

7.3. Route Familiarity under Different Consistency Settings

Traditional TC and DC aim to improve customer satisfaction by enforcing more requirements on

the delivery and pickup by drivers. However, the concerns of drivers are ignored. We propose the

new RC to take the convenience of drivers into consideration. To verify the impacts of RC, we report

in this section the average route difference ratio among K drivers (i.e., the average proportion

of different arcs traversed over total arcs traversed among K drivers) under different consistency

requirements settings. We conduct related tests for groups of both 50% service frequency and 70%

service frequency, and record average values for comparison.

As can be seen in Figure 4, if we only impose the highest DC level E = 1, it does not benefit route

familiarity since it leads to a high average route difference ratio. The major reason for this may be

that under E = 1, customers are divided into disjoint subsets for independent routing, which makes
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the overall routing less friendly to drivers. If we start to impose a high TC level (e.g., L = 20),

the situation becomes slightly better, as can be seen from the bars L = 20, and E = 1,L = 20 in

Figure 4, where the latter imposes both high DC and TC levels. However, these results still show

that both DC and TC in the traditional ConVRP cannot essentially benefit route familiarity. In

Figure 4, if we enforce RC level F = 0.6, we will have a low average route difference ratio of less

than 0.6, suggesting high familiarity with routes, and the benefit still holds if we also set E = 1 and

L = 20. This strongly motivates the use of RC to improve driver’s route familiarity. Another point

to notice in Figure 4 is that, 70% service frequency will lead to a lower average route difference

ratio compared with 50% service frequency, which is consistent with the conclusion in Section 7.1

that a higher service frequency benefits the RC.

Figure 4 Average route difference ratio under different consistency requirement settings.

8. Conclusions

We studied a general multi-day vehicle routing problem that jointly considers time consistency

(TC), driver consistency (DC), and route consistency (RC) requirements and involves simultaneous

distribution and collection operations. For this problem, we developed two set-partitioning-based

models (one for routes and one for schedules). We investigated lower bounds on the two models by

solving their relaxations through column-and-cut generation techniques, and we designed an exact

method for this problem that takes advantage of both models.

Numerical experiments were conducted by using both benchmark instances taken from the liter-

ature and newly generated instances with general settings of consistency requirements. The results

demonstrate the effectiveness of the proposed method. Specifically, we solve instances to opti-

mality up to the same size of the state-of-the-art method for the traditional consistent vehicle
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routing problem, and we solve instances with up to 50 customers with a general consistency set-

ting. Moreover, a general setting of the driver consistency level leads to a significant cost saving.

We also investigated the trade-offs between the three consistency requirements and explored some

managerial insights.

A limitation of this work refers to the lack of flexibility of allowing vehicles to wait at cus-

tomers, though its benefits to ConVRP solutions are known to be marginal (e.g., see Goeke et al.

2019). However, allowing vehicle waiting is indeed common and important for vehicle routing prob-

lems that consider endogenous hard time windows. To tackle vehicle waiting, our current solution

framework can be extended by introducing an additional time dimension in defining the routing

decisions. By doing this, the route generation pricing problem will need to consider the waiting

time decision at the customer, whose solution can be much more complex (e.g., see Spliet and

Gabor 2015). Furthermore, our solution framework follows a column (i.e., the routes and sched-

ules) enumeration scheme, so working on the extended model will definitely generate many more

routes and schedules with slightly different waiting time decisions at customers, thus significantly

challenging the solution complexity of the problem. Hence, how to embed vehicle waiting into the

problem, and its exact solution will be a future technical work to conduct.

In addition, there are some future research directions that are also worthy of further investi-

gations. First, a tailored heuristic method could be studied to solve our problem at larger scales.

Second, alternative ways could be explored to to model the route consistency and compare the re-

sulting solutions. Third, there is also the motivation to incorporate more schedule-wise constraints

(i.e., workload balance among drivers), by taking advantage of the solution techniques used in this

work.
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