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Basic Predicate Calculus

WIM RUITENBURG

Abstract We establish a completeness theorem for first-order basic predi-
cate logic BQC, a proper subsystem of intuitionistic predicate logic IQC, us-
ing Kripke models with transitive underlying frames. We develop the notion of
functional well-formed theory as the right notion of theory over BQC for which
strong completeness theorems are possible. We also derive the undecidability
of basic arithmetic, the basic logic equivalent of intuitionistic Heyting Arith-
metic and classical Peano Arithmetic.

1 Introduction Basic Predicate Calculus (BQC) was motivated by a revision of
the Brouwer-Heyting-Kolmogorov proof interpretation (Ruitenburg [5], [6]). Before
an actual axiomatization for BQC was attempted, a class of models for which BQC
should satisfy a completeness theorem was established: Kripke models as for In-
tuitionistic Predicate Calculus (IQC), except that the order on the underlying set of
nodes is transitive but not necessarily reflexive. This class naturally generalizes the
class of models for Basic Propositional Calculus (BPC), for which axiomatizations
and completeness were established (Ardeshir and Ruitenburg [1], Visser [8]). Unfor-
tunately, the original axiomatizations of BQC were wrong. The versions in [5], [6],
and Ardeshir [2] refer to a predicate calculus that in reality is a proper sublogic be-
tween the intended BQC, described in this paper, and IQC. In this paper we correct the
mistake by formulating a new axiomatization and by providing a first detailed proof
of the completeness theorem. As BQC is essentially weaker than IQC, “standard” or
“expected” results must be presented with extra detail.

We also explore the question of what is a good definition of theory. A good the-
ory over BQC should have a proper balance between formulas ∀x(A → B) and se-
quents A =⇒ B. In [1] the balance for BPC is struck with formalization, on the one
hand, and with faithfulness on the other. Here both will be generalized in two ways:
first, by allowing for theories with rule as well as sequent axioms and second, by ex-
tending both notions to BQC. A very general notion of a theory is introduced from
which a stricter version of a functional, well-formed theory that is adequate to our
purposes is derived. One example of this is the theory of Basic Arithmetic, that is,
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the basic logic equivalent of Peano Arithmetic and Heyting Arithmetic. Functional,
well-formed theories are essentially more general than sequent theories as discussed
in [1] and [6].

We present two completeness theorems for BQC. In Section 3 a quick overview
of the first completeness theorem’s basic ideas and the structure of its proof is pre-
sented. The second, stronger, completeness theorem is discussed in Section 5 with
more detail, because it is sensitive to details. Many results in [1] involving BPC have
immediate generalizations to BQC. We attempt to restrict our attention to those gener-
alizations that require a significantly different formulation or a significantly different
proof. We apply our results to the theory BA of Basic Arithmetic and, among other
things, we establish its undecidability.

There is the issue of the name “basic logic”, which is a less than optimal choice.
We hope one day a better name comes along. There is motivation for using an alter-
native name, but this name—geometric logic—is already taken.

2 Axiomatization and rules The language for BQC is not the same as the usual one
for IQC. The reason for the alternative choice is the following. Over both IQC and
BQC a formula of the form ∀xA corresponds with a formula of the form Ex → A,
where E is the extent operator of Heyting ([3], [4]) and Scott [7]. Similarly the for-
mula ∀x∀yA corresponds with a formula of the form Ex → (Ey → A) which is,
at least over IQC, equivalent to Ex ∧ Ey → A. Informally, over IQC, this equiva-
lence is an excuse for us to use the abbreviation ∀xyA for the original formula ∀x∀yA.
However, over BQC the formula Ex → (Ey → A) may be essentially weaker than
Ex ∧ Ey → A. So over BQC we prefer to distinguish between ∀x∀yA and ∀xyA.
A simple further extension is also to allow universal quantifications that correspond
with expressions of the form Ex ∧ Ey ∧ B → A. So over BQC we have more in-
volved universal quantification expressions for these of the form ∀xy(B → A). More
generally, we admit expressions of the form ∀x(B → A), where x is a finite sequence
of variables. We conventionally use small boldface letters to represent sequences of
terms, and regular small letters for single terms. A convenient side effect of having
these more general expressions is, that they allow us to syntactically redefine impli-
cation as a special case of universal quantification: if x is an empty sequence of vari-
ables, then we may write B → A for ∀x(B → A). For existential quantification no
such problems occur over BQC. So, as is usual over IQC, we may occasionally write
∃xA as short for ∃x1∃x2 . . .∃xn A.

The language of BQC has a set of predicate symbols of varying finite arity, a
set of function symbols of varying finite arity, a countably infinite set of variables,
parentheses, logical constants � and ⊥, and the logical connectives ∧, ∨, ∃, and ∀.
Constant symbols occur as function symbols of arity 0. We usually include the binary
predicate = for equality. Terms, atomic formulas, and formulas are defined as usual,
except that for universal quantification we have the more elaborate rule: if A and B
are formulas, and x is a finite sequence of variables, then ∀x(A → B) is also a for-
mula. Free variables are defined in the obvious way. A sentence is a formula without
free variables. A closed term is a term without free variables.

We may write A → B for ∀(A → B), that is, implication is universal quantifi-
cation with an empty sequence of variables. Additionally, we employ the usual ab-
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breviations of ¬A and A ←→ B as short for A → ⊥ and (A → B) ∧ (B → A), re-
spectively. (Note that for obvious reasons we can no longer use the expression ∀xA
as a short for ∀x(� → A); see the earlier notation of [6].) The set of quantifier-free
formulas is defined as usual, except that it is also closed under universal quantifica-
tions with empty sequence of variables, that is, closed under implication. Stated dif-
ferently, the expression ‘quantifier-free’ is a misnomer for ‘quantifier-variable-free’.
Given a sequence of variables x without repetitions, we write sx

t for the term and Ax
t

for the formulas that result from substituting the terms of t for all free occurrences of
the variables of x in the term s or the formula A. Note that Ax,y

t,u need not be the same
as (Ax

t )
y
u, similarly for terms. We occasionally borrow this notation for substitution

of terms for constant symbols, with the obvious meaning.
There are several possible ways to axiomatize BQC. Here we prefer a version

using axiom sequents and rules. For the rules a single horizontal line means that if the
sequents above the line hold, then so do the ones below the line. A double line means
the same, but in both directions. The BQC axioms that don’t involve the quantifiers
are essentially those for a distributive lattice with top and bottom. So BQC satisfies
all substitution instances of

A =⇒ A

A =⇒ B B =⇒ C
A =⇒ C

A =⇒ � ⊥ =⇒ A

A =⇒ B A =⇒ C

A =⇒ B ∧ C

B =⇒ A C =⇒ A

B ∨ C =⇒ A

A ∧ (B ∨ C) =⇒ (A ∧ B) ∨ (A ∧ C).

Variable substitution and existential quantification are without surprises:

A =⇒ B
Ax

t =⇒ Bx
t

,

where no variable in the finite sequence of terms t is bound by a quantifier in the de-
nominator.

B =⇒ A

∃xB =⇒ A
;

and
A ∧ ∃xB =⇒ ∃x(A ∧ B)

with x not free in A in either the rule or the axiom schema. We usually have equality
as part of our language. In such cases we must add the schemas

� =⇒ x = x ;

and
x = y ∧ A =⇒ Ax

y ,
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where A is atomic. This completes our list of schemas that don’t involve ∀. The frag-
ment that doesn’t involve universal quantifiers is called geometric logic, and sequents
that don’t involve ∀ are called geometric sequents. The axioms and rules for ∀ form
an essentially straightforward generalization of the BPC proposition logical axioms
and rules for → [1, 5, 6]:

A ∧ B =⇒ C
A =⇒ ∀x(B → C)

,

where no variable in x is free in A.

∀x(A → B) ∧ ∀x(B → C) =⇒ ∀x(A → C) ;

∀x(A → B) ∧ ∀x(A → C) =⇒ ∀x(A → (B ∧ C)) ;
∀x(B → A) ∧ ∀x(C → A) =⇒ ∀x((B ∨ C) → A) ;

∀x(A → B) =⇒ ∀x(Ax
t → Bx

t ) ,

where no variable in the sequence of terms t is bound by a quantifier of A or B; and

∀x(A → B) =⇒ ∀y(A → B) ,

where no variable in y is free on the left hand side. The schema ∀x(A → B) =⇒
A → B is a special case, and so is the schema A → B =⇒ ∀x(A → B) if no variable
in x is free in A → B.

∀yx(B → A) =⇒ ∀y(∃xB → A)

where x is not free in A. This completes the axiomatization of BQC.
We write A ⇐⇒ B as short for A =⇒ B plus B =⇒ A, and often =⇒ A, or even

A, for � =⇒ A. Let � be a set of sequents and rules. We say � entails, or proves,
A =⇒ B, written � � A =⇒ B, when A =⇒ B can be obtained, after finitely many
applications of the BQC rules and the rules of �, from the BQC axiom sequents plus
the axiom sequents of �. Similarly, � entails, or proves, the rule

R = A1 =⇒ B1 . . . An =⇒ Bn

A =⇒ B
,

written � � R, when � ∪ {A1 =⇒ B1, . . . , An =⇒ Bn} � A =⇒ B. We usually write
� � A as short for � �=⇒ A; � is consistent when � � ⊥. A theory is a set of sequents
and rules closed under derivability. A theory is axiomatizable by a set � if it equals
the closure of � under derivability. A theory is a sequent theory if it is axiomatizable
by a set of sequents. More generally, �′ is a sequent theory over �, or a sequent theory
extension of �, if �′ is axiomatizable by � plus a set of sequents.

3 Kripke models We first prove the completeness theorem for BQC in a special
case where, among other things, the only function symbols of the language are 0-
ary, that is, are constant symbols. In Section 5 we will consider the strong complete-
ness theorem involving more general theories and involving languages with function
symbols. In this section it is our purpose to get a quick insight into a completeness
theorem for Kripke models.
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A Kripke structure is a tuple D = 〈WD,≺D, DD〉, where WD = W is a nonempty
set of nodes, or worlds, with a binary transitive relation ≺D= ≺. We write � for the
reflexive closure of ≺, and � and � for the converse relations of ≺ and � respectively.
Additionally, DD = D is a functor from the category (W,�) to the category of sets,
that is, to every node α we assign a set Dα, and to every pair α � β a map Dα

β, such
that

1. for all α, Dα
α is the identity on Dα; and

2. for all α � β � γ, Dα
γ = Dβ

γ Dα
β.

Given a Kripke structure D, we define finite powers Dn by setting Wn = W; by set-
ting ≺n= ≺; and by choosing a new functor Dn such that Dnα = (Dα)n for all α and
(Dn)αβ = (Dα

β)n. In particular, D0 assigns singleton sets to all nodes α ∈ W , and as-
signs the unique maps as Dα

β between them, whenever α � β. Kripke structures over
a fixed transitive set (W,≺) form a functor category in the usual way. It is, in fact,
the category of presheaves over (W,�), hence a topos. The transitive set (W,≺)

enables us to recognize additional structure that permits us to have more general in-
terpretations for ∀, and thus also for →, than is usual for topos theory with IQC. In
the presheaf category, Dn is the n-fold category-theoretic product.

A Kripke structure is inhabited if all sets Dα are nonempty. A Kripke model is
a tuple K = 〈DK, IK〉, where DK = D is an inhabited Kripke structure. Moreover,
I assigns to each n-ary predicate symbol P a substructure I(P) = RP of Dn in the
presheaf category over (W,�). So for all α we have a subset RPα ⊆ (Dα)n, and for
each pair α � β a map (RP)αβ : RPα → RPβ that is the restriction of (Dα

β)n to RPα.
To each constant symbol c, I assigns a collection of elements (I(c)α ∈ Dα)α∈W such
that Dα

β I(c)α = I(c)β whenever α ≺ β. The interpretation of a constant symbol is
essentially the same as a natural transformation I : 1 → D from the singleton presheaf
1 to D in the presheaf category over (W,�). If the language includes the equality
symbol =, then I(=) is assigned to the diagonal substructure of D2, that is, to the
usual equality relation in the presheaf category over (W,�).

For each node α we form an extended language L[Cα] of the original language
L by adding a set of constant symbols Cα ∼= Dα. The sets of new constants are cho-
sen such that Cα ∩ Cβ = ∅ whenever α �= β. We sometimes write Aα for a formula
that may contain constant symbols from Cα. For each α we have a map Iα on the
set of constant symbols of L[Cα] which assigns to each constant symbol c of L , the
constant I(c)α, and to each new constant symbol cα ∈ Cα its corresponding element
Iα(cα) = dα ∈ Dα. Given A = Aα and β � α, we write Aβ for the formula over
L[Cβ], obtained from Aα by replacing each constant symbol cα in Aα from Cα by its
corresponding constant symbol cβ ∈ I−1

β Dα
β Iα(cα) from Cβ.

Let c = (c1, . . . , cn) be a sequence of n constant symbols of L[Cα], and let P
be an n-ary predicate. Then we write α � P(c) if Iα(c) = (Iα(c1), . . . , Iα(cn)) ∈
RPα ⊆ (Dα)n. The relation � is uniquely extended to all sentences by the inductive
definition

α � �;
α � A ∧ B if and only if α � A and α � B;
α � A ∨ B if and only if α � A or α � B;
α � ∃xA if and only if there exist c ∈ Cα such that α � Ax

c; and
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α � ∀x(Aα → Bα) if and only if for all β � α and c ∈ (Cβ)n, β � (Aβ)x
c

implies β � (Bβ)x
c .

An easy proof by induction on the complexity of sentences shows that if β � α � Aα,
then β � Aβ. So we can extend the relation � in a natural way to all formulas by

α � Aα if and only if for all β � α and c ∈ (Cβ)n we have β � (Aβ)x
c ,

where x = (x1, . . . , xn) includes all free variables of Aα. Since implication is defined
in terms of universal quantification,

α � Aα → Bα if and only if for all β � α, β � Aβ implies β � Bβ ,

for all sentences Aα → Bα. For formulas Aα → Bα where x includes all free vari-
ables, this generalizes to

α � Aα → Bα if and only if for all γ � β � α and c ∈ (Cβ)n, γ �
((Aβ)x

c )γ implies γ � ((Bβ)x
c )γ .

We extend � to all sequents by

α � Aα =⇒ Bα if and only if for all β � α and c ∈ (Cβ)n, β � (Aβ)x
c

implies β � (Bβ)x
c .

Note that α � A if and only if α �=⇒ A. Extend � to rules as follows. Let R be the
rule

(A1)α =⇒ (B1)α . . . (An)α =⇒ (Bn)α
Aα =⇒ Bα

.

Then α � R if and only if for all β � α, if β � (Ai)β =⇒ (Bi)β for all i ≤ n, then
β � Aβ =⇒ Bβ. For all formulas A we obviously have

α � x = y ∧ A =⇒ Ax
y .

A model K satisfies a sequent γ, written K |= γ, if and only if α � γ for all nodes
α ∈ W: similarly for rules. For sets � we write K |= � if K satisfies all rules and
sequents of �. We write � |= γ if for all models K, if K |= �, then K |= γ: similarly
for rules.

Proposition 3.1 (Soundness) Let � be a set of sequents and rules, and γ be a se-
quent. Then � � γ implies � |= γ. If R is a rule such that � � R, then � |= R.

Proof: Standard. See the proof of Proposition 5.3. �
The following is a counterexample showing that A → B � ∀x(A → B). Let K be
a Kripke model with two irreflexive nodes α ≺ β as in the diagram below (open cir-
cles indicate irreflexive nodes, filled-in circles indicate reflexive nodes), and Dα

β an
inclusion map such that c ∈ Dβ \ Dα. To simplify notation, we write d as short for
I−1
γ (d), for all nodes γ and d ∈ Dγ. Let P be a unary predicate such that β � Pc,

and γ � Pd for all other combinations of nodes γ and elements d.

�

α c �∈ Dα

β Pc

�

�
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Then K |= Px → ⊥, but K �|= ∀x(Px → ⊥). Apply soundness. It is just as easy to
show that � → Px � ∀x(� → Px). In general, if A and B are such that no free vari-
ables from among the xi occur free in A or B, then BQC satisfies A → B � ∀x(A →
B).

In the remainder of this section we restrict ourselves to sets of sentences over
countable languages without function symbols except constant ones. Many results
in this section involving completeness can fairly easily be generalized by modifying
some lemma or proposition. Examples are adding function symbols or allowing for
noncountable languages. But we don’t bother in this section, as we will consider an
altogether more general setting in Sections 4 and 5.

Our purpose is to construct sufficiently many Kripke models with which we can
prove an easy completeness theorem. Let L be a countable language with equality,
and C be a set of new constant symbols of cardinality continuum. We consider all
sets of sentences � that are contained in some L[D], a language obtained from L by
adding some countable subset D ⊂ C. The continuum cardinality of C guarantees that
we can expand the (countable) collection of constant symbols in the proofs below. A
set � is called deductively closed in language L[D], if � ⊆ L[D] and, additionally,
if � � A implies A ∈ �, for all sentences A ∈ L[D]. Once a set � is deductively
closed in some language, then this language and its set of constant symbols D can
be recovered from the set � alone. Therefore we will often write about deductively
closed sets of sentences without reference to their languages.

Let D ⊆ C be a countable set of constant symbols. A deductively closed set of
sentences � ⊆ L[D] is D-saturated if

1. � is consistent;

2. A ∨ B ∈ � implies A ∈ � or B ∈ �, for all sentences A and B; and

3. ∃xA ∈ � implies Ax
d ∈ � for some constant symbol d ∈ D, for all sentences

∃xA.

As transitive relation on the collection of deductively closed countable sets of sen-
tences we set � ≺ � if ∀x(A → B) ∈ � and Ax

c ∈ � imply Bx
c ∈ �, for all ∀x(A → B)

and c. So, in particular, � ⊆ �. The relation ≺ is easily extended to all countable
sets of sentences by replacing occurrences of the form A ∈ � by � � A in the defini-
tion above, and so on. Let Cl(�) denote the deductive closure of �. Then � ≺ � if
Cl(�) ≺ Cl(�).

Given sets of sentences � ⊆ �, define �� = {Bx
c | � � ∀x(A → B) a sentence,

and Ax
c ∈ Cl(�)}. It is implicit in this definition that �� does not introduce constant

symbols that don’t already occur in �. If �� � A, then (�′)�′ � A for some finite
�′ ⊆ � and �′ ⊆ � ∩ �′.

Proposition 3.2 Let � ⊆ � be sets of sentences. Then �� is deductively closed
such that

1. � ≺ ��; and

2. � ≺ � ⊇ � implies � ⊇ ��, for all deductively closed sets of sentences �.

Proof: The only nontrivial part is the deductive closure of ��; but this follows eas-
ily from the axiomatization of BQC. �
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The theory �� need not be saturated. Also note that � ≺ � ⊆ � does not imply that
� ≺ �. For example, set � = � = {p → q}, and � = {p → q, p}, for atomic p and
q.

Proposition 3.3 Let � ⊆ � be such that � ≺ � � A. Then there is a deductively
closed saturated �′ ⊇ � such that � ≺ �′

� A.

Proof: Let (Ai)i be a countable enumeration of all sentences of the language of � =
�0, and E be a countable set of new constant symbols. We may assume E = (ei)i for
some enumeration i �→ ei. Form an ascending chain of sets (�i)i as follows: �0 =
�0. Given �i, construct �i+1 as follows:

1. Ai is of the form B ∨ C and �i � B ∨ C. If (�i ∪ {B})� � A, set �i+1 = (�i ∪
{B})�; otherwise set �i+1 = (�i ∪ {C})�.

2. Ai is of the form ∃yB and �i � ∃yB. Set �i+1 = (�i ∪ {By
e })�, where i is the

smallest index such that e = ei is not used in �i.
3. Otherwise, set �i+1 = �i.

Set �1 = ∪i�i. Repeat the same process to construct �2 from �1, and so on. Then
�′ = ∪i�

i is a deductively closed saturated theory such that � ≺ �′. It remains to
show that �′

� A. It suffices to check the two steps involving disjunction and exis-
tential quantification to complete the usual inductive proof. If �i � B ∨ C, and both
(�i ∪ {B})� � A and (�i ∪ {C})� � A, then � � ∀x(Dc

x ∧ (Bc
x ∨ Cc

x) → Ac
x) with

�i � D for some D, and c includes all constant symbols not in the language of �; so
�i � A. Similarly, if �i � ∃yB and (�i ∪ {By

e })� � A, then � � ∀x(Dc
x ∧ (∃yB)c

x →
Ac

x) with �i � D for some D and some c; so �i � A. So if �i � A, then �i+1 � A.
�

We also need the following proposition.

Proposition 3.4 ∅ ≺ �.

Proof: It follows immediately from the axiomatization of BQC that if a sentence
∀x(A → B) is derivable, then so is the sequent Ax

c =⇒ Bx
c . �

So if � � A, then some saturated �′ ⊇ � exists with �′
� A.

Theorem 3.5 (Completeness) Let � ∪ {A} be a countable set of sentences. Then
� |= A implies � � A.

Proof: Suppose � � A. We construct a Kripke model as follows. As set of worlds W
we choose the collection of deductively closed saturated countable sets of sentences
containing �. We set � ≺ �′ as specified above for deductively closed sets. The
construction of the domain D� above a node � takes only two steps. Start with the
countable set of constant symbols E of the language of �. Set d ∼ e whenever (d =
e) ∈ �. It is immediate from the axiomatization of BQC that ∼ is a congruence on
E. Set D� equal to the collection of equivalence classes D� = E∼. If � ≺ �′,
then � ⊆ �′, so the inclusion function E ⊆ E′ respects the congruences. For atomic
sentences A, set � � A if and only if A ∈ �. An easy proof by induction on the
complexity of sentences shows that � � B if and only if B ∈ �, for all worlds �

and B in the language of �. The only two nontrivial steps involve the quantifiers.
For example, ∃xB ∈ �, if and only if (by saturatedness) Bx

c ∈ � for some c with
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c∼ ∈ D�, if and only if (induction step) � � Bx
c for some c with c∼ ∈ D�, if and

only if � � ∃xB. As to the universal quantifier case, suppose ∀x(B → C) ∈ �. If
� ≺ �′ � Bx

c then, by induction, Bx
c ∈ �′ so, by definition of ≺ and induction, �′ �

Cx
c . So � � ∀x(B → C). Conversely, suppose ∀x(B → C) �∈ �. Let c be a sequence

of new constant symbols, and set �0 = (� ∪ {Bx
c })�. By Proposition 3.2, � ≺ �0.

Suppose �0 � Cx
c . Then � � ∀x(D ∧ B → C) for some D such that � � Dx

c ; so also
� � ∀x(� → D) and � � ∀x(B → C), contradiction. So �0 � Cx

c . By Proposition
3.3, there is a node �′ � � with �′

� Cx
c . By induction, �′ � Bx

c and �′
� Cx

c . So
� � ∀x(B → C). All nodes contain �, so the model satisfies �. But by Propositions
3.3 and 3.4, some node doesn’t contain A. So the model doesn’t satisfy A. And thus
� �|= A. �

4 Terms and theories What about theories over BQC that contain rules and se-
quents as part of their axiomatization? One example of such a theory is Basic Arith-
metic (BA), the basic logic equivalent of intuitionistic Heyting Arithmetic (HA) and
classical Peano Arithmetic (PA), see Section 6. It turns out that these more general
theories must be functional and well-formed. Both notions are discussed in this sec-
tion. In Section 5 we will show that these two properties are both necessary and
sufficient in proving the stronger completeness theorem. As the concepts are rather
sensitive to detail, we present the theory in extra detail. There is another reason to
be precise. It is not unusual to present completeness theorems for more well-known
systems in a slightly informal way. The basic idea shines through, though often this
clarity comes at the expense of leaving out significant details that are considered obvi-
ous. The omissions don’t hurt because we all know the result to be correct from other
proofs of this particular completeness theorem presented elsewhere. Unfortunately,
for BQC we don’t (yet) have this stable situation. Therefore we feel compelled to be
more pedantic than we otherwise would have been.

The standard examples of theories are IQC, FQC, and CQC: Intuitionistic Pred-
icate Calculus (IQC) is the extension of BQC axiomatizable by all substitution in-
stances of the Rule of Modus Ponens

A =⇒ B → C
A ∧ B =⇒ C

.

This trivially implies that IQC also entails A =⇒ ∀x(B → C) � A ∧ B =⇒ C. For-
mal Predicate Calculus (FQC) is the extension of BQC axiomatizable by all substitu-
tion instances of Löb’s Rule

A ∧ (� → B) =⇒ B
A =⇒ B

.

Classical Predicate Calculus (CQC) is the extension of IQC axiomatized by adding
all substitution instances of Excluded Middle

A ∨ ¬A.

The definitions of IQC, FQC, and CQC are close analogons of the definitions of IPC,
FPC, and CPC, as described in [1]. The proof of the following proposition is essen-
tially identical to the one in [1].
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Proposition 4.1 IQC is axiomatizable by the schema

� → A =⇒ A.

FQC is axiomatizable by the schema (Löb’s Axiom)

(� → A) → A =⇒ � → A.

So IQC and FQC are sequent theories, and so is CQC.
The universal quantification rules and axiom schemas allow for the following

simple conservativity property.

Proposition 4.2 BQC is conservative over its geometric fragment, that is, if � ∪
{γ} is a set of geometric sequents such that � � γ, then there is a derivation tree of γ

from � that does not use the universal quantifier symbol.

Proof: For each rule and axiom schema of BQC, if we replace the universal quan-
tification subformulas by �, then the resulting rule or axiom schema is derivable from
BQC by a different instance of the same rule or axiom, or is an instance of the schema
A =⇒ �. So given a derivation tree of γ from �, replace all occurrences of universal
quantifier subformulas by �, and replace the resulting new rules and axioms by the
simpler derivations in BQC. The result is a geometric logic derivation tree of γ from
�. �
Variable-free formula contexts are defined as in [1]: add a new 0-ary predicate sym-
bol p to the language. Let D[p] be a formula over the extended language, and let A
be a formula over the original language. Then D[A] is constructed by replacing each
occurrence of p by A. Similarly, multiple, say double, simultaneous formula sub-
stitutions are performed by adding new 0-ary predicate symbols p and q to the lan-
guage. If A and B are formulas over the original language, then D[A, B] is formed
from D[p, q] by replacing all occurrences of p by A, and all occurrences of q by B.
This translation process is called simple substitution. Later on we will introduce the
concept of proper substitution. Proper substitution allows for more refined versions
of substitution, but it is a significantly more technical tool. We wish to postpone these
complications in exchange for simplicity.

Proposition 4.3 (Formula substitution) BQC is closed under the substitution rule

A ∧ B =⇒ C A ∧ C =⇒ B
A ∧ D[B] =⇒ D[C]

,

where p does not occur within range of a quantifier of D[p] over a variable that is
free in both A and B ∧ C.

Proof: We complete the proof by induction on the complexity of D[p]. Let � be
the theory axiomatized by A ∧ B =⇒ C and A ∧ C =⇒ B. The cases where D[p] is
atomic or doesn’t contain p are trivial. If D[p] equals E[p] ∨ F[p] then, by induc-
tion, we immediately derive � � A ∧ E[B] =⇒ E[C] ∨ F[C] and � � A ∧ F[B] =⇒
E[C] ∨ F[C]. Simple propositional logic then gives us � � A ∧ (E[B] ∨ F[B]) =⇒
E[C] ∨ F[C]. Suppose D[p] equals E[p] ∧ F[p]. By induction, � � A ∧ E[B] =⇒
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E[C] and � � A ∧ F[B] =⇒ F[C]. So � � A ∧ E[B]∧ F[B] =⇒ E[C]∧ F[C]. Sup-
pose D[p] equals ∃xE[p]. By induction � � A ∧ E[B] =⇒ E[C]. BQC entails the
schema G =⇒ ∃yG, so we have � � A ∧ E[B] =⇒ ∃xE[C]. Now x is not free in A,
or not free in B ∧ C. Suppose x is not free in A. Then � � ∃x(A ∧ E[B]) =⇒ ∃xE[C],
thus also � � A ∧ ∃xE[B] =⇒ ∃xE[C]. Otherwise, x is not free in B ∧ C. Re-
place all free occurrences of x in A by a new variable x′, resulting in a new formula
A′. Let �′ be axiomatized by A′ ∧ B =⇒ C plus A′ ∧ C =⇒ B. Then, as before,
�′ � A′ ∧ ∃xE[B] =⇒ ∃xE[C]. So, by variable substitution, there is also a proof for
� � A ∧ ∃xE[B] =⇒ ∃xE[C]. Finally, suppose D[p] equals ∀x(E[p] → F[p]). By
induction we have � � A ∧ E[C] =⇒ E[B] and � � A ∧ F[B] =⇒ F[C]. Now x is
not free in A, or not free in B ∧ C, for all x occurring in x. If no variable in x is free
in A, then � � A =⇒ ∀x(E[C] → E[B]) and � � A =⇒ ∀x(F[B] → F[C]). Thus
� � A ∧ ∀x(E[B] → F[B]) =⇒ ∀x(E[C] → F[C]). Otherwise, some variables in
x are free in A, hence not free in B ∧ C. Replace all free occurrences of these vari-
ables of x in A by new variables x′, resulting in a new formula A′. Let �′ be axiom-
atized by A′ ∧ B =⇒ C plus A′ ∧ C =⇒ B. Then, as before, �′ � A′ ∧ ∀x(E[B] →
F[B]) =⇒ ∀x(E[C] → F[C]). So, by variable substitution, there is also a proof for
� � A ∧ ∀x(E[B] → F[B]) =⇒ ∀x(E[C] → F[C]). �

The following proposition makes precise what we mean by renaming bound vari-
ables.

Proposition 4.4 (Renaming of bound variables) Let A and B be formulas in which
the variables in x and y do not occur freely, and where no variable in x or y becomes
bound during substitution in Az

x, Bz
x, Az

y, or Bz
y. Then BQC proves

D[∀x(Az
x → Bz

x)] ⇐⇒ D[∀y(Az
y → Bz

y)]

for all contexts D[p]. Let C be a formula in which the variables x and y do not occur
freely, and where neither x nor y becomes bound during substitution in Cz

x or Cz
y. Then

BQC proves

D[∃xCz
x] ⇐⇒ D[∃yCz

y]

for all contexts D[p].

Proof: Let A and B be formulas satisfying the required conditions. Then BQC en-
tails ∀x(Az

x → Bz
x) ⇐⇒ ∀xy(Az

x → Bz
x) ⇐⇒ ∀xy(Az

y → Bz
y) ⇐⇒ ∀y(Az

y → Bz
y).

Apply formula substitution. Let C be a formula satisfying the required conditions.
Then BQC entails Cz

y =⇒ ∃yCz
y so, by variable substitution, also Cz

x =⇒ ∃yCz
y, and

thus ∃xCz
x =⇒ ∃yCz

y. By symmetry we also have ∃yCz
y =⇒ ∃xCz

x. Apply formula
substitution. �

So renaming bound variables doesn’t change a formula in an essential way. More-
over, if x and x′ are two sequences consisting of the same variables, but maybe
in different orders and with different multiplicities of occurrence, then BQC obvi-
ously proves ∀x(A → B) ⇐⇒ ∀x′(A → B). Combined with repeated application
of Proposition 4.4 this allows us to make all quantifier variables different from one
another and from the free variables.
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As with formulas we write γx
t for substitution of terms of t for the variables of x

in all their free occurrences in the sequent γ. Given a language L and a set or sequence
of new constant symbols c, we write L[c] for the extension language.

Proposition 4.5 (Generalization) Let � be a set of sequents and rules over a lan-
guage L , and γ be a sequent over L . Let c be a sequence of new constant symbols
and x a matching sequence of variables. Then � � γ over L , if and only if � � γx

c
over L[c].

Proof: From left to right, apply variable substitution: BQC proves γ � γx
c . We com-

plete the proof of the converse by induction on the complexity of derivations. If γx
c is

an axiom sequent, then so is γ. So it remains to check the rules. If the last rule applied
is from �, then γx

c equals γ. Only the rules of BQC are left. The quantifier-free ones
are easy. Suppose that By

t =⇒ Cy
t follows from B =⇒ C by variable substitution. Re-

place all occurrences of constant symbols from c by new variables from z. By induc-
tion hypothesis, � � Bc

z =⇒ Cc
z , and two successive applications of variable substi-

tution give us (Bc
z)

y
t =⇒ (Cc

z )
y
t , and then (By

t )c
z =⇒ (Cy

t )c
z. So � � (By

t )c
x =⇒ (Cy

t )c
x.

Suppose that C has no free occurrence of x, and ∃xD =⇒ C follows from D =⇒ C.
By induction hypothesis, � � (D =⇒ C)c

z, where z is a sequence of new variables.
So � � (∃xD =⇒ C)c

z, and thus � � (∃xD =⇒ C)c
x. Suppose B =⇒ C follows from

∃xB =⇒ C. Then, by induction hypothesis, � � (∃xB =⇒ C)c
z, with z all new vari-

ables. So � � (B =⇒ C)c
z, and thus � � (B =⇒ C)c

x. Suppose that no variable in y is
free in A, and A =⇒ ∀y(B → C) follows from A ∧ B =⇒ C. By induction hypoth-
esis, � � (A ∧ B =⇒ C)c

z, where z is a sequence of new variables. So � � (A =⇒
∀y(B → C))c

z. By variable substitution, as the constant symbols of c only occur in
places where the corresponding variables of x are free, � � (A =⇒ ∀y(B → C))c

x.
�

BQC proves B =⇒ A � ∃xB =⇒ A if x is not free in A, but in general not Bx
c =⇒

A � ∃xB =⇒ A. So, even if no variable in x is free in γ, Proposition 4.5 cannot be
broadened to place constants on the left of the turnstile.

When we extend the language, say language L , by adding new predicates or
function symbols, then BQC changes along. These changes are harmless in the sense
that the extension is conservative over the original language.

Proposition 4.6 Let L ⊆ M be languages, and � ∪ {γ} be a set of sequents over
L . Then � � γ over L , if and only if � � γ over M .

Proof: Given a (finite) proof tree over the extended language whose assumptions
and conclusion are in the original language, replace all new predicates by �, and all
new function symbols by fresh variables. The new tree is a proof of the same, but
over the original language. �

Proposition 4.6 can be strengthened to theories with schemas as follows. Formula
contexts are defined by adding new predicate symbols to the language. Similarly, se-
quent and rule contexts are defined by employing new predicate letters in the formulas
that are part of these sequents or rules. Proper substitution of formulas, a refinement
of simple substitution, is defined as follows: for each n-ary new predicate symbol p
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we can choose a formula A over the original language, whose free variables that al-
ready occur in the context (formula, sequent, or rule) are all from among a list x of n
variables. Each atomic expression pt can then be replaced by Ax

t subject to the con-
dition that no free variable in the sequence t becomes bound in Ax

t after substitution.
For example, variable substitution could be redefined as all proper substitutions into
the schemas

px =⇒ qx
pt =⇒ qt

,

where p and q are of equal arity and range over countable sequences of new predicate
symbols p1, p2, p3, . . . and q1, q2, q3, . . . respectively, where pn and qn are n-ary,
and the sequences of variables x and terms t are such that the atoms are well-formed.
The notion of context can be further generalized by also adding new function sym-
bols. Proper substitution of terms into contexts is analogous to proper formula substi-
tution: for each n-ary new function symbol f we can choose a term u over the original
language, whose free variables that already occur in the context are all from among
a list x of n free variables; each term expression f (t) can then be replaced by ux

t .
A schematic axiomatization for a theory � over a language L consists of a set S

of sequents and rules over a larger language L[P, F] satisfying the following prop-
erties:

1. L[P, F] is constructed from L by augmenting it with a set of new predicate
symbols P and a set of new function symbols F;

2. each rule or sequent that is obtained from S by a proper substitution of formulas
of L for all predicate letters from P and of terms of L for all function symbols
from F, is in �; and

3. � is the smallest theory satisfying these properties.

Each rule or sequent over L that is derivable from S is in �; and each theory is
schematically axiomatized by itself over L . The following generalizes Proposition
4.6.

Proposition 4.7 Let L ⊆ M be languages, and let S ⊆ L[P, F], with L[P, F] ∩
M = L , be a schematic axiomatization of theories � over L and � over M . Let γ

be a sequent over L . Then � � γ over L , if and only if � � γ over M .

Proof: As for Proposition 4.6. �
In general the theory � need not be contained in the theory generated by S, for the
theory generated by S isn’t closed under proper substitution. Rather, let � be the
theory over L[P, F], axiomatized by S and all proper substitutions of formulas and
terms from L into the rules and sequents of S. Then � = L ∩ �, if and only if S is a
schematic axiomatization of �. If so, then � is also a schematic axiomatization of �.

A basic class of schematic axiomatizations is formed by the minimal ones:

Proposition 4.8 Let L ⊆ M be languages, let � be a theory over L , and let �

be the theory over M axiomatized by �. Then � schematically axiomatizes �. In
particular, BQC over a fixed language L is schematically axiomatized by the theory
BQC of any extension language, and BQC proves

x = y ∧ A =⇒ Ax
y
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for all formulas A where y does not become bound after substitution.

Proof: The general case immediately follows from the case for BQC. But all rule
and sequent axiom schemas of BQC are closed under proper substitution, except the
equality schema x = y ∧ A =⇒ Ax

y. So it suffices to prove the last part of this propo-
sition. We leave it as an easy exercise to show that BQC entails x = y =⇒ y = x. We
complete the proof by induction on the complexity of formulas. The equality schema
holds for atoms. It is an easy exercise to check all induction cases except the quantifier
ones. Let x and y both be different from z, such that x = y ∧ A =⇒ Ax

y. Since BQC
proves Ax

y =⇒ (∃zA)x
y, we have x = y ∧ A =⇒ (∃zA)x

y, and thus x = y ∧ ∃zA =⇒
∃z(x = y ∧ A) =⇒ (∃zA)x

y. Let x and y both be different from all variables in the se-
quence z, such that x = y ∧ Ax

y =⇒ A and x = y ∧ B =⇒ Bx
y. So we have x = y =⇒

∀z(Ax
y → A) ∧ ∀z(B → Bx

y). And thus x = y ∧ ∀z(A → B) =⇒ (∀z(A → B))x
y.
�

Let � be a theory over L , and let C be a set of new constant symbols. Write �[C]
for the theory over L[C] axiomatized by �. Let � be another theory over L[C] that
schematically axiomatizes �. Let γ be a sequent over L , and c be a sequence of new
constant symbols, such that � � γx

c . Then �[C] ⊇ � � γ, so �[C] � γx
c . So �[C] is the

maximal sequent theory over � in L[C] that schematically axiomatizes �, hence it is
the unique one containing �. Uniqueness usually fails when we admit new predicate
symbols.

4.1 Functional theories A crucial property of theories is functional completeness,
see below. It is a natural property that is vital in Kripke model theory. We describe
the theories for which all sequent theory extensions satisfy this.

A set of sequents and rules � ⊆ L is functional over L if for all rules

A1 =⇒ B1 . . . An =⇒ Bn

A0 =⇒ B0
∈ �

and sentences A ∈ L ,

� ∪ {A ∧ A1 =⇒ B1, . . . , A ∧ An =⇒ Bn} � A ∧ A0 =⇒ B0 .

A theory � over L is functional if for all sequences of formulas A0, B0, A1, B1, . . . ,

An, Bn ∈ L and sentences A ∈ L , if

� ∪ {A1 =⇒ B1, . . . , An =⇒ Bn} � A0 =⇒ B0 ,

then
� ∪ {A ∧ A1 =⇒ B1, . . . , A ∧ An =⇒ Bn} � A ∧ A0 =⇒ B0 .

A theory � has a functional axiomatization over L , if it is axiomatizable by a set which
is functional over L .

Proposition 4.9 A theory over L is functional if and only if it has a functional ax-
iomatization over L .
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Proof: A functional theory is axiomatized by itself. Conversely, suppose a theory is
axiomatized by a functional set � over L . Suppose formulas A0, B0, A1, B1, . . . , An,

Bn ∈ L and sentence A ∈ L are such that

� ∪ {A1 =⇒ B1, . . . , An =⇒ Bn} � A0 =⇒ B0 ,

in order to show that

� ∪ {A ∧ A1 =⇒ B1, . . . , A ∧ An =⇒ Bn} � A ∧ A0 =⇒ B0 .

We complete the proof by induction on the complexity of derivations. The cases when
� � A0 =⇒ B0, or A0 =⇒ B0 equals some Ai =⇒ Bi, i > 0, are immediate. If the last
rule in the derivation of A0 =⇒ B0 involves a rule of �, then the result immediately
follows from the functionality of �. So it remains to check the induction step for rules
of BQC. But that only requires that we verify the functionality of the BQC rules. For
example, if

B =⇒ C
Bx

t =⇒ C x
t

is an instance of variable substitution, and A is a sentence, then

A ∧ B =⇒ C � A ∧ Bx
t =⇒ C x

t .

The remaining BQC rules are just as easy. �

Corollary 4.10 BQC is functional. Sequent theory extensions of functional theo-
ries are functional.

For all theories � and formulas A, B, and C, if � � A ∧ B =⇒ C, then � ∪ {A} �
B =⇒ C. A theory � ⊆ L is functionally complete over L if for all formulas B, C ∈ L
and sentences A ∈ L , if � ∪ {A} � B =⇒ C, then � � A ∧ B =⇒ C.

Proposition 4.11 (Functional completeness) A theory is functional over L if and
only if all sequent theory extensions are functionally complete over L .

Proof: Let � be a sequent theory extension of a functional theory �, and formulas
B, C ∈ L and sentence A ∈ L be such that � ∪ {A} � B =⇒ C. There are sequents
Ai =⇒ Bi ∈ �, 1 ≤ i ≤ n, such that

� ∪ {A1 =⇒ B1, . . . , An =⇒ Bn, A} � B =⇒ C.

By functionality,

� ∪ {A ∧ A1 =⇒ B1, . . . , A ∧ An =⇒ Bn, A =⇒ A} � A ∧ B =⇒ C.

So � � A ∧ B =⇒ C. Conversely, suppose that all sequent theory extensions of �

are functionally complete. Let Ai =⇒ Bi, 0 ≤ i ≤ n, be sequents such that

� ∪ {A1 =⇒ B1, . . . , An =⇒ Bn} � A0 =⇒ B0.

So for sentences A ∈ L ,

� ∪ {A ∧ A1 =⇒ B1, . . . , A ∧ An =⇒ Bn, A} � A0 =⇒ B0.

Apply functional completeness of � ∪ {A ∧ A1 =⇒ B1, . . . , A ∧ An =⇒ Bn}. �
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Functionality of a set of sequents and rules is essentially language dependent. This is
particularly relevant in the construction of Kripke models in Section 5. We are mainly
interested in extensions of languages by new constant symbols. Let � be a set of se-
quents and rules over L , and C be a set of new constant symbols. Define �〈C〉 to be
the set � extended by all rules of the form

A × R = A ∧ A1 =⇒ B1 . . . A ∧ An =⇒ Bn

A ∧ A0 =⇒ B0
,

where A is a sentence of L[C] and

R = A1 =⇒ B1 . . . An =⇒ Bn

A0 =⇒ B0
∈ � .

It is immediate from the definitions that �〈C〉 is a functional set over L[C]. The the-
ory axiomatized by �〈C〉 is also written �〈C〉. It is the smallest functional theory over
L[C] containing �.

Proposition 4.12 (Functional generalization) Let � be a functional set of sequents
and rules over a language L , and c be a sequence of elements from a set C of new
constant symbols, and x a matching sequence of variables. Let γ be a sequent over
L . Then � � γ over L , if and only if �〈C〉 � γx

c over L[C] .

Proof: From left to right is immediate by variable substitution. Conversely, suppose
�〈C〉 � γx

c . We complete the proof by induction on the complexity of derivations. All
induction steps are identical to the ones in the proof of Generalization Proposition 4.5,
except for the new rules of �〈C〉 \ �. Suppose the last step in the proof of γx

c is the
rule A × R, where

R = A1 =⇒ B1 . . . An =⇒ Bn

A0 =⇒ B0
∈ � ,

A ∈ L[C] a sentence, and γx
c equals A ∧ A0 =⇒ B0. Let y be a sequence of proper

length of new variables. By induction, � � Ac
y ∧ Ai =⇒ Bi, for all i > 0. So � �

(∃yAc
y) ∧ Ai =⇒ Bi, for all i > 0. � is functional, so � � (∃yAc

y) ∧ A0 =⇒ B0. So
� � Ac

y ∧ A0 =⇒ B0, and thus � � Ac
x ∧ A0 =⇒ B0 . �

4.2 Well-formed theories A set � ⊆ L is well-formed if for all sequences of sen-
tences ∀x(A0 → B0),∀x(A1 → B1), . . . ,∀x(An → Bn) and formulas A where no
free variable of A occurs in x, if

A1 =⇒ B1, . . . , An =⇒ Bn

A0 =⇒ B0
∈ � ,

then

� � ∀x(A ∧ A1 → B1) ∧ · · · ∧ ∀x(A ∧ An → Bn) =⇒ ∀x(A ∧ A0 → B0).

A theory � is well-formed if for all sequences of sentences ∀x(A0 → B0),∀x(A1 →
B1), . . . ,∀x(An → Bn) and formulas A where no free variable of A occurs in x, if

� ∪ {A1 =⇒ B1, . . . , An =⇒ Bn} � A0 =⇒ B0,
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then

� � ∀x(A ∧ A1 → B1) ∧ · · · ∧ ∀x(A ∧ An → Bn) =⇒ ∀x(A ∧ A0 → B0).

A theory has a well-formed axiomatization if it is axiomatizable by a well-formed set.

Proposition 4.13 A theory is well-formed if and only if it has a well-formed axiom-
atization.

Proof: Well-formed theories are axiomatized by themselves, so they have well-
formed axiomatizations. We prove the converse by induction on the complexity of
derivations. Let � be a well-formed set, let ∀x(A0 → B0),∀x(A1 → B1), . . . ,∀x(An →
Bn) be a sequence of sentences, and let A be a formula of which no free variable oc-
curs in x, such that

� ∪ {A1 =⇒ B1, . . . , An =⇒ Bn} � A0 =⇒ B0.

If � � A0 =⇒ B0, or if A0 =⇒ B0 equals Ai =⇒ Bi for some i > 0, then clearly
� � X =⇒ ∀x(A ∧ A0 → B0), where X is the required conjunction. It remains to
check closure under the rules. The cases for the rules in � immediately follow from
the definition of well-formed set. So we only have to check the rules of BQC. All
proposition-logical ones are easy. Let w be the sequence of free variables of A, and
let z be a sequence of new variables. Suppose that By

t =⇒ Cy
t follows from B =⇒ C

by variable substitution. Then, with induction, � � Xw
z =⇒ ∀x′(Aw

z ∧ B → C) =⇒
∀x(Aw

z ∧ By
t → Cy

t ), where the sequence x′ includes all free variables of B and C.
So � � X =⇒ ∀x(A ∧ By

t → Cy
t ). Suppose that B equals ∃yD, and C doesn’t have

a free occurrence of y, such that ∃yD =⇒ C follows from D =⇒ C. Then, with
induction, � � Xw

z =⇒ ∀xy(Aw
z ∧ D → C) =⇒ ∀x(Aw

z ∧ (∃yD) → C). So � �
X =⇒ ∀x(A ∧ (∃yD) → C). Suppose B =⇒ C follows from ∃yB =⇒ C. Then, with
� ∀x(B → (∃yB)) and induction, � � X =⇒ ∀x(A ∧ (∃yB) → C) =⇒ ∀x(A ∧ B →
C). Finally, suppose C equals ∀y(D → E), the variables in y are not free in B, and
B =⇒ C follows from B ∧ D =⇒ E. By induction, � � Xw

z =⇒ ∀xy(Aw
z ∧ (B ∧

D) → E). Since no variable in y is free in Aw
z ∧ B, BQC entails Aw

z ∧ B =⇒ ∀y(D →
(Aw

z ∧ B ∧ D)). So Aw
z ∧ B ∧ ∀xy(Aw

z ∧ (B ∧ D) → E) =⇒ Aw
z ∧ B ∧ ∀y(Aw

z ∧
B ∧ D → E) =⇒ ∀y(D → E). So BQC also proves ∀xy(Aw

z ∧ (B ∧ D) → E) =⇒
∀x(Aw

z ∧ B → ∀y(D → E)). Apply transitivity of =⇒ and substitute w back for z.
�

Corollary 4.14 BQC is well-formed. Sequent theory extensions of well-formed
theories are well-formed.

Well-formedness is a language-dependent property, but less so than functionality is.
For if � is well-formed over L , then � is a well-formed set over L[C], for all sets
C of new constant symbols. We can also preserve well-formedness when we extend
functional theories from L to L[C]:

Proposition 4.15 Let � be a functional well-formed set over L , and C be a set of
new constant symbols. Then �〈C〉 is also a functional well-formed set.
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Proof: It suffices to establish well-formedness of �〈C〉. Let A × R be a rule of
�〈C〉 \ �, where

R = A1 =⇒ B1 . . . An =⇒ Bn

A0 =⇒ B0

is a rule of � whose free variables all occur in x, and A is a sentence of L[C]. Let
B ∈ L[C] be a formula whose free variables do not occur in x. To prove

�〈C〉 � ∀x(B ∧ A ∧ A1 → B1) ∧ · · ·∧
∀x(B ∧ A ∧ An → Bn) =⇒ ∀x(B ∧ A ∧ An → Bn).

Let c include all new constant symbols in B ∧ A, and let z be a new variable sequence
of equal length. As � is well-formed and R ∈ �,

� � ∀x((B ∧ A)c
z ∧ A1 → B1) ∧ · · ·∧

∀x((B ∧ A)c
z ∧ An → Bn) =⇒ ∀x((B ∧ A)c

z ∧ An → Bn).

Substitute c in for z. �

5 Kripke models with functions, and strong completeness Kripke models K =
〈DK, IK〉 for languages with function models are constructed as in Section 3, but with
the following extensions.

To each function symbol f , I assigns a natural transformation I( f ) = Ff :
Dn → D in the presheaf category over (W,�). So for all α we have a function
Ff α : (Dα)n → Dα, and for each pair α � β a map (Ff )

α
β : Dα → Dβ such that

the diagram

�

�
Ff α

(Dα)n

(Dβ)n

(Dα
β)n

�
�

Ff β

Dα

Dβ

Dα
β

commutes, for all pairs α � β. The interpretation of functions f is extended to terms
t by setting I(t) equal to the usual composition Tt of the interpretations of the parts
that make up the term. Constants c are 0-ary functions, so I(c) essentially consists of
a collection of elements {dα ∈ Dα}α∈W such that Dα

βdα = dβ whenever α � β. This
agrees with the interpretation for constants in Section 3.

As in Section 3 we form an extended language L[Cα] of the original language
L for each node α by adding a unique set of constant symbols Cα ∼= Dα. For each
α the map Iα on the set of (constant and) function symbols of L[Cα] assigns to each
function symbol f of L , the function Iα( f ) = Ff α, and to each new constant symbol
cα ∈ Cα its corresponding element Iα(cα) = dα ∈ Dα. A term is closed if it does
not contain variables. The set of closed terms of L[Cα] is called Tα. We extend Iα
to all closed terms Tα in the obvious way. For all terms tα ∈ Tα we have Iβ(tβ) =
Dα

β Iα(tα).
Let t = (t1, . . . , tn) be a sequence of n closed terms of L[Cα], and let P be an

n-ary predicate. Then we write α � P(t) if Iα(t) = (Iα(t1), . . . , Iα(tn)) ∈ RPα ⊆
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(Dα)n. The relation � is uniquely extended to all sentences by the inductive defini-
tion as presented in Section 3, except that we choose these modifications:

1. α � ∃xA if and only if there exist t ∈ Tα such that α � Ax
t ; and

2. α � ∀x(Aα → Bα) if and only if for all β � α and t ∈ (Tβ)n, β � (Aβ)x
t implies

β � (Bβ)x
t .

One easily proves persistence: if β � α � Aα, then β � Aβ. We can extend the
relation � in a natural way to all formulas by α � Aα if and only if for all β � α

and t ∈ (Tβ)n we have β � (Aβ)x
t , where x = (x1, . . . , xn) includes all free vari-

ables of Aα. For formulas Aα → Bα where x includes all free variables, this implies
α � Aα → Bα if and only if for all γ � β � α and t ∈ (Tβ)n, γ � ((Aβ)x

t )γ implies
γ � ((Bβ)x

t )γ .
We extend � to all sequents by

α � Aα =⇒ Bα iff for all β � α and t ∈ (Tβ)n, β � (Aβ)x
t implies β �

(Bβ)x
t .

As usual, α � A if and only if α �=⇒ A. Extend � to rules in the usual way.

Proposition 5.1 Given a formula A with all its free variables among x, and a node
α, let

RA = {d ∈ (Dα)n | α � Ax
I−1
α (d)

}.
Then α � Ax

t if and only if Iα(t) ∈ RA, for all t ∈ (Tα)n.

Proof: The case for atomic A follows from the definitions. The general case easily
follows by induction on the complexity of A. �
Proposition 5.1 immediately implies that for all t ∈ Tα there is a unique cα ∈ Cα such
that α � t = cα. So the inductive conditions on both quantification and on sequents
is equivalent to the ones in Section 3. So the new forcing definitions agree with the
versions in Section 3. Because of this almost-identity between constant symbols and
constants, it is common to write Ax

d as short for

Ax
I−1
α d

if confusion is unlikely. An immediate consequence of Proposition 5.1 is

Proposition 5.2 For all formulas A,

α � x = y ∧ A =⇒ Ax
y,

where y does not become bound after substitution.

The satisfaction relation |= is defined as usual.

Proposition 5.3 (Soundness) Let � be a set of sequents and rules, and γ be a se-
quent. Then � � γ implies � |= γ. If R is a rule such that � � R, then � |= R.

Proof: The case for rules easily follows from the case for sequents. It suffices to
show that � satisfies the axiom sequents of BQC and is closed under its rules. For the
proposition-logical fragment, see [1]. Suppose α � Aα =⇒ Bα with all free variables
among x, and let t be a sequence of terms with all free variables among y, none of
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whom is bound by a quantifier after substitution in (Aα)x
t or in (Bα)x

t . Now let β � α

and s ∈ (Tβ)n be such that β � ((Aβ)x
t )

y
s . Now β � (Aβ)x

u implies β � (Bβ)x
u, for all

terms u ∈ (Tβ)m so, in particular, β � ((Bβ)x
t )

y
s . Suppose that α � Bα =⇒ Aα, where

x and y include all free variables, x not in y, and x is not free in Aα. Let β � α and
t ∈ (Tβ)n be such that β � ∃x(Bβ)

y
t . Then β � (Bβ)

x,y
t,t for some t ∈ Tβ, so β � (Aβ)

y
t .

Suppose that α � ∃xBα =⇒ Aα, and let β � α and t ∈ Tβ and t ∈ (Tβ)n be such that
β � (Bβ)

x,y
t,t . Then β � ∃x(Bβ)

y
t , so β � (Aβ)

y
t . Suppose that Aα, Bα, and Cα are

formulas with all free variables among xy, and no variable of y free in Aα, such that
α � Aα ∧ Bα =⇒ Cα, and let γ � β � α, t ∈ (Tβ)m, and u ∈ (Tγ)n be such that
β � (Aβ)x

t and γ � ((Bx
t )γ )

y
u. Then γ � (Ax

t )γ ∧ ((Bx
t )γ )

y
u, and thus γ � ((Cx

t )γ )
y
u.

So β � ∀y((Bβ)x
t → (Cβ)x

t ). �
For each model K there is a theory Th(K) of all rules and sequents that hold in K.
Each node α of a Kripke model K yields a model Kα in the usual way, by restricting
the collection of worlds to exactly the nodes β such that β � α. So α � γ if and only if
γ ∈ Th(Kα), for all sequents γ, similarly for rules. Then Th(K) = ∩αTh(Kα), where
α ranges over all nodes of K. Kripke models with minimal nodes are called rooted.

Let D be a set of constant symbols. A theory � is D-saturated if it satisfies the
usual conditions as in Section 3. A set of sequents and rules is D-saturated if it ax-
iomatizes a D-saturated theory.

Proposition 5.4 For all Kripke models K the theory Th(K) is a functional well-
formed theory. If K is rooted with root α0, then Th(K) is Cα0-saturated.

Proof: Suppose that

R = A1 =⇒ B1 . . . An =⇒ Bn

A0 =⇒ B0
∈ Th(K),

and let α be a node, and A be a sentence over L[Cα], such that α � A ∧ Ai =⇒ Bi for
all i > 0, and α � A ∧ A0. Then α � Ai =⇒ Bi, for all i > 0, so α � B0. So Th(K)

is functional.
There exists a sequence of variables x such that all free variables of R occur in

x. Let B be a formula with no free variables in x, and α � ∀x(B ∧ Ai → Bi) for all
i > 0. Let β � α be such that β � (B ∧ A0)

y
c , where y includes all free variables of

B ∧ A0 ∧ B0, and the elements of c are constants from Cβ. But β � By
c ∧ Ai =⇒ Bi

for all i > 0, so β � (B0)
y
c . So α � ∀x(B ∧ A0 → B0). So Th(K) is well-formed.

Cα0-saturation for rooted models is just as easy. �
We will show below that all functional well-formed theories are of the form Th(K).

Lemma 5.5 Let � be a functional well-formed theory over a language L , and γ ∈
L be a sequent such that � � γ. Let C be a set of new constant symbols of cardinal-
ity equal to the cardinality of L . Then there is a C-saturated functional well-formed
theory � ⊇ � over L[C] such that � � γ.

Proof: Partition C into a countably infinite sequence of subsets C1, C2, C3, . . ., all
of cardinality equal to the cardinality of L , and let Ti = C1 ∪ · · · ∪ Ci, for all i. We
construct a sequence of theories � ⊆ �1 ⊆ �1 ⊆ �2 ⊆ �2 ⊆ · · · such that for all i

1. �i and �i are functional well-formed theories over L[Ti];
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2. �i � γ, �i � γ;

3. for all sentences ∃xA over L[Ti−1], if �i � ∃xA, then �i � Ax
t , for some t; and

4. for all sentences A and B over L[Ti], if �i � A ∨ B, then �i � A or �i � B.

Given �i, we construct the extension �i in the usual way using Zorn’s Lemma (see
[1]). So �i is a maximal sequent theory extension of �i satisfying �i � γ. By Corol-
laries 4.10 and 4.14, �i is functional and well-formed.

Let �0 equal �. Given �i−1, we construct �i in two stages. First consider
�i−1〈Ci〉. This is a functional well-formed theory such that �i−1〈Ci〉 � γ. Second,
there is a bijective function which assigns to each existential sentence of L[Ti−1] for
which �i−1〈Ci〉 � ∃xA, a constant symbol c(A) from the set of new constant sym-
bols Ci. Set �i equal to the theory over L[Ti] axiomatized by �i−1〈Ci〉 plus all such
sentences Ax

c(A). So �i is functional and well-formed. Suppose �i � ∃yB, for some
B ∈ L[Ti−1]. Then there is a sentence ∃x1 A1 ∧ · · · ∧ ∃xn An = ∃xA over L[Ti−1],
and a sequence c ∈ (Ci)

n such that �i−1〈Ci〉 � ∃xA and �i−1〈Ci〉 ∪ {Ax
c} � ∃yB. So,

by functional completeness, �i−1〈Ci〉 � Ax
c =⇒ ∃yB. Let z be a sequence of new

variables. Then, by functional generalization, �i−1〈Ci〉 � Ax
z =⇒ ∃yB, hence also

�i−1〈Ci〉 � ∃zAx
z =⇒ ∃yB. But then, with renaming of bound variables, �i−1〈Ci〉 �

∃yB, and thus �i � By
c(B)

. Let B =⇒ C be a sequent over L[Ti−1] such that �i �
B =⇒ C. Then there is a sentence ∃xA over L[Ti−1], and a sequence c ∈ (Ci)

n such
that �i−1〈Ci〉 � ∃xA and �i−1〈Ci〉 ∪ {Ax

c} � B =⇒ C. So �i−1〈Ci〉 � Ax
c ∧ B =⇒ C.

Let z be a sequence of new variables. Then �i−1〈Ci〉 � Ax
z ∧ B =⇒ C, hence also

�i−1〈Ci〉 � ∃zAx
z ∧ B =⇒ C, and thus �i−1〈Ci〉 � B =⇒ C. So, in particular, �i � γ.

This completes the construction of the sequence of theories. Set � = ∪i�i. Then �

is a C-saturated functional well-formed extension of � over L[C] such that � � γ.
�

Given a language L , we construct a universal Kripke model U = UL as follows.
Let C be a set of constant symbols of cardinality equal to the cardinality of L . Par-
tition C into a countably infinite sequence of subsets C1, C2, C3, . . ., all of cardi-
nality equal to the cardinality of L , and let Ti = C1 ∪ · · · ∪ Ci, for all i. As set
of worlds W = WU we choose the collection of all Ti-saturated functional well-
formed theories over L[Ti], for all i. We write � ≺ � when � � ∀x(A → B) im-
plies � � A =⇒ B, for all sentences ∀x(A → B). So ≺ is obviously transitive.
Given a theory � over L , define �(1) to be the theory over L axiomatized by � plus
{A =⇒ B | ∀x(A → B) is a sentence and � � ∀x(A → B)}. Then �(1) is a sequent
theory extension of �, hence functional and well-formed if � is. Lemma 5.5 implies
that �(1) = L ∩ ⋂{� ∈ W | � ≺ �}, for all nodes �. For each node �, let T� be
its set of constant symbols. The relation s ∼ t, defined by � � s = t, is an equiv-
alence relation on T�. The equivalence class of a constant symbol s is denoted by
[s] = [s]�. Set D� equal to the set of equivalence classes T�/ ∼. If � ≺ �, then
T� ⊆ T�, and � ⊆ � implies that [s]� ⊆ [s]�, for all s ∈ T�. So the inclusion
map T� → T� induces a function D�

� : D� → D� such that D�
� is the identity,

and D�
� D�

� = D�
�, whenever � ≺ � ≺ �. This completes the construction of the

Kripke structure. The structure is inhabited, since BQC satisfies ∃x x = x. It remains
to define the interpretation map I = IU. Let P be an n-ary predicate, � be a node,
and let X = {s ∈ (T�)n | � � Ps}. Then X is a subset of (T�)n such that if s ∈ X
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and [s] = ([s1], . . . , [sn]) = [t], then t ∈ X. So I(P)� = X/ ∼ is a well-defined sub-
set of (D�)n. If � ≺ �, then D�

�(I(P)�) ⊆ I(P)�, so I(P) can be (uniquely) ex-
tended to a substructure of Dn. Obviously, if P is the equality symbol, then I(P) is
the diagonal substructure of D2. Let f be a function symbol. Since BQC satisfies
x = y =⇒ f x = f y, the assignment I�( f )([s]) = [ f s] is a well-defined map from
(D�)n to D�. As � ≺ � implies � ⊆ �, the diagram

�

�
I�( f )

(D�)n

(D�)n

(D�
�)n

�
�

I�( f )

D�

D�

D�
�

commutes. So I( f ) is a natural transformation from Dn to D.

Lemma 5.6 Let � be a well-formed theory. Then �(1) � A =⇒ B if and only if
� � ∀x(A → B), for all sentences ∀x(A → B).

Proof: From right to left immediately follows from the definition. The converse
follows from the well-formedness of �. �

Lemma 5.7 For all � ∈ WU and all sentences A over L[T�] we have � � A if
and only if � � A. For all sequents A =⇒ B over L[T�], � � A =⇒ B implies
� � A =⇒ B.

Proof: We complete the proof of the sentence case by induction on the complexity
of A. The cases where A equals � or ⊥ are trivial. The case for A an atomic sentence
immediately follows from the definitions. Suppose the sentence A equals B ∨ C.
Then, since � is saturated, � � B ∨ C if and only if � � B or � � C; apply induction.
The case for A equal to B ∧ C is trivial. Suppose the sentence A equals ∃xB. Then,
since � is saturated, � � ∃xB if and only if � � Bt for some term t; apply induction.
Suppose the sentence A equals ∀x(B → C). Let � � � � ∀x(B → C) and s ∈ (T�)n

be such that � � Bx
s . Then � � B =⇒ C and, by induction, � � Bx

s . So � � Cx
s so,

by induction, � � Cx
s . Thus � � ∀x(B → C). Conversely, suppose � � ∀x(B → C).

Let � � � be such that � � B =⇒ C. Then � ⊇ �(1), and, by functional general-
ization, for new constant symbols s we have �〈s〉 � Bx

s =⇒ Cx
s . Apply functional

completeness: � ∪ {Bx
s } � Cx

s . By Lemma 5.5 there is a node � ⊇ �〈s〉 ∪ {Bx
s } such

that � � Cx
s . But � ⊇ �(1), so � � � is such that, by induction, � � Bx

s and � � Cx
s ;

contradiction. So � � B =⇒ C. Therefore �(1) = ⋂{� ∈ W | � ≺ �} � B =⇒ C.
And thus � � ∀x(B → C).

As to the sequent case, suppose � � � � A =⇒ B and s ∈ (T�)n are such that
� � Ax

s . Then, by the sentence case above, � ⊆ � � Ax
s , and so � � Bx

s . Thus
� � A =⇒ B. �
As shown in [1], the sequent case of Lemma 5.7 cannot be extended to an equivalence.

For each prime theory � over some L[Ti], the set of all nodes � � � generates
a submodel U� of U with root �. So for all sequents γ, U� |= γ if and only if � � γ,
similarly for rules.
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Theorem 5.8 (Completeness for functional well-formed theories) Let � be a func-
tional well-formed theory, and γ be a sequent. Then � |= γ implies � � γ. If R is a
rule such that � |= R, then � � R.

Proof: Let γ be the sequent A =⇒ B such that � � A =⇒ B. Let s be a sequent
of new constant symbols from S. Then, by functional generalization and functional
completeness, �〈s〉 ∪ {Ax

s } � Bx
s . By Lemma 5.5 there exists a node � ⊇ �〈s〉 ∪ {Ax

s }
such that � � Bx

s . Then U� |= �, but U� �|= γ.
Suppose � � R, where

R = γ1 . . . γn
γ .

Then � ∪ {γ1, . . . , γn} � γ. So, by the sequent case above, � ∪ {γ1, . . . , γn} �|= γ. So
� �|= R. �

Corollary 5.9 All functional well-formed theories are of the form Th(K).

Proof: If {Ki}i is a collection of disjoint models, then Th(∪iKi) = ∩iTh(Ki). �
A set of sequents and rules � is complete with respect to a class of Kripke models K ,
if for all sequents A =⇒ B we have � � A =⇒ B, if and only if K |= A =⇒ B for
all K ∈ K . So a theory is complete for a class of models if and only if it is functional
and well-formed.

The set � is strongly complete with respect to a class K of models, if � is com-
plete with respect to K , and if, moreover, for all functional well-formed sets � ⊇ �

there is a subclass of models of K such that � is complete with respect to the subclass.
So BQC is strongly complete with respect to the class of all Kripke models.

A Kripke model is a tree model if the reflexive closure (W,�) of the underlying
set of nodes is a partially ordered set such that the predecessors of each node form a
finite linear set. A Kripke model is irreflexive if ≺ is irreflexive.

Theorem 5.10 (Strong completeness for irreflexive trees) BQC is strongly com-
plete with respect to the class of irreflexive Kripke tree models.

Proof: Form a new Kripke model V from U by redefining � ≺ � if and only if
�(1) ⊆ � and, additionally, � and � are over languages L[Ti] and L[Tj] with i < j.
Then all relevant lemmas above hold for V as for U, with no need for a change in
proofs except for replacing U by V. But the models V� are irreflexive Kripke tree
models. �
What is the connection between the two completeness theorems in this paper, other
than Theorem 5.10 being a generalization of Theorem 3.5? Theorem 3.5 and its proof
are almost identical to the case where we permit sequent theories. So the real differ-
ence is with the limited permission of rules in Theorem 5.10. The following model
transformation technique connects the two versions.

Given a Kripke model K, let V(K) be the model formed from K by adding,
for each irreflexive node α, a new irreflexive node α′ ≺ α, with Dα′ = Dα, and
such that α′ � A exactly when α � A, for all atomic sentences A of L[Cα]. Note
that α′ ≺ β exactly when α � β. The following construction is more general:
let S be a function which assigns to each irreflexive node α a subset Sα of {A |
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A is an atom of L[Cα] and α � A}. Let Tα′ be the collection of terms constructed
from the constant symbols Cα. The equivalence relation s ∼ t on Tα′ is defined by
Sα � s = t. Set the domain Dα′ = Tα′/ ∼. Then VS(K) is the extension of K with
the same new nodes as V(K), but α′ � A if and only if Sα � A, for all atoms A.

Let R be the rule

R = A1 =⇒ B1 . . . An =⇒ Bn

A0 =⇒ B0
,

and x the sequence of all free variables of R. Then we define the sequent R(−1) by

∀x(A1 → B1) ∧ · · · ∧ ∀x(An → Bn) =⇒ ∀x(A0 → B0).

Sequents themselves are rules, but with empty numerator. So if γ is the sequent A =⇒
B with x its sequence of free variables, then γ(−1) equals ∀x(A → B). If � is a set
of rules (and sequents), then �(−1) = {R(−1) | R ∈ �}. If � is a well-formed theory,
then �(−1) ⊆ �.

Lemma 5.11 For all Kripke models K, all assignments S, and all rules R, K |= R
if and only if VS(K) |= R(−1).

Proof: Let W be the set of nodes of K, and W ′ the set of nodes of VS(K) that are not
in W . Suppose K |= R. Then K |= R(−1). So α � R(−1), for all α ∈ W . Let α′ ∈ W ′.
Then α′ is irreflexive, and α′ ≺ β implies β ∈ W . So α′ � ∀x(A → B) if and only
if β � A =⇒ B for all β � α′, for all sentences ∀x(A → B). So α′ � R(−1), if and
only if β � R for all β � α′. But all β � α′ are in W . So α′ � R(−1). Conversely,
suppose VS(K) |= R(−1). If β ∈ W is such that β � α′ ∈ W ′ for some α′, then β � R.
Otherwise, β is reflexive and β ≺ β � R. �
Let K be a rooted model with irreflexive root α, and let V′(K) be constructed from K
just as V(K), but by only adding a new irreflexive node α′ below the root. Similarly,
construct V′

S(K) from K. The following counterexample shows that the preceding
lemma fails when we replace VS(K) by V′(K). In the example below, V′(K) |= � →
(� → ⊥) =⇒ � → ⊥, but

K �|= � → ⊥
⊥ .

K
�

�
��

�
�
��

�

��

V′(K)

�

�

�
�

��

�
�
��

�

��

A functional well-formed theory � is faithful if for all sets of constants C and all se-
quences of sentences ∀x(A0 → B0),∀x(A1 → B1), . . . ,∀x(An → Bn), if

�〈C〉 � ∀x(An → Bn) ∧ · · · ∧ ∀x(An → Bn) =⇒ ∀x(A0 → B0),
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then
�〈C〉 ∪ {A1 =⇒ B1, . . . , An =⇒ Bn} � A0 =⇒ B0.

A theory � is finitely strongly complete with respect to a class K of models, if � is
complete with respect to K , and if, moreover, for all sequent theories � ⊇ � that are
generated by adding finitely many sequents, there is a subclass of models of K such
that � is complete with respect to the subclass.

Theorem 5.12 Let � be a functional well-formed theory, C an infinite set of new
constant symbols, and K be a class of rooted models with respect to which �〈C〉 is
finitely strongly complete. Then the following are equivalent.

1. � is faithful.
2. If K ∈ K has irreflexive root α, and γ ∈ �〈C〉 is of the form ∀x(A1 → B1) ∧

· · · ∧ ∀x(An → Bn) =⇒ A0 → B0 with all ∀x(Ai → Bi) and A0 → B0 sen-
tences, then V′

S(K) |= γ, for some S.
3. If K ∈ K has irreflexive root α, and γ = (A =⇒ B) ∈ �〈C〉 where A and B are

sentences with all quantifier variables of B only occurring inside implication
subformulas, then V′

∅
(K) |= γ or V′(K) |= γ.

Proof: Obviously, the third item implies the second. Assume the second item. To
derive the first item, let �〈C〉 � ∀x(A1 → B1) ∧ · · · ∧ ∀x(An → Bn) =⇒ ∀x(A0 →
B0) with all ∀x(Ai → Bi) sentences, and set � = �〈C〉 ∪ {A1 =⇒ B1, . . . , An =⇒
Bn}. To prove that � � A0 =⇒ B0, we may assume � to be consistent. Let D ⊆
C be a finite subset including all new constant symbols that occur in all sentences
∀x(Ai → Bi). Then �〈D〉 � ∀x(A1 → B1) ∧ · · · ∧ ∀x(An → Bn) =⇒ ∀x(A0 →
B0) =⇒ A0 → B0 =⇒ (A0 → B0)

x
e with constant symbols e from E = C \ D. Let

K ∈ K be a model of � with root α. We want to show that K |= (A0 =⇒ B0)
x
e . If α is

reflexive, then this is immediate from the definitions. So assume that α is irreflexive.
Consider the model V′

S(K) of the condition, with new root α0 � ∀x(A1 → B1) ∧
· · · ∧ ∀x(An → Bn) =⇒ (A0 → B0)

x
e . Then α0 � ∀y(A → B) exactly when α �

A =⇒ B, for all sentences ∀y(A → B). So α � (A0 =⇒ B0)
x
e , and thus K |= (A0 =⇒

B0)
x
e . By finite strong completeness, � = �〈D〉〈E〉∪ {A1 =⇒ B1, . . . , An =⇒ Bn} �

(A0 =⇒ B0)
x
e . So, by functional generalization, �〈D〉 ∪ {A1 =⇒ B1, . . . , An =⇒

Bn} � A0 =⇒ B0. And thus � � A0 =⇒ B0.
Assume the first item. To derive the third item, let K ∈ K have irreflexive root

α, and let γ ∈ �〈C〉 be of the required form. Write γ = A =⇒ B. If K �|= A, then
V′

S(K) |= A =⇒ B for all S; so we may assume that K |= A. Additionally, we may
assume that V′

∅
(K) �|= A =⇒ B. Let α0 be the root of V′

∅
(K). Then α0 � A and α0 �

B. Up to provable equivalence A equals an expression ∃y(D1 ∨ · · · ∨ Dm) of Di that
are conjunctions of atoms and universal quantifications. So α0 � Dy

c for some D ∈
{D1, . . . , Dm} and with c from Cα. By transitivity, �〈C〉 � Dy

c =⇒ B. Since α0 � p
for all nontrivial atomic sentences p, Dy

c must be BQC-equivalent to a conjunction
∀x(A1 → B1)∧ · · · ∧∀x(An → Bn), so K |= Ai =⇒ Bi for all i. So V′

S(K) |= Dy
c for

all S. Up to provable equivalence B equals a conjunction E1 ∧ · · · ∧ Em of Ei that are
disjunctions of atoms and implications. Let E ∈ {E1, . . . , Em}. It suffices to show that
V′(K) |= E. We have K |= Dy

c =⇒ E and, by transitivity, �〈C〉 � Dy
c =⇒ E. Now

V′(K) |= p exactly when V′(K) |= � → p, for all atomic sentences p. Replace all p
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in E that are not inside implications by implications � → p, resulting in a disjunction
called F. It suffices to show V′(K) |= F. Suppose not. Clearly, F is BQC-equivalent
to a disjunction (G1 → H1) ∨ · · · ∨ (Gk → Hk), and �〈C〉 � Dy

c =⇒ F. If for some
i we have α � Gi and α � Gi → Hi, then α � Gi =⇒ Hi, so V′(K) |= F. So we may
assume there is m ≤ k such that α � Gi exactly when i ≤ m, and α � Gi → Hi for all
i > m. Now �〈C〉 proves

(� →
∧

i≤m

Gi) ∧ Dy
c =⇒

∨

i≤m

(� → Hi) ∨
∨

i>m

(� → (Gi → Hi)) =⇒

� → (
∨

i≤m Hi ∨
∨

i>m(Gi → Hi)).

By faithfulness,

�〈C〉 ∪ {
∧

i≤m

Gi, A1 =⇒ B1, . . . , An =⇒ Bn} �
∨

i≤m

Hi ∨
∨

i>m

(Gi → Hi).

So α � Gi =⇒ Hi for some i ≤ m. �
As a corollary we get:

Proposition 5.13 Let � be a functional well-formed theory whose class of Kripke
models is closed under the following transformation: if K is a rooted Kripke model
of � with irreflexive root, then so is V′

S(K), for some S. Then � is faithful.

There is a property stronger than faithfulness for which it would be nice to have a
closure characterization similar to the one defining faithfulness. Unfortunately that
turned out to be more cumbersome than expected. So, instead, we give a model-
theoretic characterization. Let � be a functional well-formed theory over a language
L with at least one constant symbol. So the set T of closed terms is nonempty. Set
S = T/ ∼, where ∼ is the equivalence relation on T defined by s ∼ t exactly when
� � s = t. Now for each set of models {Ks}s∈S of � we can construct two new mod-
els, named Ur and Ui, as follows. Both are formed by taking the disjoint union of
the models Ks, and then adding a new root α0 with domain Dα0 = S. In model Ur

the node α0 is reflexive; in model Ui the node α0 is irreflexive. Let K be the class
of rooted Kripke models of a functional well-formed theory �. We call � reflexively
rooted if for each set of models {Ks}s∈S ⊆ K of �, the model Ur is also a model of
�. Similarly, we call � irreflexively rooted if for each set of models {Ks}s∈S ⊆ K of
�, the model Ui is also a model of �. The theory � is fully rooted if both Ur and Ui

are models of �.
Recall that a theory � satisfies the disjunction property if � � A ∨ B implies

� � A or � � B, for all sentences A and B. A theory � is said to satisfy explicit
definability if � � ∃xA implies � � Ax

t for some term t, for all sentences ∃xA.

Proposition 5.14 A functional well-formed theory which is reflexively rooted or ir-
reflexively rooted is faithful, satisfies the disjunction property, and satisfies explicit
definability. BQC is fully rooted; IQC is reflexively rooted; FQC is irreflexively
rooted.

Proof: All forms of rootedness obviously imply faithfulness, the disjunction prop-
erty, and explicit definability. The rootedness of BQC, IQC, and FQC requires that
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the set of closed terms is nonempty. But we can make it that way by adding a set
of new constant symbols, and then apply the Functional Generalization Proposition
4.12. The reflexive rootedness of IQC is well known. The full rootedness of BQC
immediately follows from the completeness theorem. Let {Ks}s∈S be a set of models
of FQC. Then

α � A ∧ (� → B) =⇒ B
A =⇒ B

for all α � α0, so Ui |= (� → B) → B =⇒ � → B. Apply Proposition 4.1. �
When we start with an empty collection of models {Ks}s∈S, then the derived rooted
models Ur and Ui have single nodes and are models of CQC and � → ⊥ respectively.
As easy consequences we get the following proposition.

Proposition 5.15 Let � be a functional well-formed theory. If � is reflexively
rooted, then CQC + � is consistent, and it satisfies the same geometric sentences as
�. If � is irreflexively rooted, then (� → ⊥) + � is consistent, and it satisfies the
same geometric sentences as �.

Proof: The rootedness immediately implies the consistency of CQC + � or (� →
⊥) + �. Consider the case that CQC + � is consistent, and let A be a geometric sen-
tence such that CQC + � � A. Let K be a model of �. Form the model Ur from K,
with new root α. The bottom node structure by itself is a model of CQC + �. Since
A is a geometric sentence, α � A. So K |= A. And thus � |= A. The proof for the
case that (� → ⊥) + � is consistent is essentially the same. �

6 Basic Arithmetic Basic Arithmetic is the basic logic equivalent of Heyting Arith-
metic over intuitionistic logic, and of Peano Arithmetic over classical logic. The non-
logical symbols are a constant symbol 0, a unary function symbol S for successor, and
the binary function symbols · and +. Basic Arithmetic (BA) is axiomatizable by the
axiom sequents

Sx = 0 =⇒ ⊥;
Sx = Sy =⇒ x = y;
x + 0 = x;
x · 0 = 0;
x + Sy = S(x + y);
x · Sy = (x · y) + x;

the rule schema of induction

A =⇒ Ax
Sx

Ax
0 =⇒ A ;

and the axiom schema of induction

∀yx(A → Ax
Sx) =⇒ ∀yx(Ax

0 → A).

This completes the axiomatization of BA. It is an easy exercise to prove Proposition
6.1.
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Proposition 6.1 BA is functional and well-formed.

Faithfulness, the disjunction property, and explicit definability are implied by the fol-
lowing preservation construction.

Proposition 6.2 BA is fully rooted. HA = IQC + BA is reflexively rooted. FQC +
BA is irreflexively rooted.

Proof: Let U = Ur or U = Ui be constructed from a set of models {Ks}s∈S of BA.
We must show that α0 � γ for all sequents of the definition of BA, and α0 � R, where
R is an instance of the rule schema of induction. Only the induction schemas are non-
trivial. Suppose α0 � A =⇒ Ax

Sx. Then certainly α � Ax
0 =⇒ A for all α �= α0. Let y

include all free variables of A except x, and assume α0 � Ay,x
d,0 for some d ∈ ωn. But

α0 � Ay,x
d,n =⇒ Ay,x

d,Sn for all n ∈ ω. So α0 � Ay,x
d,n for all n ∈ ω. So α0 � Ax

0 =⇒ A.
Finally, suppose α0 � ∀yx(A → Ax

Sx). If α0 is reflexive, then apply the rule case
above to conclude that α0 � ∀yx(Ax

0 → A). Otherwise, if α0 is irreflexive, use that
all Ks are models of BA to conclude that α � Ax

0 =⇒ A, for all α � α0. And thus
α0 � ∀yx(Ax

0 → A). The cases for HA and FQC + BA now easily follow with Propo-
sition 5.14. �
Proposition 6.2 implies that (� → ⊥) + BA is consistent, hence FQC + BA is con-
sistent.

Corollary 6.3 BA and FQC + BA are undecidable.

Proof: By Matijasevič’s undecidability theorem for Diophantine equations, the
fragment of existential sentences derivable from PA is undecidable. But by Proposi-
tions 5.15 and 6.2, the theories BA and FQC + BA derive exactly the same existential
sentences. �
This corollary naturally extends to other arithmetics like (� → ⊥) + BA.
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