
174

Notre Dame Journal of Formal Logic
Volume 37, Number 2, Spring 1996

The Price of Universality
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Abstract We investigate the effect on the complexity of adding the universal
modality and the reflexive transitive closure modality to modal logics. From the
examples in the literature, one might conjecture that adding the reflexive tran-
sitive closure modality is at least as hard as adding the universal modality, and
that adding either of these modalities to a multi-modal logic where the modali-
ties do not interact can only increase the complexity to EXPTIME-complete. We
show that the first conjecture holds under reasonable assumptions and that, ex-
cept for a number of special cases which we fully characterize, the hardness
part of the second conjecture is true. However, the upper bound part of the sec-
ond conjecture fails miserably: we show that there exists a uni-modal, decid-
able, finitely axiomatizable, and canonical logic for which adding the univer-
sal modality causes undecidability and for which adding the reflexive transitive
closure modality causes high undecidability.

1 Introduction The use of modal logics in fields like distributed systems, compu-
tational linguistics, and program verification has raised new questions about modal
logics. For instance, although a logician might be satisfied by knowing that a logic
is decidable, a typical “user” might want more precise information, for example how
decidable that logic is, or, in other words, what the (computational) complexity of that
logic is. These applied modal logics are usually multi-modal and contain modalities
that are powerful enough to make global statements about models. The simplest form
of such a modality is the universal modality �u , with semantics �u ϕ is true if and only
if ϕ is true in every world of the model (see, for example, Goranko and Passy [8]).
Another powerful modality which occurs in various guises in the literature is the re-
flexive transitive closure modality, which we will denote by �∗ . This modality occurs
for instance in temporal logic, where the “always” operator is the reflexive transi-
tive closure of the “nexttime” operator, and in logics of knowledge, where “common
knowledge” is defined as the reflexive transitive closure of the S5 logics that model
the processors.

In this paper, we investigate what happens to the complexity of the satisfiabil-
ity problem of a (multi-) modal logic when we add �u or �∗ . If modalities interact,
adding �u can increase the complexity of the satisfiability problem from decidable
(even from as low as NP) to undecidable and adding �∗ can boost the complexity
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to highly undecidable, typically to �1
1-complete. This occurs for example in two-

dimensional logic (Harel [11]); various logics of knowledge and time with the prop-
erty that processors do not forget, or do not remember (Halpern and Vardi [10], Lad-
ner and Reif [19], Spaan [26]), and extended attribute value formalisms that allow
identification of points (Blackburn and Spaan [4]). The situation is usually a lot bet-
ter if the modalities do not interact. From the literature, we know that adding �u or �∗
to such multi-modal logics typically leads to EXPTIME-complete satisfiability prob-
lems. To state but a few examples:

• various logics for knowledge with an operator C for Common Knowledge
(Halpern and Moses [9]),

• propositional dynamic logic (lower bound in Fischer and Ladner [7], upper
bound in Pratt [22]),

• deterministic propositional dynamic logic (lower bound in Parikh [21], upper
bound in Ben-Ari, Halpern, and Pnueli [2]),

• branching time logics (Emerson and Halpern [5]), and
• various attribute value description formalisms with the ability to express gen-

eralizations and recursive constraints (Blackburn and Spaan [4]).

From these examples, one might conjecture that adding �u or �∗ to a logic in which
the modalities do not interact can only increase the complexity to EXPTIME-complete.
However, in Section 3, we will refute this conjecture. We will show that there exists a
uni-modal logic such that its satisfiability problem is in NP, but adding �u causes un-
decidability and adding �∗ causes high undecidability. We also show that there exists
a uni-modal, finitely axiomatizable, decidable, and canonical logic for which adding

�u causes undecidability (thereby refuting a conjecture from Goranko and Passy [8]),
and for which adding �∗ causes high undecidability.

Section 4 will be devoted to the relationship between adding �u and adding �∗
to a logic. Intuitively, �∗ is at least as hard as �u , and in this case, our intuition is
correct. We will show that under reasonable assumptions, the complexity of a logic
with �∗ is at least as high as the complexity of this logic with �u . We also show that our
“reasonable assumptions” are really necessary: if we drop any of our assumptions,
adding �u can be arbitrarily harder than adding �∗ .

Finally, in Section 5, we will show that there is a reason why EXPTIME shows up
so often in this context. We show that, except for a number of special cases which we
fully characterize, adding �u or �∗ to a multi-modal logic with independent modalities
causes EXPTIME-hardness.

This paper is relatively self contained. In particular, all the necessary concepts
from modal logic are presented in Section 2. However, we do assume that the reader
understands what is meant by such complexity classes as NP, PSPACE, EXPTIME, and
so on. Such definitions may be found in Balcázar, Dı́az, and Gabarró [1], for example.
For further information on modal logic, the reader is referred to Hughes and Cress-
well [15].

2 Preliminaries

2.1 Syntax The language L = L(I) is a language of propositional modal logic
with an I indexed set of modal operators (�a for all a ∈ I). We assume a countable
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infinite set of propositional variables P . The set of L formulas is inductively defined
as follows: p is an L formula for every p ∈ P , and if ϕ and ψ are L formulas, then
so are ¬ϕ and ϕ ∧ ψ, and �a ϕ for all a ∈ I. We define the other boolean connectives
∨,→,↔,�, and ⊥ in the usual way. In addition, we define �a ϕ := ¬�a ¬ϕ for each
a ∈ I. If |I| = 1, we usually use � and ♦.

The closure of ϕ, denoted by Cl(ϕ), is the least set of formulas containing ϕ, and
closed under subformulas and single negations, that is, if ψ ∈ Cl(ϕ) and ψ is not of
the form ¬ξ, then ¬ψ ∈ Cl(ϕ). Since the number of subformulas of ϕ is at most |ϕ|
(every connective and propositional variable in ϕ corresponds to a subformula of ϕ

and vice versa), the size of Cl(ϕ) is at most twice the length of ϕ.

2.2 Semantics An I frame is a tuple F = 〈W, {Ra}a∈I〉 where W is a nonempty
set of possible worlds, and for every a ∈ I, Ra is a binary relation on W . A frame
F is rooted at w0 if every world w is reachable from w0. We call w0 the root of F.
An L model is of the form M = 〈W, {Ra}a∈I , π〉 such that 〈W, {Ra}a∈I〉 is an I frame
(we say that M is based on this frame), and π : P → Pow(W ) is a valuation, that is,
w ∈ π(p) means that p is true at w. For ϕ an L formula, we will write M,w |= ϕ for
ϕ is true or satisfied at w in M. The truth relation |= is defined with induction on ϕ

in the following way:

• M,w |= p if and only if w ∈ π(p) for p ∈ P ,

• M,w |= ¬ϕ if and only if not M,w |= ϕ,

• M,w |= ϕ ∧ ψ if and only if M,w |= ϕ and M,w |= ψ, and

• M,w |= �a ϕ if and only if ∀w′ ∈ W(wRaw
′ ⇒ M,w′ |= ϕ).

The notion of satisfiability can be extended to models and frames in the following
way: ϕ is satisfied in M if M,w |= ϕ for some world w in M, and ϕ is satisfiable in
F (F-satisfiable) if ϕ is satisfied in M for some model M based on F.

In the sequel, we will talk about substructures of a frame F = 〈W, {Ra}a∈I〉.
We’ll say that F̂ = 〈Ŵ, {R̂a}a∈I〉 is a subframe of F if Ŵ ⊆ W and R̂a = Ra � Ŵ for
all a ∈ I. We’ll say that F̂ is a skeleton subframe of F if W ⊆ Ŵ and R̂a ⊆ Ra � Ŵ
for all a ∈ I. Finally, we’ll say that F̂ is a generated subframe of F if F̂ is a subframe
of F and Ŵ is closed under all accessibility relations, that is, for all ŵ ∈ Ŵ and a ∈ I,
if ŵRaw, then w ∈ Ŵ .

We usually look at satisfiability and validity with respect to a class of frames
F instead of a single frame or model. All definitions on frames carry over to
classes of frames in the obvious way: we say that ϕ is satisfiable with respect to
F (F -satisfiable) if ϕ is satisfiable in some frame F ∈ F , and that F̂ is a (skele-
ton/rooted/generated) subframe of a class of frames F if F̂ is a (skeleton/rooted/gen-
erated) subframe of some frame F ∈ F .

2.3 Adding �u and �∗ For L a modal language, let L�u be the language obtained
from L by adding �u , and let L�∗ be the language obtained from L by adding �∗ . For
F = 〈W, {Ra}a∈I〉 an I frame, define F�u as 〈W, {Ra}a∈I , Ru〉 such that Ru = W × W ,
and F�∗ as 〈W, {Ra}a∈I , R∗〉 such that R∗ = (∪a∈I Ra)

∗. (R∗ is the reflexive transitive
closure of R; formally: R0 = “=”, Rn+1 = R; Rn, where “;” is relation composition,
and R∗ = ∪n∈N Rn.) When no confusion arises, we will identify F�u and F�∗ with F.



THE PRICE OF UNIVERSALITY 177

For F a class of frames, we define F�u as the class of all frames F�u such that F ∈ F ,
and F�∗ as the class of all frames F�∗ such that F ∈ F .

3 Upper bounds In this section, we look at the following problems: given a class
of frames F and an upper bound on the complexity of F -satisfiability, what can we
say about F�u -satisfiability and F�∗ -satisfiability? As mentioned in the introduction,
the answer is: “not much.”

As is shown in Harel [11], tiling problems provide a particularly elegant method
of proving lower bounds for modal logics, so we will use such an approach here to
prove our lower bounds. A tile T is a 1 × 1 square fixed in orientation with colored
edges right(T), left(T), up(T), and down(T) taken from some denumerable set. A
tiling problem takes the following form: given a finite set of T of tiles, can we cover
a certain part of the integer grid Z × Z, using only copies of tiles in T , in such a way
that adjacent tiles have the same color on the common edge, and such that the tiling
obeys certain constraints? There exist complete tiling problems for many complexity
classes (see for example Lewis [20] and van Emde Boas [27]). In the proofs that fol-
low, we show undecidability for F�u -satisfiability by constructing a reduction from
a coRE-complete tiling problem, and high undecidability for F�∗ -satisfiability by a
reduction from a �1

1-complete tiling problem.

3.1 Universal modality

Theorem 3.1 There exists a uni-modal frame F such that F-satisfiability is NP-
complete, while F�u -satisfiability is undecidable.

Proof: Let F = 〈N × N, S〉, where N denotes the natural numbers and S is the suc-
cessor relation in the grid, i.e. S = {〈〈n, m〉, 〈n+1, m〉〉, 〈〈n, m〉, 〈n, m+1〉〉 | n, m ∈
N}. We will show that F-satisfiability is NP-complete, but F�u -satisfiability is coRE-
hard.

First note that F-satisfiability is certainly NP-hard, as it is a conservative exten-
sion of propositional satisfiability. To prove that F-satisfiability is in NP, suppose that
ϕ is satisfied in 〈N × N, S〉. We may assume that ϕ is satisfied at the origin. Now let k
be the modal depth of ϕ. Then all relevant worlds 〈n, m〉 can be reached from the ori-
gin in at most k steps. Thus, satisfiability of ϕ can be verified by looking at the frame
〈{〈n, m〉 | n + m ≤ k}, S � {〈n, m〉 | n + m ≤ k}〉, which is obviously of polynomial
size in the length of ϕ.

It remains to show that F�u -satisfiability is undecidable. We will construct a re-
duction from the following coRE-complete tiling problem N × N tiling (Berger [3],
Robinson [23]) to F�u -satisfiability.

N × N tiling: Given a finite set T of tiles, can T tile N × N?

That is, does there exist a function t from N × N to T such that right(t(n, m)) =
left(t(n + 1, m)) and up(t(n, m)) = down(t(n, m + 1))?

Let T = {T1, . . . , Tk} be a set of tiles. We will construct a formula ϕT such that

T tiles N × N if and only if ϕT is F�u -satisfiable.

To encode the tiling, we use a propositional vector tile ∈ {1, . . . , k}. That is, tile con-
sists of sequence of �log k� propositional variables and the values of these proposi-
tional variables will be interpreted as an integer between 1 and k. We need to ensure
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that adjacent tiles have the same color on their common edges. In order to enforce
this, we have to be able to differentiate between upward and rightward successors.
This would be easy if we knew the coordinates at each world, but as the relevant part
of the frame can be infinite, this would take too much space. Let Sx and Sy stand for
the rightward and upward successor relations respectively. Then we want the follow-
ing to hold:

• S = Sx ∪ Sy,

• Sx and Sy are deterministic, and

• Sx Sy = Sy Sx.

If Sx and Sy fulfill these conditions, then it is easy to see that one of the relations is the
upward successor relation on N × N, and the other the rightward successor relation
on N × N, which is what we were after. The requirement that Sx Sy = Sy Sx seems the
most difficult, for how can we force this?

This becomes clear if we look at the 2-step successors of a world w. Suppose that
every world has an Sx and an Sy successor. Let wSx Sxwxx, wSx Sywxy, wSy Sxwyx,
and wSy Sywyy. Since every world has exactly three 2-step successors, we know that
two of these worlds must be equal. We will ensure that the only worlds that can be
equal are wxy and wyx, which implies that Sx Sy = Sy Sx. We use propositional vector
w3 ∈ {0, 1, 2} and ensure that the values of w3 in wxy and wyx are the same, while
the values of w3 in wxx,wxy and wyy are all different. This is easy: intuitively, we
let taking an Sx step correspond to adding 2 mod 3 to the value of w3, and taking an
Sy step to addition of 1 mod 3. Then it is immediate that, for a the value of w3 at w,
the value of w3 is a + 1 mod 3 at wxx, a + 2 mod 3 at wyy, and a at wxy and wyx.
Formally, define

• Sx := ⋃
0≤a≤2{〈w,w′〉 ∈ S | M,w |= (w3 = a) and

M,w′ |= (w3 = (a + 2) mod 3)}, and

• Sy := ⋃
0≤a≤2{〈w,w′〉 ∈ S | M,w |= (w3 = a) and

M,w′ |= (w3 = (a + 1) mod 3)}.
And define the corresponding modalities

• �x ψ := ∧2
a=0((w3 = a) → �((w3 = (a + 2) mod 3) → ψ), and

• �y ψ := ∧2
a=0((w3 = a) → �((w3 = (a + 1) mod 3) → ψ).

Recall that we need to force that S = Sx ∪ Sy, Sx and Sy are deterministic, and
Sx Sy = Sy Sx. It suffices to force the first two requirements, since these imply that
every world has an Sx and an Sy successor, which in turn implies, by the argument
given above, that Sx Sy = Sy Sx. Thus we only have to force that S = Sx ∪ Sy and
Sx and Sy are deterministic. Note that by definition, Sx and Sy are contained in S.
Now look at the following formula, which states that every world has an Sx and an
Sy successor:

ϕsucc = �u (�x � ∧ �y �).

Since Sx and Sy are by definition disjoint, and every world has exactly two S suc-
cessors, this formula forces that S = Sx ∪ Sy and Sx and Sy are deterministic. We
conclude that if ϕsucc is satisfied on a model based on F�u , then one of Sx, Sy is the
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upward successor relation on N × N, and the other the rightward successor relation
on N × N. Forcing a tiling is now trivial. Define ϕx and ϕy as follows.

ϕx = �u
k∧

i=1

((tile = i) →
∨

right(Ti )=left(Tj)

�x (tile = j))

ϕy = �u
k∧

i=1

((tile = i) →
∨

up(Ti )=down(Tj)

�y (tile = j))

Putting all this together, we define ϕT to be ϕsucc ∧ ϕx ∧ ϕy. We will prove that
T tiles N × N if and only if ϕT is F�u -satisfiable. The left to right direction follows
from the arguments given above.

For the converse, suppose t : N × N → T is a tiling of N × N. We construct the
satisfying model for ϕT as follows: M = 〈N × N, S, π〉 such that:

• M, 〈n, m〉 |= (tile = i) where t(n, m) = Ti, and

• M, 〈n, m〉 |= (w3 = (2n + m) mod 3).

Clearly, ϕT holds at any world 〈n, m〉 in M. This proves that F�u -satisfiability is
coRE-hard, and therefore undecidable. �

One could argue that frame F of Theorem 3.1 is an unfair example, because it con-
tains so much structure. In particular, F is not even definable by a first order sentence.
However, the next theorem shows that this is not the deciding factor. Even for univer-
sal first order definable classes of uni-modal frames, adding the universal modality to
a decidable language can cause undecidability.

Theorem 3.2 There exists a class of uni-modal frames F such that:

• F -satisfiability is decidable,

• F�u -satisfiability is undecidable,

• F is first order universal, and

• F = Fr(L) for L a uni-modal, finitely axiomatizable, and canonical logic.

Proof: We need to construct a class F of uni-modal frames such that F is universal
first order, F = Fr(L) for L a uni-modal, finitely axiomatizable, and canonical logic,
and F -satisfiability is decidable, but F�u is undecidable. The undecidability will be
proved using the reduction constructed in the proof of Theorem 3.1, that is, we will
construct F in such a way that T tiles N × N if and only if ϕT is F�u -satisfiable. The
most difficult restriction on F is the first order definability, for how can such a class
of frames be forced to behave like N × N? We do need some kind of diamond prop-
erty, for instance ∀xyy′∃z(xRy ∧ xRy′ → yRz ∧ y′ Rz). But diamond properties are
certainly not universal first order.

However, F�u has to behave like N × N only if ϕT is F�u -satisfiable. What does
ϕsucc force? That every world has an x and a y successor. Recall from the previous
proof that we used the fact that every world in N × N has two successors, and three
2-step successors. Let F be the class of frames such that every world has at most two
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successors, and at most three 2-step successors. Then F is defined by the following
universal first order sentence:

ϕ∀ = ∀xy(
∧

1≤i≤3

xRyi →
∨

1≤i< j≤3

yi = y j) ∧ ∀xyz(
∧

1≤i≤4

xRyi Rzi →
∨

1≤i< j≤4

zi = z j).

We claim that F defined this way satisfies the requirements of the theorem. We start
by proving that the reduction from the proof of Theorem 3.1 still works, that is, T
tiles N × N if and only if ϕT is F�u -satisfiable.

The left-to-right implication follows from the proof of Theorem 3.1. If T tiles
N × N then ϕT is satisfiable on 〈N × N, S〉, and it is obvious that ϕ∀ holds on this
frame, and thus ϕT is F�u -satisfiable.

To see that the converse also holds, suppose that M = 〈W, R, π〉 is a model such
that 〈W, R〉 |= ϕ∀ and M satisfies ϕT , say at w0 ∈ W . We reason in a similar way as
in the proof of Theorem 3.1. Let Rx and Ry correspond to modalities �x and �y :

• Rx := ⋃
0≤a≤2{〈w,w′〉 ∈ R | M,w |= (w3 = a) and

M,w′ |= (w3 = (a + 2) mod 3)}, and

• Ry := ⋃
0≤a≤2{〈w,w′〉 ∈ R | M,w |= (w3 = a) and

M,w′ |= (w3 = (a + 1) mod 3)}.
By definition, Rx and Ry are disjoint. By ϕsucc, every world has an Rx and an Ry

successor. Thus, by ϕ∀, it follows that every world has exactly one Rx and exactly
one Ry successor. Since the second conjunct of ϕ∀ forces that every world has at
most three 2-step successors, it follows in the same way as in proof of Theorem 3.1
that Rx Ry = Ry Rx. Now define the tiling as follows:

t(n, m) = Ti if and only if M,w |= (tile = i) where w0 Rn
x Rm

y w.

Since w exists and is unique, t is well-defined. To show that t is indeed a tiling,
suppose t(n, m) = Ti and t(n + 1, m) = Tj. Let w and w′ be the corresponding
worlds, i.e. w0 Rn

x Rm
y w and w0 Rn+1

x Rm
y w′. Then, by definition, M,w |= (tile = i)

and M,w′ |= (tile = j). That these tiles match follows from ϕx if we can show
that wRxw

′. Since Rx Ry = Ry Rx, it follows that Rn+1
x Rm

y = Rn
x Rm

y Rx, and therefore,
wRxw

′ as required. That t(n, m) and t(n, m + 1) match is immediate from the defi-
nition and ϕy. This proves that F�u -satisfiability is coRE-hard, and thus undecidable.

Next we will show that F -satisfiability is decidable. Let M = 〈W, R, π〉, w0 ∈
W be such that M,w0 |= ϕ and 〈W, R〉 ∈ F , that is, 〈W, R〉 |= ϕ∀. For k the modal
depth of ϕ, let Ŵ be the set of worlds w in W such that w0 R≤kw. Then M � Ŵ,w0 |=
ϕ, and 〈W, R〉 � Ŵ |= ϕ∀, since ϕ∀ is universal. At first sight, one might think that
〈W, R〉 must be grid-like so that the size of Ŵ is at most (k + 1)2. But this is not
true: consider for example the binary tree with the property that every left child has
two children, and every right child has only a left child. Then every node has at most
two successors, and at most three 2-step successors, but the size of Ŵ is exponential
in k. However, it is easy to see that it cannot be worse than that. Since each world
has at most two successors, the size of Ŵ is certainly less than 2k+1. It follows that
ϕ is F -satisfiable if and only if ϕ is satisfiable on an F frame of size at most 2k+1.
Since F is first order definable, verifying that a frame is in F takes polynomial time
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(in the size of the frame). It is immediate that F -satisfiability can be determined in
nondeterministic exponential time.

To complete the proof of Theorem 3.2, we need to show that F = Fr(L) for L
finitely axiomatizable and canonical. This is easy to prove, for L is defined by the
following axioms:

• ♦p1 ∧ ♦p2 ∧ ♦p3 → ♦(p1 ∧ p2) ∨ ♦(p1 ∧ p3) ∨ ♦(p2 ∧ p3), and
• ∧

1≤i≤4 ♦♦pi → ∨
1≤i< j≤4 ♦♦(pi ∧ p j).

The claim follows directly from Sahlqvist’s theorem [24] but can easily be proven
directly. To prove that F = Fr(L), we need to show that for all frames F, F |= ϕ∀ if
and only if F |= L. We prove an equivalence between the second conjunct ϕ∀,2 of ϕ∀
(∀xyz(

∧
1≤i≤4 xRyi Rzi) → (

∨
1≤i< j≤4 zi = z j)) and the second axiom of L. Proving

an equivalence between the first conjunct of ϕ∀ and the first axiom of L can be done
by similar arguments, from which F = Fr(L) follows.

First suppose that M = 〈W, R, π〉 and 〈W, R〉 |= ϕ∀,2. Suppose M,w |= ♦♦p1 ∧
♦♦p2 ∧♦♦p3 ∧♦♦p4. Let w1,w2,w3, and w4 be such that M,wi |= pi and wR2wi.
By ϕ∀,2, it holds that wi = w j for some i, j with 1 ≤ i < j ≤ 4. It follows that M,w |=
♦♦(pi ∧ p j) as required. For the converse, suppose that 〈W, R〉 is not an ϕ∀,2 frame.
Let w,w1, . . . , w4 be such that wR2wi and wi �= w j for i �= j. Define valuation π in
such a way that π(pi) = {wi}. Then M,w |= ∧

1≤i≤4 ♦♦pi but M,w �|= ♦♦(pi ∧ p j)

for all 1 ≤ i < j ≤ 4. It follows that 〈W, R〉 is not an L frame.
Finally, we show that the canonical model for L has an underlying F frame. For

suppose it doesn’t, and suppose we violate the second conjunct of ϕ∀. Then there exist
maximal consistent sets �,�1, . . . , �4 such that ��ψ ∈ � ⇒ ψ ∈ �i, and all �i are
different. Since all �i are different, there exist formulas ψi such that ψi ∈ �i and
ψi �∈ � j for all j �= i. It follows that

∧
1≤i≤4

♦♦(ψi ∧
∧
j �=i

¬ψ j) ∈ �.

By the second axiom of L, it follows that for some i, j with 1 ≤ i < j ≤ 4

♦♦(ψi ∧
∧
k �=i

¬ψk ∧ ψ j ∧
∧
k �= j

¬ψk) ∈ �.

But then ♦♦⊥ ∈ �, which contradicts the consistency of �. It follows that L is canon-
ical. This completes the proof of Theorem 3.2. �
Goranko and Passy [8] also investigate enriching the modal language with a universal
modality. They use an axiomatic approach. Given a uni-modal logic L, let L�u consist
of the following axioms:

• all L axioms,
• S5 axioms for the universal box, and
• interaction axiom (containment): �u p → �p.

Among other things, they investigate what properties transfer from L to L�u . For in-
stance, they show that if L is strongly complete, then so is L�u . They also conjecture
that decidability transfers. However, the logic L defined above provides a counterex-
ample.
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Theorem 3.3 There exists a uni-modal logic L, such that L is decidable, and L�u
is undecidable.

Proof: Let L be the logic from Theorem 3.2. Since L is canonical, it follows that L
is strongly complete. By the above mentioned transfer result, L�u is strongly complete
as well. Since Fr(L) = F , it follows that L is decidable, being the the complement of
F -satisfiability (up to negating the formula), and L�u is undecidable, being the com-
plement of F�u -satisfiability. �

3.2 Transitive closure We will now investigate what happens to upper bounds on
satisfiability if we add �∗ to the language. Intuitively, �∗ is at least as hard as �u (this
issue will be addressed in greater detail in the next section), and thus we would expect
the situation to be as least as bad as in the previous subsection. This is indeed the case:
Theorems 3.1 and 3.2 also hold if we replace �u by �∗ . Indeed, we even show that the
enriched logics are highly undecidable.

Theorem 3.4 There exists a uni-modal frame F such that F-satisfiability is NP-
complete, while F�∗ -satisfiability is �1

1-complete.

Proof: Let F be as defined in the proof of Theorem 3.1. Then F-satisfiability is NP-
complete. It remains to prove that F�∗ -satisfiability is �1

1-complete. The �1
1 upper

bound is immediate, since F�∗ is countable. For the corresponding lower bound, we
construct a reduction from the following �1

1-complete tiling problem from Harel [12].

N × N recurrent tiling: Given a finite set T of tiles, and a tile T1 ∈ T , can T
tile N × N such that T1 occurs in the tiling infinitely
often on the first row.

That is, does there exist a function t from N × N to T such that: right(t(n, m)) =
left(t(n + 1, m)), up(t(n, m)) = down(t(n, m + 1)), and the set {i | t(i, 0) = T1} is
infinite?

Let T = {T1, . . . , Tk} be a set of tiles. We construct a formula ϕrt such that:

〈T , T1〉 ∈ N × N recurrent tiling if and only if ϕrt is F�∗ -satisfiable.

To ensure that ϕrt forces a tiling of N × N, we use the formula ϕT constructed in the
proof of Theorem 3.2. Let ϕ′

T be the result of replacing every occurrence of �u by �∗
in ϕT . Then, as in the proof of Theorem 3.2, the following hold:

• if ϕ′
T is not satisfiable, then T does not tile N × N, and

• if M,w0 |= ϕ′
T , then there exists a tiling t defined as follows:

t(n, m) = Ti if and only if M,w |= (tile = i) where w0 Rn
x Rm

y w.

Now we force the recurrence. We will use a new propositional variable row0,
which can only be true at worlds of the form 〈n, 0〉, and we will ensure that there
exist an infinite number of worlds where row0 holds and tile T1 is placed. Define

ϕrec = row0 ∧ �∗�y�∗¬row0 ∧ �∗ (row0 → �x�∗ (row0 ∧ (tile = 1))).

Let ϕrt be the conjunction of ϕ′
T and ϕrec. It is easy to prove that 〈T , T1〉 ∈ N × N

recurrent tiling if and only if ϕrt is F�∗ -satisfiable. This proves Theorem 3.4. �
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Theorem 3.5 There exists a class of uni-modal frames F such that:

• F -satisfiability is decidable,

• F�∗ -satisfiability is �1
1-complete,

• F is first order universal, and

• F = Fr(L) for L a uni-modal, finitely axiomatizable, and canonical logic.

Proof: Let F and L be as defined in Theorem 3.2. It remains to prove that F�∗ -
satisfiability is �1

1-complete. The �1
1 upper bound is immediate, since any F�∗ -

satisfiable formula is satisfiable in a countable F�∗ frame. The reduction from the
proof of Theorem 3.4 witnesses the �1

1-hardness. �

4 Universal modality versus transitive closure Intuitively, �∗ is a more difficult
modality than �u . After all, �u behaves like S5, while �∗ behaves like S4, and
S5-satisfiability is NP-complete, whereas S4-satisfiability is PSPACE-complete (Lad-
ner [17]). And indeed, in all the examples that we have seen, F�∗ -satisfiability is at
least as hard as F�u -satisfiability. In this section, we will show that this is a general
phenomenon: for well-behaved classes of frames F and many complexity classes C ,
if F�∗ -satisfiability is in C then so is F�u -satisfiability.

We first prove that for well-behaved classes of frames F , F�u -satisfiability non-
deterministic polynomial time conjunctive truth-table (≤NP

ctt ) reduces to F�∗ -satisfi-
ability, where ≤NP

ctt is defined as follows. A ≤NP
ctt B if and only if there exists an NP

machine M with an output tape such that x ∈ A if and only if for some computation
on input x, M outputs y1#y2# · · ·#yk, and {y1, . . . , yk} ⊆ B (Ladner, Lynch, and Sel-
man [18]).

Theorem 4.1 If F is closed under isomorphism, disjoint union, and generated
subframes, then F�u -satisfiability is ≤NP

ctt reducible to F�∗ -satisfiability.

Corollary 4.2 Let F be closed under isomorphism, disjoint union, and generated
subframes, and let C be a complexity class closed under ≤NP

ctt reductions. If F�∗ -
satisfiability is in C then so is F�u -satisfiability.

Corollary 4.2 is often applicable, since many complexity classes that we commonly
encounter when proving complexity for modal satisfiability problems, such as NP,
PSPACE, EXPTIME, NEXPTIME, etc., are closed under ≤NP

ctt reductions.
Before proving Theorem 4.1, note that demanding closure of the class of frames

under isomorphism, disjoint union, and generated subframes is not restrictive in the

�∗ case.

Lemma 4.3 If F̂ is the closure under isomorphism, disjoint union and generated
subframes of F , then F�∗ -satisfiability = F̂�∗ -satisfiability.

The situation is different for L�u formulas. After the proof of Theorem 4.1, we will
show that it is necessary to require that the class of frames be closed under isomor-
phism, disjoint union, and generated subframes. We will show that there exist coun-
terexamples of arbitrarily high complexity if we fail to meet any of the three require-
ments.
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Proof of Theorem 4.1: We have to use �∗ to simulate �u , but we cannot just replace

�u by �∗ . For a very simple counterexample, consider the class of all frames that con-
sist of the disjoint union of singletons and the formula p ∧ �u ¬p. This formula is
satisfiable on this class, but p ∧ �∗¬p is not.

One of the problems is that every F -satisfiable L�∗ formula is satisfiable in a
rooted generated F subframe, but that this is not the case for L�u -formulas. However,
as the next lemma shows, L�u formulas are satisfiable on generated subframes with a
small number of roots.

Lemma 4.4 Let F be closed under isomorphism, disjoint union, and generated
subframes and let ϕ be an L�u formula. If ϕ is F�u -satisfiable, then there exist a model
M, an integer k ≤ the number of �u s in ϕ, and worlds w0,w1, . . . , wk in M such that

• M,w0 |= ϕ,
• M is based on an F frame,
• all worlds in M are reachable from {w0,w1, . . . , wk}, and
• for all �u ψ ∈ Cl(ϕ), if M,w0 �|= �u ψ, then M,wi �|= ψ for some 0 ≤ i ≤ k.

Proof: The construction is reminiscent of the proof that S5-satisfiability is in NP
from Ladner [17]. This is not surprising, since the �u operator behaves like the S5
operator. Suppose that ϕ is F�u -satisfiable. Let M0 = 〈W0, {Ri}i∈I , π〉 and w0 ∈ W0

be such that M0,w0 |= ϕ and 〈W0, {Ri}i∈I〉 ∈ F . Let �u ψ1,�u ψ2, . . . ,�u ψk be an
enumeration of all �u ψ ∈ Cl(ϕ) that do not hold in w0. Note that k ≤ the number of

�u s in ϕ. Let w1,w2, . . . , wk be worlds such that M0,wi �|= ψi, let W be the set of
worlds reachable from w0,w1, . . . , wk, and let M be the restriction of M0 to W . We
claim that M fulfills the requirements of Lemma 4.4.

Since F is closed under generated subframes, M is based on an F frame. We
will now show that every world in W satisfies the same set of Cl(ϕ) formulas in M
as in M0. We will use induction on the structure of the formula. The only nontrivial
case is for �u ψ.

So suppose that w ∈ W , and that M0,w |= �u ψ. Then ∀w′ ∈ W0, M0,w
′ |= ψ.

Using the induction hypothesis and the fact that W ⊆ W0, it follows that M,w |= �u ψ.
For the converse, suppose that M0,w �|= �u ψ. By definition, for some 1 ≤ i ≤ k,
M0,wi �|= ψ. Since wi ∈ W , again, by induction, M,wi �|= ψ, and therefore M,w �|=
�u ψ.

From this, it follows immediately that M,w0 |= ϕ, and that for all �u ψ ∈ Cl(ϕ),
if M,w0 �|= �u ψ, then for some i, M,wi �|= ψ. �
But there are more problems to replacing �u by �∗ , even if we look at rooted frames.
For example, the formula �∗�∗ p ∧ �∗¬p is certainly satisfiable, but �u�u p ∧ �u ¬p
is not satisfiable on any frame. This problem is caused by the simple fact that nested

�∗ operators behave very differently from nested �u operators. This is why we will
first bring an L�u formula ϕ in a form that restricts the depth of �u nesting. This is
pretty simple: first we introduce propositional variables p�u ψ for all �u ψ ∈ Cl(ϕ).
Now define ϕ′ inductively as follows:

p′ = p; (¬ψ)′ = ¬ψ′; (ψ ∧ ξ)′ = ψ′ ∧ ξ′; (�a ψ)′ = �a ψ′; (�u ψ)′ = p�u ψ.

Note that ϕ′ does not contain �u . The following lemma shows how to convert ϕ into
a formula ϕflat of small �u nesting depth.
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Lemma 4.5 ϕ is F�u -satisfiable if and only if the following formula ϕflat is F�u -
satisfiable.

ϕflat = ϕ′ ∧ �u
∧

�u ψ∈Cl(ϕ)

(p�u ψ ↔ �u ψ′).

Proof: Let M = 〈W, {Ri}i∈I , π〉 and w0 ∈ W be such that M,w0 |= ϕ. Extend π

such that for each �u ψ ∈ Cl(ϕ) and w ∈ W , M,w |= p�u ψ if and only if M,w |= �u ψ.
By induction on the structure of ψ, it is easy to prove that for all ψ ∈ Cl(ϕ) and all
w ∈ W , M,w |= ψ if and only if M,w |= ψ′. From this it follows that M,w0 |= ϕ′.
It also follows that for all w ∈ W and for all �u ψ ∈ Cl(ϕ), M,w |= p�u ψ if and only if
M,w |= �u ψ if and only if ∀w′ ∈ W, M,w′ |= ψ if and only if ∀w′ ∈ W , M,w′ |= ψ′

if and only if M,w |= �u ψ′. And thus, M,w0 |= ϕflat.
For the converse, let M = 〈W, {Ri}i∈I , π〉 and w0 ∈ W be such that M,w0 |=

ϕflat. We will show by induction that for all ψ ∈ Cl(ϕ) and w ∈ W , M,w |= ψ if and
only if M,w |= ψ′. The only nontrivial step is for formulas of the form �u ψ. It holds
that M,w |= �u ψ if and only if ∀w′ ∈ W , M,w′ |= ψ if and only if ∀w′ ∈ W, M,w′ |=
ψ′ if and only if ∀w′ ∈ W , M,w′ |= �u ψ′ if and only if M,w |= �u ψ′ if and only if
M,w |= p�u ψ if and only if M,w |= (�u ψ)′. Thus, M,w0 |= ϕ. �
Lemma 4.5 brings an L�u formula in such a form that �u can be simulated by �∗ on
rooted frames. Lemma 4.4 limits the number of rooted frames needed to satisfy an
L�u formula in such a way that the behavior of the �u ψ subformulas depends solely
on these roots. These two facts lead to the following lemma.

Lemma 4.6 Let F be closed under isomorphism, disjoint union, and generated
subframes, and let ϕ be an L�u formula. Then ϕ is F�u -satisfiable if and only if there
exist an integer k ≤ |ϕ| and sets �0, �1, . . . , �k ⊆ {ψ′ | ψ ∈ Cl(ϕ)} ∪ {�∗ψ′ | �u ψ ∈
Cl(ϕ)} such that the following hold:

1. ϕ′ ∈ �0,

2. for 0 ≤ i ≤ k, the following formula is F�∗ -satisfiable:

∧
�i ∧

∧
ψ∈Cl(ϕ)\�i

¬ψ ∧
∧

�u ψ∈Cl(ϕ)

((p�u ψ → �∗ p�u ψ) ∧ (¬p�u ψ → �∗¬p�u ψ)),

3. for all �u ψ ∈ Cl(ϕ), p�u ψ ∈ �i if and only if �∗ψ′ ∈ � j for all j, and

4. for all �u ψ ∈ Cl(ϕ), if ¬p�u ψ ∈ �i then ¬ψ′ ∈ � j for some j.

Now we can finish the proof of Theorem 4.1, i.e., we can show that F�u -satisfiability is
≤NP

ctt reducible to F�∗ -satisfiability. Let M be a nondeterministic Turing machine with
an output tape that on input ϕ guesses an integer k ≤ |ϕ| and sets �0, �1, . . . , �k ⊆
{ψ′ | ψ ∈ Cl(ϕ)} ∪ {�∗ψ′ | �u ψ ∈ Cl(ϕ)}, verifies that conditions 1, 3, and 4 of
Lemma 4.6 hold, and if so, writes the k + 1 formulas of condition 2 on its output tape,
separated by #’s. Since the size of Cl(ϕ) is linear in the length of ϕ, and 1, 3, and 4
can be checked in deterministic polynomial time in the length of ϕ, M witnesses the
≤NP

ctt reduction from F�u -satisfiability to F�∗ -satisfiability. �
Proof of Lemma 4.6: First suppose that ϕ is F�u -satisfiable. By Lemma 4.5, so is
ϕflat = ϕ′ ∧ �u

∧
�u ψ∈Cl(ϕ)(p�u ψ ↔ �u ψ′). By Lemma 4.4, there exist a model M, an

integer k ≤ number of �u ’s in ϕflat ≤ |ϕ|, and worlds w0,w1, . . . , wk in M such that
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• M,w0 |= ϕflat,
• M is based on an F frame,
• all worlds in M are reachable from {w0,w1, . . . , wk}, and
• for all �u ψ ∈ Cl(ϕ), if M,w0 �|= �u ψ′, then M,wi �|= ψ′ for some 0 ≤ i ≤ k.

Let �i be the set of relevant L�∗ formulas that are satisfied in M at wi. That is, �i =
{ψ′ | ψ ∈ Cl(ϕ) and M,wi |= ψ′} ∪ {�∗ψ′ | �u ψ ∈ Cl(ϕ) and M,wi |= �∗ψ′}. We
claim that these �i’s fulfill the requirements of the lemma.

1. ϕ′ ∈ �0, since ϕ ∈ Cl(ϕ) and M,w0 |= ϕ′.
2. First of all, M,wi |= ∧

�i ∧ ∧
ψ∈Cl(ϕ)\�i

¬ψ by definition. In addition, for
all �u ψ ∈ Cl(ϕ) and w ∈ W , M,w |= p�u ψ ↔ �u ψ′. This implies that either
M,w |= p�u ψ for all w, or that M,w |= ¬p�u ψ for all w. It follows immedi-
ately that for all w ∈ W , M,w |= ∧

�u ψ∈Cl(ϕ)((p�u ψ → �∗ p�u ψ) ∧ (¬p�u ψ →
�∗¬p�u ψ)).

3. Let �u ψ ∈ Cl(ϕ). Note that p�u ψ ∈ �i if and only if M,wi |= p�u ψ if and only
if M,wi |= �u ψ′ if and only if ∀w ∈ W, M,w |= ψ′ if and only if for all j,
M,w j |= �∗ψ′.

4. Finally, suppose that �u ψ ∈ Cl(ϕ) and that p�u ψ �∈ �i. Then M,wi �|= p�u ψ,
and thus M,wi �|= �u ψ′. It follows that for some j, 0 ≤ j ≤ k, M,w j �|= ψ′,
and therefore ψ′ �∈ � j.

To show the converse, suppose that �0, �1, . . . , �k fulfill the conditions of Lem-
ma 4.6. Let M0, M1, . . . , Mk be models based on frames in F and w0,w1, . . . , wk

be worlds such that wi is a world in Mi and Mi,wi |= ∧
�i ∧ ∧

ψ∈Cl(ϕ)\�i
¬ψ ∧∧

�u ψ∈Cl(ϕ)((p�u ψ → �∗ p�u ψ) ∧ (¬p�u ψ → �∗¬p�u ψ)). Suppose that Mi is gener-
ated by wi and that the models are disjoint. Now, let M be the union of these models.
This model is based on an F frame as well, since F is closed under disjoint union.
We will show that M,w0 |= ϕflat. This implies that ϕ is F�u -satisfiable by Lemma 4.5
and completes the proof of Lemma 4.6.

First of all, note that M,w0 |= ϕ′, since ϕ′ does not contain �u or �∗ . It remains
to show that for all w ∈ W and �u ψ ∈ Cl(ϕ), M,w |= p�u ψ ↔ �u ψ′. Suppose that w

is reachable from wi.
First suppose that M,w |= p�u ψ. By 2, M,wi |= ¬p�u ψ → �∗¬p�u ψ. It follows

that M,wi |= p�u ψ, and by definition of M, p�u ψ ∈ �i. It follows from 3 that �∗ψ′ ∈
� j for all j and therefore also M,w j |= �∗ψ′ for all j. This implies that ∀w′ ∈ W ,
M,w′ |= ψ′, and thus M,w |= �u ψ′.

Finally, suppose that M,w �|= p�u ψ. Since M,wi |= p�u ψ → �∗ p�u ψ, it follows
that M,wi |= ¬p�u ψ. Since Cl(ϕ) is closed under single negations, ¬�u ψ ∈ Cl(ϕ).
It follows that ¬p�u ψ ∈ �i, and therefore, by 4, ¬ψ′ ∈ � j for some j. It follows that
M,w j |= ¬ψ′, which implies that M,w �|= �u ψ′. �
As mentioned in the beginning of this section, the requirements in Theorem 4.1 that
F be closed under isomorphism, disjoint union, and generated subframes are all nec-
essary. In Theorems 4.7, 4.10, and 4.11, we will construct arbitrarily hard counterex-
amples for classes of frames that have exactly two of the three closure properties.

Theorem 4.7 For every set A ⊆ N, there exists a class of frames F closed un-
der isomorphism and disjoint union such that F�∗ -satisfiability is in PSPACE and A
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in unary is polynomial-time many-one reducible to F�u -satisfiability.

Proof: For all i ∈ N, let Fi be the linear irreflexive frame on {0, . . . , i}. That is,
Fi = 〈{0, . . . , i}, {〈 j, j+1〉} | j < i}〉. Let Fi be the closure under isomorphism of Fi,
and let F be the closure under disjoint union of the class of frames

⋃
i∈A Fi.

We first show that A in unary is polynomial-time many-one reducible to F�u -
satisfiability. Let ϕi be the formula p ∧ �u�¬p ∧ ♦i� ∧ �i+1⊥. This formula is
exactly satisfiable in worlds that have no predecessors, that have a sequence of i suc-
cessors, and have no sequence of i + 1 successors. Since we look only at frames that
consist of the disjoint union of frames in F j, ϕi is exactly satisfiable in F frames that
contain a frame in Fi as a disjoint.

It follows that ϕi is F -satisfiable if and only if a frame in Fi occurs as a disjoint
in some frame in F if and only if i ∈ A. Since ϕi is clearly computable in polynomial
time in i, this shows that A in unary is polynomial-time many-one reducible to F�∗ -
satisfiability.

It remains to show that F�∗ -satisfiability is in PSPACE. First suppose A is fi-
nite. Then, by Lemma 4.3, F�∗ -satisfiability amounts to determining satisfiability
with respect to a finite set of finite frames, which is in NP, and therefore certainly
in PSPACE. Now suppose that A is infinite. Then, by Lemma 4.3, F�∗ -satisfiability =
[{Fi | i ∈ N}]�∗ -satisfiability. According to the following lemma, this is in PSPACE.

�

Lemma 4.8 For all i ∈ N, let Fi = 〈{0, . . . , i}, {〈 j, j+1〉} | j < i}〉. [{Fi | i ∈ N}]�∗ -
satisfiability is in PSPACE.

[{Fi | i ∈ N}]�∗ is very close to linear temporal logic with operators “nexttime,” and
“always in the future,” the satisfiability problem of which is PSPACE-complete (Sistla
and Clarke [25]). Reformulating their result in our notation yields the following the-
orem.

Theorem 4.9 ([25]) Let N denote the natural numbers, and let S be the successor
relation on the natural numbers, i.e., S = {〈i, i + 1〉 | i ∈ N}. [〈N, S〉]�∗ -satisfiability
is PSPACE-complete.

Proof of Lemma 4.8: First suppose ϕ is satisfiable on Fk for some k ∈ N. Let M =
〈Fk, π〉, and suppose that M, 0 |= ϕ. To encode M into a model M ′ = 〈N, S, π′〉, we
will use a new propositional variable w. w will be true in worlds that correspond to
worlds in M. Formally, we encode M by model M ′ = 〈N, S, π′〉 as follows: π and
π′ coincide on all propositional variables in ϕ on all worlds in W , and M ′, i |= w if
and only if i is a world in M if and only if i ≤ k.

Define ϕ′ by replacing all subformulas of the form �ψ by �(w → ψ′), and all
subformulas of the form �∗ψ by �∗ (w → ψ′). Then, for all i ≤ k, M, i |= ϕ if and
only if M ′, i |= ϕ′.

Not all valuations on a 〈N, S〉 frame correspond to a finite prefix of N, so we
still need to ensure that the encoding model behaves properly. We need to enforce
that if M ′, 0 |= f (ϕ), then {i | M ′, i |= w} is a nonempty, finite prefix of N. Define
f (ϕ) as ϕ′ ∧ w ∧ �∗¬w ∧ �∗ (¬w → �∗¬w). It is easy to verify that ϕ is satisfiable
on Fi for some i ∈ N if and only if f (ϕ) is satisfiable on 〈N, S〉. Since f is clearly
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polynomial-time computable, and [〈N, S〉]�∗ -satisfiability is in PSPACE, this proves
that [{Fi | i ∈ N}]�∗ -satisfiability is in PSPACE. �

Theorem 4.10 For every set A ⊆ N, there exists a class of frames F closed under
isomorphism and generated subframes such that F�∗ -satisfiability is in PSPACE and
A in unary is polynomial-time many-one reducible to F�u -satisfiability.

Proof: For all i ∈ N, let F̂i be the frame Fi from Lemma 4.8 with extra edge 〈0, 0〉,
that is, F̂i = 〈{0, . . . , i}, {〈0, 0〉} ∪ {〈 j, j+1〉} | j < i}〉. Let F̂i be the closure under
isomorphism of F̂i. Let F be the closure under generated subframes of

⋃
i∈N

F̂i and
the disjoint union of F̂i and F̂i for all i ∈ A. Note that if A is infinite, F consists
exactly of these frames and frames in the disjoint union of F̂i and F j for i ∈ A, j ∈ N,
the disjoint union of Fi and F j for i, j ∈ N, and Fi for i ∈ N.

We first show that A in unary is polynomial-time many-one reducible to F�u -
satisfiability. Let ϕi be the following formula.

p ∧ ♦p ∧ ♦(¬p ∧ ♦i−1� ∧ �i⊥) ∧ �u (¬p ∧ ♦¬p ∧ ♦(p ∧ ♦i−1� ∧ �i⊥)).

The formula p ∧ ♦p ∧ ♦(¬p ∧ ♦i−1� ∧ �i⊥) is satisfiable on a frame F ∈ F in
world w if and only if F contains a frame in F̂i as a disjoint, and w is the root of this
disjoint. The same is true for formula ¬p ∧ ♦¬p ∧ ♦(p ∧ ♦i−1� ∧ �i⊥). Since
both formulas cannot be satisfied in the same world, it follows that ϕi is satisfiable on
frame F ∈ F if and only if F contains two disjoints from F̂i if and only if i ∈ A. This
proves that A in unary polynomial-time many-one reduces to F�u -satisfiability.

It remains to show that F�∗ -satisfiability is in PSPACE. By Lemma 4.3, F�∗ -
satisfiability = [{F̂i | i ∈ N}]�∗ -satisfiability. It follows that ϕ is F�∗ -satisfiable if and
only if

• ϕ is satisfiable with respect to {Fi | i ∈ N}, or
• ϕ is satisfiable with respect to F̂0, or
• ϕ is satisfiable in the root of F̂i for some i ≥ 1.

[{Fi | i ∈ N}]�∗ -satisfiability is in PSPACE by Lemma 4.8, and [F̂0]�∗ -satisfiability is
in NP. It remains to show that determining if an L�∗ formula is satisfiable in the root
of F̂i for some i ≥ 1 is in PSPACE. We claim that this is the case if and only if there
exist subsets � and � of Cl(ϕ) such that:

• ϕ ∈ �,
• ∀¬ψ ∈ Cl(ϕ), ¬ψ ∈ � if and only if ψ �∈ �,
• ∀ψ ∧ ξ ∈ Cl(ϕ), ϕ ∧ ξ ∈ � if and only if ψ ∈ � and ξ ∈ �,
• ∀�ψ ∈ Cl(ϕ), �ψ ∈ � if and only if ψ ∈ � and ψ ∈ �,
• ∀�∗ψ ∈ Cl(ϕ), �∗ψ ∈ � if and only if ψ ∈ � and �∗ψ ∈ �, and
• ∧

� ∧ ∧
ψ∈Cl(ϕ)\� ¬ψ is [{Fi | i ∈ N}]�∗ -satisfiable.

Since subsets of Cl(ϕ) can be represented in space linear in the length of ϕ, and
[{Fi | i ∈ N}]�∗ -satisfiability is in PSPACE by Lemma 4.8, it follows that F�∗ -satis-
fiability is in PSPACE. It remains to prove the claim.

First suppose ϕ is satisfiable in the root of F̂i for some i ≥ 1. Let M be the model
based on F̂i such that M, 0 |= ϕ. Let � be the set of Cl(ϕ) formulas satisfied in M at
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0, and let � be the set of Cl(ϕ) formulas satisfied at world 1. It is immediate that �

and � fulfill the requirements.
For the converse, suppose there exist sets � and � that fulfill the requirements.

Let k ≥ 0 and M = 〈Fk, π〉 be such that M, 0 |= ∧
� ∧ ∧

ψ∈Cl(ϕ)\� ¬ψ. Let M̂ =
〈F̂k+1, π̂〉. Define π̂ on all propositional variables p in ϕ such that M̂, 0 |= p if and
only if p ∈ � and for all i ≤ k, M, i |= p if and only if M̂, i + 1 |= p. With induction,
it is easy to show that for all ψ ∈ Cl(ϕ), M̂, 0 |= ψ if and only if ψ ∈ �. Since ϕ ∈ �,
it follows that M̂, 0 |= ϕ as required. �

Theorem 4.11 For every set A ⊆ N, there exists a class of frames F closed under
disjoint union and generated subframes such that F�∗ -satisfiability is in PSPACE and
A in unary is polynomial time many-one reducible to F�u -satisfiability.

Proof: For all i ∈ N, let F̂i be the frame from the proof of Theorem 4.10, that is,
F̂i = 〈{0, . . . , i}, {〈0, 0〉} ∪ {〈 j, j+1〉} | j < i}〉 and let Ĝi = 〈{0′, . . . , i′}, {〈0′, 0′〉} ∪
{〈 j′, ( j+1)′〉} | j < i}〉. Define F as the closure under generated subframes and dis-
joint union of

⋃
i∈N

F̂i ∪ {F̂i ∪ Ĝi | i ∈ A}. The same reduction as in the proof of
Theorem 4.10 reduces A in unary to F�u -satisfiability. In addition, F�∗ -satisfiability =
[{F̂i | i ∈ N}]�∗ -satisfiability, which is in PSPACE by the proof of Theorem 4.10. �

5 Lower bounds As we have shown in Section 3, adding �u or �∗ to a language can
increase the complexity of the satisfiability problem dramatically. In this section, we
will study the following related question of whether the complexity always increases,
and if so, whether we can give a lower bound on the complexity of the resulting logic.
From the examples in the introduction, it seems that EXPTIME is a prime candidate
for multi-modal logics. Note that we certainly cannot do better, since the satisfiability
problems for the examples in the introduction are EXPTIME-complete. As we shall
see in this section, it is indeed the case that adding �u or �∗ to almost all multi-modal
logics forces EXPTIME-hardness. We will give a criterion which exactly characterizes
when the resulting logic will be EXPTIME-hard.

We first look at the simplest multi-modal case: bi-modal logics with two inde-
pendent modalities. Let F1 and F2 be two classes of uni-modal frames. The join of F1

and F2, denoted by F1 ⊕ F2 is the class {〈W, R1, R2〉 | 〈W, R1〉 ∈ F1 and 〈W, R2〉 ∈
F2}. To avoid anomalies, we will require that the frame classes are closed un-
der isomorphism and disjoint union. This is essential, since for example { �� �}⊕
{ �} = ∅. For the relationship between the join and its uni-modal fragments, see Fine
and Schurz [6], Kracht and Wolter [16], and Hemaspaandra [14]. We are interested
in the complexity of [F1 ⊕ F2]�∗ -satisfiability and [F1 ⊕ F2]�u -satisfiability.

Here is how we will proceed in this section. In Theorem 5.1, we will show that
[F1 ⊕ F2]�∗ -satisfiability and [F1 ⊕ F2]�u -satisfiability are EXPTIME-hard if one class
of frames contains a rooted subframe of size three, and the other class of frames con-
tains a rooted subframe of size two. Next, we will show in Theorem 5.2 that a class
of singleton frames does not contribute to the complexity. The remaining cases are
when both classes of frames contain a rooted subframe of size two, but not larger.
We will show that in all these cases [F1 ⊕ F2]�∗ -satisfiability is PSPACE-complete
(Theorem 5.3), and that [F1 ⊕ F2]�u -satisfiability is PSPACE-complete if F1 and F2

are closed under generated subframes (Theorem 5.10). In the previous section, we
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showed that there are cases when [F1 ⊕ F2]�u -satisfiability is harder than [F1 ⊕ F2]�∗ -
satisfiability. Surprisingly, we can find an example of this phenomenon even in this
very restricted case (Theorem 5.11). We end this section by showing that all these
results generalize quite well to the join of an arbitrary number of uni-modal logics
(Theorem 5.13).

The EXPTIME lower bound proofs of the examples stated in the introduction are
all variations of the reduction in the lower bound proof for propositional dynamic
logic from Fischer and Ladner [7]. Loosely speaking, this technique can be applied
if (sub)frames can look like binary trees. We won’t go into the details of the proof,
but we will show in what way our frames can look like binary trees.

Theorem 5.1 Let F1 and F2 be closed under isomorphism and disjoint union. If F1

contains a rooted subframe of size three, and F2 contains a rooted subframe of size
two, then [F1 ⊕ F2]�u -satisfiability and [F1 ⊕ F2]�∗ -satisfiability are EXPTIME-hard.

Proof: For case 1, note that
�

����� �or �� �� �is a skeleton subframe of F1, and �� �

is a skeleton subframe of F2. It follows that one of the two frames in Figure 1 is a
skeleton subframe of F1 ⊕ F2.
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Figure 1:

These structures look like binary trees. Note that it might be necessary to add
some edges to these structures to obtain an F1 ⊕ F2 subframe, but all new 1 (2) edges
will be between nodes that are already connected by a 1 (2) path. It can be shown
that adding these edges will keep the structures tree-like enough to immediately apply
the EXPTIME-hardness proof of propositional dynamic logic from Fischer and Lad-
ner [7]. �

What happens if we cannot apply Theorem 5.1? First note that if one of the classes
of frames, say F2, does not contain a rooted subframe of size two, then every frame
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in F2 consists of the disjoint union of singletons. The following theorem states that
such a class of frames does not increase the complexity.

Theorem 5.2 Let F1 and F2 be closed under isomorphism and disjoint union. If
every frame in F2 consists of the disjoint union of singletons, then

1. [F1 ⊕ F2]�u -satisfiability polynomial-time reduces to [F1]�u -satisfiability, and
2. [F1 ⊕ F2]�∗ -satisfiability polynomial-time reduces to [F1]�∗ -satisfiability.

Proof: The idea for both reductions is the following. Let ϕ be a formula, and sup-
pose M = 〈W, R1, R2, π〉 is a model based on an F1 ⊕ F2 frame. Since every frame
in F2 consists of the disjoint union of singletons, R2 ⊆ {〈w,w〉 | w ∈ W}. We will
encode R2 by a propositional variable r not in ϕ, that will be true in worlds that are
R2 reflexive. Formally, we encode M by model M ′ = 〈W, R1, π

′〉 where π′ and π

coincide on all propositional variables in ϕ, and M ′,w |= r if and only if wR2w.
Define ϕ′ by replacing all subformulas of the form �2 ψ in ϕ by (r → ψ′). Then,

M,w |= ϕ if and only if M ′,w |= ϕ′.
It may seem that this is the desired reduction. Certainly, if ϕ is F1 ⊕ F2-

satisfiable, then ϕ′ is F1-satisfiable. However, the converse does not necessarily hold.
For example, suppose that all frames in F2 are reflexive. Then �2 ⊥ is not F1 ⊕ F2-
satisfiable, but (r → ⊥) is F1-satisfiable.

Obviously, our reductions need to restrict the valuation of r in an appropriate
manner. The situation is different for �u and �∗ , and we will start with �u . We
claim that f is a polynomial-time reduction from [F1 ⊕ F2]�u -satisfiability to [F1]�u -
satisfiability, where f is defined as follows:

• f (ϕ) = ϕ′ if F2 contains a reflexive frame and an irreflexive frame,
• f (ϕ) = ϕ′ ∧ �u r if all worlds in F2 are reflexive,
• f (ϕ) = ϕ′ ∧ �u ¬r if all worlds in F2 are irreflexive,
• f (ϕ) = ϕ′ ∧ �u r if F2 contains a reflexive frame, but no irreflexive frames,
• f (ϕ) = ϕ′ ∧�u ¬r if F2 contains an irreflexive frame, but no reflexive frames,

and
• f (ϕ) = ϕ′ ∧�u r ∧�u ¬r if F2 contains neither reflexive frames nor irreflexive

frames.

f is obviously computable in polynomial time, and it is clear that M,w |= ϕ implies
that M ′,w |= f (ϕ), with M ′ defined as before. It remains to show that if f (ϕ) is
[F1]�u -satisfiable, then ϕ is [F1 ⊕ F2]�u -satisfiable.

Let M ′ = 〈W, R1, π〉 and w ∈ W be such that 〈W, R1〉 ∈ F1 and M ′,w |=
f (ϕ). Let M = 〈W, R1, R2, π〉 where R2 = {〈w,w〉 | M ′,w |= r}. Then M,w |= ϕ.
〈W, R1, R2〉 is not necessarily an F1 ⊕ F2 frame, but if we take enough disjoint copies
of M, the resulting model will be based on an F1 ⊕ F2 frame and will of course still
satisfy ϕ.

In a similar way, the polynomial-time reduction from [F1 ⊕ F2]�∗ -satisfiability
to [F1]�∗ -satisfiability is defined as follows:

• g(ϕ) = ϕ′ if F2 contains reflexive and irreflexive worlds,
• g(ϕ) = ϕ′ ∧ �∗ r if all worlds in F2 are reflexive, and
• g(ϕ) = ϕ′ ∧ �∗¬r if all worlds F2 are irreflexive. �
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There is one case left: both F1 and F2 contain a rooted subframe of size two, but not
of size three. We will first look at [F1 ⊕ F2]�∗ -satisfiability.

Theorem 5.3 Let F1 and F2 be closed under isomorphism and disjoint union. If F1

and F2 contain a rooted subframe of size two, but do not contain a rooted subframe
of size three, then [F1 ⊕ F2]�∗ -satisfiability is PSPACE-complete.

The main idea of the proof is the following observation. In a way to be made more
precise below, the situation is very close to linear temporal logic with operators “next-
time,” and “always in the future,” the satisfiability problem of which is PSPACE-
complete (Sistla and Clarke [25]).

Theorem 5.4 ([25]) Let N denote the natural numbers, and let S be the successor
relation on the natural numbers, i.e., S = {〈i, i +1〉 | i ∈ N}. [〈N, S〉]�∗ -satisfiability is
PSPACE-complete, even if we look only at formulas of the form ϕ1 ∧�∗ϕ2, with ϕ1, ϕ2

�∗ -less.

Proof: By careful inspection from the proof of Sistla and Clarke [25] and the re-
alization that their conjunct �∗ (accepting state) can be replaced by the equivalent

�∗ (halting state → accepting state). Alternatively, note that the EXPTIME-hardness
proof for propositional dynamic logic from Fischer and Ladner [7] degenerates to a
PSPACE-hardness proof for [〈N, S〉]�∗ -satisfiability and that their proof has the right
formula property. �

Lemma 5.5 Let F1 and F2 be closed under isomorphism and disjoint union. If F1

and F2 contain a rooted subframe of size two but do not contain a rooted subframe
of size three, then [F1 ⊕ F2]�u and [F1 ⊕ F2]�∗ -satisfiability are PSPACE-hard.

Proof: We will construct polynomial time computable functions f and g such that
for all formulas ϕ of the form ϕ1 ∧�∗ϕ2, with ϕ1, ϕ2 �∗ -less, ϕ is [〈N, S〉]�∗ -satisfiable
if and only if f (ϕ) is [F1 ⊕ F2]�u -satisfiable if and only if g(ϕ) is [F1 ⊕ F2]�∗ -
satisfiable. Our construction is close to the proof that S5 ⊕ S5-satisfiability is
PSPACE-hard from Halpern and Moses [9].

Suppose ϕ is [〈N, S〉]�∗ -satisfiable. Without loss of generality, we assume that
ϕ is satisfiable in world 0. The frame 0R11R22R13R2 . . . is a skeleton subframe of
F1 ⊕ F2. This frame is very close to 〈N, S〉. Our reductions will simulate the satisfy-
ing 〈N, S〉 model by a frame that contains this skeleton subframe in the following way.
We will use R1 R2 to simulate S, and we will let world i in the satisfying model cor-
respond to world 2i in the F1 ⊕ F2 frame. Let F = 〈W, R1, R2〉 be an F1 ⊕ F2 frame
that contains 0R11R22R13R2 . . . as a skeleton subframe. Note that every world in F
has at most one nonreflexive R1 successor and at most one nonreflexive R2 successor.

We will use new propositional variables peven to denote that a world is even and
podd to denote that a world is odd. Define ψ′ as follows on formulas with � as only
modal operator.

p′ = p; (¬ψ)′ = ¬ψ′; (ψ ∧ ξ)′ = ψ′ ∧ ξ′;
(�ψ)′ = peven → �1 (podd → �2 (peven → ψ′)).

Define reductions f and g as follows:

f (ϕ1 ∧ �∗ϕ2) = ϕ′
1 ∧ �u (peven → ϕ′

2) ∧ peven∧
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∧�u (¬(podd ∧ peven) ∧ (peven → �1 podd) ∧ (podd → �2 peven))

g(ϕ1 ∧ �∗ϕ2) = ϕ′
1 ∧ �∗ (peven → ϕ′

2) ∧ peven∧
�∗ (¬(podd ∧ peven) ∧ (peven → �1 podd) ∧ (podd → �2 peven))

Let M = 〈N, S, π〉 be a model such that M, 0 |= ϕ, and let F = 〈W, R1, R2〉 be the
F1 ⊕ F2 frame defined above. Define M̂ = 〈F, π̂〉 such that for all i ∈ N and all propo-
sitional variables p, M, i |= p if and only if M̂, 2i |= p, and such that for all w ∈ W ,
M̂,w |= peven if and only w ∈ N and w is even, and M̂,w |= podd if and only w ∈ N

and w is odd. Then, for all i ∈ N and all formulas ψ with � as only modal operator,
M, i |= ψ if and only if M̂, 2i |= ψ′. In particular, M̂, 0 |= ϕ′

1 and M̂, 2i |= ϕ′
2 for all

i ∈ N. It follows immediately that M̂, 0 |= f (ϕ) and M̂, 0 |= g(ϕ).
It remains to show that if f (ϕ) is [F1 ⊕ F2]�u -satisfiable or g(ϕ) is [F1 ⊕ F2]�∗ -

satisfiable, then ϕ is [〈N, S〉]�∗ -satisfiable. Let M̂ = 〈W, R1, R2, π̂〉 and w0 ∈ W be
such that M̂,w0 |= f (ϕ) or M̂,w0 |= g(ϕ) and 〈W, R1, R2〉 ∈ F1 ⊕ F2. By definition
of f and g, there exists a sequence w0,w1,w2,w3, . . . of (not necessarily distinct)
worlds in W such that M̂,wi |= podd if and only if i is odd, and M̂,wi |= peven if and
only if i is even. Since F1 and F2 do not contain generated subframes of size larger
than two, this sequence is unique. Define M = 〈N, S, π〉 so that M, i |= p if and only
if M̂,w2i |= p. A simple induction will show that M, 0 |= ϕ as required. �
To finish the proof of Theorem 5.3, it remains to show that [F1 ⊕ F2]�∗ -satisfiability
is in PSPACE.

Lemma 5.6 Let F1 and F2 be closed under isomorphism and disjoint union. If F1

and F2 have rooted subframes of size two, but not of size three, then [F1 ⊕ F2]�∗ -
satisfiability is in PSPACE.

The proof is not that hard, but involves a lot of messy encoding details. This is often
the case in PSPACE upper bound proofs, but especially so in this case, since we have
to prove the lemma for a whole bunch of logics at the same time.

From Lemma 4.3, we may assume that F1 ⊕ F2 is closed under generated sub-
frames. Suppose ϕ is satisfiable in world w on the F1 ⊕ F2 frame 〈W, R1, R2〉. Every
world has at most one R1 successor other than itself, and at most one R2 successor
other than itself. Also, since ϕ contains only �1 ,�2 , and �∗ as modal operators, ϕ will
still be satisfied if we restrict the frame to the set of worlds reachable from w.

From these observations, it follows that ϕ is [F1 ⊕ F2]�∗ -satisfiable if and only
if ϕ is satisfiable in the root of a generated F1 ⊕ F2 frame with an underlying skeleton
of the form depicted in Figure 2, where both branches can be finite or infinite.
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1

2
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Figure 2:
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We will call the class of frames of this form F2la (for two linear alternating). Note that
the extra edges needed to turn an F2la frame into a generated F1 ⊕ F2 frame are all
“local,” i.e., an extra 1 (2) edge can only be a reflexive edge or a symmetric backward
edge, that is, a 1 (2) edge connecting two worlds that are already connected by a 1 (2)
edge in the skeleton.

As a first step, we will show that satisfiability with respect to linear alternating
frames is in PSPACE. That is, satisfiability with respect to finite and infinite frames
of the form 0R11R22R13R24R15R2 . . .. We will use this result to show that F2la-
satisfiability is in PSPACE, and then, finally, prove Lemma 5.6.

Lemma 5.7 Let Fla be the class of frames 〈W, R1, R2〉, where W a prefix of N,
R1 = {〈2i, 2i + 1〉 | i ∈ N, 2i + 1 ∈ W}, and R2 = {〈2i + 1, 2i + 2〉 | i ∈ N, 2i + 2 ∈
W}. [Fla]�∗ -satisfiability is in PSPACE.

We will use the fact that satisfiability with respect to finite and infinite frames of the
form 0R1R2R3R4R5R . . . is in PSPACE.

Lemma 5.8 [{〈W, S〉 | W prefix of N and S = {〈i, i + 1〉 | i + 1 ∈ W}]�∗ -satisfi-
ability is in PSPACE.

Proof: Immediate from Lemma 4.8 and from Sistla and Clarke [25] as stated in The-
orem 5.4. �
Proof of Lemma 5.7: First suppose ϕ is Fla-satisfiable. Let M = 〈W, R1, R2, π〉,
where W is a prefix of N, R1 = {〈2i, 2i+1〉 | i ∈ N, 2i+1 ∈ W}, and R2 = {〈2i+
1, 2i+2〉 | i ∈ N, 2i+2 ∈ W}, and suppose that M, k |= ϕ for some k ∈ W .

To encode M into a model M ′ = 〈W, S, π′〉, we will use a new propositional vari-
able f1. f1 will be true in worlds that have an R1 successor in M. Formally, we en-
code M by model M ′ = 〈W, S, π′〉 as follows: π and π′ coincide on all propositional
variables in ϕ, and M ′, i |= f1 if and only if iR1i+1. It is immediate that the modality
� plays the role of �1 in worlds where f1 holds, and the role of �2 in worlds where f1

does not hold. Furthermore, the transitive closures of corresponding frames coincide.
These observations lead to the following. Define ϕ′ by replacing all subformulas of
the form �1 ψ by f1 → �ψ′, and all subformulas of the form �2 ψ by ¬ f1 → �ψ′.
Then for all i ∈ W , M, i |= ϕ if and only if M ′, i |= ϕ′.

Not all valuations on a frame 〈W, S〉 with W a prefix of N correspond to an Fla

frame, so we still need to ensure that the linear encoding model behaves like an Fla

frame. We need to construct a formula ϕlin such that for all M ′ = 〈W, S, π′〉 with W
a prefix of N, if M ′, k |= ϕlin, then M ′ starting at k corresponds to a Fla frame, in the
sense as described above. It is easy to see that this is equivalent to the following two
conditions for all i ∈ W, i ≥ k:

• if M ′, i |= f1, then i+1 ∈ W and M, i+1 |= ¬ f1, and
• if M ′, i |= ¬ f1, then i+2 �∈ W or M, i+1 |= f1.

Define the reduction f as follows:

f (ϕ) = ϕ′ ∧ �∗ (( f1 → ♦� ∧ �¬ f1) ∧ (¬ f1 → �( f1 ∨ �⊥)).

It is easy to verify that an L�∗ formula ϕ is satisfiable on an Fla frame if and only
if f (ϕ) is satisfiable on a frame 〈W, S〉 with W a prefix of N. Since f is obviously
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polynomial time computable, it follows from Lemma 5.8 that Fla-satisfiability is in
PSPACE. �
Next, we will show that [F2la]�∗ -satisfiability is in PSPACE as well, where F2la is de-
fined after the statement of Lemma 5.6. This satisfiability problem has PSPACE writ-
ten all over it, since F2la frames consist of two Fla branches.

Lemma 5.9 [F2la]�∗ -satisfiability is in PSPACE.

Proof: First note that ϕ is F2la-satisfiable if and only if ϕ is Fla-satisfiable or ϕ is
satisfiable in the root of an F2la frame, and this root has an R1 and an R2 successor.
Since Fla-satisfiability is in PSPACE by Lemma 5.7, it remains to show that deter-
mining whether ϕ is satisfiable in the root of an F2la frame that has an R1 and an R2

successor is in PSPACE as well. We claim that this is the case if and only if there exist
subsets �,�1, and �2 of Cl(ϕ) such that

• ϕ ∈ �,

• ∀¬ψ ∈ Cl(ϕ), ¬ψ ∈ � if and only if ψ �∈ �,

• ∀ψ ∧ ξ ∈ Cl(ϕ), ϕ ∧ ξ ∈ � if and only if ψ ∈ � and ξ ∈ �,

• ∀�a ψ ∈ Cl(ϕ), �a ψ ∈ � if and only if ψ ∈ �a,

• ∀�∗ψ ∈ Cl(ϕ), �∗ψ ∈ � if and only if ψ ∈ �, �∗ψ ∈ �1, and �∗ψ ∈ �2, and

• ∧
�1 ∧ ∧

ψ∈Cl(ϕ)\�1
¬ψ ∧�1 ⊥ and

∧
�2 ∧ ∧

ψ∈Cl(ϕ)\�2
¬ψ ∧�2 ⊥ are [Fla]�∗ -

satisfiable.

Since subsets of Cl(ϕ) can be represented in space polynomial in the length of ϕ, and
[Fla]�∗ -satisfiability is in PSPACE, it follows that [F2la]�∗ -satisfiability is in PSPACE as
well. It remains to prove the claim.

First suppose ϕ is satisfiable in the root of an F2la frame, and this root has an R1

successor and an R2 successor. Let M be the model and w the world that witness this
and let w1 be the R1 successor and w2 be the R2 successor of w. Let � be the set of
Cl(ϕ) formulas satisfied in M at w, let �1 be the set of Cl(ϕ) formulas satisfied at w1,
and let �2 be the set of Cl(ϕ) formulas satisfied at w2. It is immediate that �,�1, and
�2 fulfill the requirements.

For the converse, suppose there exist sets �,�1, and �2 that fulfill the require-
ments. Let M = 〈W, R1, R2, π〉 and M ′ = 〈W ′, R′

1, R′
2, π

′〉 be two models based
on Fla frames such that W ∩ W ′ = ∅, w is the root of M, w′ is the root of M ′,
M,w |= ∧

�1 ∧ ∧
ψ∈Cl(ϕ)\�1

¬ψ ∧ �1 ⊥, and M ′,w′ |= ∧
�2 ∧ ∧

ψ∈Cl(ϕ)\�2
¬ψ ∧

�2 ⊥. Let ŵ be a new world and define M̂ as follows: M̂ = 〈W ∪ W ′ ∪ {ŵ}, R1 ∪
R′

1 ∪ {〈ŵ,w〉}, R2 ∪ R′
2 ∪ {〈ŵ,w′〉}, π̂〉. M̂ is based on a F2la frame, since w doesn’t

have an R1 successor and w′ doesn’t have an R′
2 successor. Define π̂ on all proposi-

tional variables p in ϕ such that π̂ agrees with π on worlds in W and with π′ in worlds
in W ′ and so that M̂, ŵ |= p if and only if p ∈ �. With induction, we can show that for
all ψ ∈ Cl(ϕ), M̂,w |= ψ if and only if ψ ∈ �. Since ϕ ∈ �, it follows that M̂,w |= ϕ

as required. �
Proof of Lemma 5.6: Suppose ϕ is F1 ⊕ F2-satisfiable. Then ϕ is satisfiable in the
root of a generated F1 ⊕ F2 frame F = 〈W, R1, R2〉 with an underlying F2la skeleton
F̂ = 〈W, R̂1, R̂2〉 in such a way that the extra edges needed to turn this structure into a
generated F1 ⊕ F2 frame are all “local,” i.e., an extra 1 (2) edge can only be a reflexive
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edge or a symmetric backward edge, that is, an 1 (2) edge connecting two worlds that
are already connected by a 1 (2) edge in the skeleton.

To encode the extra edges, we will use new propositional variables r1, r2, b1, and
b2. For a = 1, 2, ra will be true in worlds that are Ra reflexive, and ba will be true
in worlds that have an Ra backedge. To ensure that an F2la frame indeed encodes a
generated F1 ⊕ F2 frame, we first of all ensure that no world can have both a forward
and backward Ra edge at the same time. This is forced by the following formula:

�∗ (�a � → ¬ba).

To ensure that the F2la frame encodes a generated F1 ⊕ F2 frame, it suffices to force
that every world with no Ra backedge generates a frame in Fa. For every generated
frame F ∈ Fa, we can construct a formula ϕF that will be true exactly in those worlds
that generate F. For F = 〈{w}, R′

a〉 ∈ Fa, let ϕF be the formula encoding the situation
at w:

ϕF = �a ⊥ ∧ ra if wR′
aw ; ϕF = �a ⊥ ∧ ¬ra if ¬wR′

aw.

And for F = 〈{w,w′}, R′
a〉 a frame in Fa such that wR′

aw
′, let ϕF be the formula

encoding the situation at w:

�a � ∧ ∧
w′ R′

aw �a ba ∧ ∧
¬w′ R′

aw
¬�a ba ∧ ∧

wR′
aw

ra∧
∧∧

¬wR′
aw

¬ra ∧ ∧
w′ R′

aw
′ �a ra ∧ ∧

¬w′ R′
aw

′ ¬�a ra.

Now add the following formula for a = 1, 2.

�∗ (¬ba → (
∨

F∈Fagenerated

ϕF )).

To construct a polynomial time reduction from [F1 ⊕ F2]�∗ -satisfiability to [F2la]�∗ -
satisfiability, let ψ′ be the propositional version of ψ:

p′ = p; (¬ψ)′ = ¬ψ′; (ψ ∧ ξ)′ = ψ′ ∧ ξ′; (�a ψ)′ = p�a ψ; (�∗ ψ)′ = p�∗ψ.

Now define f (ϕ) as the conjunction of ϕ′, the frame formulas given above, and
the following formulas which force proper behavior of the new propositional vari-
ables. We first treat the case for p�a ψ for a ∈ {1, 2} and �a ψ ∈ Cl(ϕ). This is relatively
straightforward, as all Ra successors are given by R̂a and the variables ba and ra. We
treat all occurring combinations. First suppose that w R̂aw

′. If w is Ra reflexive, then
ra is true at w, and w and w′ are the Ra successors of w. If w is Ra irreflexive, then ra

is false at w, and w′ is the only Ra successor of w. This is enforced by the following
formula:

�∗ ((�a � ∧ ra → (p�a ψ ↔ ψ′ ∧ �ψ′)) ∧ (�a � ∧ ¬ra → (p�a ψ ↔ �ψ′))).

We argue in a similar way in the case that w′ R̂aw and wRaw
′, that is, ba true at w.

�∗ ((♦ba ∧ ♦ra → (♦p�a ψ ↔ ψ′ ∧ ♦ψ′)) ∧ (♦ba ∧ ¬♦ra → (♦p�a ψ ↔ ψ′))).

And if w does not have any nonreflexive Ra successors:

�∗ (¬�a � ∧ ¬ba → (p�a ψ ↔ (ra → ψ′)).
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Finally, we ensure the proper behavior of p�∗ψ for �∗ψ ∈ Cl(ϕ). For worlds with-
out backedges, the transitive closure on generated F1 ⊕ F2 frames coincides with the
transitive closure on the underlying F2la frame:

�∗ ((¬b1 ∧ ¬b2) → (p�∗ψ ↔ �∗ψ′)).

On the other hand, if w R̂aw
′ and w′ Raw, then �∗ψ holds at w if and only if �∗ψ

holds at w′:
�∗ (♦(b1 ∨ b2) → (p�∗ψ ↔ ♦p�∗ψ)).

It is easy to verify that ϕ is satisfiable in the root of a generated F1 ⊕ F2 frame
if and only if f (ϕ) ∧ ¬b1 ∧ ¬b2 is satisfiable on the underlying F2la frame. Since f
is obviously polynomial time computable, this proves that [F1 ⊕ F2]�∗ -satisfiability
is in PSPACE. �
Now that we have completely classified [F1 ⊕ F2]�∗ -satisfiability, we turn our atten-
tion to [F1 ⊕ F2]�u -satisfiability.

Theorem 5.10 Let F1 and F2 be closed under isomorphism, disjoint union, and
generated subframes. If F1 and F2 contain a rooted subframe of size two, but do
not contain a rooted subframe of size three, then [F1 ⊕ F2]�u -satisfiability is PSPACE-
complete.

Proof: From Theorem 5.3, we know that [F1 ⊕ F2]�∗ -satisfiability is in PSPACE.
Since F1 and F2 are closed under isomorphism, disjoint union, and generated sub-
frames, so is F1 ⊕ F2. Since PSPACE is closed under ≤NP

ctt reductions, the theorem
follows from Corollary 4.2. �
In the previous section, we showed that there are cases when [F1 ⊕ F2]�u -satisfiability
is harder than [F1 ⊕ F2]�∗ -satisfiability. Surprisingly, we can find an example of this
phenomenon even in the restricted case where F1 and F2 do not contain a rooted sub-
frame of size three, under the assumption that EXPTIME �= PSPACE.

Theorem 5.11 Let F1 consist of the closure under disjoint union of
�

� ���� �
��
��and let

F2 consist of the closure under disjoint union of �� �. Then [F1 ⊕ F2]�u -satisfiability
is EXPTIME-hard.

Proof: Let F̂1 consist of the closure under disjoint union of the frame
�

����� �
��
��. We

will construct a reduction from [F̂1 ⊕ F2]�u -satisfiability to [F1 ⊕ F2]�u -satisfiability.
This proves the theorem, since [F̂1 ⊕ F2]�u -satisfiability is EXPTIME-hard by Theo-
rem 5.1.

First suppose that ϕ is [F̂1 ⊕ F2]�u -satisfiable. Let M̂ = 〈W, R̂1, R2, π̂〉 and w0 ∈
W be such that M̂,w0 |= ϕ, 〈W, R̂1〉 consists of the disjoint union of

�

����� �
��
��, and

〈W, R2〉 consists of the disjoint union of �� �. The easiest way to turn 〈W, R̂1, R2〉
into an F1 ⊕ F2 frame, is by replacing all

�

����� �
��
��frames in 〈W, R̂1〉 by

�

� ���� �
��
��. That is,

we will look at model M = 〈W, R̂−1
1 , R2, π〉, where π and π̂ coincide on propositional

variables in ϕ.
What do we do with formula ϕ? The only thing changed in the model are the 1

edges, so it stands to reason that we can expect difficulties with subformulas of the

form �1 ψ. In a model of the form
�

����� �
��
��, the following hold for all �1 ψ ∈ Cl(ϕ):
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• the root satisfies �1 ψ if and only if both children satisfy ψ,
• the irreflexive child satisfies �1 ψ no matter what, and
• the reflexive child satisfies �1 ψ if and only if it satisfies ψ.

Since we are simulating
�

����� �
��
��by

�

� ���� �
��
��, we will introduce two new propositional

variables irrefψ and refψ for all �1 ψ ∈ Cl(ϕ). In the root, irrefψ will denote that the
irreflexive child satisfies ψ, and refψ that the reflexive child satisfies ψ. Note that
worlds that are roots are exactly those worlds satisfying �1 ⊥ in M, that irreflexive
children are exactly those worlds satisfying �1 �∧�1�1 ⊥ in M, and that reflexive chil-
dren are exactly those worlds satisfying �1�1 � in M. First define ψ′ inductively as
follows:

p′ = p; (¬ψ)′ = ¬ψ′; (ψ ∧ ξ)′ = ψ′ ∧ ξ′; (�2 ψ)′ = �2 ψ′; (�u ψ)′ = �u ψ′;
(�1 ψ)′ = (�1 ⊥ → irrefψ ∧ refψ) ∧ (�1�1 � → ψ′).

Extend π such that for all �1 ψ ∈ Cl(ϕ), and for all roots w ∈ W , M,w |= irrefψ if and
only if ψ′ holds in w’s irreflexive child, and M,w |= refψ if and only if ψ′ holds in w’s
reflexive child. A simple induction will show that ∀w ∈ W, ψ ∈ Cl(ϕ), M,w |= ψ′

if and only if M̂,w |= ψ.
It remains to force the proper behavior for irrefψ and refψ. That is, for all �1 ψ ∈

Cl(ϕ) and for all w ∈ W , we need to ensure that if w is a root, then irrefψ holds if and
only if the irreflexive child satisfies ψ′, and that refψ holds if and only if the reflexive
child satisfies ψ′. Reformulating this, we need to ensure that for all �1 ψ ∈ Cl(ϕ) and
for all w ∈ W , if w is an irreflexive child, then ψ′ holds if and only if w’s parent
satisfies irrefψ, and if w is a reflexive child, then ψ′ holds if and only if w’s parent
satisfies refψ. This requirement can be enforced by the following formula:

∧
�1 ψ∈Cl(ϕ)

�u (�1 � ∧ �1�1 ⊥ → (ψ′ ↔ �1 irrefψ)∧

∧(�1�1 � → (ψ′ ↔ �1 (�1 ⊥ → refψ))).

Define f (ϕ) as the conjunction of ϕ′ and this formula. It is obvious that M,w0 |=
f (ϕ).

For the converse, suppose M = 〈W, R1, R2, π〉 is a model based on an F1 ⊕
F2 frame, and suppose that M,w0 |= f (ϕ). We have to show that ϕ is [F̂1 ⊕ F2]�u -
satisfiable. We will turn M into an F̂1 ⊕ F2 frame in the same way as in the first part of
the proof. Define M̂ = 〈W, R−1

1 , R2, π〉. Then 〈W, R−1
1 , R2〉 ∈ F̂1 ⊕ F2. It remains

to show that M̂,w0 |= ϕ. We will show by induction on ψ that for all ψ ∈ Cl(ϕ) and
w ∈ W , M,w |= ψ′ if and only if M̂,w |= ψ. The crucial case is of course for �1 ψ.
We have to show that M,w |= (�1 ψ)′(= (�1 ⊥ → irrefψ ∧ refψ) ∧ (�1�1 � → ψ′)) if
and only if M̂,w |= �1 ψ. There are three situations to consider, depending on whether
w is a an irreflexive child, a reflexive child, or a root.

1. If w is an irreflexive child, then M,w |= ¬�1 ⊥ ∧ ¬�1�1 � and therefore
M,w |= (�1 ψ)′. Since w has no R−1

1 successors, it also holds that M̂,w |= �1 ψ.
2. If w is a reflexive child, then M,w |= ¬�1 ⊥ ∧�1�1 �. It follows that M,w |=

(�1 ψ)′ if and only if M,w |= ψ′ if and only if (by induction) M̂,w |= ψ. Since
w is the only R−1

1 successor of w, this is equivalent to M̂,w |= �1 ψ.
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3. Finally, suppose that w is a root. Then M,w |= �1 ⊥ ∧ ¬�1�1 �. We have to
prove that M,w |= irrefψ ∧ refψ if and only if M̂,w |= �1 ψ. Let w1 be w’s
irreflexive child, and w2 be w’s reflexive child. Then M,w1 |= �1 � ∧ �1�1 ⊥,
M,w2 |= �1�1 �, w1 R1w, and w2 R1w.
First suppose that M,w |= irrefψ ∧ refψ. Then M,w1 |= �1 irrefψ, and therefore
M,w1 |= ψ′, and M,w2 |= �1 (�1 ⊥ → refψ), and therefore M,w2 |= ψ′. Now
look at M̂. By induction, M̂,w1 |= ψ and M̂,w2 |= ψ. Since w1 and w2 are
the only worlds reachable from w by R−1

1 , it follows that M̂,w |= �1 ψ.
For the converse, suppose that M̂,w |= �1 ψ. Then M̂,w1 |= ψ and M̂,w2 |=
ψ, and, with induction, M,w1 |= ψ′ and M,w2 |= ψ′. It follows that M,w1 |=
�1 irrefψ and that M,w2 |= �1 (�1 ⊥ → refψ). It is immediate that M,w |=
irrefψ ∧ refψ. �

5.1 General join So far, we have investigated what happens with the complexity if
we add �u or �∗ to the join of two uni-modal logics. The use of the join in the literature
however, is not restricted to this simple case. We will now investigate to what extent
our results for the join of two uni-modal logics go through for the join of an arbitrary
number of uni-modal logics.

Let � be a prefix of N
+ of size at least two. As before, we will look at the satisfia-

bility problem with respect to a class of frames. For {Fi}i∈� classes of frames, the join
of {Fi}i∈�, denoted by

⊕
i∈� Fi, consists of the frames 〈W, {Ri}i∈�〉 such that for all

i ∈ �, 〈W, Ri〉 ∈ Fi. We will look at the complexity of [
⊕

i∈� Fi]�u and [
⊕

i∈� Fi]�∗ -
satisfiability.

As pointed out in Fine and Schurz [6] and Hemaspaandra [14], a problem is that
the permutation of the Fi’s can have an impact on the complexity. In fact, as pointed
out in [6], it can be the case that the join of decidable logics is undecidable. Consider
for instance the following example. Let A be an arbitrary subset of N

+, and let � =
N

+. For all i ∈ N
+, let Fi consist of the closure under disjoint union of the reflexive

singleton if i ∈ A, and of the closure under disjoint union of the irreflexive singleton if
i �∈ A. Obviously, for all i ∈ N

+, Fi-satisfiability is in NP. Furthermore, every frame in⊕
i∈N

+ Fi consists of the disjoint union of singletons. In this sense, the join is trivial,
but A is reducible to

⊕
i∈N

+ Fi-satisfiability, by λi.�i �.
To avoid this problem, we will restrict the choice of the classes of frames {Fi}i∈�

in such a way that the permutation of the Fi’s does not contribute to the complexity.
We want these restrictions to be reasonable, in the sense that the logics encountered
in the literature should satisfy these restrictions. The problem sketched above can in-
formally be stated as follows: given i, determining Fi should not contribute to the
complexity. Note that this problem only occurs when � is infinite. We will ensure
that there exist a finite number of classes of frames such that for every i ∈ �, Fi-
satisfiability is isomorphic to the satisfiability problem with respect to one of these
classes, and that these isomorphisms can be computed in polynomial time. Formal-
izing the above, we obtain the following.

Definition 5.12 Let � be a prefix of N
+, and for every i ∈ �, let Fi be a class of

frames. We call {Fi}i∈� well-behaved if

1. for all i, Fi is nonempty and closed under isomorphism and disjoint union, and
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2. there exist i1, . . . , ik ∈ � and a polynomial time computable function f from
� to {i1, . . . , ik} such that for all i ∈ �, Fi-satisfiability is isomorphic to Fi j -
satisfiability by f .

Under these restrictions, we obtain the following general analog of the results from
earlier in this section.

Theorem 5.13 Let � be a prefix of N
+ of size at least two, and for all i ∈ �, let Fi

be a class of frames such that {Fi}i∈� is well-behaved in the sense of Definition 5.12.
Then we are in one of the following four cases.

1. There exist two distinct indices i, j ∈ � such that Fi contains a rooted sub-
frame of size three, and F j contains a rooted subframe of size two. In this case,
[
⊕

i∈� Fi]�u -satisfiability and [
⊕

i∈� Fi]�∗ -satisfiability are EXPTIME-hard.

2. There exist three distinct indices i, j, k ∈ � such that Fi, F j, and Fk have rooted
subframes of size two. In this case, [

⊕
i∈� Fi]�u -satisfiability and [

⊕
i∈� Fi]�∗ -

satisfiability are EXPTIME-hard.

3. There exists an index i ∈ � such that for all j ∈ � with j �= i, every frame in
F j consists of the disjoint union of singletons. In this case, [

⊕
i∈� Fi]�u -satis-

fiability is polynomial time reducible to [Fi]�u -satisfiability, and [
⊕

i∈� Fi]�∗ -
satisfiability is polynomial time reducible to [Fi]�∗ -satisfiability.

4. There exist two distinct indices i, j ∈ � such that Fi and F j are closed under
disjoint union, contain a rooted subframe of size two, but not of size three, and
for all k ∈ � with k �= i, j, every frame in Fk consists of the disjoint union of sin-
gletons. In this case, [

⊕
i∈� Fi]�∗ -satisfiability is PSPACE-complete. If Fi and

F j are also closed under generated subframes, then [
⊕

i∈� Fi]�u -satisfiability
is PSPACE-complete.

Proof Sketch

1. This case follows with the same argument as Theorem 5.1.
2. In this case, Fi ⊕ F j has a rooted subframe of size three, and Fk has a rooted

subframe of size two. The claim follows with the same argument as Theo-
rem 5.1.

3. For this case, we can follow the construction of Theorem 5.2. For every j ∈
�, j �= i, we will encode R j by a new propositional variable r j. Define ϕ′ by
replacing all subformulas of the form �j ψ in ϕ by (r j → ψ′) for all j ∈ �, j �= i.
ϕ′ can be computed in polynomial time.
Again, our reductions need to restrict the valuation of the r j’s in an appropriate
manner. The situation is different for �u and �∗ , and we will start with �u . We
claim that f is a polynomial time reduction from [

⊕
i∈� Fi]�u -satisfiability to

[Fi]�u -satisfiability, where f is defined as follows:

f (ϕ) = ϕ′ ∧ ∧{�u r j | j �= i,�j occurs in ϕ and all worlds in F j are
reflexive} ∧∧{�u ¬r j | j �= i,�j occurs in ϕ and all worlds in F j are
irreflexive} ∧∧{�u r j | j �= i,�j occurs in ϕ, F j contains no irreflexive
frames} ∧
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∧{�u ¬r j | j �= i,�j occurs in ϕ, F j contains no reflexive
frames}.

That f is reduction follows with the same argument as in Theorem 5.2. That
f is polynomial time computable follows from clause 2 of well-behavedness.

Similarly, polynomial time reduction g from [
⊕

i∈� Fi]�∗ -satisfiability to
[Fi]�∗ -satisfiability is defined as follows:

g(ϕ) = ϕ′ ∧ ∧{�∗ r j | j �= i,�j occurs in ϕ and all worlds in F j are
reflexive} ∧∧{�∗¬r j | j �= i,�j occurs in ϕ and all worlds in F j are
irreflexive}.

4. Finally, note that if we are not in case 1, 2, or 3, then there exist exactly two
indices i and j in � such that Fi and F j contain a rooted subframe of size two
and not of size three, and for all k �= i, j, Fk consists of the disjoint union of sin-
gletons. By the construction from case 3, [

⊕
i∈� Fi]�u -satisfiability is polyno-

mial time reducible to [Fi ⊕ F j]�u -satisfiability, and [
⊕

i∈� Fi]�∗ -satisfiability
is polynomial time reducible to [Fi ⊕ F j]�∗ -satisfiability. The claim now fol-
lows from Theorems 5.3 and 5.10.
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