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Basic Predicate Calculus

WIM RUITENBURG

Abstract  We establish a completeness theorem for first-order basic predi-
cate logic BQC, a proper subsystem of intuitionistic predicate logic 1QC, us-
ing Kripke modelswith transitive underlying frames. We devel op the notion of
functional well-formed theory astheright notion of theory over BQC for which
strong compl eteness theorems are possible. We aso derive the undecidability
of basic arithmetic, the basic logic equivalent of intuitionistic Heyting Arith-
metic and classical Peano Arithmetic.

1 Introduction Basic Predicate Calculus (BQC) was motivated by arevision of
the Brouwer-Heyting-K olmogorov proof interpretation (Ruitenburg [[5], [6]). Before
an actual axiomatization for BQC was attempted, a class of models for which BQC
should satisfy a completeness theorem was established: Kripke models as for In-
tuitionistic Predicate Calculus (IQC), except that the order on the underlying set of
nodes is transitive but not necessarily reflexive. This class naturaly generalizes the
class of models for Basic Propositional Calculus (BPC), for which axiomatizations
and compl eteness were established (Ardeshir and Ruitenburg [[1], Visser [B]). Unfor-
tunately, the original axiomatizations of BQC were wrong. The versionsin [[5], [[6],
and Ardeshir [P] refer to a predicate calculus that in reality is a proper sublogic be-
tween theintended BQC, described in this paper, and | QC. Inthis paper we correct the
mistake by formulating a new axiomatization and by providing afirst detailed proof
of the completeness theorem. AsBQC is essentially weaker than IQC, “ standard” or
“expected” results must be presented with extra detail.

We also explore the question of what isagood definition of theory. A good the-
ory over BQC should have a proper balance between formulas YxX(A — B) and se-
quents A —> B. In [[1] the balance for BPC is struck with formalization, on the one
hand, and with faithfulness on the other. Here both will be generalized in two ways:
first, by allowing for theories with rule as well as sequent axioms and second, by ex-
tending both notions to BQC. A very general notion of atheory is introduced from
which a stricter version of a functional, well-formed theory that is adequate to our
purposes is derived. One example of thisis the theory of Basic Arithmetic, that is,
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the basic logic equivalent of Peano Arithmetic and Heyting Arithmetic. Functional,
well-formed theories are essentially more general than sequent theories as discussed
in [[J and [E]l.

We present two completeness theorems for BQC. In Section[Bla quick overview
of the first completeness theorem’s basic ideas and the structure of its proof is pre-
sented. The second, stronger, completeness theorem is discussed in Section[Slwith
more detail, becauseit is sensitive to details. Many resultsin [1] involving BPC have
immediate generalizationsto BQC. We attempt to restrict our attention to those gener-
alizationsthat require asignificantly different formulation or asignificantly different
proof. We apply our results to the theory BA of Basic Arithmetic and, among other
things, we establish its undecidability.

Thereistheissue of the name“basic logic”, whichisaless than optimal choice.
We hope one day a better name comes along. There is motivation for using an alter-
native name, but this name—geometric logic—is aready taken.

2 Axiomatization andrules Thelanguagefor BQC isnot the same asthe usual one
for IQC. The reason for the alternative choice is the following. Over both IQC and
BQC aformula of the form VxA corresponds with a formula of the form Ex — A,
where E is the extent operator of Heyting (2], [4]) and Scott [[7]. Similarly the for-
mula VxXVyA corresponds with a formula of the form Ex — (Ey — A) which is,
at least over 1QC, equivalent to Ex A Ey — A. Informally, over 1QC, this equiva
lenceisan excusefor usto usethe abbreviation VxyAfor theoriginal formulavxvyA.
However, over BQC the formula Ex — (Ey — A) may be essentially weaker than
Ex A Ey — A. So over BQC we prefer to distinguish between VxVyA and VxyA.
A simple further extension is also to allow universal quantifications that correspond
with expressions of the form Ex A Ey A B — A. So over BQC we have more in-
volved universal quantification expressionsfor these of theformvVxy(B — A). More
generally, we admit expressions of theform vx(B — A), where x isafinite sequence
of variables. We conventionally use small boldface letters to represent sequences of
terms, and regular small letters for single terms. A convenient side effect of having
these more general expressionsis, that they allow us to syntactically redefine impli-
cation asaspecial case of universal quantification: if x isan empty sequence of vari-
ables, then we may write B — A for ¥x(B — A). For existential quantification no
such prablems occur over BQC. So, asisusual over |QC, we may occasionally write
Ax A as short for Ix;3Ix, . .. IX, A

The language of BQC has a set of predicate symbols of varying finite arity, a
set of function symbols of varying finite arity, a countably infinite set of variables,
parentheses, logical constants T and L, and the logical connectives A, Vv, 3, and V.
Constant symbols occur as function symbols of arity 0. We usually includethe binary
predicate = for equality. Terms, atomic formulas, and formulas are defined as usual,
except that for universal quantification we have the more elaborate rule; if Aand B
are formulas, and x is afinite sequence of variables, then Yx(A — B) isaso afor-
mula. Free variables are defined in the obviousway. A sentenceisaformulawithout
free variables. A closed termis aterm without free variables.

We may write A — B for V(A — B), that is, implication is universal quantifi-
cation with an empty sequence of variables. Additionally, we employ the usual ab-
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breviationsof ~Aand A <— Basshortfor A— 1 and (A— B) A (B— A), re-
spectively. (Note that for obvious reasons we can no longer use the expression Yx A
asashort for Vx(T — A); seethe earlier notation of [6].) The set of quantifier-free
formulas is defined as usual, except that it is also closed under universal quantifica-
tions with empty sequence of variables, that is, closed under implication. Stated dif-
ferently, the expression ‘ quantifier-free’ is a misnomer for ‘ quantifier-variable-free'.
Given a sequence of variables x without repetitions, we write ¢ for the term and A
for the formulas that result from substituting the terms of t for all free occurrences of
the variables of x in theterm s or the formula A. Notethat A" need not be the same
as (AN, similarly for terms. We occasionally borrow this notation for substitution
of terms for constant symbols, with the obvious meaning.

There are several possible ways to axiomatize BQC. Here we prefer a version
using axiom sequentsand rules. For therulesasingle horizontal line meansthat if the
sequents above theline hold, then so do the ones below theline. A doubleline means
the same, but in both directions. The BQC axioms that don’t involve the quantifiers
are essentially those for a distributive lattice with top and bottom. So BQC satisfies
all substitution instances of

A= A

A=—B B=—C
A=—C

A= T 1= A

A—B A—C B=—=A C= A
A=— BAC BvC= A

AA(BVvC)=— (AAB)V(AAC).
Variable substitution and existential quantification are without surprises:

A=—B

A= B’

where no variable in the finite sequence of termst is bound by a quantifier in the de-

nominator.
B— A

IXB=— A '

and
AA3IXB= IX(AA B)

with x not freein Ain either the rule or the axiom schema. We usually have equality
as part of our language. In such cases we must add the schemas

T:}X:X;

and
X=yAA= A,
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where Aisatomic. Thiscompletesour list of schemasthat don'tinvolveV. Thefrag-
ment that doesn’t involve universal quantifiersis called geometric logic, and sequents
that don’t involve Y are called geometric sequents. The axioms and rules for V form
an essentially straightforward generalization of the BPC proposition logical axioms

and rules for — [T][E]E]:
AANB=—C

A= Vx(B—>C) '

whereno variablein x isfreein A.
VX(A— B)AVX(B— C) = VX(A— C);

VX(A— B) AVX(A— C) = VXx(A— (BAC));
VX(B— A)AYX(C —> A) = VX((BVC) - A);
VX(A — B) = VX(Af — BY),

where no variable in the sequence of termst is bound by a quantifier of A or B; and
VX(A— B) = Vy(A— B),

where no variable in y is free on the left hand side. The schema Vx(A — B) —
A — Bisagspecia case, and soistheschema A — B — Vx(A — B) if novariable
inxisfreein A— B.

VYyX(B — A) = Vy(IxB — A)

where x isnot freein A. This completes the axiomatization of BQC.
Wewrite A < Basshortfor A—> B plusB— A, and often— A, or even
A, for T = A. Let T be a set of sequents and rules. We say I" entails, or proves,
A= B, writtenT" - A= B, when A = B can be obtained, after finitely many
applications of the BQC rules and the rules of T, from the BQC axiom sequents plus
the axiom sequents of I". Similarly, T" entails, or proves, therule
_ Al—B; ... A= B,

R= A— B ’

writtenI' = R, whenT" U {A; = By, ..., Ay=— By} - A= B. Weusually write
' AasshortforI' === A; T"isconsistentwhenT 4 1. A theoryisaset of sequents
and rules closed under derivability. A theory is axiomatizable by aset T if it equals
the closure of T" under derivability. A theory isasequent theory if it is axiomatizable
by aset of sequents. Moregeneraly, I'” isasequent theory over I, or asequent theory
extension of I, if I'” is axiomatizable by I" plus a set of sequents.

3 Kripke models We first prove the completeness theorem for BQC in a special
case where, among other things, the only function symbols of the language are O-
ary, that is, are constant symbols. In Section[Elwe will consider the strong complete-
ness theorem involving more general theories and involving languages with function
symbols. In this section it is our purpose to get a quick insight into a completeness
theorem for Kripke models.



22 WIM RUITENBURG

A KripkestructureisatupleD = (WP, <P, DP), where WP = W isanonempty
set of nodes, or worlds, with a binary transitive relation <P= <. Wewrite < for the
reflexive closure of <, and > and > for the converserelationsof < and < respectively.
Additionally, DP = D isafunctor from the category (W, <) to the category of sets,
that is, to every node o we assign a set Da, and to every pair « < g amap D%, such
that

1. fordl «, D istheidentity on De; and
2. forala < g <y, D% = D)D%.

Given aKripke structure D, we define finite powers D" by setting W" = W, by set-
ting <"= <; and by choosing anew functor D" such that D"« = (Da)" for al « and
(D™ = (D%)". In particular, D° assigns singleton setsto all nodes « € W, and as-
signsthe unique maps as D% between them, whenever o < 8. Kripke structures over
afixed transitive set (W, <) form afunctor category in the usual way. It is, in fact,
the category of presheaves over (W, <), hence atopos. The transitive set (W, <)
enables us to recognize additional structure that permits us to have more general in-
terpretations for v, and thus aso for —, than is usual for topos theory with IQC. In
the presheaf category, D" is the n-fold category-theoretic product.

A Kripke structure is inhabited if all sets Do are nonempty. A Kripke model is
atuple K = (DX, IX), where DX = D is an inhabited Kripke structure. Moreover,
| assigns to each n-ary predicate symbol P a substructure | (P) = Rp of D" in the
presheaf category over (W, <). Sofor al « we have asubset Rpa € (Da)", and for
each pair o < Bamap (Rp)% : Rpa — Rpp that istherestriction of (Dg)” to Rpa.
To each constant symbol ¢, | assigns acollection of elements (I (¢), € Da)yew SUch
that Dgl (C)e = 1(C)p Whenever o < B. The interpretation of a constant symbol is
essentially the sameasanatural transformation | : 1 — D from the singleton presheaf
1to D in the presheaf category over (W, <). If the language includes the equality
symbol =, then | (=) is assigned to the diagonal substructure of D2, that is, to the
usual equality relation in the presheaf category over (W, <).

For each node o we form an extended language L[C«] of the original language
L by adding a set of constant symbols Ca = Da. The sets of new constants are cho-
sen such that Ca N CB = @ whenever o # 8. We sometimes write A, for aformula
that may contain constant symbols from Ca. For each o we have a map 1, on the
set of constant symbols of L£[C«] which assigns to each constant symbol ¢ of £, the
constant 1 (c),, and to each new constant symbol ¢, € Cu its corresponding element
lo(Cy) = dy € Da. Given A= A, and B > o, we write Ag for the formula over
L[CA], obtained from A, by replacing each constant symbol ¢, in A, from Cu by its
corresponding constant symbol ¢ € | ﬁ‘l D% la(cy) from CB.

Letc= (cy,...,Cn) beasequence of n constant symbols of L[C«], and let P
be an n-ary predicate. Then we write o I- P(c) if 1,(¢c) = (I4(C1), ..., l4(Ch)) €
Rpa C (Da)". Therelation |- isuniquely extended to all sentences by the inductive
definition

alET;

alF AnBifandonly if e lF Aand « IF B;

alF Av Bifandonly if oIl Aor a I+ B;

a IF 3xAif and only if thereexist ¢ € Ca such that « IF AY; and
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alFVX(A, — By) ifandonlyif foral g > aandce (CB)", B (Ap)g
implies B I- (Bg)z -
An easy proof by induction on the complexity of sentencesshowsthatif 8 = a IF A,
then g I Ag. So we can extend the relation I in anatural way to all formulas by
al- A, if andonly if for al g > o and c € (CB)" we have 8 IF (Ag)%,

whereX = (Xg, ..., Xn) includesall freevariablesof A,. Sinceimplicationisdefined
in terms of universal quantification,
al- Ay — By ifandonly if for al g > a, BlI- Agimplies 8 I- Bg,
for al sentences A, — B,. For formulas A, — B, where x includes al free vari-
ables, this generalizesto
alk Ay —> Byifandonly if forall y = B> aandc e (CB", y I
((Ag)2)y implies y I ((Bg)g), -
We extend I+ to al sequents by
al- Ay = By if andonly if for all g > o andc € (CB)", B I- (Ap)g
implies 8 I- (Bg)% .

Notethat o I- Aif and only if o )= A. Extend I to rules asfollows. Let R bethe

rule
(Al)a = (Bl)a cee (An)a = (Bn)a )

Aoz:>Ba

Then o IF Rif and only if for al g > «, if BI- (A))g = (Bi)g foral i < n, then
B I Ag = Bg. For al formulas A we obviously have

alFx=yrA= AJ.

A model K satisfies a sequent y, written K = y, if and only if « IF y for all nodes
a € W: similarly for rules. For setsT" we write K = T if K satisfies al rules and
sequents of I'. WewriteT" = y if for al modelsK, if K =T, thenK = y: similarly
for rules.

Proposition 3.1 (Soundness) Let I' be a set of sequents and rules, and y be a se-
guent. ThenT" F y impliesT = y. If RisarulesuchthatI' - R, thenT = R.

Proof: Standard. See the proof of Proposition[5.3] O

The following is a counterexample showing that A — B ¥ VX(A — B). Let K be
aKripke model with two irreflexive nodes o < g asin the diagram below (open cir-
clesindicate irreflexive nodes, filled-in circles indicate reflexive nodes), and Dg an
inclusion map such that c € DB\ Da. To simplify notation, we write d as short for
I;l(d), for all nodes y and d € Dy. Let P be aunary predicate such that g I+ Pc,
and y ¥ Pd for al other combinations of nodes y and elements d.

B o Pc

o 0 c¢ Da
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ThenK = Px — L, but K = VX(Px — 1). Apply soundness. It isjust as easy to
show that T — Px} V(T — PX). Ingenerd, if Aand B are such that no free vari-
ablesfrom among the x; occur freein A or B, then BQC satisfies A — B+ VX(A —
B).

In the remainder of this section we restrict ourselves to sets of sentences over
countable languages without function symbols except constant ones. Many results
in this section involving completeness can fairly easily be generalized by modifying
some lemma or proposition. Examples are adding function symbols or allowing for
noncountable languages. But we don’t bother in this section, as we will consider an
altogether more general setting in Sections[4land

Our purposeisto construct sufficiently many Kripke modelswith which we can
prove an easy completeness theorem. Let £ be a countable language with equality,
and C be a set of new constant symbols of cardinality continuum. We consider all
sets of sentences T that are contained in some L[ D], alanguage obtained from £ by
adding some countablesubset D ¢ C. Thecontinuum cardinality of C guaranteesthat
we can expand the (countable) collection of constant symbolsin the proofs below. A
set I is called deductively closed in language £[ D], if I' € L[ D] and, additionally,
if T = Aimplies A € T', for all sentences A € L[D]. Once a set T is deductively
closed in some language, then this language and its set of constant symbols D can
be recovered from the set I" alone. Therefore we will often write about deductively
closed sets of sentences without reference to their languages.

Let D C C beacountable set of constant symbols. A deductively closed set of
sentencesT” C L[ D] is D-saturated if

1. T isconsistent;
2. AvBeTlimpliesAeT or BeT,foral sentences A and B; and

3. 3xA e " implies A} € T" for some constant symbol d € D, for all sentences
axA.

As transitive relation on the collection of deductively closed countable sets of sen-
tenceswesetI' < Aif YX(A— B) e I'and A} € Aimply BS € A, foral Yx(A— B)
and c. So, in particular, I’ € A. Therelation < is easily extended to all countable
sets of sentences by replacing occurrences of theform A € I' by I' - A in the defini-
tion above, and so on. Let CI(T") denote the deductive closureof I'. ThenT" < A if
Cl(I") < Cl(A).

Given sets of sentencesI” C A, define Ar = {B | ' - Vx(A — B) asentence,
and A} € CI(A)}. Itisimplicit in this definition that A does not introduce constant
symbols that don't already occur in A. If Ar = A, then (A") = A for some finite
ANCAandI"VCTNA

Proposition 3.2 LetI' € A be sets of sentences. Then Ar is deductively closed
such that

1. I' < Ar; and
2. T <® D Aimplies® O Ar, for all deductively closed sets of sentences .

Proof: Theonly nontrivial part isthe deductive closure of Ar; but thisfollows eas-
ily from the axiomatization of BQC. O
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The theory Ar need not be saturated. Also notethat I' < A € & does not imply that
I' < ®. Forexample, setI'= A = {p— g}, and ® = {p — q, p}, for atomic p and
g.

Proposition 3.3 LetI" € A besuchthatI' < A ¥ A. Then thereis a deductively
closed saturated A’ © A suchthat ' < A" A.

Proof: Let (A); beacountable enumeration of all sentencesof thelanguageof A =
A®, and E be acountable set of new constant symbols. We may assume E = (g); for
some enumeration i — €. Form an ascending chain of sets (A;); asfollows. Ag =
A°. Given Aj, construct A1 asfollows:

1. AjisoftheformBv CandAj- BV C. If (AjU{BH)r¥ A, set Aj, 1= (AU
{B})r; otherwise set Aj 1 = (Aj U {C})r.

2. A isof theform3yB and Aj - 3yB. Set Aj;1 = (A U{B})r, wherei isthe
smallest index such that e = € isnot used in Aj.

3. Otherwise, set Aj 1 = A;.

Set A' = U; A;. Repeat the same process to construct A2 from Al, and so on. Then
A" = U;Al is adeductively closed saturated theory such that ' < A’. It remains to
show that A’ ¥ A. It suffices to check the two steps involving disunction and exis-
tential quantification to complete the usual inductive proof. If Aj = B v C, and both
(A U{BY)r F Aand (Aj U {C})r - A, then T - ¥x(DS A (BS v CS) — AS) with
Aj = D for some D, and c includes all constant symbols not in the language of T'; so
Ai F A. Similarly, if Aj - 3yBand (A; U{BY})r - A, thenT - ¥x(DS A (3yB)S —
AY) with A = D for some D and somec; so Aj - A. Soif Aj ¥ A then Aj1 ¥ A

O

We also need the following proposition.
Proposition34 @ <T.

Proof: It follows immediately from the axiomatization of BQC that if a sentence
VX(A — B) isderivable, then so is the sequent A — BY. O

Soif ' ¥ A, then some saturated IV 2 T existswith TV ¥ A.

Theorem 3.5 (Completeness) Let I' U { A} be a countable set of sentences. Then
I'E AimpliesT - A.

Proof: SupposeI” ¥ A. Weconstruct aKripke model asfollows. Asset of worldsW
we choose the collection of deductively closed saturated countable sets of sentences
containing I'. We set A < A’ as specified above for deductively closed sets. The
construction of the domain DA above anode A takes only two steps. Start with the
countable set of constant symbols E of the language of A. Set d ~ e whenever (d =
e) € A. Itisimmediate from the axiomatization of BQC that ~ is a congruence on
E. Set DA equal to the collection of equivalence classes DA = E.. If A < A/,
then A € A/, sotheinclusion function E C E’ respects the congruences. For atomic
sentences A, set A IF Aif and only if A € A. An easy proof by induction on the
complexity of sentences showsthat A I+ B if and only if B € A, for al worlds A
and B in the language of A. The only two nontrivial steps involve the quantifiers.
For example, 3xB € A, if and only if (by saturatedness) By € A for some ¢ with
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c. € DA, if and only if (induction step) A I+ B} for some ¢ with c. € DA, if and
only if A I 3xB. Asto the universal quantifier case, suppose Yx(B — C) € A. If
A < A’ I BX then, by induction, B} € A’ so, by definition of < and induction, A’ I+
C¥. So A IFVx(B — C). Conversely, suppose Vx(B — C) & A. Let c beasequence
of new constant symbols, and set Ag = (A U {BX})a. By Proposition[3.2] A < A,.
Suppose Ag F C¥. Then A - Vx(D A B— C) for some D suchthat A - D¥; so also
A VYX(T — D) and A F Vx(B — C), contradiction. So Ag ¥ C§. By Proposition
B3] thereisanode A’ > A with A’ C¥. By induction, A’ IF BX and A’ ¥ CX. So
A ¥ V¥x(B — C). All nodes contain I", so the model satisfiesT". But by Propositions
[B.3]land B.4] some node doesn’'t contain A. So the model doesn’t satisfy A. And thus
A O

4 Terms and theories What about theories over BQC that contain rules and se-
quents as part of their axiomatization? One example of such atheory is Basic Arith-
metic (BA), the basic logic equivalent of intuitionistic Heyting Arithmetic (HA) and
classical Peano Arithmetic (PA), see Section|6.] It turns out that these more general
theories must be functional and well-formed. Both notions are discussed in this sec-
tion. In Section [E]we will show that these two properties are both necessary and
sufficient in proving the stronger completeness theorem. As the concepts are rather
sensitive to detail, we present the theory in extra detail. There is another reason to
be precise. It isnot unusual to present compl eteness theorems for more well-known
systemsin adightly informal way. The basic idea shines through, though often this
clarity comesat the expense of leaving out significant detailsthat are considered obvi-
ous. Theomissionsdon't hurt because we all know the result to be correct from other
proofs of this particular completeness theorem presented elsewhere. Unfortunately,
for BQC we don't (yet) have this stable situation. Therefore we feel compelled to be
more pedantic than we otherwise would have been.

The standard examples of theories are IQC, FQC, and CQC: Intuitionistic Pred-
icate Calculus (IQC) is the extension of BQC axiomatizable by al substitution in-
stances of the Rule of Modus Ponens

A=—B—C .
AAB=—C

Thistrivialy impliesthat 1QC also entails A— Vx(B— C) - AA B=— C. For-
mal Predicate Calculus (FQC) isthe extension of BQC axiomatizable by all substitu-
tion instances of Lob’s Rule
AA(T — B)=— B
A— B '

Classical Predicate Calculus (CQC) is the extension of 1QC axiomatized by adding
all substitution instances of Excluded Middle

Av —A.

The definitions of 1QC, FQC, and CQC are close analogons of the definitions of 1PC,
FPC, and CPC, as described in [[1]. The proof of the following proposition is essen-
tially identical to the onein [[IJ.
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Proposition 4.1  1QC is axiomatizable by the schema
T—-> A= A
FQC is axiomatizable by the schema (Lob’s Axiom)
(T>A—->A=T-—> A

So 1QC and FQC are sequent theories, and so is CQC.
The universal quantification rules and axiom schemas alow for the following
simple conservativity property.

Proposition 4.2 BQC is conservative over its geometric fragment, that is, if I' U
{y} isaset of geometric sequents such that I" I y, then thereisa derivation tree of y
from I that does not use the universal quantifier symbol.

Proof:  For each rule and axiom schema of BQC, if we replace the universal quan-
tification subformulasby T, then theresulting rule or axiom schemais derivablefrom
BQC by adifferent instance of the samerule or axiom, or isan instance of the schema
A= T. Sogivenaderivationtree of y fromI", replace all occurrences of universal
guantifier subformulas by T, and replace the resulting new rules and axioms by the
simpler derivationsin BQC. The result is ageometric logic derivation tree of y from
I. O

Variable-free formula contexts are defined asin [I]: add a new O-ary predicate sym-
bol p to thelanguage. Let D[ p] be aformula over the extended language, and let A
be aformulaover the original language. Then D[ A] is constructed by replacing each
occurrence of p by A. Similarly, multiple, say double, simultaneous formula sub-
gtitutions are performed by adding new O-ary predicate symbols p and g to the lan-
guage. If A and B are formulas over the origina language, then D[ A, B] isformed
from D[ p, q] by replacing all occurrences of p by A, and al occurrences of g by B.
Thistrandation processis called simple substitution. Later on we will introduce the
concept of proper substitution. Proper substitution allows for more refined versions
of substitution, but it isasignificantly more technical tool. We wish to postponethese
complications in exchange for simplicity.

Proposition 4.3 (Formula substitution) BQC is closed under the substitution rule

AAB=C AAC=—1B
A A D[B] = DI[C]

where p does not occur within range of a quantifier of D[ p] over a variable that is
freein both Aand B A C.

Proof: We complete the proof by induction on the complexity of D[p]. Let I" be
the theory axiomatized by AA B— C and AA C — B. Thecaseswhere D[ p] is
atomic or doesn’t contain p aretrivial. If D[ p] equals E[p] v F[p] then, by induc-
tion, weimmediately deriveI' - AA E[B] = E[C] v F[C]andT + AA F[B] =
E[C] v F[C]. Simple propositional logic then givesusT" -+ AA (E[B] v F[B]) =
E[C] v F[C]. Suppose D[ p] equals E[ p] A F[p]. By induction, ' = AA E[B] =



28 WIM RUITENBURG

E[C]andT + AA F[B] = F[C]. SoI"'+= AA E[B] A F[B] = E[C] A F[C]. Sup-
pose D[ p] equals AXE[ p]. By induction ' = A A E[B] = E[C]. BQC entails the
schema G — 3yG, sowe have' - AA E[B] = 3IXE[C]. Now x isnot freein A,
or notfreein B A C. Supposexisnot freein A. ThenT" - 3x(A A E[B]) = 3IXE[C],
thusalso I' = A A 3XE[B] = 3XE[C]. Otherwise, x is not freein B A C. Re-
place all free occurrences of x in A by anew variable X/, resulting in a new formula
A'. Let IV be axiomatized by A’ A B = C plus A’ A C = B. Then, as before,
I+ A’ A IXE[B] = IXE[C]. So, by variable substitution, there is also a proof for
' = A A 3IXE[B] = 3IxE[C]. Finadly, suppose D[ p] equals Vx(E[p] — F[p]). By
inductionwehavel' - AA E[C] = E[B] and "+ AA F[B] = F[C]. Now xis
not freein A, or not freein B A C, for al x occurring in x. If no variablein x isfree
in A,thenT - A= VX(E[C] — E[B]) andT"' - A= Vx(F[B] — F[C]). Thus
' AAVX(E[B] — F[B]) = VX(E[C] — F[C]). Otherwise, some variablesin
x arefreein A, hence not freein B A C. Replace all free occurrences of these vari-
ables of x in A by new variables X', resulting in anew formula A’. Let I'" be axiom-
atizedby A’ A B=— Cplus A A C = B. Then, asbefore, I - A’ A VX(E[B] —
F[B]) = YX(E[C] — F[C]). So, by variable substitution, there is also a proof for
I' - AAVX(E[B] - F[B]) = Vx(E[C] — F[C)). O

The following proposition makes precise what we mean by renaming bound vari-
ables.

Proposition 4.4 (Renaming of bound variables) Let Aand B beformulasinwhich
thevariablesin x and y do not occur freely, and where no variablein x or y becomes
bound during substitution in AZ, BZ, A§ or B§ Then BQC proves

DIVX(A; — BJ)] <= D[Vy(A] — B))]

for all contexts D[ p]. Let C be aformulain which the variables x and y do not occur
freely, and whereneither x nor y becomes bound during substitutionin CZ or C§. Then
BQC proves

D[3xCy] <= D[3yCJ]

for all contexts D[ p].

Proof: Let Aand B beformulas satisfying the required conditions. Then BQC en-
tails VX(A; — BY) <= Vxy(A; — BY) <= Vxy(A) — B)) <= Vy(A] — B)).
Apply formula substitution. Let C be a formula satisfying the required conditions.
Then BQC entails Cf, = EIny, 0, by variable substitution, also CZ — EIyC)Z,, and
thus 3xC3 = 3yCy. By symmetry we aso have 3yCy — 3xCg. Apply formula
substitution. O

So renaming bound variables doesn’t change a formula in an essential way. More-
over, if x and X’ are two sequences consisting of the same variables, but maybe
in different orders and with different multiplicities of occurrence, then BQC obvi-
ously proves Vx(A — B) <= Vx'(A — B). Combined with repeated application
of Proposition [4.4]this allows us to make all quantifier variables different from one
another and from the free variables.
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Aswith formulas we write y;* for substitution of terms of t for the variables of x
inall their free occurrencesin the sequent y. Given alanguage £ and aset or sequence
of new constant symbols c, we write L[c] for the extension language.

Proposition 4.5 (Generalization) Let I be a set of sequents and rules over a lan-
guage L, and y be a sequent over L. Let ¢ be a sequence of new constant symbols
and x a matching sequence of variables. Then " - y over L, if and only if T F »§
over L[c].

Proof: Fromlefttoright, apply variable substitution: BQC provesy + y5. We com-
plete the proof of the converse by induction on the complexity of derivations. If y5 is
an axiom sequent, then soisy. Soit remainsto check therules. If thelast rule applied
isfrom I, then y¥ equals y. Only the rules of BQC are left. The quantifier-free ones
areeasy. Supposethat Bty = Cg’ followsfrom B —> C by variablesubstitution. Re-
place al occurrences of constant symbolsfrom c by new variablesfrom z. By induc-
tion hypothesis, I' - BS = C¢, and two successive applications of variable substi-
tution giveus (BS)! = (C%){, andthen (BY)S = (CY)S. SoT'+ (B)) = (CY)%.
Suppose that C has no free occurrence of x, and 3xD = C followsfrom D = C.
By induction hypothesis, I' -+ (D = C)$, where z is a sequence of new variables.
SoI' (3xD = C)S, andthusT + (3xD = C)g. Suppose B —> C followsfrom
3IxB = C. Then, by induction hypothesis, " - (I3xB = C)$, with z all new vari-
ables. SoT'+ (B= C)g, andthusT I (B = C)$. Supposethat novariableiny is
freein A, and A= Vy(B — C) followsfrom A A B = C. By induction hypoth-
esis, ' (AA B= C)S, where z is a sequence of new variables. SoT' - (A —
Vy(B — C))S. By variable substitution, as the constant symbols of ¢ only occur in
places where the corresponding variables of x are free, I' - (A = Vy(B — C))%.

O

BQC proves B— A 3xB = Aif xisnot freein A, but in general not B} —
At 3xB = A. So, even if no variablein x isfree in y, Proposition .5lcannot be
broadened to place constants on the left of the turnstile.

When we extend the language, say language £, by adding new predicates or
function symbols, then BQC changes along. These changes are harmlessin the sense
that the extension is conservative over the origina language.

Proposition 4.6 Let L € M be languages, and I" U {y} be a set of sequents over
L. ThenT + yover £, ifand onlyif ' - y over M.

Proof:  Given a (finite) proof tree over the extended language whose assumptions
and conclusion are in the original language, replace all new predicatesby T, and all
new function symbols by fresh variables. The new tree is a proof of the same, but
over the origina language. O

Proposition [.6]can be strengthened to theories with schemas as follows. Formula
contexts are defined by adding new predicate symbolsto the language. Similarly, se-
guent and rul e contexts are defined by employing new predicate lettersintheformulas
that are part of these sequents or rules. Proper substitution of formulas, a refinement
of simple substitution, is defined as follows:. for each n-ary new predicate symbol p
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we can choose aformula A over the original language, whose free variables that al-
ready occur in the context (formula, sequent, or rule) are all from among alist x of n
variables. Each atomic expression pt can then be replaced by Af subject to the con-
dition that no free variable in the sequence t becomes bound in A after substitution.
For example, variable substitution could be redefined as all proper substitutions into

the schemas
pX = 0gx

pt = qt '

where p and q are of equal arity and range over countable sequences of new predicate
symbols ps, p2, Ps, ... and di, O, Qs, - . . respectively, where p, and g, are n-ary,
and the sequences of variables x and termst are such that the atoms are well-formed.
The notion of context can be further generalized by also adding new function sym-
bols. Proper substitution of termsinto contextsis anal ogousto proper formulasubsti-
tution: for each n-ary new function symbol f wecanchooseaterm uover theoriginal
language, whose free variables that already occur in the context are al from among
alist x of nfree variables; each term expression f (t) can then be replaced by uy.

A schematic axiomatization for atheory I over alanguage £ consists of aset §
of sequents and rules over alarger language L[ P, F] satisfying the following prop-
erties:

1. L[P, F] is constructed from £ by augmenting it with a set of new predicate
symbols P and a set of new function symbols F;

2. eachruleor sequent that isobtained from § by aproper substitution of formulas
of L for al predicate lettersfrom P and of terms of £ for all function symbols
from F,isinT"; and

3. T isthe smallest theory satisfying these properties.

Each rule or sequent over L that is derivable from S isin I'; and each theory is
schematically axiomatized by itself over £. The following generalizes Proposition

7%

Proposition 4.7 Let £ € M belanguages, and let S € L[P, F], with L[P, F] N
M = L, be a schematic axiomatization of theoriesT" over £ and A over M. Let y
be a sequent over L. Then T F y over £, if and only if A -y over M.

Proof:  Asfor Proposition[4.6] O

In general the theory T" need not be contained in the theory generated by S, for the

theory generated by S isn't closed under proper substitution. Rather, let A be the

theory over L[ P, F], axiomatized by § and all proper substitutions of formulas and

terms from L into therules and sequentsof S. ThenT' = LN A, if andonly if Sisa

schematic axiomatization of I'. If so, then A isaso aschematic axiomatization of T".
A basic class of schematic axiomatizationsis formed by the minimal ones:

Proposition 4.8 Let £ € M be languages, let T' be a theory over £, and let A
be the theory over M axiomatized by I'. Then A schematically axiomatizes . In
particular, BQC over a fixed language £ is schematically axiomatized by the theory
BQC of any extension language, and BQC proves

X=yAA= A}
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for all formulas A where y does not become bound after substitution.

Proof: The general case immediately follows from the case for BQC. But all rule
and sequent axiom schemas of BQC are closed under proper substitution, except the
equality schemax =y A A== Aj. Soit sufficesto provethe last part of this propo-
sition. Weleaveit asan easy exerciseto show that BQC entailsx =y =— y = x. We
completethe proof by induction on the complexity of formulas. The equality schema
holdsfor atoms. Itisan easy exerciseto check all induction casesexcept the quantifier
ones. Let x and y both be different from z, such that x = y A A== AJ. Since BQC
proves Ay = (3zA)y, wehave x = y A A= (3ZA)y, and thus X = y A 3ZA =
Jz(x=yA A) = (3zA)]. Let xand y both be different from all variablesin the se-
quencez, suchthat x=y A Ay = Aandx=yA B== Bj. Sowehavex=y =
VZ(A, — A) AVZ(B — BY). Andthusx = y A VZ(A — B) = (VZ(A — B))].

O

Let I" be atheory over £, and let C be a set of new constant symbols. Write T'[C]
for the theory over L[C] axiomatized by I'". Let A be another theory over L[C] that
schematically axiomatizesT". Let y be asequent over £, and ¢ be a sequence of new
constant symbols, suchthat A - y%. ThenT'[C] 2 T'F y, soT'[C] F y%. SoT'[C] isthe
maximal sequent theory over I' in L[C] that schematically axiomatizesT", henceitis
the unique one containing I'. Uniqueness usually fails when we admit new predicate
symbols.

4.1 Functional theories A crucia property of theoriesisfunctional completeness,
see below. It isanatural property that is vital in Kripke model theory. We describe
the theories for which all sequent theory extensions satisfy this.

A set of sequentsand rulesT" C L isfunctional over L if for al rules

Ao = Bo

el

and sentences A € L,
FTU{AAA L= By4,..., ANAL=— B} F AN A= Bp.

A theory I" over L isfunctional if for all sequences of formulas Ag, Bg, A1, By, ...,
An, Bn € £ and sentences A € L, if

F'U{A;= B1,..., Ay= Ba} F Ao = By,
then
FrV{ANAL=—B4,...,ANAL— By} F AN Ag— Byg.

A theory I" hasafunctional axiomatization over L, if itisaxiomatizable by aset which
is functional over L.

Proposition 4.9  Atheory over L isfunctional if and only if it has a functional ax-
iomatization over L.
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Proof: A functional theory isaxiomatized by itself. Conversely, supposeatheory is
axiomatized by afunctional set I" over L. Supposeformulas Ag, By, A1, B1, ..., An,
B, € £ and sentence A € £ are such that

FU{A]_=> Bl’~"aAn=> Bn}'_AO: BO5
in order to show that
T'U{AANAL = B1,...,ANA L= By} F AA Ag = By.

We completethe proof by induction onthe complexity of derivations. The caseswhen
' Ag = By, or Ag = Bpequalssome A = B;,i > 0, areimmediate. If thelast
rulein the derivation of Ag = By involvesarule of T", then the result immediately
followsfrom thefunctionality of I". So it remainsto check theinduction step for rules
of BQC. But that only requiresthat we verify the functionality of the BQC rules. For
example, if

B=C

Bf = C
is an instance of variable substitution, and A is a sentence, then

AANB= CF AAB'= CX.

The remaining BQC rules are just as easy. O
Corollary 410 BQC isfunctional. Segquent theory extensions of functional theo-
ries are functional.

For al theoriesT" and formulas A, B, and C, if ' - AAB = C,thenT U {A}
B— C. Atheory I" C Lisfunctionally completeover Lif foral formulasB, C € L
and sentences Ae L,ifTU{A} - B— C,thenTH AAB=— C.

Proposition 4.11 (Functional completeness) A theory is functional over L if and
only if all sequent theory extensions are functionally complete over L.

Proof: Let A be asequent theory extension of afunctional theory I", and formulas
B, C € L and sentence A € L be suchthat A U {A} - B—=— C. There are sequents
A= Bj e A,1<i <n,suchthat

Fru{Ay, = B,...,Ay=— By, AA-rB=C.
By functionality,
FrU{AAAj— By,...,ANAL— B, A— Al AAB=—C.

So A+ AA B=— C. Conversely, suppose that al sequent theory extensions of T"
are functionaly complete. Let Ay = B;, 0 < i < n, be sequents such that

FU{A1= By,..., An= Bn} - Ao = Bq.
So for sentences A € L,
FU{AAAL = By,..., AN Ay = By, Al Ag = By.

Apply functional completenessof TU {AA Ay =— B1,..., AANAL = By}. O
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Functionality of aset of sequentsand rulesis essentially language dependent. Thisis
particularly relevant in the construction of Kripke modelsin Section[5] Weare mainly
interested in extensions of languages by new constant symbols. Let I' be a set of se-
guents and rules over £, and C be a set of new constant symbols. Define I'(C) to be
the set T extended by all rules of the form

_ ANAL=— B ... AAAy=— B;,

Ax R= A Ao — By )

where Aisasentence of £L[C] and

Al: Bl An: Bn
R= .
Ao — By el

Itisimmediate from the definitionsthat I'(C) isafunctional set over L[C]. Thethe-
ory axiomatized by I'(C) isalsowritten I'(C). Itisthesmallest functional theory over
L[C] containing T".

Proposition 4.12 (Functional generalization) Let I" be a functional set of sequents
and rules over a language £, and ¢ be a sequence of elements from a set C of new
constant symbols, and x a matching sequence of variables. Let y be a sequent over
L. ThenT'+ yover L, ifandonly if T'(C) - y¥ over L[C].

Proof: Fromleft torightisimmediate by variable substitution. Conversely, suppose
['(C) - y£. We compl ete the proof by induction on the complexity of derivations. All
induction steps areidentical to the onesin the proof of Generalization Propositionl4.5)
except for the new rules of I'(C) \ I'. Suppose the last step in the proof of y7 isthe
rule A x R, where

_ A1:> Bl An:> Bn

R
Ao = By

el,

A € L[C] asentence, and y; equals AN Ag = By. Lety be a sequence of proper
length of new variables. By induction, I" - A§ ANA = Bj,fordli>0 SolI+
QYA A A= Bj, forali > 0. Tisfunctional, so ' - (y A7) A Ag = Bop. So
FI—A§AA0=>BO,andthusF|—A§/\A0=>BO. O

4.2 Well-formed theories A set T C L iswell-formed if for al sequences of sen-
tences YX(Ag — Bp), YX(A1 — By), ..., ¥X(A, — Bp) and formulas A where no
free variable of A occursinx, if

A1=> Bl, ... ,Ap= B,
Ao = Bo

el

then
F'EVYX(AAAL = B) A AVX(AA Ap — B = YX(AA Ag — Bp).

A theory I iswell-formed if for all sequences of sentences VX(Ag— Bp), YX(AL —
B1),...,V¥X(A, — By) and formulas A where no free variable of A occursinx, if

FU{A1=>B]_79AH:BI’]}|_A0=>BO’
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then
F'EVX(AA AL — B A~ AYX(AA Ay — Bn) = YX(AA Ag — Bp).

A theory has awell-formed axiomatization if it is axiomatizable by awell-formed set.

Proposition 4.13  Atheoryiswell-formed if and only if it has a well-formed axiom-
atization.

Proof: Well-formed theories are axiomatized by themselves, so they have well-
formed axiomatizations. We prove the converse by induction on the complexity of
derivations. LetI" beawell-formed set, let VX(Ag — Bg), VX(A; — B1), ..., VX(Ayh —
B.) be a sequence of sentences, and let A be aformula of which no free variable oc-
cursin x, such that

Fr'u{A; = Bq,..., Ay=— By} - Ag = Bq.

If ' = Ag = By, orif Ay = Bg equals Aj = B; for somei > 0, then clearly
' X = VX(AA Ay — Bgy), where X isthe required conjunction. It remains to
check closure under the rules. The cases for the rulesin I immediately follow from
the definition of well-formed set. So we only have to check the rules of BQC. All
proposition-logical ones are easy. Let w be the sequence of free variables of A, and
let z be a sequence of new variables. Suppose that B%’ = Cty followsfrom B— C
by variable substitution. Then, with induction, I' - X} = VX'(AY AB - C) =
VX(AY A B — CY), where the sequence X includes all free variables of B and C.
Sol'+ X = VX(AA B! — CY). Suppose that B equals 3yD, and C doesn’'t have
a free occurrence of y, such that 3yD = C follows from D = C. Then, with
induction, T’ = X} = Vxy(AY AD - C) = ¥X(AY A (3yD) - C). SoT'
X= V¥X(AA (3yD) — C). Suppose B=— Cfollowsfrom3yB = C. Then, with
FVx(B — (3yB)) andinduction,I' - X = VX(AA (3yB) - C) = VX(AA B —
C). Finally, suppose C equals Yy(D — E), thevariablesiny are not freein B, and
B = C followsfrom BA D = E. By induction, I' - X} = Vxy(AyY A (BA
D) — E). Sincenovariableinyisfreein AY A B, BQCentails A A B=— Vy(D —
(AY ABAD)). So AY ABAVYXY(AY A(BA D) - E) = AY A BAVY(AY A
BAD— E)=— Vy(D — E). SoBQC also provesVxy(AY A (BA D) > E) —
VX(AY A B — Vy(D — E)). Apply transitivity of = and substitute w back for z.

U

Corollary 4.14 BQC is well-formed. Sequent theory extensions of well-formed
theories are well-formed.

Well-formedness is a language-dependent property, but less so than functionality is.
For if T iswell-formed over L, then T is a well-formed set over L[C], for all sets
C of new constant symbols. We can aso preserve well-formedness when we extend
functional theoriesfrom L to L[C]:

Proposition 4.15 Let I' be a functional well-formed set over £, and C be a set of
new constant symbols. Then T'(C) is also a functional well-formed set.
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Proof: It suffices to establish well-formedness of T'(C). Let A x R be arule of

(C)\ T, where
_ Al—B; ... A= B,

Ag= By

isarule of I" whose free variables al occur in x, and A is a sentence of L[C]. Let
B € L[C] be aformulawhose free variables do not occur in x. To prove

R

NC)FVX(BAAAAL— B)A-- A
VX(BA AA Ay — By) = YX(BA AN Ay — Bp).

Let cincludeall new constant symbolsin B A A, and let z be anew variable sequence
of equal length. AsT iswell-formedand Re T,

CEVX((BAASAAL = B)A--A
VX((BA A5 A Ay — Bp) = YX((BA ASA Ay — By).

Substitute cin for z. O

5 Kripke models with functions, and strong completeness  Kripke models K =
(DK, 1K) for languages with function models are constructed asin SectionE]but with
the following extensions.

To each function symbol f, | assigns a natura transformation | (f) = Fy :
D" — D in the presheaf category over (W, <). So for all @ we have a function
Fia : (Da)" — Da, and for each pair « < B amap (Ff)g : Da — DB such that
the diagram

(Da) Fro Do
(Dg)" D
Fip
(Dp)" — DB

commutes, for all pairsa < 8. Theinterpretation of functions f isextended to terms
t by setting | (t) equal to the usual composition T; of the interpretations of the parts
that make up theterm. Constants c are 0-ary functions, so | (¢) essentially consists of
acollection of elements {d, € Da}qew Such that nga = dg whenever o < B. This
agrees with the interpretation for constantsin Section
Asin Section[Blwe form an extended language £L[C«] of the original language
L for each node « by adding a unique set of constant symbols Ca = Da. For each
a the map |, on the set of (constant and) function symbols of £[C«] assignsto each
function symbol f of £, thefunction I, ( f) = F«, and to each new constant symbol
Cx € Cu its corresponding element I,(c,) = d, € Da. A termis closed if it does
not contain variables. The set of closed terms of L[C«] iscalled Ta. We extend |,
to all closed terms T« in the obvious way. For all termst, € Ta we have lg(tg) =
D%, (t).
! Lett = (ty,...,t,) beasequence of n closed terms of L[C«], and let P be an
n-ary predicate. Then wewrite o IF P(t) if 14(t) = (I4(t1), ..., l¢(th)) € Rpa C
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(Da)". Therelation I is uniquely extended to all sentences by the inductive defini-
tion as presented in Section [3] except that we choose these modifications:

1. alF3xAif and only if thereexist t € Ta such that o IF AF; and
2. alFVX(Ay — By)ifandonlyifforall 8> o andt € (TB)", BIF (Ap){ implies
Bl (Bﬁ)i‘.
One easily proves persistence: if 8 > a I- Ay, then g IF Ag. We can extend the
relation I+ in a natural way to al formulas by « IF A, if and only if for al 8 > «
andt € (TB)" we have g IF (Ap)f, where x = (Xq, ..., X») includes all free vari-
ablesof A,. For formulas A, — B, where x includes all free variables, thisimplies
alF A, — Byifandonlyifforal y > g>aandt e (TB)", ¥ IF ((Ag)), implies
Y IE ((Bg)),-
We extend I+ to all sequents by
alF Ay = B,ifffordl g = aandt e (TB)", Bl (Ag)f implies B I-
(Bﬁ)i‘.

Asusual, o IF Aif and only if o IF=> A. Extend IF- to rules in the usual way.

Proposition 5.1  Given aformula Awith all itsfreevariables among x, and a node
o, let
Ra={d e (Da)" | a I Af_l(d)}.

Then« I Af ifand only if 14(t) € Ra, for all t € (Ta)".
Proof: The casefor atomic A follows from the definitions. The general case easily
follows by induction on the complexity of A. O

Proposition[5.Limmediately impliesthat for all t € Ta thereisauniquec, € Ca such
that o I- t = ¢,. So the inductive conditions on both quantification and on sequents
is equivalent to the ones in Section[3] So the new forcing definitions agree with the
versionsin Section[3] Because of this almost-identity between constant symbols and
constants, it is common to write A as short for

X

I;1d
if confusion is unlikely. An immediate consequence of Proposition B 1lis
Proposition 5.2  For all formulas A,

alFx=yA A= A},

where y does not become bound after substitution.
The satisfaction relation = is defined as usual.

Proposition 5.3 (Soundness) Let I" be a set of sequents and rules, and y be a se-
quent. ThenT'  y impliesT | y. If RisarulesuchthatT' - R, thenT = R.

Proof: The case for rules easily follows from the case for sequents. It sufficesto
show that I+ satisfies the axiom sequents of BQC and is closed under itsrules. For the
proposition-logical fragment, see[[1]. Suppose« I+ A, = B, withall freevariables
among X, and let t be a sequence of terms with al free variables among y, none of
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whom is bound by aquantifier after substitutionin (A, )f orin (B,)}. Now let 8 > «
andse (TB)" besuchthat B I+ ((Aﬁ)ﬁ)g. Now g1 (Ag)}; implies B I (Bg)yj, for all
termsu € (TB)™so, inparticular, B ((Bg)¥){. Supposethat « I- B, = A,, where
x and y include all free variables, x notiny, and x isnot freein A,. Let 8 > « and
t e (TB)"besuchthat 8- 3x(Bg){. Then g1 (Bg);; for somet e TB,50 81 (Ag)].
Supposethat « I- 3xB, = Ay, andlet 8 > o andt € TBandt € (TB)" be such that
B (Bp){. Then g I Ax(By)!, s0 B I (Ap){. Supposethat A,, B, and C, are
formulas with all free variables among xy, and no variable of y freein A,, such that
alF Ay, ABy = Cy,andlety = B> a,t € (TB)™, and u € (Ty)" be such that
BIF (Ag)fand y - ((BY),)l. Then y IF (AY), A ((BY),), and thus y IF ((CX),)-
So B IF Vy((Bg)y — (Cp)}). O

For each model K thereis atheory Th(K) of al rules and sequents that hold in K.
Each node « of aKripke model K yieldsamodel K, in the usual way, by restricting
the collection of worldsto exactly thenodes 8 suchthat 8 = a. So«a IF y if and only if
y € Th(K,), for al sequents y, similarly for rules. Then Th(K) =N, Th(K,), where
a ranges over al nodes of K. Kripke models with minimal nodes are called rooted.

Let D be aset of constant symbols. A theory I is D-saturated if it satisfies the
usual conditions asin Section[3] A set of sequents and rulesis D-saturated if it ax-
iomatizes a D-saturated theory.

Proposition 5.4  For all Kripke models K the theory Th(K) is a functional well-
formed theory. If K isrooted with root «g, then Th(K) is Cag-saturated.

Proof: Suppose that

_ Al—B; ... A= By
Ao= Bp

and let « beanode, and A beasentenceover L[C«], suchthat o IF AA Ay = B; for
dli>0andalF AA Ag. Thena IF Ay = B;, forali > 0, so« I+ By. So Th(K)
isfunctional.

There exists a sequence of variables x such that all free variables of R occur in
X. Let B beaformulawith no free variablesin x, and « I- YX(B A Aj — By) for all
i > 0. Let B> o besuchthat 81 (B A Ag)Y, wherey includes all free variables of
B A Ag A By, and the elements of ¢ are constants from CA. But 8 I+ BY A A = B;
forali > 0,s0BIF (By)L. Sow IF ¥X(B A Ay — Bp). So Th(K) iswell-formed.

Coap-saturation for rooted modelsis just as easy. O

We will show below that all functional well-formed theories are of the form Th(K).

Lemmab.5 LetT beafunctional well-formed theory over alanguage £, and y
L be a sequent such that T" ¥ y. Let C be a set of new constant symbols of cardinal-
ity equal to the cardinality of L. Then thereis a C-saturated functional well-formed
theory A D T" over L[C] suchthat A ¥ y.

R € Th(K),

Proof: Partition C into a countably infinite sequence of subsets C,, Cy, Cs, .. ., dl
of cardinality equal to the cardinality of £, andlet T, =C,U---UG;, fordli. We
construct a sequence of theoriesI' C A1 CT'y C A, C T’y € --- such that for all i

1. Aj and T arefunctiona well-formed theories over L[T];
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2. Ai¥y, TiFy,
3. for all sentences3axAover L[T,_1],if Aj - 3xA, then A; - A, for somet; and
4. for al sentences Aand Bover L[T],if i Av B,thenT'j - Aor I'; - B.

Given Aj, we construct the extension T in the usual way using Zorn’s Lemma (see
[1D). SoTj isamaximal sequent theory extension of A; satisfying I'; ¥ y. By Corol-
laries[4.10]and[Z.14] T'; is functional and well-formed.

Let 'y equal T". Given I'j_1, we construct A; in two stages. First consider
Ii_1(C;). Thisis afunctiona well-formed theory such that I'j_1(C;) ¥ y. Second,
there is a bijective function which assigns to each existential sentence of L[T,_1] for
which T7j_1(C;) F 3xA, a constant symbol c(A) from the set of new constant sym-
bols C;. Set A; equa to the theory over L[T;] axiomatized by I';_1(C;) plus all such
sentences Aé( A SO Aj isfunctional and well-formed. Suppose A; - 3yB, for some
B e L[Ti_1]. Then thereisasentence Ix; A1 A -+ A IXq An = IXA over L[Ti_4],
and asequence c € (C;)" suchthat I'i_1(C;) - 3xAand I'i_1(C;) U { A%} - JyB. So,
by functional completeness, I'i_1(Ci) = A = 3yB. Let z be a sequence of new
variables. Then, by functional generalization, I'j_1(C;) - A} = 3yB, hence dso
[_1(Ci) - 3zA5 = JyB. But then, with renaming of bound variables, I'i_1(C;) -
JyB, and thus Aj B}:’(B). Let B— C be asequent over L[T;_1] such that A; -
B = C. Thenthereisasentence 3x A over L[Ti_;], and asequence c € (C;)" such
that Ij_1(Ci) F 3xAand I'i_1(Ci) U{AZ} F B=— C. SoTj_1(C) - AfAB=— C.
Let z be a sequence of new variables. Then I'i_1(Cj) + A; A B=— C, hence dso
[i_1(Gi) F3zA3 A B= C,andthusT_1(Ci) - B= C. So, inparticular, A; ¥ y.
This completes the construction of the sequence of theories. Set A = UjAj. Then A
is a C-saturated functional well-formed extension of I" over L[C] such that A ¥ y.

O

Given a language £, we construct a universal Kripke model U = U as follows.
Let C be a set of constant symbols of cardinality equal to the cardinality of L. Par-
tition C into a countably infinite sequence of subsets C;, Cy, Cg, ..., al of cardi-
nality equal to the cardinadity of £, andlet Ti = C, U --- UG, for al i. Asset
of worlds W = WY we choose the collection of all T;-saturated functional well-
formed theories over L[T;], for al i. WewriteI" < A when " - VX(A — B) im-
plies A - A = B, for al sentences YX(A — B). So < is obvioudly transitive.
Given atheory T over £, define 'V to be the theory over £ axiomatized by T" plus
{A= B | ¥x(A— B)isasentenceand I' - ¥x(A — B)}. Then 'V is a sequent
theory extension of I, hence functional and well-formed if I" is. Lemmal5.5lmplies
that '@ = LN ({A € W|T < A}, for al nodesT". For each node T, let TT be
its set of constant symbols. The relation s ~ t, defined by I' - s = t, is an equiv-
alence relation on TT". The equivalence class of a constant symbol s is denoted by
[s] = [S]r. Set DI' equal to the set of equivalence classes TI'/ ~. If ' < A, then
TrT C TA,and T € A impliesthat [s]r € [g]a, for @l se TI'. So the inclusion
map TI' — TA induces a function D} : DI — DA such that Dy. is the identity,
and D{ DX = DI, whenever I' < A < W. This completes the construction of the
Kripke structure. The structure isinhabited, since BQC satisfies3ax x = x. It remains
to define the interpretation map | = IV, Let P be an n-ary predicate, I' be a node,
andlet X = {se (T)" | T' + Ps}. Then X isasubset of (TI")" such that if se€ X
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and[s] = ([s1], ..., [sn]) =t], thent € X. So | (P)r = X/ ~ isawell-defined sub-
set of (DI)". If T < A, then DL (1(P)r) € I1(P)a, s0 I(P) can be (uniquely) ex-
tended to a substructure of D". Obvioudly, if P isthe equality symbol, then | (P) is
the diagonal substructure of D?. Let f be afunction symbol. Since BQC satisfies
X =y = fx = fy, theassignment I-(f)([s]) = [fs] isawell-defined map from
(DIMH"to DI". AsT < A impliesT C A, the diagram

D" ————— DI
. Ir(f)

(D))" Dy

Ia(f
oay 12D

DA

commutes. So | (f) isanatura transformation from D" to D.

Lemmab5.6 Let T be awell-formed theory. Then TW - A — B if and only if
I' - VX(A — B), for all sentences Vx(A — B).

Proof: From right to left immediately follows from the definition. The converse
follows from the well-formedness of I". O

Lemmab5.7 For all ' e WY and all sentences A over L[TI'] we have T - A if
andonly if I IF A. For all sequents A=— Bover L[TI'], ' - A= B implies
A= B.

Proof: We complete the proof of the sentence case by induction on the complexity
of A. Thecaseswhere AequalsT or L aretrivial. Thecasefor A anatomic sentence
immediately follows from the definitions. Suppose the sentence A equals B v C.
Then, sinceT" issaturated, I' = BV Cif andonly if I = B or I' - C; apply induction.
The casefor A equal to B A Cistrivia. Suppose the sentence A equals 3xB. Then,
sinceI" issaturated, I' - 3xB if and only if I - Bt for some term t; apply induction.
Supposethe sentence AequalsVx(B — C). Let A = T'=Vx(B— C)andse (TA)"
be such that A IF B¥. Then A+ B=— C and, by induction, A - BX. So A - C¥ <0,
by induction, A I- C¥. ThusT |- Vx(B — C). Conversely, supposeI I Vx(B — C).
Let A > I besuchthat A ¥ B= C. Then A 2 'V, and, by functional general-
ization, for new constant symbols s we have A(s) ¥ B = C¥. Apply functional
completeness: A U {BX} ¥ CX. By LemmalL.Slthereisanode W 2 A(s) U {BX} such
that W CZ. But W 2 T'D, so W > T"issuch that, by induction, W I- BY and W ¥ C%;
contradiction. So A - B= C. ThereforeT® =N{A e W|T' < A} B= C.
AndthusT - ¥x(B — C).

Asto the sequent case, suppose A > I' - A= Bandse (TA)" are such that
A IF A%. Then, by the sentence case above, ' € A + A% , and so A - BX. Thus
A= B. O

Asshownin (], the sequent case of Lemmal5.Zlcannot be extended to an equivalence.

For each primetheory A over some L[ T;], the set of all nodes & > A generates
asubmodel U, of U withroot A. Sofor all sequentsy, Ux = yif andonlyif A IF y,
similarly for rules.
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Theorem 5.8 (Completeness for functional well-formed theories) Let ' beafunc-
tional well-formed theory, and y be a sequent. ThenT" = y impliesT F y. If Risa
rulesuchthatT" = R, thenT - R.

Proof: Let y bethe sequent A=— B suchthat I' ¥ A= B. Let s be a sequent
of new constant symbols from S. Then, by functional generalization and functional
completeness, I'(s) U { A%} ¥ Bf. By LemmalC.hlthereexistsanode A D I'(s) U { A%}
suchthat A ¥ BE. ThenUx =T, but U b y.

SupposeT" ¥ R, where
R Y1 --- V¥n
Y

ThenT'U {y1, ..., yn} ¥ v. S0, by the sequent case above, T U {y1, ..., ¥n} & - SO
¥R O

Corollary 5.9  All functional well-formed theories are of the form Th(K).

Proof. If {K;}; isacollection of digoint models, then Th(UiK;) = NiTh(K;). O

A set of sequentsand rules T is complete with respect to a class of Kripke models X,
if for all sequents A— Bwehavel' - A= B, ifandonly if K = A= B for
al K € K. Soatheory iscomplete for aclass of modelsif and only if it isfunctional
and well-formed.

The set T is strongly compl ete with respect to aclass K of models, if I' is com-
plete with respect to X, and if, moreover, for al functional well-formed setsA D T
thereisasubclass of modelsof K suchthat A iscompletewith respect to the subclass.
So BQC is strongly complete with respect to the class of al Kripke models.

A Kripke model isatree model if the reflexive closure (W, <) of the underlying
set of nodesis apartially ordered set such that the predecessors of each node form a
finite linear set. A Kripke model isirreflexiveif < isirreflexive.

Theorem 5.10 (Strong completeness for irreflexive trees) BQC is strongly com-
plete with respect to the class of irreflexive Kripke tree models.

Proof: Form a new Kripke model V from U by redefining I' < A if and only if
'Y C A and, additionally, T and A are over languages £[Ti] and L[T;] withi < j.
Then all relevant lemmas above hold for V as for U, with no need for a change in
proofs except for replacing U by V. But the models V 5 are irreflexive Kripke tree
models. O

What is the connection between the two completeness theorems in this paper, other
than Theorem[5.10lbeing ageneralization of Theorem[3.59 Theorem[3.5land its proof
are aimost identical to the case where we permit sequent theories. So the real differ-
ence is with the limited permission of rules in Theorem[5.10] The following model
transformation technigue connects the two versions.

Given a Kripke model K, let V(K) be the model formed from K by adding,
for each irreflexive node o, a new irreflexive node o’ < «, with Do’ = De, and
such that o’ I A exactly when « I A, for al atomic sentences A of L[C«]. Note
that o' < B exactly when « < 8. The following construction is more general:
let S be a function which assigns to each irreflexive node o a subset Su of {A |
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Aisanaomof L[C«] and « I- A}. Let T be the collection of terms constructed
from the constant symbols Ca. The equivalencerelation s ~ t on Ta' is defined by
Sx - s=t. Setthedomain Do’ = Ta'/ ~. Then Vg(K) isthe extension of K with
the same new nodesas V (K), but o’ IF Aif and only if S = A, for all atoms A.

Let Rbetherule

_ A1:> B]_ An:> Bn

R
Ag= By

and x the sequence of all free variables of R. Then we define the sequent R by
VX(A1 — By A AVX(An — Bn) = YX(Ag — Bp).

Sequentsthemselvesarerules, but with empty numerator. Soif y isthe sequent A—
B with x its sequence of free variables, then y~1 equals Vx(A — B). If I" isaset
of rules (and sequents), then 'Y = {R=Y | Re I'}. If I" isawell-formed theory,
then D CT.

Lemmab5.11 For all Kripke modelsK, all assignments S, and all rulesR, K = R
if and only if Vg(K) = RD,

Proof: Let W betheset of nodesof K, and W’ the set of nodes of V 5(K) that are not
inW. SupposeK = R. ThenK = RV, Soa I RY foral o e W. Leta’ € W'.
Then o’ isirreflexive, and o’ < B implies B € W. So o’ IF Vx(A — B) if and only
if BIF A= Bforal 8> o, for al sentences Yx(A — B). So o’ I RV, if and
only if g1+ Rforal g > «'. Butal g > o arein W. So o’ I R—Y. Conversely,
supposeVs(K) = RV, If B e Wissuchthat 8 > o’ € W’ for some o/, then g I- R.
Otherwise, gisreflexiveand 8 < 8IF R. O

Let K be arooted model withirreflexiveroot «, and let V' (K ) be constructed from K
just asV (K), but by only adding anew irreflexive node o’ below the root. Similarly,
construct Vg(K) from K. The following counterexample shows that the preceding
lemmafailswhenwereplaceV s(K) by V' (K). Intheexamplebelow, V/(K) = T —

(T—-1)=T— 1, but

K b T1>J_.

VARV
|

(@)

A functional well-formed theory T isfaithful if for all sets of constants C and all se-
guences of sentences VxX(Ag — Bp), YX(A1 — By), ..., VX(An — Bp),if

['C) = VX(Aq = Bn) A--- AYX(AL = Bn) = VX(Ag — Bp),
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then
F(C)U{A]_:> Bl,...,An:>Bn}|_A0:> Bo.

A theory T is finitely strongly complete with respect to a class K of models, if " is
complete with respect to &, and if, moreover, for al sequent theories A D T" that are
generated by adding finitely many sequents, there is a subclass of models of K such
that A is complete with respect to the subclass.

Theorem 5.12 Let I' be a functional well-formed theory, C an infinite set of new
constant symbols, and K be a class of rooted models with respect to which I'(C) is
finitely strongly complete. Then the following are equivalent.

1. I'isfaithful.

2. If K € K hasirreflexiveroot a, and y € I'(C) is of theform Vx(A; — By) A
- AVX(AL — B = Ag — Bpwithall YX(A — Bj) and Ag — Bg sen-
tences, then V'(K) = y, for some S,

3. If K € K hasirreflexiveroot «, and y = (A= B) € I'(C) where Aand Bare
sentences with all quantifier variables of B only occurring inside implication
subformulas, then Vi, (K) = y or V/(K) E y.

Proof: Obvioudly, the third item implies the second. Assume the second item. To
derivethefirstitem, let T'(C) - VYX(A; — Bi) A+ - AVX(Ay — Bp) = VX (A —
Bp) with all Vx(A; — B;j) sentences, andset A =T (C) U{A; = By, ..., Ap =
Bn}. To provethat A = Ag = By, we may assume A to be consistent. Let D C
C be afinite subset including al new constant symbols that occur in al sentences
VX(Ai — Bj). Then T(D)  VX(A; — By) A -+ AVX(Ay = Bn) = YX(Ag —
Bo) = Ao — By = (Ag — Bo)Z with constant symbolsefrom E = C\ D. Let
K e K beamodel of A withroot . Wewant to show that K = (Ag = Bo)X. If ais
reflexive, then thisisimmediate from the definitions. So assumethat « isirreflexive.
Consider the model V'(K) of the condition, with new root «g IF VX(A; — By) A
<+ AVX(An = Bpn) = (Ao — Bp)i. Then op IF Vy(A — B) exactly when « I+
A= B, foral sentencesVy(A— B). Sou I (Ag = Bp)%, andthusK = (A=
Bo)s. By finitestrong completeness, A =T'(D)(E)U{A; = By, ..., Ay= Bn} -
(Ao => Bp)%. So, by functional generalization, I'(D) U {A; = By, ..., Ay =
Bn} F Ag = By. Andthus A - Ag = Bq.

Assumethefirst item. To derive the third item, let K € K have irreflexive root
a, and let y € T'(C) be of the required form. Writey = A= B. If K }£ A, then
V5(K) = A= Bforal S sowemay assumethat K = A. Additionally, we may
assumethat V7, (K) = A= B. Let g betheroot of Vi, (K). ThenagIF Aand oo
B. Up to provable equivalence A equalsan expression 3y(D1 Vv - - - v D) of D; that
are conjunctions of atoms and universal quantifications. So ag I+ DY, for some D €
{D4, ..., Dm} and with ¢ from Ce. By transitivity, I'(C) - DY = B. Sinceag ¥ p
for al nontrivial atomic sentences p, DY must be BQC-equivalent to a conjunction
VX(A1 — Bi) A--- AVX(Aq — Bp),s0K = Aj = Bjforali. SoV(K) = DY for
al S Upto provable equivalence B equalsaconjunction E; A - - - A Ey, Of E; that are
disjunctionsof atomsandimplications. Let E € {E;, ..., En}. It sufficesto show that
V'(K) = E. WehaveK = DY = E and, by transitivity, I'(C) - DY = E. Now
V/(K) = pexactly whenV’(K) = T — p, for all atomic sentences p. Replaceall p
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in E that arenot insideimplications by implications T — p, resultinginadigunction
caled F. It sufficesto show V/(K) = F. Suppose nat. Clearly, F isBQC-equivaent
to adisiunction (G; — Hy) v --- Vv (G — Hy), and I'(C) - DY = F. If for some
iwehaveo ¥ Gy anda IF G; — Hj, thena IF GG = H;, so0V/(K) = F. Sowemay
assumethereism < k such that « I+ G; exactly wheni <m, and o ¥ G; — H; for all
i > m. Now I'{C) proves

(T—> AG)ADE= \/(T > H)Vv\/(T > (G > H)) =

i<m i<m i>m

T — (\/ifm H; v \/i>m(Gi — Hi)).
By faithfulness,

F(C)U{/\ Gi. At == Br..... Ay=> B} \/ Hi v \/ (G — H)).

i<m i<m i>m

So o IF G = H; for somei < m. O
Asacorollary we get:

Proposition 5.13 Let I" be a functional well-formed theory whose class of Kripke
modelsis closed under the following transformation: if K isa rooted Kripke model
of I with irreflexive root, then so is V'5(K), for some S. Then I" is faithful.

There is a property stronger than faithfulness for which it would be nice to have a
closure characterization similar to the one defining faithfulness. Unfortunately that
turned out to be more cumbersome than expected. So, instead, we give a model-
theoretic characterization. Let I" be afunctional well-formed theory over alanguage
L with at least one constant symbol. So the set T of closed terms is nonempty. Set
S= T/ ~, where ~ isthe equivalence relation on T defined by s ~ t exactly when
I' - s=t. Now for each set of models {K s}scs of I we can construct two new mod-
els, named U, and U;, as follows. Both are formed by taking the digoint union of
the models K s, and then adding a new root «g with domain Dag = S. In model U,
the node o is reflexive; in model U; the node o isirreflexive. Let K be the class
of rooted Kripke models of afunctional well-formed theory I". We call T reflexively
rooted if for each set of models {Ks}ses € K of T', the modd Uy is also a mode of
I". Similarly, we call T irreflexively rooted if for each set of models {Ks}ses € K of
", the model U; isalso amodel of I'. Thetheory I is fully rooted if both U, and U;
aremodelsof T'.

Recall that a theory I' satisfies the disjunction property if I' = Av B implies
'k Aor T+ B, for al sentences A and B. A theory T is said to satisfy explicit
definability if ' - 3xAimpliesT" -+ Af for someterm t, for all sentences 3xA.

Proposition 5.14  Afunctional well-formed theory which is reflexively rooted or ir-
reflexively rooted is faithful, satisfies the disjunction property, and satisfies explicit
definability. BQC is fully rooted; 1QC is reflexively rooted; FQC is irreflexively
rooted.

Proof:  All forms of rootedness obviously imply faithfulness, the disjunction prop-
erty, and explicit definability. The rootedness of BQC, 1QC, and FQC requires that
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the set of closed terms is nonempty. But we can make it that way by adding a set
of new constant symbols, and then apply the Functional Generalization Proposition
[4.12] The reflexive rootedness of 1QC is well known. The full rootedness of BQC
immediately follows from the completeness theorem. Let {K}scs be aset of models
of FQC. Then
AA(T—-B) =B

A— B

ol

foral a = ag, soUj = (T — B) > B=— T — B. Apply Proposition[&.1] O

When we start with an empty collection of models {K s}scs, then the derived rooted
models U, and U; have single nodesand aremodelsof CQCand T — L respectively.
As easy consequences we get the following proposition.

Proposition 5.15 Let I be a functional well-formed theory. If T is reflexively
rooted, then CQC + I' is consistent, and it satisfies the same geometric sentences as
[. If T isirreflexively rooted, then (T — 1) + I' is consistent, and it satisfies the
same geometric sentencesasT.

Proof: The rootedness immediately implies the consistency of CQC+T' or (T —
1)+ T'. Consider the casethat CQC + I' is consistent, and let A be a geometric sen-
tence such that CQC+TI' - A. Let K beamodel of I'. Form the model U, from K,
with new root «. The bottom node structure by itself isamodel of CQC + I'. Since
Alisageometric sentence, o IF A. SO K = A. AndthusT = A. The proof for the
casethat (T — L)+ I'isconsistent is essentially the same. O

6 BasicArithmetic Basic Arithmeticisthebasiclogic equivalent of Heyting Arith-
metic over intuitionistic logic, and of Peano Arithmetic over classical logic. Thenon-
logical symbolsareaconstant symbol 0, aunary function symbol Sfor successor, and
the binary function symbols - and +. Basic Arithmetic (BA) is axiomatizable by the
axiom sequents

X=0=— 1;
X+0=x;
X-0=0;

X+ Sy = S(X+VY);
X-Sy=(X-y)+X
the rule schema of induction
A= AY
A= A;

and the axiom schema of induction

YYyx(A — AY) = Vyx(A5— A).

This completes the axiomatization of BA. It is an easy exercise to prove Proposition

B
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Proposition 6.1  BA isfunctional and well-formed.

Faithfulness, the disjunction property, and explicit definability areimplied by thefol-
lowing preservation construction.

Proposition 6.2 BAisfully rooted. HA = 1QC + BA isreflexively rooted. FQC +
BAisirreflexively rooted.

Proof: LetU = U, or U= U; be constructed from a set of models {K s}scs of BA.
We must show that aq I y for all sequents of the definition of BA, and ag I+ R, where
Risan instance of the rule schemaof induction. Only theinduction schemas are non-
trivial. Supposeag I-F A= AY,. Thencertainly « |- A= Aforall o # ao. Lety
include all free variables of A except x, and assume o I+ AY g for somed € »". But
ag - A= Al fordine o Soap Ik A foralne w. Soag I- Ay = A.
Finally, suppose ag IF Yyx(A — AY). If ap is reflexive, then apply the rule case
above to conclude that ag I- YyX(A§ — A). Otherwisg, if «g isirreflexive, use that
al K are models of BA to conclude that « IF Ag = A foral « > ag. And thus
g I- Vyx(Ay — A). Thecasesfor HA and FQC + BA now easily follow with Propo-

sition[5.14] O

Proposition62limpliesthat (T — L) + BA is consistent, hence FQC + BA is con-
sistent.

Corollary 6.3 BA and FQC + BA are undecidable.

Proof: By MatijaseviC's undecidability theorem for Diophantine equations, the
fragment of existential sentences derivable from PA is undecidable. But by Proposi-
tions5.15land[6.2] the theories BA and FQC + BA derive exactly the same existential
sentences. (]

This corollary naturally extends to other arithmeticslike (T — L) + BA.
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