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Antifoundation and Transitive Closure
in the System of Zermelo

OLIVIER ESSER and ROLAND HINNION

Abstract The role of foundation with respect to transitive closure in the Zer-
melo systen¥ has been investigated by Boffa; our aim is to explore the role of
antifoundation. We start by showing the consistencyzfantifoundationt-
transitive closure” relative td (by a technique well known faZF). Further,

we introduce a “weak replacement principle” (deductible from antifoundation
and transitive closure) and study the relations among these three statements in
Z via interpretations. Finally, we give some adaptationZfewithout infinity.

1 Definitionsand prerequisites  In this paper, by we mean the set theory of Zer-
melo without foundation. Recall that the axiomszhre: extensionality, pairing,
union set, power set, infinity in the original form of Zermelo3¢ & =
{2,{2}, {{2}}, ...} and the local versioAC of the axiom of choice: for every set of
nonempty sets, there exists a choice-functionz,lwe shall use the notion of class
as usual.

Remark 1.1  Although we have included the axiom of choiceifor convenience,
all our results remain true fa \ {AC} (except Propositiol2_3land maybe Theo-
rem[2.11lfor which it is an open question). This uses the interpretability af z
\{AC}.

Definition 1.2

1. Theordered pair of a andb is defined by(a, b) = {{a}, {a, b}}.

2. A class-function of domain A (class) is a clas§ of ordered pairs such that
(Vae A)(Alb)((a, b) € F); asusual, this uniqué will be notedF (a).

3. Afunctionis a class-function which is a set.

4. Anordinal is a transitive set well-ordered by the relationWe denote byOn
the class of ordinals.

5. AclassX s transitiveif and only if (Vz e X)(Vt € 2)(t € X).
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. Thetransitive closure of a setx is defined by
TC(x) = ){yIxS y & yis atransitive sgt

. TC is the transitive closure axion¥x 3t x C t C Pt.

. A graph is a structure of typéG, €g) whereG is a set andcg C G x G.
We will often allow ourselves just to writeG’ for ‘ (G, €g)’. We also write
“(Y, ey)’ for (Y, eg N (Y x Y))' to denote the graph obtained by restricting
egtoY C G

. For a graptG andg € G, wedefinegs = {h | h eg g}

. AsubseX C G (graph) isG-transitiveif and only if (Vze X) (Vt eg 2)(t € X).
For a graphG, the G-transitive closure of X C G is defined by

TCq(X) = ﬂ{Y | X C Y & Yis a seG-transitive.

Anapg (accessible pointed graph) is a structure of tyeeg, n(G)) where
Gisaseteg C G x G, andn(G) is a distinguished element &, realizing
TCe({n(G)}) = G.

Anisomorphism of apg is a graph isomorphisnfi : G — G’ realizing

f(n(G)) =n(G).
A decoration of a graphG is a functiond realizing
(Vg e G)(d(9) ={d(2) | zeg g}).

AFA is the well-knownantifoundation axiom: each graph has exactly one dec-
oration.

A structure of typ&X, ex) whereXis a class and x € X x X s calledwell-
founded if and only if (Va € X)(a# @ = (Jze a)(Vtex 2) t ¢ a).

MOST is Mostowski’s collapsing principle: each well-founded graph has a
(necessarily unique) decoration.

WREP is the followingweak replacement principle (it is a scheme in our first-
order language). For any satand F a class-function: if{fF(x) | x € a} is a
transitive class, then it is a set.

2 Relationsamong AFA, TC, and WREP

Proposition 2.1 (inZ) AFA + TC — WREP.

Remark 2.2 The axiomTC cannot be dropped as is shown by Theof2m2]
Propositioi2_Glshows that, irz, WREP + AFA does not implyrC.

Proof of Proposition[2.1] It suffices to prove that if a class-functidrinjects a tran-
sitive classX into a seth then X is a set. Define a grap® by

G={JO) |te X} & J(2) eg I(1) iff zet.
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The axiomAFA guarantees thaiG, €g) has a decoratiod. It is easy to check that
bothd o J and the identity function are decorations for the graph({&D, ) (for
eacha fixed in X), so that (byAFA): (Vz e X)(d(J(2) = 2)). So X is exactly the
image of the seG under the functiom and is itself a set. O

Proposition 2.3 (in Z + MOST)  Every set isin bijection with an ordinal.

Proof: Letabe asetandlat ¢ a. Letchbe achoice-function offa\ {&}. Define
a function f by induction onx € On:

{ ch@\ {f(B) | B <a}) ifthissetis notempty,

f(a) = :

u otherwise.

There exists an ordinal such thatf («) = u. OtherwiseOn could be injected ira
by a class-functiori-. Define a grapi(G, €¢) in the following way: G = im(f),
ec={(xYy) | F 1% € F(y)}. (G, eg) is a set sinc&s C a and this graph is
obviously wellfounded, so has a decoratibnOne check by induction o € On
that, forx € G, d(x) = F~1(x). This gives indd) = On andOn would be a set, a
contradiction. Now the first ordinal with f (a) = uis in bijection witha. O

Definition 2.4  We define inz, #a as being the least ordinal in bijection wahf it
exists. By PropositioB.3] #a always exists irz + MOST.

The aim is now to show the interpretability of antifoundation in Zermelo. The proof
is similar to the one ilZF (see, e.g., Aczefl]).

Proposition 2.5 Thereisan interpretation of Z + AFA + TCin Z.

Proof: We use the well-known “trick” ofgraph-models; the reader can find earlier
variants of this in Hinnion[], Forti and HonselllE], and [

Consider asiniversethe clasM of the strongly extensional (in the senseldj|
apg’s. Let us recall that a bisimulation on a grapls an equivalence- on G such
that“xeg y ~ Y = (X €g Y)(X ~ X)” holds inG; that any graphG admits a
maximum bisimulation which is exactly the union of all bisimulations@rthat G
is strongly extensional if and only if (definition) its maximum bisimulation coincides
with equality (onG). It is also useful to keep in mind that any strongly extensional
graphG is necessarilfFinger-(strongly) extensional, that is, it satisfies

as apg

VX, y € G ((TCs({X}), €6, X) = (TCa({y}), €c.y)) = X=1Y).

The reader can find more about bisimulations and strong forms of extensionality in
Hinnion [8] and [LJ. The e-relation of our interpretation is defined f&; G' € M by

as a|

P9
G em G & (IeanN(@)((TCs({X}), €6, %) = G).

Atlast, interpret equality oM as apg-isomorphism, thati8,=y G’ if and only if G=
G'. Itis asimple routine task to check that the struct(k&, €, =pm) is an interpre-
tation forz + AFA +TC. O
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Proposition 2.6  There is a supertransitive interpretation of Z + AFA 4+ —=TC +
WREP inZ + AFA +TC +33,, .

Comment 2.7 The axiom3d, is the following: thebeth number of level w (the
first limit ordinal) does exist as a set (actualy, is the cardinal

U Jn with Jg = Rg and:ln+1 = 2:”).

New

Comment 2.8  An interpretation is supertransitive (see Bof&) [if it is a structure
of type (M, €)(ew is the “true” e and=y, is the “true”=) whereM is a supertran-
sitive class, that isM is transitive and realizexCye M = x e M.

Comment 29 This is the analogue, with antifoundation in place of foundation, of
Theorems 2 and 5 df].

Proof of Proposition2.6] Working inZ + AFA + TC +33,,, we can easily construct
asetb = {bj | i € w} such thaty; = {bj,1} U J; (just decorate the adequate graph).
Then take the clashl = Mo (2) as defined inl:

M = {X| (VN € w) Unx is of power < 3,}.

Theorem 5 of[f] can be obviously adapted to work here and shows that this class
gives a supertransitive interpretationzofThe supertransitivity immediately guaran-
teesAFA + WREP in M. But evidentlyTC is false inM because the transitive closure

of by (for example) is of cardinal,,. O

Remark 2.10 To prove this proposition we have addedzthe axiom3d,, which
cannot be interpreted ih The next theorem shows that if we want the interpretation
to be supertransitive, we cannot avoid this axiom. ThedZetflgives nevertheless
the relative consistency @f+ AFA + —TC with Z via a more complicated technique
(permutation models).

Theorem 211 Let Z* be an extension of Z such that there is a supertransitive in-
terpretation of Z + AFA + —TC in Z*+ TC. Then there is an interpretation of zZ
+33, in Z*+ TC.

Proof: Let us work inz*+ TC. Let (M, €) be a supertransitive interpretationof
+ AFA + —TC. By Proposition2.3] #a exists inM for anya € M. Since(M, €) is
supertransitive, we have that the internal cardinal ofasyM agrees with its exter-
nal cardinal; so we can speak abthécardinal ofa without confusion. Led € M be
such that has no transitive closure M. For anyi € o, leta; = U'aand leth; = #a;.
Let us first prove the following preliminary fact:

(Vi e w)(3j € w)(#a; > Tj). (%)
If not, we should have

(Ji e w)(Vj € w)(#aj < Tp).
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Then it would follow that the class T@) can be injected il); and so TGa) would
be a set inN M, €) by Propositiof?-1] acontradiction.

Since the ground universe satisfies, TC(a) is a set in this ground universe.
By (*), the classd, can be injected imfC(a) and so, inZ*+ TC, there is a graph
isomorphic to the structur€l,,, €). We interpret nowAFA in Z*+ TC as described
in Propositior2.5] It is now clear that this last interpretation satisfiSs,. O

The next theorem shows thatanif one does not haveC, one cannot prove thaiFA
— WREP. It gives also the relative consistencydf+ AFA + —TC relative toZ.
We use the technique of permutations. Similar results for foundation instesgrof
can be found in BoffdZ].

Theorem 2.12 Thereisan interpretation of Z +AFA + —“WREP in Z.

Proof: We begin to interpret the theo¥ + AFA + TC in Z (see Propositio.5.

Let M = R,,,. Recall that theR,’s are defined by induction o € On in the fol-

lowing way: R, = | PRg. Using Propositiof?_ 1] we easily see thaR,, exists
B<a

as aclass. Lety = J; x {J;} (fori € w). Let us consider the permutatignon M
defined in the following way for € w:

@(a) = {ajt1}
p({air) = & .
P(X) = x if (View)(X#{a1} & X# &)

Definee, on M by: X €, y <= ¢(X) € y. Various set-theoretic operations will be
used with an indexy when they are to be considered in the sensg\bfe,,).

The permutatiorp satisfies conditions 1 and 2 &][ so (M, €,,)) = Z. Let us
prove that(M, €,) = —TC. For example{ag} has no transitive closure M, €,).
Otherwise, put = TC,({ag}). We have

- €4 {ag) €4 (a1} €, {a0},

thusvi {a;} €, t, which gives(Vi > 1)(a;_1 € t) which is impossible sincet#vould
be equal tad,,.

Let us prove now that, itM, €,), each graph has a decoration. It amounts to
proving that for each graptG, €g), there is as,-decoratiord?; that is,d? is a func-
tion of domainG such tha(¥x, y € G)({y | y €, d*(x)} = {d¥(2) | z€g X}).

Letd be a decoration (in the usual sensefpfor technical reasons, we suppose
also that(vg € G)(g € TC(dom(¢))—by dom(¢), we mean{x € M | p(X) # x}. To
eachg € G with d(g) = a;, we associate an api§ (9) = (K(Q), ek ). N(K(9))) as
follows:

KG) = TC({{ai+1}})
n(K@) = {a}
€K(g) = en (G X G)

Notice that{K(g) | g € GNdom(K)} is a set (doniK) is the domain of the function
K:g— K(g), thatis, doniK) = {g € G| d(g) = &}). We define a graply’ (it
clearly suffices to defineg/). Forx, y € M, we definex g y to be the disjunction
of the following conditions:
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() xeG&yeG&Vix#£a & XegY,;
(i) (3g€G)(xe K(g) & ye K(Q) & xey);
(i) (3ge G)(x=n(K(9) &yeG& gegy).
Letd’ be a decoration o&’. Notice that ife € K(g) forag € G, thend'(e) = e. We
defined? on G in the following way:

() if d(g) =&, d’(9) = a;

(ii) if d(9) ¢ {ai|i € w}, d’(g) =d'(9).
In order to prove thadl” is ane-decoration ofG, let us prove the following prelim-
inary fact.

Fact 2.13 Ifd(g) € {a | i € w} thend?(g) & dom(yp).

Proof:  Suppose thafvh € TCs(gg))(d(h) ¢ dom(e)). In this case, we see that
d’I7ce(ge) IS @ decoration of Tg(ge) and thus we have?(g) = d(g) ¢ dom(p).
We can thus suppose th@h € TCs(gg))(d(h) € dom(p)). We can find a path

Jo€c 01 €G- - €6 On = gWith d(gg) = & for ai € wandg; # a (for 1 <i < n). By
construction, we have(K (gp)) € 01 €6 -+ €& gn = gand alsad’ (n(K(gp))) €
d'(g1) € --- € d'(gn) = d'(9). Asd' (n(K(go))) = {a+1} andd’(g) = d*(g), we
have{a;,1} € TC(d“(g)). Looking at the definition op, we see that no elements of
dom(gp) satisfy this condition. This achieves the proof of O

Let us prove thatl’ is ane,-decoration ofG. Suppose g Y.
@) If d(x) = &, we have thad?(x) = a; andd?(y) = d’(y). By the construction
of G, we have{a; 1} € d'(y) and thusd?(x) = & €, d?(y).
(i) If d(x) € {a | i € w}, we haved?(x) = d'(x), d’(y) = d'(y), andd’'(x) €
d’(y). By Facf213ld'(x) ¢ dom(¢) andd?(x) €, d*(y).
We have thus proved that

(VX ye G)({yl y e, d?(x)} 2 {d?(2) | zeg X}).

It is easy to see that we have the equality.

Let us now prove the uniqueness of the decoration. Suppose we have &graph
and twoe,-decorationsd? andd®. Consider the graphG’, i) as previously and
consider a decoratiom of G.

Fact 214 d¥(g) € dom(p) = (d*(g) € {ai | i € w} & d¥(g) =d(g)) forall g e
G.

Proof: We have thatd?(g) € {{a} | i € w} since{a} has no transitive closure in
(M, €,). Suppose thad’(g) = & for ai € w. Inthis casel’| ¢ 4, iS @ decoration
of TCs(gg) and thusd?(g) = d(Q). O

Let us now define two functions andh’ of domainG'. Let e ¢ G'. We define the
following:

() if ee K(g)forage G: h(e) =h'(e) = ¢

(ii) if e¢ K(g) forallge G: h(e) = d*(e), h(e) = d*(e).
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Using Facl2.14land by similar arguments as those used before, we sek #math’
are two decorations d&’ and thath £ h'.

Let us prove now thatM, €,) = WREP. Consider the clas$ = TC,({ao}).
We easily see thal = {{a;} | i > 1} which is clearly in bijection withw. But T is not
a ®t. This achieves the proof of Theor&i2 a

3 Other formsof antifoundation In , other forms of antifoundation are consid-
ered, namelyFAFA andSAFA, respectively, in relation to Finsler (strong) extension-
ality and Scott (strong) extensionality, and we express (in the local version here) as:
a gaph has an injective decoration if and only if this graph is strongly extensional
(respectively, in the sense of Finsler/in the sense of Scott). Our proofs can easily be
adapted to show that our results are still trueMaFA or SAFA in place ofAFA.

Our results also hold with the local universality axibm (see Boffalfl]) except
Propositiori2.TJand Theoren?.11] Let us recall that, is defined by ‘each exten-
sional graph has an injective decoration’. It should be noticed that some proofs need
more adaptations here than f&#FA or SAFA. PropositiorZ.Sfurnishes a good exam-
ple: the construction (as explained there) does not work simply by replacing “strongly
extensional” by “extensional.” One has to modify the proof like this: start with the
classM* of all extensional pointed graphs (i.e., structures of y®eZ, z), whereG
is asetE C G x G andz € G) and define=* (on M*) by: (G, E,2) €* (G, E,2)
ifand only if G= G & E=E' & zEZ. The structurg M*, €*) is universal in the
sense that any extensional graph is isomorphic to serhransitive subset ofi*,
but (M*, €*) is not itself extensional, so (a fortiori) not an interpretationZoit suf-
fices, however, t@omplete M* by adding copies ofPM*, P?M*, P°M*, ... such
that all thesePKM* are disjoint (fork € ). Notice that, for a clas¥, we cefine?X
as the class of alubsets of X and that the unioM of the copies of the?*M* can
indeed be defined id. Naturally onecompletes also* in the obvious way (e.g., if
ac PM*, we want thaiX ey aif and only if x € a, wherezis thecopy of zandey, is
the completion of €*). One can easily check thaW, €\,) is an interpretation foz,
except extensionality, and that it is still a universal structure. It suffices now to define
= as the minimum contraction M, €y), that is, the least (fog) bisimulation~
on (M, en) such that the quotieriv, e)/~ is extensional, to get an interpretation
of Z +U,+ATC (details about these considerations can be founB8]iri[f], and [J;
technically the situation here is relatively simple because we do not need to modelize
the replacement scheme); this proof is close to the one of von Rinl8thddpted
to Z.

4 A few words about ZF without infinity  In Hauschild [] it is shown thatzFy
(i.e., the Zermelo-Fraenkel set theory without infinity, but with foundation for sets)
cannot prova C (because it cannot prove the foundation scheme, i.e., foundation for
classes).

The main results proved in Secti@ftan be adapted to work witF (i.e., ZF
without infinity nor foundation) instead @ We give hereafter the statements of the
adapted results. First notice that triviall; = WREP.

Proposition 4.1 (see PropositioB.5) ~ There is an interpretation of ZFg -+ AFA +
TCin zF;.
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In ZFy, the axiom33,, introduced in Propositio.6lis clearly equivalent to the ax-
iom of infinity. Denote byzF~ the theoryzF without foundation. Propositiof.6l
becomes the following.

Proposition 4.2  Thereisa supertransitive interpretation of ZFy + AFA 4 =TC in
ZF~+ AFA.

Proof: Replace the clash! in Propositior2.6lby the following:
M = {X]| (VN € w) Unx is finite}.

O
TheoreniZTTbecomes the following proposition.

Proposition 4.3  Let ZF;* be an extension of ZF such that there is a supertran-
sitive interpretation of ZFy+ AFA + =TC in ZF;*+ TC, then ZF;* |= ZF .
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