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Abstract – Real traffic networks typically exhibit considerable day-to-day variations in traffic flows and 

travel times, yet these variations are commonly neglected in network performance models. Recently, two 

alternative theoretical approaches were proposed for incorporating stochastic flow variation in the 

equilibration of route choices: the stochastic process (SP) approach (Cantarella & Cascetta, 1995) and the 

second order generalised stochastic user equilibrium (GSUE(2)) model (Watling, 2001). The theoretical 

basis of the two approaches is contrasted, and the paper goes on to present a heuristic solution method for 

the GSUE(2) model, and two alternative simulation methods for the SP model, each applicable to the 

realistic case of probit-based choice probabilities. These solution methods are then applied to two realistic 

networks. Factors affecting convergence and reproducibility are first identified, followed by comparisons 

of the GSUE(2) and SP predictions. It is seen that a quasi-periodic behaviour commonly arises in the SP 

model, with the predictions radically different from the GSUE(2) model. However, by modifying the link 

performance functions in the over-capacity regime, the nature of the SP solution changes, and for a 

memory filter based on a large number of days’ experience, its moments are seen to be approximated by 

those of the GSUE(2) model. Implications for the application of these models are discussed. 

 

INTRODUCTION 

The classical approaches to network performance prediction are based on the concepts of deterministic and 

stochastic user equilibrium (SUE), whether for time-independent (Sheffi, 1985) or time-dependent (Ran & 

Boyce, 1996) cases. Although several extensions to such models have been proposed (e.g. Mirchandani & 

Soroush, 1987), the key assumption retained is that the traffic flows (whether or not disaggregated by link 

entry time) are fixed, deterministic quantities. This premise may be challenged on several grounds 

(Watling, 2001): for example, observations of real traffic networks typically indicate considerable between-

day variation. In any case, there is a growing interest in predicting the variance in traffic conditions, in 

addition to the mean, in order (for example) to quantify network reliability (Bell & Cassir, 2000), or to 

represent the inefficiency in drivers’ route choice as part of their behavioural response to information 

systems. 
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It is natural first to consider whether conventional network equilibrium models may still be applicable in 

such a variable environment: in particular, as a method of predicting mean conditions, to which variations 

are subsequently “supplemented” by some external process. There are several compelling theoretical 

arguments that make such an approach unattractive (Watling, 2001). Firstly, the non-linearity of the system 

components (e.g. the link cost-flow performance functions) implies that models neglecting flow variability 

will tend to provide systematically biased estimates of mean travel costs (see also Cascetta, 1989). 

Secondly, the “law of large numbers” arguments (e.g. Davis & Nihan, 1993)often proffered to justify 

conventional equilibrium as an approximation to mean stochastic conditionsrequire all inter-zonal 

demands to be “large”, which is difficult to justify for many practical urban studies involving fine zoning 

systems. Thirdly, it in any case seems unsatisfactory to deal with variability in some distinct, inconsistent 

way to the equilibrium process by which mean conditions are estimated. For example, the link cost-flow 

performance functions in some sense offer as much insight into the link between cost and flow variability, 

as they do between cost and flow means. 

 

Recently, two alternative theoretical approaches have been proposed that overcome these difficulties, 

involving fundamental re-definitions of the notion of ‘equilibrium’ within a stochastic framework. These 

are the stochastic process (SP) approach (Cantarella  & Cascetta, 1995) and the second order generalised 

SUE (GSUE(2)) model (Watling, 2001). The purpose of the present paper is three-fold: 

i) to compare and contrast these two approaches on a theoretical level; 

ii) to propose solution algorithms for each model, applicable to probit-based choice probabilities;  

iii) to obtain numerical comparisons of the two models, through applications to realistic networks. 

 

1. NOTATION 

The notation follows that of Watling (2001), where a fuller description is provided. In brief, a network is 

supposed to consist of A directed links, W inter-zonal movements and N routes, with the latter labelled in 

such a way that the index set of Nk routes for movement k is R r N r Nk j k
j

k

  









 :  1 2

1

1

, ,..., . The paths 

are related to the movements by the N W path-movement incidence matrix  , and to the links by 

the A N  link-path incidence matrix  . The (non-zero) inter-zonal demand rates are held in the W-vector 

q. The convex sets of demand-feasible route flow and link flow rates are denoted respectively by 

1  qff  
T:N  and 2   v v f 

A :     where  f 1 , where 
N  denotes the space of 

N-vectors with non-negative real elements, and TA denotes the transpose of the matrix A.  
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The cost of travelling along link a depends on the link flow vector v through ta(v) ),...,2,1( Aa  , with 

these functions themselves arranged in an A-vector, t(v). Finally,  p r Rr k( )u  :    is a route choice model 

describing the fraction of drivers on inter-zonal movement k that would choose each of the alternative 

routes in kR  when the perceived route costs are u (an N-vector), with p(u) denoting the N-vector of these 

functions across all movements. Following Sheffi (1985), v 2  is then termed a stochastic user 

equilibrium (SUE) if and only if 

  ))(().diag. T vtpqv  ( .                                       (1.1) 

 

Alternatively, flows may be defined as absolute values, rather than rates per hour, with the inter-zonal 

demands denoted by the vector WZq~ , relating to a period of the day of duration   hours, where Z N
  is 

the space of N-vectors with non-negative integer elements. Thus,q q  1~ . The demand-feasible absolute 

route and link flows are denoted respectively 1
~  qff ~~

:
~ T   NZ  and 

~2  ~ ~ ~v v f Z A :     where  ~ ~
f 1 . Capitalised versions of fvfv

~
 and ~ , , namely 

FVFV
~
 and 

~
 , , will denote vector random variables of the relevant flow/cost measures. On occasion, it 

will also prove useful to define the following partitions by inter-zonal movement: 

 
~

~

~

~
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F

F

F










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
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

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








1
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

W

.               (1.2) 

 

2.   THEORETICAL MODELS 

The purpose of the paper is to compare two alternative approaches proposed for the modelling of stochastic 

flows in networks. The first task is, therefore, to define the two approaches, specifically highlighting the 

distinct notions of “equilibrium” employed. 

 

2.1 The second order stochastic user equilibrium model 

The second order SUE model of Watling (2001) may be deduced in two steps. Firstly, a fixed point 

condition is deduced on the joint probability distribution of network flows, and secondly, this condition is 
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approximated using moments of the distribution, yielding a fixed point condition on the mean network link 

flows and covariance matrix. The key assumptions and deductions involved are: 

1. It is assumed that drivers have experienced traffic flows  )()2()1( ~
,...,

~
,

~ mVVV , and corresponding travel 

costs  t V t V t V( ~ ), ( ~ ),..., ( ~ )( ) ( ) ( )    1 1 1 2 1 m , on m previous “days”. Specifically, it is assumed that 

 )()2()1( ~
,...,

~
,

~ mVVV  are a sample of independent, identically distributed vector random variables, with 

common probability distribution   with elements  2
~~ : )~~

Pr(  vvV . 

2. Based on the experiences in 1., drivers’ mean predicted travel costs are assumed to be given by the 

variable  


m

j

j
m

1

)(11 )
~

( Vt , which as m  approaches with zero variance ]
~

[E 1V  where ~
~
V  

(where ‘~’ is used to denote ‘follows the distribution of ’).  

3. Given mean predicted link travel costs y , which induce route costs yT , the ~qk  drivers on each 

movement choose between the alternative routes independently and with common probabilities 

)( T
][ yp k , based on partition (1.2) of p(.). Thus, based on partition (1.2) of F

~
, it follows that: 

   ~    
~

][ yYF k Multinomial ))(,~( T
][ yp kkq     (independently for Wk ,...,2,1 ).          (2.1) 

4. Suppose finally that the 
~ ~ 2 1  constant matrix   describes the relationship between the link flow 

distribution   and the absolute route flow probability distribution   (a vector with elements 

 Pr(~ ~) ~ ~
F f f  :  1 ), where   , and the elements of   are 

 i j  











1

0

if the route flow  referred to by  "corresponds"  to the link flow  

referred to by ,  in the sense that   

otherwise                                                                                               

~ ~

~ ~
f v

v f





j

i     .        

5. Linking these assumptions together yields a consistency (equilibrium) condition on  :     ( )

                      (2.2) where  ( )  is a vector of 

dimension 
~1  with elements the probabilities Pr(

~ ~
[ (

~
)]~     EF f Y t VV   1   

where                  (
~

~ )
~ ~

)V f 1             (2.3) where the distribution of 
~F Y    is 

given by (2.1) based on partition (1.2). 

Now,   enters in the right hand side of (2.2) through ]
~

[E 1
~ VV

  in (2.3). Based on a second order Taylor 

series approximation to t(.), this expectation may be approximated by an expression involving only the 

mean and covariance matrix of V
~

. But then, based on (2.2), the link flow mean and covariance matrix are 
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related to the (multinomial) route flow means and covariance matrix, and standard expressions are 

available for the latter. Thus, (2.2) reduces to a consistency condition only on the flow mean and 

covariance matrix, leading to the following fixed point condition: 

 

Definition     Consider a network with twice-differentiable link cost-flow functions t(v), route choice  

model p(u) and demands q. Then the mean A-vector   and A A  covariance matrix  , as a pair ( , )  , 

is a Generalised Stochastic User Equilibrium of order 2, denoted GSUE(2), if and only if: 

      

 

 
  

 







 

 .  

 1
(2.4b)                                                                      . ))),(( ,( . 

(2.4a)                                                                           )),(( . )(diag

TT

T









tpq

tpq





 

where ),( t


 is an A-vector with elements 

 ),...,2,1(            ),( )(),( 2
1 Aatt aaa   H


              (2.5) 

where )(vHa  is the A A  Hessian matrix of )(vat , where the scalar product of two nm matrices is 

  
 

m

i

n

j
ijijYX

1 1
,YX               ( nm YX, )                         (2.6) 

and where ( , )q p  is a function whose result is an N N  block diagonal matrix, with blocks the matrices 

of dimension N Nk k : 

                   )(diag),( T
][][][][][ kkkkkkk qq pppp  ( , ,..., )k W 1 2 .                        (2.7) 

 

Here, ( , )   relates to the joint probability distribution of the flow rate variable V )
~

( 1V , rather than 

V
~

, as this allows a more natural comparison with conventional equilibrium models. In the conditions 

above, (2.5) represents the second order approximation to the expected link costs ]
~

[E 1
~ VV

 , and 

),~( ][][ kkk q p  (note kq~  rather than kq ) is a Multinomial ),~( ][kkq p  covariance matrix. In this form, it is 

possible to note several features of the GSUE(2) model. In particular, if the link cost functions t(.) are 

linear, then )(),(  tt 


, and (2.4a) reduces to an SUE condition (1.1) on   which may be separately 

solved, before substitution in the right-hand side of (2.4b) to determine  . Secondly, if all link costs are 

linear or quadratic, there is no approximation error in (2.5), and the GSUE(2) solution corresponds exactly 

to moments from the fixed point condition (2.2). Thirdly, for fixed q as   (implying that the absolute 

numbers of travellers  qq~  approach infinity on all movements), the effect of   becomes negligible, so 

)(),(  tt 


 and   is again an SUE. 
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Solutions to problem (2.4) can be shown to exist under mild conditions, namely the continuity of p(.), t(.), 

and first and second derivatives of t(.). The uniqueness of GSUE(2) solutions has been examined for 

problems where the Jacobian of t(.) is diagonal with positive elements. In single inter-zonal movement 

problems, a unique GSUE(2) solution is guaranteed if all second derivatives of t(.) are non-negative and 

p(.) follows a regular random utility model, provided the absolute travel demand is not very small. For 

problems with multiple inter-zonal movements, numerical experience with the model has never indicated 

the existence of multiple solutions. Moreover, it has been proven that if multiple solutions do exist, then the 

resulting mean flows will be very similar (Watling, 2001). 

 

2.2 The stochastic process model 

A rather different notion of equilibrium is obtained by casting our problem in the form of a discrete time 

stochastic process (SP), where an explicit dynamical adjustment process relates past experiences to current 

behaviour. This single process describes the way in which past experiences came to evolve, as well as 

equilibrium and future behaviour. The state variables of the dynamical system are essentially rather 

complex joint probabilities (over both links and “days”) of the possible flow states, with ‘equilibrium’ 

achieved when the process converges to a state from which the dynamical process will never move. It is 

noted that analogous treatments of conventional Wardrop equilibrium (Smith, 1984) and SUE (Watling, 

1999) are possible, but in these cases with respect to discrete time deterministic processes in which the 

flows themselves (rather than their probabilities) are the state variables. 

 

Following Cascetta (1989) and Cantarella & Cascetta (1995), we begin by supposing a rather general 

dependence on the past, in the form of an autonomous, m-dependent, Markov process. That is to say, if the 

random variables 
~ ( )V n  (n=1,2,…) denote the link flow vector on “day” n (or some other discrete time 

epoch n), then we suppose that 
~ ( )V n  depends only on the flows  ~

,
~

,...,
~( ) ( ) ( )V V Vn n n m  1 2  in the previous 

m days, and that this dependence is time-invariant (i.e. independent of n, depending only on the number of 

days between the present and past). Let Wm
n( )  =  ~

,
~

,...,
~( ) ( ) ( )V V Vn m n m n   1 2 denote an m-sequence of 

such variables ending on day n. Then, by the Markov property, 

 Pr( ) Pr( ) Pr( )( )
~

( ) ( ) ( )W W W w W w
w

m
n

m
n

m
n

m
n

m
   



        
2

1 1        (n= m+1, m+2,…)        (2.8) 

and since conditionally on Wm
n( )1 , all elements of Wm

n( )  are determined except for 
~ ( )V n , then 

 Pr( ) Pr( ~ ) Pr( )( )
~

( ) ( ) ( )W V W w W w
w

m
n n

m
n

m
n

m
   



        
2

1 1        (n= m+1, m+2,…).        (2.9) 
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By the time-invariance (autonomous) assumption, the conditional probabilities of 
~ ( ) ( )V Wn

m
n1 are 

independent of n, and so can be arranged in a constant matrix B of dimension 
~ ~ 2 2

m
 . B is known as 

the transition probability matrix, and is the defining property of the SP (i.e. its elements are known values 

from the model assumptions). Suppose further that for n=m+1,m+2,…, the probabilities 

 Pr( ) :
~( )W w wm

n m   2  are arranged in a column vector  ( )n  of dimension 
~2

m
. Then (2.9) may be 

written as the linear dynamical system in   of: 

 )1(T)(   nn  B     (n= m+1, m+2,…)                               (2.10) 

where we suppose that  ( )m  is supplied as an initial condition. An equilibrium state of this system is 

therefore a probability distribution  *  satisfying 

 *T*   B   .                                  (2.11) 

It may be shown (Cascetta, 1989) that there exists a unique solution to (2.11), to which the process (2.10) 

will converge regardless of the initial conditions, provided that m is finite and the process is irreducible. 

Irreducibility requires that there is a positive probability that process (2.10) will transform from any 

feasible   to any other feasible   in a finite number of time epochs. 

 

Specifically, consider now a particular SP model of the general form above, again following Cascetta 

(1989). The model has two components, a ‘memory filter’ describing the way in which past experiences are 

assimilated, and a ‘choice process’ describing how drivers behave conditionally on the past: 

  Choice Process: ~ ~( ) ( )V Fn n    where ~  
~ )1()(

][
nn

k YF  Multinomial ))(,( )1(T
][

n
kkq Yp   

          ( Wk ,...,2,1 , independently)        (2.12) 

  Memory filter: Y t V( ) ( )(
~

)n
m

n j

j

m
  


 1 1 1

1
  .                    (2.13) 

Sufficient conditions for process (2.12)/(2.13) to possess a unique, convergent equilibrium distribution are 

that m be finite, and that irreducibility be guaranteed by ensuring that pr ( ) >0 everywhere for all  routes 

Nr ,...,2,1  (as is satisfied by conventional logit and probit choice models, for example).  

2.3 Discussion 

It is natural to ask whether (2.2)/(2.3)from which the GSUE(2) conditions (2.4) are derivedalso 

characterises a necessary condition on the marginals of an equilibrium distribution *  of process 
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(2.12)/(2.13), at least as an approximation for large m in the SP. It is noted that in this conjecture, we need 

to refer to the marginals of *  (i.e. the flow probability distribution on any particular equilibrium day 

taken in isolation), since *  refers to the joint distribution of an m-sequence of days. 

 

In terms of the underlying theoretical approaches, there is a good case for claiming that the two methods 

are quite distinct, and that there is no good reason for expecting a correspondence. Certainly, the 

approaches are sufficiently different that the GSUE(2) derivations cannot simply be applied to the SP case. 

In brief, there are three main theoretical reasons to suspect that the marginal moments of an equilibrium 

distribution satisfying (2.11) will differ from the GSUE(2) moments (2.4): 

Autocorrelation.  Part of  ( )n  in the SP (2.10) are the marginal probability distributions of each of the 

constituent vector variables
~

( , ,..., )( )V n j j m   1 2 , and in equilibrium these marginals will be identical. 

However, since  ( )n  is a joint probability distribution of the 
~

( , ,..., )( )V n j j m   1 2 , it also contains 

information on the covariances between these variables, and such autocorrelationsi.e. correlations 

between time epochswill exist even in equilibrium. In the SP case, therefore, we cannot hope to appeal to 

the same assumptions used in the derivation of (2.2), since in the equilibrium phase of the SP, while past 

experiences are marginally identically distributed, they are not independent. 

Stochastic choice probabilities. The appealing theoretical properties of the SP approach, particularly the 

existence of a unique, globally convergent equilibrium distribution, hold when m is finite. In such cases, in 

the memory filter (2.13), )1( nY  will be a random variable, and hence so will the unconditional route 

choice probabilities )( )1(T nYp  . Therefore, while conditionally on the past, drivers’ choices are based on 

fixed choice probabilities and are therefore multinomial (as in (2.12)), the unconditional distribution of 

path choices is based on stochastic choice probabilities and therefore cannot be multinomial. But it is 

precisely such unconditional choices, and therefore unconditional link flows, that underlie the SP notion of 

equilibrium. The equilibrium moments of the SP therefore never correspond to multinomial unconditional 

path flows, whereas the GSUE(2) moments (2.4) always do. 

Moment approximation. A final, rather more obvious distinction is that (2.4) are moments computed 

from an approximation to the link cost-flow performance functions. 

In spite of the differences in the underlying theoretical models, it is still relevant to ask whether this 

translates into substantial differences in practical model predictions. In section 6 a series of numerical 

experiments are conducted in order to obtain preliminary evidence on this issue for realistic networks. 
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Clearly, however, a requirement for such comparisons is the existence of efficient solution algorithms. In 

the following two sections, algorithms are therefore proposed for implementing these two models. 

 

 

3. SOLUTION ALGORITHM FOR THE GSUE(2) MODEL 

A heuristic algorithm is proposed here for directly computing GSUE(2) solutions. By ‘directly’, it is meant 

that the moments themselves enter as the problem variables, without any explicit reference to the 

underlying equilibrium probability distribution (2.2). The algorithm is based on noting that the first of the 

GSUE(2) conditions (2.4a) can be interpretedconditionally on as an SUE condition (1.1) on  , 

based on modified link cost functions (2.5). This leads to the strategy of alternately solving an SUE sub-

problem (2.4a) in   for given  , and then updating   according to (2.4b) based on the current 

equilibrium route proportions. The SUE sub-problem is solved by the method of successive averages 

(MSA), as described in many texts (e.g. Sheffi, 1985). Formally, the algorithm is as follows: 

 

Initialisation Set  ( )0  to the A A  zero matrix ( ( )0  arbitrary). 

For n=1,2,...: 

 Auxiliary solution Using the MSA algorithm, solve an SUE sub-problem in   conditional on 

  ( )n 1 : 
     )),(( . )(diag . )1(T  n tpq


 

    denoting the solution by  ( )n .  

    Obtain the corresponding estimate of   from: 
      ( )n = -1 T)(  . ) ,( .  npq     

    where ),(   is given by (2.7) and the probabilities p ( )n  are given by 

      ),( )1()(T)(  nnn  tpp


. 

    The pair ( , )( ) ( ) n n  is the iteration n auxiliary solution. 

 
 Update estimates Update the GSUE(2) estimates according to: 

     
 

 

   ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n

n n n n

n

n

  

  

 

 

1 1

1 1

1

1
   

   . 

 
The algorithm is therefore based on twoan ‘inner’ and ‘outer’MSA updating schemes. The inner 

iterations are used to solve an SUE sub-problem, conditional on the current estimates of the link flow 

covariance matrix  ( )n1 , giving rise to an auxiliary solution. The outer iterations use the auxiliary solution 
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from the SUE sub-problem to form an updated estimate of a ( , )   satisfying the GSUE(2) conditions; at 

any given outer iteration, this estimate is the average of all auxiliary solutions computed to date. By 

initialising the covariance matrix to zero, the first outer iteration computes a conventional SUE solution 

(i.e. based on link cost functions t(v)). This seems a sensible starting point given the asymptotic 

correspondence, noted in section 2.1, between GSUE(2) mean flows and SUE. It is noted in passing that 

this heuristic algorithm is readily generalised to compute GSUE solutions for models of higher order than 

two (see Watling, 2001, for a definition of such models), where the computation of )(n and )(n  in the 

iterative process is extended to the computation of moments of order 2 and above. 

 

If t(v) is twice continuously differentiable, has a Jacobian that is diagonal with positive entries, and has 

non-decreasing second derivatives, then conditional on   the modified link cost functions 

t( , )   are 

continuous and monotonically increasing in  . This, together with some technical conditions on the joint 

probability distribution of perceptual errors, guarantees the existence of a unique solution to each SUE sub-

problem, and the convergence of the (inner) MSA algorithm to this solution (Daganzo, 1982; Sheffi, 1985). 

However, the convergence of the outer iterations is not guaranteed, but if the outer iterations do converge, 

the resulting estimate will, by construction, be a GSUE(2) solution. 

 

The algorithm was implemented in the C language on a personal computer. Preliminary tests on a number 

of artificial networks of led to a number of conclusions regarding the implementation: 

1.  As reported by Sheffi (chapter 12, 1985), there seems to be no advantage in performing more than one 

Monte Carlo simulation for each stochastic network loading step of the SUE sub-problem. 

2.  The computation of  ( )n  in the Auxiliary Solution step requires equilibrium path choice information 

(p ( )n ) from the SUE sub-problem. This information may be efficiently stored during the solution of 

each SUE sub-problem by saving all predecessor arrays generated during the tree-builds (for which the 

label-correcting algorithm described by Sheffi, 1985, chapter 5, was used). A predecessor array for a 

given origin zone contains as its ith element the node immediately preceding node i along the minimum 

cost tree. The required path information may then be deduced at the end of the SUE sub-problem, for 

each origin zone in turn, avoiding large storage/memory requirements.  

3.  Tests of various candidate convergence/stability indicators were made: 

i)  total travel time across the whole network; 

ii)  the user equilibrium objective function (Sheffi, 1985, p.59); 
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iii) Sheffi’s SUE objective function (Sheffi, 1985, p.312), estimated via Monte Carlo simulation; 

iv) a flow similarity measure suggested by Sheffi (1985, p. 328), based on the similarity of moving 

averages of flow iterates over successive, overlapping, k-day horizons (e.g. k=3); 

v)  a measure based on what Van Vliet (1995) termed the GEH statistic, G a
n( ) , to allow for a greater 

percentage tolerance in small flows than large ones (where x may be   or the diagonal of  ): 

 
 
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            (3.1) 

vi) the maximum percentage change in link flow iterates across all links. 

Qualitative reasoning from tests in small networks suggested i) as a reasonable indicator of convergence 

of the inner (SUE sub-problem) iterations, and i), v) and vi) for the outer iterations. Measure iii) was 

found to be unreliable for the SUE sub-problem due to the error in estimating the function by Monte 

Carlo methods, and iv) appeared commonly to indicate premature convergence.  

 

4.  SOLUTION ALGORITHM FOR THE SP MODEL 

 

As noted by Cascetta (1989), under the conditions noted in section 2.2 (namely, m finite and 0)( rp  

everywhere for Nr ,...,2,1 ), the process (2.12)/(2.13) is ergodic, meaning that unbiased estimates of 

equilibrium moments may be obtained from a single Monte Carlo simulation of the process. The problem 

then is to simulate the process efficiently. Now, the memory filter (2.13) is a simple mechanistic updating 

procedure, although the computer storage requirements can be substantial for large m, due to the need 

explicitly to store (and update) the costs on all links over the last m days. The Monte Carlo element of the 

process, then, derives wholly from the transitions implied by (2.12).  

 

Two alternative methods will be presented below for simulating these multinomial transitions. In both 

cases, it is assumed that p(.) follows a random utility model, with decisions based on random perceived 

travel costs. In the SP1 method, these perceived travel costs are simulated for each traveller, in order to 

arrive at individual route choice decisions. In the SP2 method, individuals’ choice decisions (rather than 

cost perceptions) are directly simulated, according to the population route choice probabilities. The SP2 

method is computationally attractive when the choice probabilities are expressible in closed form, such as 

in the multinomial logit model (see, for example, the experiments of Cantarella & Cascetta, 1995). 

However, the logit model is known to suffer from several well-known deficiencies in the context of route 
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choice, most notably that it neglects the correlations in peceived cost between overlapping routes. Although 

ad hoc adjustments to the logit have been proposed to alleviate such problems (e.g. Cascetta et al, 1996), 

the theoretical integrity of the random utility foundation is lost. It is well known that such difficulties may 

be overcome by the use of the probit model, in which the multivariate Normal joint distribution of route 

cost errors is implicitly defined through link cost error components. However, it is then necessary to deal 

with choice probabilities that are not expressible in closed form.  

 

The SP1 method, on the other hand, is attractive in its generality, in the sense that any complex form of 

random utility model error structure is readily accommodated. This includes error structures specified in 

implicit form, such as in the probit route choice model based on link error component distributions. 

However, SP1 requires a shortest path calculation to be made for every traveller (on every day simulated). 

Since shortest path calculations are the predominant computational effort in any network model, this 

requirement has potentially significant practical implications for large realistic networks.  

 

It is the purpose of the present paper to consider realistic choice models, such as the probit, that may indeed 

not be expressible in closed form. However, in view of the potential computational burden of the SP1 

method, it makes sense to consider to what extent the SP2 method may be used as an alternative, at least in 

some approximate form. The particular SP2 method proposed below is motivated by experience reported 

with the method of successive averages algorithm in the case of probit SUE (Sheffi, 1985). In this latter 

case, reasonable estimates of equilibrium flows can be obtained using only a very small number of Monte 

Carlo samplings (even as low as one) per equilibrium iteration. Even though the true probit choice model is 

not reproduced well on any one iteration, the final solution (which combines many such iterations) is 

commonly seen to be acceptable. In the same way in the SP2 method, the proposition is that even if 

conditional choices on any one day follow only coarsely the required probit probabilities, then any final 

estimates formed from the combination of a large number of days may nevertheless prove acceptable. 

 

The SP2 solution method proposed aims for maximum efficiency by combining: (a) the multinomial 

sampling required to simulate (2.12); and (b) a Monte Carlo based stochastic network loading procedure 

(see Sheffi, 1985, chapter 11) to estimate probit choice probabilities )(][ up k  for given u ),...,2,1( Wk  . 

The level of accuracy is selected with which )(up  will be reproduced, controlled by the number of 

samplings SAMPn  from the perceived cost distribution (as SAMPn , the implied choice probabilities 

approach exact probit ones). At the start of each day nconditionally on the current perceptions of mean 
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link cost yY  )1(n  from (2.13)for each movement k , SAMPn  samplings are made from the (multivariate 

normal) perceived cost distribution, and for each such sampling a minimum perceived cost route 

determined. Each of the )(~  kk qq  individuals then independently samples at random from these SAMPn  

routes with equal probability 
SAMP

1
n . 

 

The SP2 procedure above gives the required multinomial sampling for two reasons. Firstly, noting that the 

SAMPn  routes will not in general be distinct, the probability that route r will be sampled by an individual 

according to the above procedure is: 

     Pr(route r sampled) = no. of occurrences of route r in SAMPn  samplings 
SAMP

1
n .          (4.1) 

But (4.1) is precisely the estimate of the route r choice probability that a standard stochastic network 

loading method would use. Therefore, the procedure reproduces estimates of the required choice 

probabilities. Secondly, since individuals are sampling independently and at random with fixed 

probabilities (4.1), the number of individuals on each route will indeed be multinomial.  

 

More formally, the two alternative methods for simulating step (2.12) of the SP model are as follows: 

 

SP1 method 

For each inter-zonal movement k = 1,2,…,W: 

 For each individual kqi ~,...,2,1 : 

 Simulate perceived costs for each link 

 Determine the minimum perceived cost route 

 For links on the route above, increment the (absolute) link flow by 1  

 

SP2 method 

For each inter-zonal movement k = 1,2,…,W: 

 Initialise the counters ),...,2,1(0 SAMPnjr j  . 

 For each individual kqi ~,...,2,1 : 

 Sample from the integers },...,2,1{ SAMPn  with equal probability. 

 Increment jr  by 1 each time the integer j is sampled above. 
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 For SAMP,...,2,1 nj  : 

 Simulate perceived costs for each link. 

 Determine the minimum perceived cost route. 

 For links on the route above, increment the (absolute) link flow by an amount jr . 

 

It is noted that the SP2 method is implemented in a kind of reverse order, with drivers effectively choosing 

a route before it is determined. This avoids the need to store route information, with running totals of link 

flows sufficient. It should also be noted that in practice, in both the SP1 and SP2 methods there is some 

redundancy, since the minimum perceived cost routes are determined by a tree-building algorithm that 

simultaneously computes minimum cost routes to all destinations from a given origin. It would be tempting 

to utilise this feature in the simulation methods proposed, by simulating and determining minimum cost 

paths on an origin-by-origin basis, rather than a movement-by-movement basis. However, such a process 

would invoke an implicit correlation structure, thus violating the assumption of conditional independence 

between individual choices (if implemented in method SP1) and of conditional independence between 

interzonal movements (if implemented in method SP2).  

 

Since the only potential advantage of SP2 is in computational effort, it is worth considering the effort 

required in comparison with SP1. This may effectively be measured by the number of minimum cost route 

calculations required (per day) for each of the two methods: namely 



W

k
k

W

k
k qq

11

~  in the case of SP1, 

and SAMPWn  in the case of SP2. As an example, for the Sioux Falls network considered later (section 6), 

there are 196W  inter-zonal movements and 39666
1




W

k
kq trips per hour. Thus, when 1  hour is 

simulated and 10SAMP n  samplings are used in SP2, then for each day SP1 requires 39666 minimum cost 

path calculations, whereas SP2 requires only 1960. On the other hand, if 1.0  and 20SAMP n , then the 

effort is around the same for the two methods. In the Weetwood network, with a similar number of trips 

divided between a greater number of movements, the SP2 method only gains a potential advantage for 

large   and small SAMPn .  

5.  NUMERICAL EXPERIMENTS: GSUE(2) ALGORITHM & COMPARISON WITH SUE 
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In all the networks considered, a probit-based choice probability function p(.) was adopted. In practice this 

was specified by assuming link cost perceptual errors to be independent between links, such that the 

perceptual error for link a (a=1,2,…,A) follows a Normal distribution with a mean of zero and a standard 

deviation of  t a0 , where   0  is a user-specified, link-independent dispersion parameter and t a0  is the 

free-flow travel cost on link a. Uniqueness of the solution and convergence of the MSA in the SUE sub-

problem are guaranteed when the perceptual errors have a distribution that is independent of current mean 

flow/cost (Daganzo, 1982), hence the decision to base the variance on free flow cost. Any sampled link 

cost that was negative was truncated at zero, though in practice (with the dispersion parameter varied over 

the range 0 05  . ) negative sampled costs rarely arose. Throughout, travel cost was assumed equal to 

pure travel time. 

 

The first network considered was the Weetwood corridor of Leeds, consisting of some 70 zones, 440 links 

and 174 nodes, and based on BPR-type “power law” cost-flow relationships (Sheffi, 1985, p. 358). The 

demand matrix contained some 39692 pcus/hour (pcus=passenger car units), with link capacities ranging 

from around 400 to 4000 pcus/hour. The second network was one often used in tests in the literature of 

network design algorithms, and specified in Suwansirikul et al (1987), ‘an aggregation of a network used to 

model the city of Sioux Falls’ (LeBlanc, 1975). It consists of some 48 nodes, 124 uni-directional links 

(including zone centroid connectors), and 24 zones. The original demand matrix (LeBlanc, 1975, Table 1) 

totalled some 3606 thousand vehicles/day. Following the suggestion of Suwansirikul et al, it was uniformly 

factored by 0.11 to obtain a peak hour demand matrix in units of thousand vehicles/hour. The parameters of 

the cost-flow functions (all fourth order BPR functions) were taken from Table X of Suwansirikul et al, 

with link capacities ranging from 4824 to 25900 vehicles/hour. In fact, a further round of factoring was 

carried out to both the demand matrix and capacities, with all uniformly scaled by a further factor of 0.1. 

The factoring was applied since it was already known that for large absolute demand levels, GSUE(2) 

approaches SUE (Watling, 2001), and so a comparison in such a situation was not so interesting. The final 

demand matrix consisted of some 39666 vehicles/hour, and the capacities ranged from 482 to 2590 

vehicles/hour.  

 

By varying the input parameters, the various models were tested in a wide range of situations across the 

two test networks. There is insufficient space to report all the numerical resultsinstead, sample results are 

given to illustrate general features that were apparent in the wider range of tests conducted. The first range 

of tests concerned the operation of the GSUE(2) algorithm, and in particular: (a) the reproducibility of 

results under different random number seeds, and (b) the trade-off between the number of outer and inner 
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iterations performed, OUTERn  and INNERn .  The results given in Table 1 indicate that while for any given 

choice of ),( INNEROUTER nn  the reproducibility across seed values appears rather good, nevertheless for a 

given total “effort” ( 3000INNEROUTER nn ), substantially different results arise depending on the 

balance between OUTERn  and INNERn .  

Seed value ),( INNEROUTER nn  

(30,100) (40,75) (60,50) (100,30) 

1 672.0 675.4 694.4 721.7 

2 671.9 677.0 689.4 721.5 

3 673.1 676.0 694.1 719.6 

4 671.3 676.9 689.7 720.2 

5 672.2 676.9 690.5 723.3 

Table 1: Total travel cost ( 510  vehicle-hours) under different seed values 
and number of inner/outer iterations (Weetwood, 1.0,3.0  ) 

 

This same feature was observed for other choices of   and  , and for other output measures, as well as in 

the Sioux Falls case. A further investigation of the inner/outer iterations was therefore necessary. Figure 1 

illustrates the flow similarity measures Gsum
( ) ( )n  and Gsum

( ) ( )n   given by (3.1), where   is the vector of 

GSUE(2) link flow variances, against outer iteration n. Figure 2 is the corresponding plot for total travel 

cost. The figures indicate the characteristic stability of the GSUE(2) outer iterates observed in the tests 

(including cases with lower values of INNERn ), with convergence as measured by G sum
( ) (.)n  virtually 

monotonic. The tests generally indicated that, in the two networks considered, the main effort was carried 

out in the early outer iterationsin the cases considered, this means in the first 20-30 iterations. In contrast, 

the inner iterations were in general seen to converge rather more slowly, with INNERn  identified as the 

primary cause of the differences observed across the columns of table 1. In particular, a single run of the 

inner MSA algorithm for varying numbers of iterations INNERn  was seen to produce a variation in output 

measures of the same magnitude as that observed for varying ),( INNEROUTER nn together as in table 1. 

Again, this convergence pattern was observed in both networks under a variety of parameter values.  

The conclusion was that, for a given computational load, the estimated equilibrium values would be more 

robust if the balance of effort favoured the inner, as opposed to the outer, iterations. The standard values 

used for all remaining tests were therefore ),( INNEROUTER nn = (30,100) (which for information, took 
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around 10 and 46 minutes respectively of run-time for the Sioux Falls and Weetwood networks, running on 

a 120MHz PC under DOS). The possibility cannot be ruled out, of course, that these findings are specific to 

the networks considered, and care should therefore be taken in uses of this algorithm on other networks, to 

ensure that a similar robustness and convergence pattern prevails. 

 

Sensitivity tests of the GSUE(2) model were then performed, with the particular aim of comparing the 

mean GSUE(2) predictions with a conventional SUE. Firstly, varying the time period duration   (results 

not presented here) confirmed what was to be expected from the asymptotic result noted in section 

2.1namely that as   is increased, GSUE(2) mean flows/costs approach SUE values. It was decided to 

focus henceforth on the case 1.0 , this low value chosen so as to emphasise any differences in the 

models as distinct from potential convergence error. 

 

The second sensitivity test considered the effect of varying the probit perceptual dispersion parameter  . 

As well as comparing SUE and GSUE(2), a modified form of SUE was also studied. The modified SUE has 

mean link flows MOD  exactly equal to SUE link flows, with a link flow covariance matrix  MOD  

subsequently computed from (2.4b) based on SUE route proportions SUEp i.e. 

 ),( TSUE1MOD  pq , with  ),(  given by (2.7). The modified SUE link costs are then 

),( MODMOD t


 with ),( t


 given by (2.5). This modified SUE model effectively assumes the SUE route 

proportions to be the equilibrium route choice probabilities in the stochastic flow case, with the final cost 

estimates of the modified GSUE(2) kind, but without any feedback to the choice process. 

 

In fact, the modified SUE model is precisely what the GSUE(2) solution algorithm, specified in section 3, 

yields after one outer iteration, since the algorithm is initialised at SUE flows. Therefore, in Figure 2, a 

comparison can be made of the modified SUE model (the iteration 1 total travel cost) and the GSUE(2) 

model (the converged solution). It is noticeable that the former is substantially higher than the latter, which 

in turn is substantially higher than the unmodified SUE value of around 64800 (not shown). Moreover, 

these differences are ‘real’ in the sense of being an order of magnitude greater than the differences obtained 

by using different random number seeds (see Table 1). 

Varying   ( 5.005.0  ) in both networks confirmed this as a more general feature, namely that the 

total GSUE(2) travel cost was generally bounded below by the SUE value, and bounded above by the 

modified SUE value. The former bound confirms the anticipated underestimation of expected costs that 

arises in the SUE model by neglecting flow variability, when link cost-flow relationships are convex (see 
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Cascetta, 1989). The latter bound indicates that correcting for this underestimation in a post hoc manner, 

without permitting drivers’ response to the modified expected costs, will tend to lead to an over-correction. 

This is because drivers will, where possible, re-route to avoid the most affected links, meaning that the 

potential inflation in such a link’s cost is mitigated by a reduction in flow.  

 

The results for the Weetwood network also showed a generally increasing disparity between the GSUE(2) 

and SUE models with increasing  , both in terms of total travel cost and mean link flows. The GSUE(2) 

total travel cost rose from 1.8% greater than the SUE value at 05.0 , to 3.5% greater at 5.0 ; the 

modified SUE model was a more constant 5%-6% greater than SUE. The maximum absolute difference 

between the GSUE(2) and SUE models in any individual mean link flow rose from around 50 

vehicles/hour at 05.0  to around 100 vehicles/hour at 5.0 . The Sioux Falls network yielded 

qualitatively similar results, although the difference between SUE and GSUE(2) total travel cost was rather 

smaller. On an individual link level, an increasing disparity with an increase in   was more clearly 

evident: the average absolute difference between GSUE(2) and SUE mean link flows rose from 4.0 at 

05.0  to 13.2 at 5.0 , with the difference in mean link costs rising from 6.7 to 26.3. 

6. NUMERICAL EXPERIMENTS: COMPARISON OF GSUE(2) AND SP MODELS 

6.1 Tests on the basic networks 

The SP model was applied to the test networks described in section 5, using the simulation methods 

described in section 4. In both networks, for both the SP1 and SP2 methods, and under a wide variety 

of adjustments to the model parameters ,m and   (as well as factors applied to the demand matrix, 

different random seed values, different initial conditions), it could be immediately observed that the 

predictions produced were radically different to those arising from the SUE or GSUE(2) models. A 

typical simulation is illustrated in Figure 3, based on a slight variant of the Weetwood network. A 

quasi-periodic behaviour is evident, the period of the extreme points being almost exactly 10 (= m), 

although the amplitude and period actually do vary due to the stochastic nature of the process. The extreme 

points give rise to a total travel cost that is several orders of magnitude greater than that under a SUE or 

GSUE(2) model. Figure 4 illustrates a corresponding behaviour observed for Sioux Falls.  

In order to understand better such behaviour, consider the following simple example of an m-dependent 

process, in which a single user has a choice between two routes, labelled ‘state 0’ and ‘state 1’. Let 

S( ) ( , ,..., )j j m  12  denote an m-sequence of states consisting of zeroes broken only by a single 1 in the jth 

position, with the convention S( )0  0m , the m-vector of zeroes. Suppose that transitions are entirely 



 

 

 
19

deterministic, with S(0) transforming with probability 1 into state 1, and any other m-sequence 

transforming with probability 1 into state 0. The unique, globally stable equilibrium behaviour is a 

periodic motion of order m, with m days of state 0 followed by one day of state 1. It is possible to 

establish this result by noting that an equilibrium probability distribution satisfying (2.11) is that which 

puts equal probability mass 1
1

m  at each of the sequences  S( ): , , ,...,j j m 0 1 2 ; hence, from the 

marginal distributions of these equilibrium sequence probabilities, it follows that in equilibrium, state 0 

occurs with probability 1m
m  and state 0 with probability 1

1
m . Now suppose instead that the transitions 

truly are stochastic: S(0) transforming to states 0 or 1 with probabilities  1  and  , and )( jS  

),...,2,1( mj   transforming to states 0 or 1 with probabilities    and  1 . For small    and  , Monte 

Carlo simulations closely resemble the periodic behaviour of the deterministic system. A simple 

network example of this behaviour is that with two parallel links with 1~
1  dq , 1 , 4m , 

9)(1 vt , 2
1

2 10)( vdt v , and   1
211 ))(exp(1)(  uup u , for large values of 0 . 

 

The relevance of this example to model (2.12)/(2.13) may be explained as follows. Suppose that: (a) 

many drivers choose to use a particular link on day n, and that (b) this causes the link to operate at a 

flow level in a steep part of the link’s power-law cost-flow performance function. Then the experienced 

travel cost on day n will be very high, thus deterring drivers from using that link on subsequent days. If 

the experience is sufficiently bad, then they will be deterred from using the link on days 

mnnn  ...,,2,1 , until at the start of day 1mn , they forget the bad experience on day n (the 

Markov property). Now they will take account of the travel costs that prevailed on days 

mnnn  ...,,2,1 , and precisely because the link was perceived to be unattractive on those days, it 

will have had a low use and hence a low actual travel cost on those days. This means that on day 

1mn , this link will now be perceived as an attractive choice for many drivers, and the whole cycle 

which began on day n is now repeated.  

 

Clearly this analogy is based on the two suppositions (a) and (b). In the case studies considered here, 

supposition (a) is effectively controlled by the probit perceptual dispersion parameter  , and supposition 

(b) by the nature of the cost-flow performance functions, and the learning parameter m. Even for large 

values of   and m, which weaken these suppositions, the test networks exhibited similar quasi-periodic 

behaviour, thus focusing attention on the remaining element, namely the cost-flow functions. 

 



 

 

 
20

In particular, it is the nature of BPR cost functions that they may give unreasonably high costs at flows well 

over capacity. Of course, this has a potential impact on conventional equilibrium models, yet in that case 

the effect is only “transient”, in the sense that if such extreme costs occur during the course of some 

solution algorithm, then the effect will be simply to deter drivers from using such a route in the final 

equilibrium solution. In the SP case, on the other hand, these extreme cost levels may affect (and indeed be 

the predominant factor in) the final, stationary behaviour of the process, as we have seen above. This is 

highly undesirable, since such functions are not intended to give a good representation of over-capacity 

behaviour, but have been conventionally defined over a wide range of flow levels purely for operational 

reasons of equilibrium solution algorithms. 

 

The numerical results show, then, that there are cases where the SP and SUE/GSUE(2) models are 

radically different. In fact, in cases such as this the predominant element in the SP is the dynamics between 

days, even in the stationary phase, such as between-day autocorrelations; the GSUE(2) model, on the other 

hand, can at best hope to capture the moments of the marginal distribution of flows for any particular day. 

The tests indicated a significant causal factor to be the over-capacity region of the cost-flow performance 

functions, and so further attention should be paid to this factor (see section 6.2).  

 

As an aside, it is also worth noting the potential pit-falls in model-users interpreting the results of the SP 

model. In order to test different initialisations of the process, the mean perceived costs on the first 1m  

days was set to (i) a pure average of previously-experienced travel costs, or (ii) a weighted average of 

experienced costs and SUE costs, by introducing km  identical “dummy” SUE travel cost experiences at 

the start of day k. Although the same behaviour ultimately prevailed in both cases, method (ii) was seen on 

occasion to delay the onset of the quasi-periodicity for a potentially very long period. In such simulations, 

the initial transient behaviour was seen to be a long period of days with flows varying randomly about an 

apparently stable mean, with the stationary quasi-periodicity only later becoming evident.  

 

 

 

 

6.2 Tests on the modified networks 

In view of the potential impact of the cost-flow functions, noted in section 6.1, modified forms of the case-

study networks were also studied. This was achieved through a simple modification, whereby the BPR 



 

 

 
21

cost-flow relationship is assumed to apply to under-capacity flows, with cost increasing linearly with flow 

over capacity, according to deterministic queuing delay (Van Vuren & Van Vliet, 1992, p. 104). 

  

The SUE, GSUE(2) and SP models were all re-run with these modified functions for both test networks 

and both the SP1 and SP2 methods, again in a variety of scenarios. (A further minor modification was, for 

all tests, to set to zero any demand rates kq  where 5.0kq , in order to minimise the effect of losing 

trips when kq  is “integerised” for the application of the SP model.) At lower values of m and/or  , the 

quasi-periodicity previously evident in the SP model was still apparent, but now with extreme points giving 

total network travel times that were of a similar order of magnitude to the non-extreme days. As m was 

increased, the quasi-periodicity gradually disappeared. However, one negative side to this modification was 

that the SUE and GSUE(2) mean predictions were much closer than in the pure BPR case. This is to be 

expected, since for any flows in the linear regime of the cost-flow functions, there will be no difference in 

the standard and modified expected cost relationships (the second derivatives are zero). In the Sioux Falls 

network, it was seen that under a variety of parameter values, the SP model’s predictions approached those 

of the SUE/GSUE(2) model as m became large (up to 50m ). On the other hand, the similarity between 

the two equilibrium models meant that it was not possible to distinguish whether the GSUE(2) model was 

closer than the SUE model to predicting the mean flows of the SP. 

 

The Weetwood network presented more interesting results, a sample set given in Table 2 (the cases m = 

100 and 200 were also tested, but gave identical results to m = 50 up to the accuracy in the table). The SP 

results were obtained from a simulation of 1000 days, with the first 200 discarded in estimating stationary 

moments. The results for the SP2 method (with 30SAMP n ) are given in brackets, following the 

unbracketed results which are from the SP1 method. The abbreviation ‘AAD’ refers to Average Absolute 

Difference. The SP1 and SP2 results clearly follow a similar pattern, and so we may henceforth safely 

restrict attention to one (SP1, say). For comparison, the SUE total travel cost was 245.9, and the GSUE(2) 

one 246.1, so in terms of this global measure it is difficult to differentiate between the two models, relative 

to the SP results for the case 50m . However, at the level of individual link flows and link costs, then a 

distinction is possible, with the AAD in mean flows and mean costs ultimately (for sufficiently large m) 

smaller for the GSUE(2) vs SP comparison than for the SUE vs SP comparison. 

m Total travel cost 
(105 veh-hrs) 
SP1      (SP2) 

AAD in SUE vs 
SP mean flows 
SP1      (SP2) 

AAD in SUE vs 
SP mean costs 
SP1      (SP2) 

AAD in GSUE(2) 
vs SP mean flows 

SP1      (SP2) 

AAD in GSUE(2) 
vs SP mean costs 

SP1      (SP2) 
1 460.4   (463.5) 273.1    (283.8) 47.8   (47.4) 275.8   (287.0) 47.9   (47.6) 
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3 422.6   (426.3) 233.1   (253.8) 46.0   (45.3) 236.4   (255.9) 46.2   (45.6) 

5 370.6   (332.0) 185.7   (137.5) 38.4   (27.9) 187.6   (138.1) 38.2   (27.9) 

10 283.1   (281.8) 71.7   (67.3) 16.9   (16.3) 70.7   (68.2) 16.5   (16.0) 

20 246.4   (247.6) 29.6   (31.1) 4.2   (4.7) 27.6   (29.3) 3.8   (4.3) 

30 242.4   (241.9) 22.0   (20.9) 2.3   (2.0) 20.2   (18.4) 1.8   (1.4) 

50 240.7   (241.6) 18.6   (19.8) 1.7    (1.9) 14.9   (17.0) 1.2   (1.3) 

Table 2: Comparison of SP, SUE and GSUE(2) models, for SP1/SP2 methods 
(Weetwood; ;30;1.0;3.0 SAMP  n modified BPR functions) 

For the GSUE(2) and SP models, further comparisons are possible in terms of their predictions of link 

flow variances. The results from the SP1 and SP2 methods are rather different here, and so they are 

considered separately. From first comparisons with the SP2 method, a pattern was immediately clear, 

namely that, on a link-by-link comparison, the equilibrium variances estimated by the SP2 method 

were higher than their GSUE(2) counterparts, and that the absolute discrepancy was greater for links 

with the higher flow variances. These patterns indicated a useful measure of discrepancy to be the 

difference between the SP2 and GSUE(2) link flow standard deviation on the link with the highest 

GSUE(2) flow standard deviation. The value of this measure under a variety of values of m and SAMPn  

is given in Table 3. (The parameter SAMPn is defined in section 4).  Furthermore, for two such cases a 

link-by-link comparison of flow variances is given in Figures 5 and 6, neglecting links with a flow rate 

standard deviation of less than 5 vehicles/hour. 

m SAMPn  GSUE(2) standard deviation Standard deviation estimated 
by SP2 method 

50 30 105.6 322.8 

100 30 105.6 302.3 

200 30 105.6 291.6 

200 90 105.6 193.5 

200 150 105.6 160.0 

Table 3: Comparison of flow variance estimated by GSUE(2) and SP2 methods, for the link with 
highest variance (Weetwood; ;1.0;3.0  modified BPR functions) 

 
 

While the discrepancy between the two sets of figures is partially attributable to a “real” effect, namely that 

the GSUE(2) model effectively assumes an infinite m, there is a substantial residual effect due to SAMPn . In 

particular, even for rather large values of SAMPn , a significant estimation error in the SP2 method is evident. 
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As would be expected, this error leads to an overestimation of variance, due to the day-to-day varying error 

in the estimated choice probabilities. The fact that the SP2 method can produce acceptable estimates of 

mean flows (see Table 2 and surrounding discussion), while producing poor estimates of flow variances, 

can indeed be observed in much simpler examples. For example, for a network with two parallel links, 

constant cost functions 7)(,5)( 21  vv tt , 2001 q , 1  and 3.0 , the constant probit choice 

probability for route 1 may be verified to be around 0.78, using tables of Normal probabilities. The SP 

daily flows coincide with the binomial GSUE(2) moments in this special case of flow-independent costs, 

yielding a route 1 flow rate mean and variance of  15678.011  q  and 

3.34)78.01(78.01
1

1   q  respectively. Estimating these same measures by the SP2 method 

yields Table 4, where values of SAMPn  as large as 300 can produce poor variance estimates. 

SAMPn  1̂  
1̂  

300 156.1 56.2 

600 156.3 45.1 

900 156.0 41.5 

1200 156.2 36.3 

Table 4: Estimates of mean and variance in flow rate by SP2 simulation method 
(two link, constant cost network) 

 
Focusing, then, on the SP1 method, Table 5 provides the results of a link-by link comparison of the 

standard deviations estimated by SP1 and GSUE(2), again for links with a standard deviation of at least 5. 

For each value of m, the figures reported are: the average absolute difference across links; the slope of a 

least squares regression fit with zero intercept; and the correlation coefficient. The clear pattern is one of 

increasing similarity between the two models as m is increased. As would be expected, the SP model gives 

rise to generally greater variances at lower values of m, as can be seen from the ‘slope’ column. On the 

other hand, at values of m as high as 30 there remains a substantial discrepancy between the variances 

predicted by the models. The case m = 200 is further illustrated in Figure 7, where a close correspondence 

across all links is evident. It is noted finally that comparisons were also made with the ‘modified SUE’ 

model, as defined in section 5. While the margin was not great, perhaps due to the linear regime of the cost-

flow curves, the evidence was of GSUE(2) being closer than modified SUE to the SP predictions.  

m  Average Abs. 
Difference 

Slope of  y = bx  Correlation 
coefficient 

1 614.69 16.79 0.655 

3 885.24 24.99 0.823 
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5 861.32 23.81 0.738 

10 556.47 16.43 0.804 

20 162.71 5.67 0.662 

30 73.38 3.01 0.495 

50 5.11 1.11 0.961 

100 2.31 1.01 0.994 

200 1.89 0.98 0.996 

Table 5: Comparison of link flow standard deviations estimated by GSUE(2) and SP1 methods 
(Weetwood; ;1.0;3.0  modified BPR functions) 

 
7.  CONCLUSION 

A solution algorithm has been presented for directly computing link flow means, variances and covariances 

for the GSUE(2) model. The numerical experiments have confirmed that this method is efficient for large 

realistic networks, as well as displaying desirable convergence and reproducibility properties. In contrast, 

the estimation of the SP model by Monte Carlo simulation has a number of dangers for the model-user. In 

particular, it has been seen how seemingly plausible model assumptions may induce autocorrelations, 

evident in a quasi-periodic equilibrium behaviour of the simulation, which could not reasonably be viewed 

as the plausible day-to-day operation of a network. 

  

This paper has clearly not examined the full potential of the SP approach, with only a small part being 

considered of the wide range of model assumptions that can be accommodated. However, the difficulties 

noted are certainly not restricted to the relatively simple macroscopic models of the kind considered here, 

with complex quasi-periodic behaviour having been observed in microscopic models of day-to-day route 

choice and vehicle movement (Nagel & Barrett, 1997; Liu et al, 1999). It is intended that in this respect, 

the GSUE(2) model may prove complementary to the SP approach (rather than a competitor), in helping to 

understand the nature of SP solutions and to identify potential numerical estimation problems. In particular, 

the  numerical evidence gathered in this paper suggests that a useful preliminary step in an SP application is 

to attempt an understanding of the differences between the SP model run with a large value of m and the 

results from the GSUE(2) model. As discussed in Watling (2001), the GSUE(2) model should not itself be 

regarded as a fixed entity, with many extensions possible (e.g. within-day dynamics).  

The general approach of using approximation methods to gain an understanding of complex SP and 

microscopic simulation models has a great deal of potential beyond that explored here. For example, a 
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significant restriction of the GSUE(2) model is its need to assume infinite driver learning, independent 

flows between days, and a multinomial flow allocation. In practice, limited learning capabilities will likely 

induce a greater variance in flows than that predicted by a multinomial distribution, yet characterising such 

a distribution analytically does not seem a simple task. An equally complex counter-effect is the role of 

‘habit’, which implies that individuals’ decisions are not conditionally independent between days. On a 

different theme, in terms of real-life applications, there would be benefit in research to develop formal 

statistical procedures to ‘fit’ stochastic models, such as GSUE(2) and SP, to observed variations in link 

flows and travel times, and/or using such data to validate the variance predictions of the models. 
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Fig. 1: Convergence indicators Gsum
( ) ( )i  and )(G )(

sum i  versus outer GSUE(2) iteration i (Weetwood 

network: ;3.0;1.0   100 inner iterations per outer iteration) 
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Figure 2: Total travel cost versus outer GSUE(2) iteration 
(Weetwood network: ;3.0;1.0   100 inner iterations per outer iteration) 

 
 

 

 
 

Figure 3: Total travel time versus day for stochastic process simulation 
(SP1 method, Weetwood, BPR costs, ,10,3.0,25.0  m demand factor=0.5) 
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Figure 4: Total travel time versus day for stochastic process simulation 
(SP1 method, Sioux Falls, BPR costs, 10,3.0,25.0  m )  

 
 
  

 
 

Figure 5: Comparison of link flow variances from GSUE(2) and SP2 method 
(Weetwood: modified BPR functions; 30;200 ;3.0 ;1.0 SAMP  nm ) 
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Figure 6: Comparison of link flow variances from GSUE(2) and SP2 method 
(Weetwood: modified BPR functions; 150;200 ;3.0 ;1.0 SAMP  nm ) 

 
 

 
 
 

Figure 7: Comparison of link flow variances from GSUE(2) and SP1 method 
(Weetwood: modified BPR functions; 200 ;3.0 ;1.0  m ) 
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