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Abstract  Weinvestigate the effect on the complexity of adding the universa
modality and the reflexive transitive closure modality to modal logics. Fromthe
examples in the literature, one might conjecture that adding the reflexive tran-
sitive closure modality is at least as hard as adding the universal modality, and
that adding either of these modalities to amulti-modal logic where the modali-
tiesdo not interact can only increase the complexity to EXPTIME-complete. We
show that the first conjecture holds under reasonable assumptions and that, ex-
cept for a number of special cases which we fully characterize, the hardness
part of the second conjectureistrue. However, the upper bound part of the sec-
ond conjecture fails miserably: we show that there exists a uni-modal, decid-
able, finitely axiomatizable, and canonical logic for which adding the univer-
sal modality causes undecidability and for which adding the reflexive transitive
closure modality causes high undecidability.

1 Introduction Theuse of modal logicsin fields like distributed systems, compu-
tational linguistics, and program verification has raised new questions about modal
logics. For instance, although a logician might be satisfied by knowing that a logic
isdecidable, atypical “user” might want more precise information, for example how
decidablethat logicis, or, in other words, what the (computational) complexity of that
logicis. These applied modal logics are usually multi-modal and contain modalities
that are powerful enough to make global statements about models. The simplest form
of such amodality isthe universal modality [, with semantics Mg istrueif and only
if ¢ istruein every world of the model (see, for example, Goranko and Passy [8]).
Another powerful modality which occursin various guisesin the literature isthe re-
flexive transitive closure modality, which we will denote by (. This modality occurs
for instance in tempora logic, where the “aways’ operator is the reflexive transi-
tive closure of the “nexttime” operator, and in logics of knowledge, where “common
knowledge” is defined as the reflexive transitive closure of the S5 logics that model
the processors.

In this paper, we investigate what happens to the complexity of the satisfiabil-
ity problem of a (multi-) modal logic when we add [@ or . If modalities interact,
adding [@ can increase the complexity of the satisfiability problem from decidable
(even from as low as NP) to undecidable and adding ¥ can boost the complexity
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to highly undecidable, typically to ©1-complete. This occurs for example in two-
dimensional logic (Harel [[I1]); various logics of knowledge and time with the prop-
erty that processors do not forget, or do not remember (Hal pern and Vardi [[10], Lad-
ner and Reif [[19], Spaan [26]), and extended attribute value formalisms that allow
identification of points (Blackburn and Spaan [[4]). The situation is usually alot bet-
ter if the modalities do not interact. From the literature, we know that adding [@ or
to such multi-modal logics typically leads to ExPTIME-complete satisfiability prob-
lems. To state but afew examples:

e various logics for knowledge with an operator C for Common Knowledge
(Halpern and Moses [Q]),

propositional dynamic logic (lower bound in Fischer and Ladner [, upper
bound in Pratt [22]),

deterministic propositional dynamic logic (lower bound in Parikh [21], upper
bound in Ben-Ari, Halpern, and Pnueli [2]),

branching time logics (Emerson and Halpern [[5]), and

various attribute value description formalisms with the ability to express gen-
eralizations and recursive constraints (Blackburn and Spaan [E]]).

From these examples, one might conjecture that adding [@ or [# to alogic in which
themodalitiesdo not interact can only increase the complexity to EXPTIME-compl ete.
However, in Section3] we will refute this conjecture. Wewill show that thereexistsa
uni-modal logic such that its satisfiability problemisin NP, but adding [ causes un-
decidability and adding [ causes high undecidability. We also show that there exists
auni-modal, finitely axiomatizable, decidable, and canonical logic for which adding
causes undecidability (thereby refuting a conjecture from Goranko and Passy [[8]),
and for which adding [ causes high undecidability.

Section[4lwill be devoted to the relationship between adding [ and adding
to alogic. Intuitively, [ is at least as hard as [@], and in this case, our intuition is
correct. We will show that under reasonable assumptions, the complexity of alogic
with [ isat |east as high asthe complexity of thislogic with [@. Weal so show that our
“reasonable assumptions’ are really necessary: if we drop any of our assumptions,
adding @ can be arbitrarily harder than adding (=.

Finally, in Section5] wewill show that thereis areason why EXPTIME shows up
so often in this context. We show that, except for anumber of special caseswhichwe
fully characterize, adding [@ or (& to amulti-modal logic with independent modalities
causes EXPTIME-hardness.

This paper isrelatively self contained. In particular, all the necessary concepts
from modal logic are presented in Section[2] However, we do assume that the reader
understands what is meant by such complexity classesas NP, PSPACE, EXPTIME, and
so on. Such definitionsmay befound in Balcazar, Diaz, and Gabarro [[1], for example.
For further information on modal logic, the reader is referred to Hughes and Cress-

well [15].

2 Preliminaries

2.1 Syntax Thelanguage L = L(l) is alanguage of propositional modal logic
with an | indexed set of modal operators (@ for al a € 1). We assume a countable
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infinite set of propositional variables P. Theset of £ formulasisinductively defined
asfollows: pisan L formulafor every p € P, andif ¢ and ¢ are L formulas, then
soare—¢ and ¢ A ¥, and [@y for al a € |. We define the other boolean connectives
V,—, <>, T,and L intheusua way. In addition, we define &g := —[@—¢ for each
aecl. If|l| =1 weusualy usedand §.

Theclosure of ¢, denoted by Cl (¢), istheleast set of formulas containing ¢, and
closed under subformulas and single negations, that is, if ¢ € Cl(¢) and v is not of
the form =&, then =y € Cl(¢). Since the number of subformulas of ¢ isat most |¢|
(every connective and propositional variable in ¢ corresponds to a subformula of ¢
and vice versa), the size of Cl(¢) is at most twice the length of ¢.

2.2 Semantics An | frameisatuple F = (W, {Ra}aci) Where W is a nonempty
set of possible worlds, and for every a € |, Ry isabinary relation on W. A frame
F isrooted at wy if every world w is reachable from wq. We call wq the root of F.
An £ model isof theform M = (W, { Ra}ac|, ) suchthat (W, {Ra}aci) isan | frame
(we say that M is based on thisframe), and 7 : P — Pow(W) isavaluation, that is,
w € w(p) meansthat pistrueat w. For ¢ an £ formula, wewill write M, w = ¢ for
@ istrue or satisfied at w in M. The truth relation |= is defined with induction on ¢
in the following way:

e M,wkE pifandonly if w e z(p) for pe P,

e M, wkE —¢ifandonlyif not M, w = ¢,

e MwkEopayifandonlyif M, w =¢and M, w = v, and
e M, w = [@pif andonly if Yuw' € W(wRaw’ = M, w’ = ¢).

The notion of satisfiability can be extended to models and frames in the following
way: ¢ issatisfiedin M if M, w = ¢ for someworld w in M, and ¢ is satisfiable in
F (F-satisfiable) if ¢ issatisfied in M for some model M based on F.

In the sequel we WI|| talk about substructures of aframe F = (W, {Ra}a€|)
We'll say that F= (W {Ra}a€|) isasubframe of F if W C Wand Ra=Ry [Wfor
adlae . Well say that F |saskeleton subframe of F if W C W and R;,l CRy W
forall ac |. Finally, we'll say that F isagenerated subframeof F if F isasubframe
of F and W is closed under all accessibility relations, that is, for all i € Wandae |,
if Raw, then w € W.

We usually look at satisfiability and validity with respect to a class of frames
F instead of a single frame or model. All definitions on frames carry over to
classes of frames in the obvious way: we say that ¢ is satisfiable with respect to
F (F-sdtisfiable) if ¢ is satisfiable in some frame F € ¥, and that F is a (skele-
ton/rooted/generated) subframe of aclass of frames 7 if F isa (skeleton/rooted/gen-
erated) subframe of someframe F € .

2.3 Adding @ and For £ amodal language, let be the language obtained
from L by adding ], and let L5 be the language obtained from L by adding [x. For
F = (W, {Ra}ac!) an | frame, define Fg as (W, {Ra}aci, Ry) suchthat Ry = W x W,
and Fi as (W, {Ra}aci, Ry) suchthat R, = (Uaei Ra)*. (R* isthereflexivetransitive
closure of R; formally: Ry =“=", R™! = R; R, where “;” is relation composition,
and R* = U,y R™.) When no confuson arises, we will |dent|fy Fg and Fg with F.
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For F aclass of frames, we define 7 asthe class of al frames Fg such that F € 7,
and #5 astheclass of al frames F suchthat F € 7.

3 Upper bounds In this section, we look at the following problems: given aclass
of frames F and an upper bound on the complexity of F-satisfiability, what can we
say about fg-satisfiability and F-satisfiability? As mentioned in the introduction,
the answer is: “not much.”

Asisshown in Harel [11], tiling problems provide a particul arly elegant method
of proving lower bounds for modal logics, so we will use such an approach here to
prove our lower bounds. A tile T isa 1l x 1 square fixed in orientation with colored
edges right(T), left(T), up(T), and down(T) taken from some denumerable set. A
tiling problem takes the following form: given afinite set of 7 of tiles, can we cover
acertain part of theinteger grid Z x Z, using only copies of tilesin 7', in such away
that adjacent tiles have the same color on the common edge, and such that the tiling
obeys certain constraints? There exist completetiling problemsfor many complexity
classes (see for example Lewis[[20] and van Emde Boas [27]). In the proofs that fol-
low, we show undecidability for Fg-satisfiability by constructing a reduction from
a coRE-complete tiling problem, and high undecidability for 7g-satisfiability by a
reduction from a Ei-complete tiling problem.

3.1 Universal modality

Theorem 3.1 There exists a uni-modal frame F such that F-satisfiability is NP-
complete, while Fg-satisfiability is undecidable.

Proof: Let F= (N x N, S), where N denotes the natural numbers and Sisthe suc-
cessor relation in the grid, i.e. S= {{((n, m), (n+1, m)), ((n, M), (n,M+1)) [ n,me
N}. We will show that F-satisfiability is NP-complete, but F-satisfiability is coRE-
hard.

First notethat F-satisfiability is certainly NP-hard, asit is a conservative exten-
sion of propositional satisfiability. To provethat F-satisfiability isin NP, suppose that
pissatisfiedin (N x N, S). Wemay assumethat ¢ issatisfied at the origin. Now let k
bethe modal depth of ¢. Then al relevant worlds (n, m) can be reached from the ori-
gininat most k steps. Thus, satisfiability of ¢ can be verified by looking at the frame
{n,m) | n+m=<Kk}, S| {{n,m) | n+m < k}), which is obviously of polynomial
sizein the length of ¢.

It remains to show that fg-satisfiability is undecidable. We will construct are-
duction from the following coRE-complete tiling problem N x N tiling (Berger [B],
Robinson [23]) to Fy-satisfiability.

N x N tiling: Given afinite set 7 of tiles, can 7 tileN x N?

That is, does there exist a function t from N x N to 7 such that right(t(n, m)) =
left(t(n+ 1, m)) and up(t(n, m)) = down(t(n, m+ 1))?
Let 7 ={Ty,..., T} beaset of tiles. We will construct aformula ¢4 such that

T tilesN x N if and only if ¢ is Fg-satisfiable.

To encode the tiling, we use apropositional vector tilee {1, ..., k}. Thatis, tile con-
sists of sequence of "logk™ propositional variables and the values of these proposi-
tional variables will be interpreted as an integer between 1 and k. We need to ensure
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that adjacent tiles have the same color on their common edges. In order to enforce
this, we have to be able to differentiate between upward and rightward successors.
Thiswould be easy if we knew the coordinates at each world, but as the relevant part
of the frame can be infinite, this would take too much space. Let S, and S, stand for
therightward and upward successor relations respectively. Then we want the follow-
ing to hold:

e S=§5US,

e S and Sy are deterministic, and

e 55 =S/S.
If Scand S fulfill these conditions, thenitiseasy to seethat one of therelationsisthe
upward successor relation on N x N, and the other the rightward successor relation
onN x N, whichiswhat we were after. Therequirement that S,Sy = S, S, seemsthe
most difficult, for how can we force this?

Thisbecomesclear if welook at the 2-step successors of aworld w. Supposethat
every world hasan S and an S, successor. Let wSSqwxx, wScSywyxy, wSyScwyx,
and wS; Sywyy. Since every world has exactly three 2-step successors, we know that
two of these worlds must be equal. We will ensure that the only worlds that can be
equal are wyy and wyx, whichimpliesthat S,S, = S, S;. We use propositional vector
w3 € {0, 1, 2} and ensure that the values of w3 in wyy and wyy are the same, while
the values of w3 in wyy, wyy and wyy are al different. Thisis easy: intuitively, we
let taking an S step correspond to adding 2 mod 3 to the value of w3, and taking an
S, step to addition of 1 mod 3. Thenitisimmediate that, for a the value of w3 at w,
the value of w3isa+ 1mod 3 at wyx, a+2mod 3 a wyy, and a at wyy and wyy.
Formally, define

o Sii=Upcaal(w, w') € S| M, w = (w3=a)and
M, v & (w3 = (a+2) mod 3)}, and

¢ S = Upcgrl(w, w') € S| M, w = (w3=a) and
M, w' &= (w3 = (a+ 1) mod 3)}.

And define the corresponding modalities

o Y= A\io((w3=a) — O((w3=(a+2) mod3) — ), and
o MY = A\iy((w3=a)— O((w3=(a+1) mod 3) — ¥).

Recall that we need to forcethat S= S,U S, S, and S, are deterministic, and
SSy = §;Si. It suffices to force the first two requirements, since these imply that
every world has an S, and an S successor, which in turn implies, by the argument
given above, that S,S, = S;S;. Thus we only have to force that S= S,U S, and
S« and S, are deterministic. Note that by definition, S, and S, are contained in S,
Now look at the following formula, which states that every world has an S, and an
Sy successor:

Psucc = (BT APT).
Since S, and S, are by definition disjoint, and every world has exactly two S suc-

cessors, this formulaforcesthat S= S U Sy and S, and S, are deterministic. We
conclude that if ¢gcc is satisfied on amodel based on Fg, then one of S, S, isthe
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upward successor relation on N x N, and the other the rightward successor relation
on N x N. Forcing atiling is now trivial. Define ¢y and ¢y as follows.

k
ox=m\(tle=i)— \/  mtile=])
i=1 right(Ty)=left(T;)

k
gy=0/\(dile=i)—~ \/  [dile=)))
i=1 up(Ti)=down(Tj)

Putting all this together, we define ¢4 to be pgicc A @x A @y. We will prove that
T tilesN x N if and only if ¢ is Fg-satisfiable. The left to right direction follows
from the arguments given above.

For the converse, supposet : N x N — 7 isatiling of N x N. We construct the
satisfying model for ¢+ asfollows: M = (N x N, S, 7} such that:

e M, (n,m) = (tile=i) wheret(n,m) =T, and
e M, (nmM) = (w3=(2n+ m) mod 3).

Clearly, ¢4 holds at any world (n, m) in M. This proves that Fg-satisfiability is
coRE-hard, and therefore undecidable. O

One could argue that frame F of Theorem[3.1§s an unfair example, because it con-
tains so much structure. In particular, F isnot even definable by afirst order sentence.
However, the next theorem showsthat thisis not the deciding factor. Even for univer-
sal first order definable classes of uni-modal frames, adding the universal modality to
a decidable language can cause undecidability.

Theorem 3.2 There exists a class of uni-modal frames ¥ such that:

e TF-satisfiability is decidable,

o Jg-satisfiability is undecidable,

o Fisfirst order universal, and

e T =Fr(L) for L auni-modal, finitely axiomatizable, and canonical logic.

Proof: Weneed to construct aclass F of uni-modal frames such that 7 isuniversal
first order, & = Fr (L) for L auni-modal, finitely axiomatizable, and canonical logic,
and F-satisfiability is decidable, but 7y is undecidable. The undecidability will be
proved using the reduction constructed in the proof of Theorem[3.1] that is, we will
construct ¥ insuch away that 7 tilesN x N if and only if ¢ is Jg-satisfiable. The
most difficult restriction on ¥ isthefirst order definability, for how can such a class
of frames be forced to behave like N x N? We do need some kind of diamond prop-
erty, for instance Yxyy'3z(xRy A xRy’ — yRz A y'Rz). But diamond properties are
certainly not universal first order.

However, Fy hasto behavelike N x N only if ¢ is Fg-satisfiable. What does
@succ force? That every world has an x and a y successor. Recall from the previous
proof that we used the fact that every world in N x N has two successors, and three
2-step successors. Let F bethe class of frames such that every world has at most two
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successors, and at most three 2-step successors. Then ¥ is defined by the following
universal first order sentence:

o =3 \ xRyi> \/ vi=ypAavxyz( \ xRyiRz -~ \/ z=2z).

1<i<3 1<i<j<3 1<i<4 l<i<j=4

We claim that ¥ defined this way satisfies the requirements of the theorem. We start
by proving that the reduction from the proof of Theorem [3.1]still works, that is, 7
tilesN x N if and only if ¢ is Fg-satisfiable.

The left-to-right implication follows from the proof of Theorem[3.1] If 7 tiles
N x N then ¢ is satisfiable on (N x N, S), and it is obvious that ¢v holds on this
frame, and thus ¢ is fg-satisfiable.

To seethat the converse also holds, supposethat M = (W, R, r) isamodel such
that (W, R) = ¢v and M satisfies ¢, say at wo € W. We reason in asimilar way as
in the proof of Theorem[31] Let R, and Ry correspond to modalities [x] and [y:

o Ry _U0<a<2{w w)eR|M,wkE (w3=a)and
M, w" = (w3 = (a+ 2) mod 3)}, and

¢ Ry:=Upcaeol{w, v') e RIM,w = (w3 =a) and
M, w' = (w3= (a+1) mod 3)}.

By definition, Ry and Ry are digoint. By ¢sycc, every world has an Ry and an Ry
successor. Thus, by ¢y, it follows that every world has exactly one Ry and exactly
one Ry successor. Since the second conjunct of ¢y forces that every world has at
most three 2-step successors, it follows in the same way asin proof of TheoremBT]
that RyRy = RyRx. Now define the tiling as follows:

t(n,m) =T if and only if M, w |= (tile = i) where woRYR]w.

Since w exists and is unique, t is well-defined. To show that t is indeed a tiling,
suppose t(n,m) = T and t(n+ 1, m) = T;. Let w and w’ be the corresponding
worlds, i.e. woR} Rg,”w and woR*! Rg‘w’. Then, by definition, M, w = (tile= i)
and M, w’ = (tile = j). That these tiles match follows from ¢y if we can show
that wRcw'. Since RyRy = Ry Ry, it followsthat R} R} = RYRT'Ry, and therefore,
wRyw’ asrequired. That t(n, m) and t(n, m+ 1) match isimmediate from the defi-
nition and ¢y. Thisprovesthat fy-satisfiability is coRE-hard, and thus undecidable.

Next we will show that F-satisfiability isdecidable. Let M = (W, R, &), wg €
W be such that M, wg =@ and (W, R) € 7, thatis, (W, R) &= ¢y. For kthemodal
depth of ¢, let W bethe set of worlds w in W such that woR=*w. Then M [ W, wg =
@, and (W, R) | i E v, Since ¢y isuniversal. At first sight, one might think that
(W, R) must be grid-like so that the size of W is at most (k + 1)2. But thisis not
true: consider for example the binary tree with the property that every left child has
two children, and every right child has only aleft child. Then every node has at most
two successors, and at most three 2-step successors, but the size of Wis exponential
in k. However, it is easy to see that it cannot be worse than that. Since each world
has at most two successors, the size of W is certai nly less than 2k+1 |t follows that
¢ is F-satisfiable if and only if ¢ is satisfiable on an F frame of size at most 2+,
Since ¥ isfirst order definable, verifying that aframeisin ¥ takes polynomial time
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(in the size of the frame). It isimmediate that 7-satisfiability can be determined in
nondeterministic exponential time.

To complete the proof of Theorem[3.2] we need to show that # = Fr(L) for L
finitely axiomatizable and canonical. Thisis easy to prove, for L is defined by the
following axioms:

¢ Op1AOP2AOP3 = O(PLA P2) vV O(PLA P3) VvV O(P2 A P3), and

° /\1§i§4<><>pi — V15i<j54<><>(pi AN pj)-
The claim follows directly from Sahlquist’s theorem [24] but can easily be proven
directly. To provethat ¥ = Fr(L), we need to show that for al frames F, F | ¢y if
andonly if F = L. We prove an equival ence between the second conjunct ¢y » of ¢y
(VXYZ(/\1<i<a XRYiRz) — (\/1<i - j<4 % = Z;)) and thesecond axiom of L. Proving
an equivalence between the first conjunct of ¢y and the first axiom of L can be done
by similar arguments, from which & = Fr(L) follows.

First supposethat M = (W, R, 7) and (W, R) = ¢y 2. Suppose M, w = OO p1 A
OO P2 A OO P3A OO Pa. Letwq, wo, wa, and wy besuchthat M, wi = pi and w R?w;.
By ¢v 2, itholdsthat wi = w; for somei, jwithl <i < j <4. Itfollowsthat M, w |=
OO(pi A pj) asrequired. For the converse, suppose that (W, R) isnot an ¢y » frame.
Let w, wy, ..., wy besuch that wR?w; and wi # wj fori # j. Definevaluation 7 in
suchaway that 7 (p;) = {wi}. Then M, w = /\1§i§4<><>pi but M, w = OO0 (pi A pj)
foral 1<i < j<4. Itfollowsthat (W, R) isnot an L frame.

Finally, we show that the canonical model for L hasan underlying # frame. For
supposeit doesn’'t, and suppose we viol ate the second conjunct of ¢y. Thenthereexist
maximal consistent setsT", I'1, ...,y suchthat OOy € ' = ¢ e INj, and al T are
different. Since all T'j are different, there exist formulas v such that ¢ € I'j and
Vi ¢ I'jforall j#i. Itfollowsthat

A\ 00@WiA \—~¥p eT.

1<i<4 j#i

By the second axiom of L, it followsthat for somei, jwithl <i < j<4

00Wi A \=vkAviA [\ =¥ €T
ki ket j

Butthen O L e T", which contradictsthe consistency of T'. It followsthat L iscanon-
ical. This completes the proof of Theorem[3.2] O

Goranko and Passy [8] also investigate enriching the modal language with auniversal
modality. They usean axiomatic approach. Givenauni-modal logic L, let Ly consist
of the following axioms;

e al L axioms,
o S5 axioms for the universal box, and
e interaction axiom (containment): @p — CIp.

Among other things, they investigate what properties transfer from L to L. For in-
stance, they show that if L isstrongly complete, then sois L. They also conjecture
that decidability transfers. However, thelogic L defined above provides a counterex-
ample.
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Theorem 3.3  There exists a uni-modal logic L, such that L is decidable, and Lg
is undecidable.

Proof: Let L bethelogic from Theorem[3.2] Since L is canonical, it followsthat L
isstrongly complete. By the above mentioned transfer result, Ly isstrongly complete
aswell. SinceFr(L) = ¥, itfollowsthat L isdecidable, being the the complement of
F-setisfiability (up to negating the formula), and L is undecidable, being the com-
plement of ¥y-satisfiability. O

3.2 Transitiveclosure  We will now investigate what happens to upper bounds on
satisfiability if we add [ to the language. Intuitively, & isat least as hard as [ (this
issuewill be addressed in greater detail in the next section), and thuswe would expect
the situation to be asleast asbad asin the previous subsection. Thisisindeed the case:
TheoremsB.1landB.2lalso hold if we replace [ by . Indeed, we even show that the
enriched logics are highly undecidable.

Theorem 3.4 There exists a uni-modal frame F such that F-satisfiability is NP-
complete, while Fg-satisfiability is £1-complete.

Proof: Let F beasdefined in the proof of Theorem[3.1] Then F-satisfiability is NP-
complete. It remains to prove that Fg-satisfiability is Zi—complete. The E% upper
bound isimmediate, since F is countable. For the corresponding lower bound, we
construct areduction from thefollowing £1-completetiling problem from Harel [12].

N x N recurrent tiling: Given afiniteset 7 of tiles, and atile Ty € 7, can T
tileN x N such that T; occursin the tiling infinitely
often on the first row.

That is, does there exist a function t from N x N to 7 such that: right(t(n, m)) =
left(t(n+ 1, m)), up(t(n, m)) = down(t(n, m+ 1)), and the set {i | t(i,0) = Ty} is
infinite?

Let 7 = {Ty, ..., Ty} beaset of tiles. We construct aformula ¢ such that:

(T, T1) € N x Nrecurrent tiling if and only if ¢ is Fg-satisfiable.

To ensure that ¢ forcesatiling of N x N, we use the formula ¢ constructed in the
proof of Theorem[3.2] Let @, bethe result of replacing every occurrence of [0 by
in g Then, asin the proof of Theorem[3.2] the following hold:

o if i isnot satisfiable, then 7" does not tile N x N, and
o if M, wg [= ¢/, then there exists atiling t defined as follows:

t(n,m) =T if and only if M, w |= (tile = i) where woRYR'w.

Now we force the recurrence. We will use a new propositional variable rowy,
which can only be true at worlds of the form (n, 0), and we will ensure that there
exist an infinite number of worlds where rowg holds and tile T, is placed. Define

Qrec = rowg A F[ME—rowg A (rOwo — <>3>(r0wo A (tlle: 1)))

Let ¢t be the conjunction of ¢ and grec. Itiseasy to provethat (7, T;) € N x N
recurrent tiling if and only if ¢y is Fg-satisfiable. This proves Theorem[B.4] O
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Theorem 3.5 Thereexists a class of uni-modal frames ¥ such that:

e T-satisfiability is decidable,

o Jx-satisfiability is ©1-complete,

o ‘Fisfirst order universal, and

e F =Fr(L) for L auni-modal, finitely axiomatizable, and canonical logic.

Proof: Let ¥ and L be as defined in Theorem[B.2] It remains to prove that Fz-
satisfiability is ©1-complete. The 1 upper bound is immediate, since any -
satisfiable formula is satisfiable in a countable 5 frame. The reduction from the
proof of Theorem[3.4witnesses the 1-hardness. O

4 Universal modality versus transitive closure  Intuitively, [# is a more difficult
modality than @. After all, behaves like S5, while behaves like $4, and
S5-satisfiability is NP-complete, whereas S4-satisfiability is PSPACE-complete (Lad-
ner [17]). And indeed, in all the examples that we have seen, f-satisfiability is at
least as hard as Fg-satisfiability. In this section, we will show that thisis a general
phenomenon: for well-behaved classes of frames # and many complexity classes C,
if Fg-satisfiability isin C then sois Jg-satisfiability.

We first prove that for well-behaved classes of frames F, Fg-satisfiability non-
deterministic polynomia time conjunctive truth-table (<N\F) reduces to F-satisfi-
ability, where <X is defined as follows. A < B if and only if there exists an NP
machine M with an output tape such that x € A if and only if for some computation
oninput X, M outputs y,#y-#- - - #yy, and {y1, ..., Yk} € B (Ladner, Lynch, and Sel-
man [[18]).

Theorem 4.1 If 7 is closed under isomorphism, digoint union, and generated
subframes, then F-satisfiability is <Np reducibleto Fx-satisfiability.

Corollary 4.2 Let ¥ be closed under isomorphism, disjoint union, and generated
subframes, and let C be a complexity class closed under <N? reductions. If -
satisfiability isin C then so is ¥g-satisfiability.

Corollary [2.2]is often applicable, since many complexity classes that we commonly
encounter when proving complexity for modal satisfiability problems, such as NP,
PSPACE, EXPTIME, NEXPTIME, €tfc., are closed under 5'3{5’ reductions.

Before proving Theorem[4.1] note that demandi ng closure of the class of frames
under isomorphism, digjoint union, and generated subframes is not restrictive in the
case.

Lemma4.3 If 7 isthe closure under isomorphism, disjoint union and generated
subframes of ¥, then Fg-satisfiability = Fz-satisfiability.

The situation is different for formulas. After the proof of Theorem[4.1] we will
show that it is necessary to require that the class of frames be closed under isomor-
phism, disjoint union, and generated subframes. We will show that there exist coun-
terexamples of arbitrarily high complexity if we fail to meet any of the three require-
ments.
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Proof of Theorem[4.1] We haveto use & to simulate [, but we cannot just replace
by . For avery simple counterexample, consider the class of all framesthat con-
sist of the digoint union of singletons and the formula p A @—p. Thisformulais
satisfiable on this class, but p A &—pisnot.

One of the problems is that every F-satisfiable formulais satisfiable in a
rooted generated F subframe, but that thisisnot the casefor Lg-formulas. However,
as the next lemma shows, formulas are satisfiable on generated subframes with a
small number of roots.

Lemma4.4 Let F be closed under isomorphism, digoint union, and generated
subframesand let ¢ bean L formula. If ¢ is F-satisfiable, then there exist a model
M, aninteger k < the number of Msin ¢, and worlds wq, w, ..., wg in M such that

M, wo = ¢,

M isbased on an ¥ frame,

all worldsin M are reachable from {wg, w1, ..., wy}, and

for all @y € Cl(g), if M, wg = @y, then M, w; & ¢ for some0 <i < k.

Proof: The construction is reminiscent of the proof that S5-satisfiability isin NP
from Ladner [[I7]. Thisis not surprising, since the [ operator behaves like the S5
operator. Suppose that ¢ is Fg-satisfiable. Let Mg = (Wb, {Ri}ier, 7) and wo € Wo
be such that Mg, wo = ¢ and (Wo, {Ri}ici) € F. Let @y, ™o, ..., Mk be an
enumeration of all @y € Cl(¢) that do not hold in wg. Note that k < the number of
@sin ¢. Let wy, wo, ..., wy beworlds such that Mg, w; ¥ v, let W be the set of
worlds reachable from wq, w1, .. ., wk, and let M be the restriction of Mg to W. We
claim that M fulfills the requirements of Lemmal4.4]

Since ¥ isclosed under generated subframes, M is based on an ¥ frame. We
will now show that every world in W satisfies the same set of Cl(¢) formulasin M
asin Mg. We will use induction on the structure of the formula. The only nontrivial
caseisfor M.

So suppose that w € W, and that Mg, w = [@y. Then Yw’ € Wy, Mg, w’ = .
Using theinduction hypothesisand thefact that W € W, it followsthat M, w = [@.
For the converse, suppose that Mg, w = M. By definition, for some 1 < i <k,
Mo, wi & ¥. Since wj € W, again, by induction, M, w; & v, and therefore M, w (&
@y

Fromthis, it followsimmediately that M, wg = ¢, and that for al @y € Cl(¢),
if M, wo = @y, thenfor somei, M, w; & . O

But there are more problems to replacing [@ by [, even if welook at rooted frames.
For example, the formula ®Fp A ®—p is certainly satisfiable, but QG@p A QG—p
is not satisfiable on any frame. This problem is caused by the simple fact that nested
operators behave very differently from nested [@ operators. Thisiswhy we will
first bring an formula ¢ in aform that restricts the depth of @ nesting. Thisis
pretty simple: first we introduce propositional variables pgy for al @y € Cl(g).
Now define ¢’ inductively asfollows:

P=p ) =y WA =y AL (@) =@y’ (Uy) = pay-

Note that ¢’ does not contain M. The following lemma shows how to convert ¢ into
aformula g4 Of small [@ nesting depth.
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Lemma45 ¢ is fg-satisfiable if and only if the following formula ¢qat IS Fg-
satisfiable.
era=¢ A0 N\ (pmy < @Y.
TyeCl(e)

Proof: Let M = (W, {R}icr, ) and wg € W be such that M, wg = ¢. Extend =
such that for each @y € Cl(¢p) andw e W, M, w = pgy if andonly if M, w = @y
By induction on the structure of v, it is easy to prove that for all ¢ € Cl(¢) and al
weW, M, wkEyifandonly if M, w = ¢/'. From thisit followsthat M, wg = ¢'.
It also followsthat for all w € W and for all @y € Cl(¢), M, w = pgy if and only if
M, w = @y if andonly if Vw' e W, M, w’ = ¢ if andonly if Vw € W, M, w’ = ¢/
if and only if M, w = @vy/. And thus, M, wg = ¢fat.

For the converse, let M = (W, {Ri}iei, ) and wg € W be such that M, wg =
¢at- We will show by induction that for al v € Cl(¢) and w € W, M, w = v if and
only if M, w = /. Theonly nontrivial step isfor formulas of the form [@+/. It holds
that M, w = @y ifandonly if Vw’ € W, M, w’ = v ifandonlyif Vw’ e W, M, w’ =
¥ if andonly if Vw' e W, M, w’ = @y if and only if M, w = @y if and only if
M, w = pmy if andonly if M, w = (@y)". Thus, M, wg = ¢. O

Lemma@brings an Lg formulain such aform that [@ can be simulated by [ on
rooted frames. LemmalZ.Z]limits the number of rooted frames needed to satisfy an
formula in such away that the behavior of the vy subformulas depends solely
on these roots. These two facts lead to the following lemma.

Lemmad4.6 Let 7 be closed under isomorphism, digoint union, and generated
subframes, and let ¢ be an L formula. Then ¢ is Fg-satisfiable if and only if there
existaninteger k < |gp| and setsITg, 'y, ..., [k S {¢' | ¥ € Cl(@)} U{FEY' | @y €
Cl(¢)} such that the following hold:

1 (p/ € lo,
2. for 0 <i <k, thefollowing formula is #g-satisfiable:

/\Fi A /\ YA /\ ((Pmy — EPmy) A (—Pay = E—Pmy)),
YeCl(p)\T @y eCl(e)

3. for all @y € Cl(p), pmy € I'i ifand only if Y’ € I'j for all j, and
4. for all @y € Cl(g), if ~pgy € I'i then =y’ € T'; for some j.

Now we can finish the proof of Theoreml4.1] i .e., we can show that #g-satisfiability is
<NP reducibleto f-satisfiability. Let M be anondeterministic Turing machine with
an output tape that on input ¢ guesses an integer k < |¢| and setsT'g, 'y, ..., 'k €
{v/ | v € Cl(p)} U{EHEY' | @y € Cl(p)}, verifies that conditions 1, 3, and 4 of
Lemmal4.6hold, and if so, writesthe k 4 1 formulas of condition 2 onits output tape,
separated by #'s. Since the size of Cl(¢) islinear in the length of ¢, and 1, 3, and 4
can be checked in deterministic polynomial timein the length of ¢, M witnesses the
<NP reduction from Fg-satisfiability to Fx-satisfiability. O

Proof of Lemmald6] First suppose that ¢ is Fg-satisfiable. By Lemmal45] so is

et = ¢’ A [0 Agyecip) (Pay < OY). By Lemmal4.4]there exist amodel M, an
integer k < number of @'sin gha < ||, and worlds wg, w1, ..., wg in M such that
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e M, wo = ¢fiat,

e M ishased onan ¥ frame,

e al worldsin M are reachable from {wg, wq, ..., wg}, and

e foral @y € Cl(p), if M, wg & @y, then M, w; &= ¢ forsome0 <i < k.

Let I'j be the set of relevant formulasthat are satisfied in M at wi. Thatis, I'j =

¥ | ¥ € Cl(p)and M, wi = ¢} U{#EY' | @y € Cl(p) and M, wi &= Fy'}. We
claim that these Iy’ s fulfill the requirements of the lemma.

1. ¢’ €eTg,sinceg € Cl(p) and M, wg = ¢'.

2. Firstof dl, M, wj = ATi A /\wecw)\Fi —r by definition. In addition, for
al @y € Cl(p) andw e W, M, w |= pgy <> @y’ Thisimplies that either
M, w = pmy for al w, or that M, w |= = pgy for al w. It follows immedi-
ately that for all w € W, M, w = Agycci) ((Pay = EPmy) A (—Pay —
= Py ))-

3. Let @y € Cl(¢). Notethat pgy € T if and only if M, wi = pgy if and only
if M, w; = @y’ if and only if Vw € W, M, w = v/ if and only if for al j,
M, wj = BV

4. Finaly, suppose that @y € Cl(¢) and that pgy ¢ I'i. Then M, wi = pay.,
and thus M, wj = @y’ It follows that for some j, 0 < j < k, M, wj & ¢/,
and therefore v’ ¢ I'j.

To show the converse, supposethat I'g, I'y, . . ., T'k fulfill the conditions of Lem-
mald.G] Let Mg, My, ..., My be models based on framesin F and wg, w1, .. ., wk
be worlds such that w; isaworld in M; and M, w; = AT A /\weCl«o)\Fi - A
Agyecic)((Pmy = BEPmy) A (—Pmy — E—Pmy))- Suppose that M; is gener-
ated by w; and that the models are digoint. Now, let M be the union of these models.
This model is based on an F frame as well, since ¥ is closed under digjoint union.
We will show that M, wo = ¢fiar. Thisimpliesthat ¢ is Fg-satisfiable by Lemmal4.5]
and completes the proof of Lemmaf4.6]

First of al, notethat M, wq = ¢/, since ¢’ does not contain [ or [#. It remains
to show that for all w € Wand @y € Cl(¢), M, w = pgy <> @y’. Suppose that w
is reachable from wj.

First supposethat M, w = Py By 2, M, wi = =Py — E—Pmy- It follows
that M, wi = Pmy, and by definition of M, pgy € T'i. It follows from 3 that FEy' €
I'j for al j and therefore also M, w; = Fy’ for al j. Thisimpliesthat Vu' € W,
M, w’ = v/, andthus M, w = [@v/'.

Finaly, supposethat M, w (= pgy. Since M, wi = pgy — EPmy, it follows
that M, wi = = pgy. Since Cl(gp) is closed under single negations, =y € Cl(¢p).
It follows that —pgy € T, and therefore, by 4, =y € T'j for some j. It follows that
M, wj = —y/, whichimpliesthat M, w = @/’ O
As mentioned in the beginning of this section, the requirements in Theorem B T]that
T be closed under isomorphism, digjoint union, and generated subframes are all nec-

essary. In Theorems[4.7][4.10] and wewill construct arbitrarily hard counterex-
amples for classes of frames that have exactly two of the three closure properties.

Theorem 4.7 For every set A C N, there exists a class of frames F closed un-
der isomorphism and disjoint union such that #g-satisfiability is in PSPACE and A
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in unary is polynomial-time many-one reducibleto y-satisfiability.

Proof: For ali € N, let F be the linear irreflexive frame on {0, ..., i}. That is,
F={O0,....,i},{(j, j+1)} | ] <i}). Let % bethe closure under isomorphism of F,
and let ¥ be the closure under disjoint union of the class of frames | ;.5 %-

We first show that A in unary is polynomial-time many-one reducible to y-
satisfiability. Let ¢; be the formula p A @O—p A O'T A O+ L. This formulais
exactly satisfiable in worlds that have no predecessors, that have a sequence of i suc-
cessors, and have no sequence of i + 1 successors. Since we look only at frames that
consist of the digjoint union of framesin %, ¢; isexactly satisfiablein ¥ frames that
contain aframein % asadigoint.

It followsthat ¢; is F-satisfiableif and only if aframein % occursasadigoint
insomeframein ¥ if andonly if i € A. Since ¢; isclearly computablein polynomial
timeini, this showsthat A in unary is polynomial-time many-one reducible to #-
satisfiability.

It remains to show that 7g-satisfiability isin PSPACE. First suppose A is fi-
nite. Then, by Lemmal4.3] Fe-setisfiability amounts to determining satisfiability
with respect to a finite set of finite frames, which isin NP, and therefore certainly
in PSPACE. Now supposethat Aisinfinite. Then, by Lemmal4.3] Fm-satisfiability =
[{F | | € N}]g-satisfiability. According to the following lemma, thisisin PSPACE.

O

Lemma4.8 ForallieN,letF={0,....i},{(}, j+D}j<i}h. [{FR|ieN}]g-
satisfiability isin PSPACE.

[{F |i € N}]g isvery closeto linear temporal logic with operators “nexttime,” and
“awaysinthefuture,” the satisfiability problem of whichis PSPACE-complete (Sistla
and Clarke [25]). Reformulating their result in our notation yields the following the-
orem.

Theorem 4.9 ([25])) Let N denote the natural numbers, and let S be the successor
relation on the natural numbers, i.e.,, S= {(i,i + 1) | i € N}. [(N, §)]g-satisfiability
iS PSPA CE-complete.

Proof of Lemmal[4.8] First suppose ¢ is satisfiable on F, for somek e N. Let M =
(Fg, ), and suppose that M, 0 = ¢. To encode M intoamodel M’ = (N, S, 7’), we
will use a new propositional variable w. w will be true in worlds that correspond to
worldsin M. Formally, we encode M by model M’ = (N, S, /) asfollows. = and
7’ coincide on all propositional variablesin ¢ on al worldsin W, and M’, i = w if
andonly if i isaworldin M if and only if i < k.

Define ¢ by replacing all subformulas of the form O by O(w — /), and al
subformulas of the form Fy by E(w — /). Then, foral i <k, M,i = ¢ if and
only if M, i = ¢ .

Not al valuations on a (N, S) frame correspond to a finite prefix of N, so we
still need to ensure that the encoding model behaves properly. We need to enforce
that if M", 0 = f(g), then{i | M’,i & w} isanonempty, finite prefix of N. Define
f(p)ase Aw A $—w A FH(—w — FH—w). Itiseasy to verify that ¢ is satisfiable
on F for somei € N if and only if f(¢) issatisfiableon (N, S). Since f isclearly



188 EDITH HEMASPAANDRA

polynomial-time computable, and [(N, S)]g-satisfiability isin PSPACE, this proves
that [{F | i € N}]g-satisfiability isin PSPACE. O

Theorem 4.10 For every set A C N, there existsa class of frames ¥ closed under
isomor phism and generated subframes such that 7-satisfiability isin PSPACE and
Ain unary is polynomial-time many-one reducible to #g-satisfiability.

Proof. ForallieN,let F betheframe F; from Lemmal4.8]with extraedge (0, 0),
that is, F = ({0, . LIL{O0,0 U], j+D} ] ) <i}). Let ?betheclosure under
isomorphism of F. Let T be the closure under generated subframes of (_; ? and
the digjoint union of 7 and 7 for al i € A. Note that if Alisinfinite, 7 consists
exactly of these frames and framesin the digjoint union of 7and Fiforie A jeN,
the digoint union of % and ¥ fori, j e N, and % fori e N.

We first show that A in unary is polynomial-time many-one reducible to y-
satisfiability. Let ¢; be the following formula.

PAOPAO=PAOTITAD L) AGEPAO=PAO(PAOTIT ADL)).

Theformula p A Op A O(—=p A O'1T A0 L) is satisfiable on aframe F € ¥ in
world w if and only if F containsaframein ’f. asadigoint, and w istheroot of this
digoint. The same is true for formula—p A O—p A O(p A O'"2T AO'L). Since
both formulas cannot be satisfied in the same world, it followsthat ¢; is satisfiable on
frame F € ¥ if and only if F containstwo digointsfrom 7 if and onlyifi e A. This
provesthat A in unary polynomial-time many-one reduces to Fg-satisfiability.
It remains to show that Jm-satisfiability is in PSPACE. By Lemma 3] -

satisfiability = [{FI | i € N}]-satisfiability. It followsthat ¢ is Fg-satisfiable if and
only if

e pissatisfiablewithrespectto {F |i € N}, or

e ¢ issatisfiable with respect to Fp, or

e ¢ issatisfiablein the root of ﬁ. for somei > 1.
[{Fi | i € N}]g-satisfiability isin PsPACE by Lemmal4.8] and [ﬁo].-satisfiability is
in NP It remains to show that determining if an Lg formulais satisfiable in the root

of F for somei > 1isin PSPACE. We claim that thisis the case if and only if there
exist subsetsI" and A of Cl(¢) such that:

e peT,
V=1 € Cl(p), e Tifand only if v & T,
VinEeClp),pnéeTlifandonlyify eTand& e T,
VOyr € Cl(¢), Oy e Tifandonly if e Tand ¢ € A,
VEY € Cl(p), ®y e Tifandonly if ¢ € T and Hy € A, and
ANANNyeaipna ¥ isl{F |1 € N}]g-satisfiable.
Since subsets of Cl(¢) can be represented in space linear in the length of ¢, and
[{F | i € N}]g-satisfiability isin psPaCE by Lemma[.8] it follows that 7g-satis-
fiability isin PSPACE. It remainsto prove the claim.

First suppose ¢ is satisfiablein theroot of F, for somei > 1. Let M bethe model
based on F such that M, O = ¢. Let T be the set of Cl(¢) formulas satisfied in M at
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0, and let A bethe set of Cl(¢) formulas satisfied at world 1. It isimmediate that I
and A fulfill the requirements.

For the converse, suppose there exist sets ™ and A that fulfill the requirements.
Letk> Oand M = (R, 7) besuch that M, 0 = A A A Aycgipna —%- Let M =
(I/kaﬁ). Define 7w on all propositional variables p in ¢ such that M,0 = pif and
onlyif pe Candforali <k, M,i = pif andonly if M,i+1E p. With induction,
it iseasy to show that for all ¥ € Cl(¢), M, 0 Eyifandonlyify eT'. Sincep €T,
it followsthat M, O |= ¢ as required. O

Theorem 411 For every set A C N, there exists a class of frames 7 closed under
disioint union and generated subframes such that #z-satisfiability isin PSPACE and
Ainunary is polynomial time many-one reducible to #g-satisfiability.

Proof: ForalieN, let F be the frame from the proof of Theorem[4.10] that is,
F={0,....iL {{(0,O}U{(j, j+D} | j<ih andlet G = ({0, ...,i"}, {{0/,0)}U
{j, (+DHY ] < |}) Deﬁnefastheclosureunder generated subfram&and dis-
joint union of ;. FuU {F U G. | i € A}. The same reduction as in the proof of
Theorem[4.10]reduces A in unary to f-satisfiability. In addition, Fz-satisfiability =
[{F | i € N}]g-satisfiability, which isin PSPACE by the proof of Theoremid10] O

5 Lower bounds Aswe have shownin SectionB]adding [ or & to alanguage can
increase the complexity of the satisfiability problem dramatically. In this section, we
will study the following related question of whether the complexity alwaysincreases,
and if so, whether we can give alower bound on the complexity of the resulting logic.
From the examples in the introduction, it seems that EXPTIME is a prime candidate
for multi-modal logics. Notethat we certainly cannot do better, since the satisfiability
problems for the examples in the introduction are EXPTIME-complete. As we shall
seein thissection, it isindeed the case that adding [@ or [# to almost all multi-modal
logicsforcesEXPTIME-hardness. Wewill giveacriterion which exactly characterizes
when the resulting logic will be ExXPTIME-hard.

We first look at the simplest multi-modal case: bi-modal logics with two inde-
pendent modalities. Let 7 and %, betwo classes of uni-modal frames. Thejoinof #
and %, denoted by 7 @ % istheclass {(W, Ry, Ry) | (W, Ry) € 1 and (W, Ry) €
%}. To avoid anomalies, we will require that the frame classes are closed un-
der isomorphism and disjoint union. Thisis essential, since for example { e }®
{e} = @. For therelationship between the join and its uni-modal fragments, see Fine
and Schurz [[6], Kracht and Wolter [[16], and Hemaspaandra [[[4]. We are interested
in the complexity of [ A & %] g-satisfiability and [ £ & %] g-satisfiability.

Hereis how we will proceed in this section. In Theorem[5.1] we will show that
[ & R]m-satisfiability and [ F & ] g-satisfiability are EXPTIME-hard if oneclass
of frames contains arooted subframe of size three, and the other class of frames con-
tains a rooted subframe of size two. Next, we will show in Theorem[5.2]that a class
of singleton frames does not contribute to the complexity. The remaining cases are
when both classes of frames contain a rooted subframe of size two, but not larger.
We will show that in all these cases [F @ ‘] g-satisfiability is PSPACE-complete
(Theorem[5.3), and that [ 7 @ %] m-Satisfiability is PSPACE-complete if A and ‘%
are closed under generated subframes (Theorem[E10). In the previous section, we
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showed that thereare caseswhen[ 1 & ] g-satisfiability isharder than [ & F2]m-
satisfiability. Surprisingly, we can find an example of this phenomenon even in this
very restricted case (Theorem [5.11). We end this section by showing that all these
results generalize quite well to the join of an arbitrary number of uni-modal logics
(TheoremB.13).

The EXPTIME lower bound proofs of the examples stated in the introduction are
all variations of the reduction in the lower bound proof for propositional dynamic
logic from Fischer and Ladner [[7]. Loosely speaking, this technique can be applied
if (sub)frames can look like binary trees. We won't go into the details of the proof,
but we will show in what way our frames can look like binary trees.

Theorem 5.1 Let % and %, be closed under isomorphismand disjoint union. If 7
contains a rooted subframe of size three, and % contains a rooted subframe of size
two, then [ i & ] g-satisfiability and [ # & ] m-satisfiability are EXPTIME-hard.

Proof: For case 1, note that /\.or is a skeleton subframe of 7, and e—e

is a skeleton subframe of 7. It follows that one of the two framesin Figure 1L isa
skeleton subframe of FH & 5.

LN I

2i lz ‘1
YN YN 7 1.
2i iz 2l lz ‘1 "1

Figure 1:

These structures look like binary trees. Note that it might be necessary to add
some edgesto these structuresto obtainan % @ % subframe, but all new 1 (2) edges
will be between nodes that are already connected by a 1 (2) path. It can be shown
that adding these edges will keep the structurestree-like enough to immediately apply
the ExPTIME-hardness proof of propositional dynamic logic from Fischer and Lad-

ner [[7]. a

What happens if we cannot apply Theorem[5.1P First note that if one of the classes
of frames, say %, does not contain a rooted subframe of size two, then every frame
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in % consists of the digjoint union of singletons. The following theorem states that
such a class of frames does not increase the complexity.

Theorem 5.2 Let 7 and %, be closed under isomorphism and digoint union. If
every framein % consists of the digjoint union of singletons, then

1. [h @ ] g-satisfiability polynomial-time reduces to [ ;] g-satisfiability, and
2. ['h & R]m-satisfiability polynomial-time reduces to [ ;] m-satisfiability.

Proof: Theideafor both reductionsisthe following. Let ¢ be aformula, and sup-
pose M = (W, Ry, Ry, ) isamodel based onan % & % frame. Since every frame
in %, consists of the digoint union of singletons, R, € {{(w, w) | w € W}. We will
encode R, by apropositional variabler not in ¢, that will be true in worlds that are
R, reflexive. Formally, we encode M by model M’ = (W, Ry, 7’) where 7’ and
coincide on all propositional variablesin ¢, and M’, w = r if and only if wRyw.

Define ¢’ by replacing all subformulas of theform 21y in ¢ by (r — /). Then,
M,wEgifandonly if M, w = ¢'.

It may seem that this is the desired reduction. Certainly, if ¢ is # & %-
satisfiable, then ¢’ is 7 -satisfiable. However, the converse does not necessarily hold.
For example, suppose that al framesin 7, arereflexive. Then 2L isnot F, @ P»-
satisfiable, but (r — L) is % -satisfiable.

Obviously, our reductions need to restrict the valuation of r in an appropriate
manner. The situation is different for [@ and [, and we will start with [@. We
claimthat f isapolynomial-time reduction from [ 7 & %] g-satisfiability to [ A]g-
satisfiability, where f isdefined as follows:

f(p) = ¢’ if %, contains areflexive frame and an irreflexive frame,

f(p) = ¢ A [r if al worldsin %, arereflexive,

f(p) = ¢ A@—rif al worldsin % areirreflexive,

f(p) = ¢’ A Qr if % contains areflexive frame, but no irreflexive frames,
f(p) = ¢’ A Q—r if % contains anirreflexive frame, but no reflexive frames,
and

o f(p)=¢ A QrAQrif F, contains neither reflexive frames nor irreflexive
frames.

f isobviously computable in polynomial time, and it is clear that M, w = ¢ implies
that M’, w &= f(¢), with M’ defined as before. It remains to show that if f(¢) is
[ A] g-satisfiable, then g is[ F1 & K] g-satisfiable.

Let M = (W, Ry, ) and w € W be such that (W, Ry) € # and M, w
f(p). Lee M = (W, Ry, Ry, ) where R, = {{w, w) | M/, w =r}. Then M, w = ¢.
(W, Ry, Ry) isnot necessarily an /1 @ % frame, but if wetake enough disjoint copies
of M, the resulting model will be based onan % & %, frame and will of course till
satisfy ¢.

In asimilar way, the polynomial-time reduction from [ # @ ‘] -satisfiability
to [ /h] m-satisfiability is defined as follows:

e g(p) = ¢ if F, containsreflexive and irreflexive worlds,
e g(p) = ¢ A [r if dl worldsin % arereflexive, and
e g(p) = ¢’ A H—rif al worlds % areirreflexive. O
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Thereisone case left: both F and % contain arooted subframe of size two, but not
of sizethree. We will first look at [/ @ o] m-satisfiability.

Theorem 5.3 Let % and %, be closed under isomorphismand disjoint union. If 7
and %, contain a rooted subframe of size two, but do not contain a rooted subframe
of sizethree, then [ i & ] m-satisfiability is PSPACE-complete.

The main idea of the proof is the following observation. In away to be made more
precise below, the situationisvery closeto linear temporal |ogic with operators* next-
time,” and “aways in the future,” the satisfiability problem of which is PSPACE-
complete (Sistlaand Clarke [23]).

Theorem 5.4 ([25])  Let N denote the natural numbers, and let S be the successor
relationonthenatural numbers,i.e,, S={(i,i+1) | i € N}. [(N, §]g-satisfiabilityis
PSPA CE-complete, even if we look only at formulas of theform g1 A Fg,, with ¢1, ¢
#-less.

Proof: By careful inspection from the proof of Sistla and Clarke [25] and the re-
alization that their conjunct & (accepting state) can be replaced by the equivalent
e (halting state — accepting state). Alternatively, note that the EXPTIME-hardness
proof for propositional dynamic logic from Fischer and Ladner [[Z]] degenerates to a
PSPA CE-hardness proof for [(N, S)] m-satisfiability and that their proof has the right
formula property. O

Lemmab5 Let % and % be closed under isomorphismand disjoint union. If #
and %, contain a rooted subframe of size two but do not contain a rooted subframe
of sizethree, then [ @ ]y and [ A & F] m-satisfiability are PSPACE-hard.

Proof: We will construct polynomia time computable functions f and g such that
for al formulas ¢ of theform g1 A g2, With @1, 2 [F-less, p is[(N, S)] g-satisfiable
if and only if f(¢p) is[h & FR]g-satisfiable if and only if g(¢) is[H & Plm-
satisfiable.  Our construction is close to the proof that S5 @ S5-satisfiability is
psPACE-hard from Hal pern and Moses [[9].

Suppose ¢ is[(N, S)]g-satisfiable. Without loss of generality, we assume that
¢ is satisfiable in world 0. The frame O0R;1R,2R;3R; . .. is a skeleton subframe of
F1® %. Thisframeisvery closeto (N, S). Our reductions will simulate the satisfy-
ing (N, S) model by aframethat containsthis skeleton subframeinthefollowing way.
We will use R; R, to simulate S, and we will let world i in the satisfying model cor-
respond to world 2i inthe %, & % frame. Let F = (W, Ry, Ry) bean F; & % frame
that containsOR;1R,2R.13Ry . . . asaskeleton subframe. Notethat every world in F
has at most one nonreflexive Ry successor and at most one nonreflexive R, successor.

We will use new propositional variables peyen to denote that aworld iseven and
Podd to denote that aworld is odd. Define v as follows on formulas with [J as only
modal operator.

P=p; -9 =Y (YA =Y AE
(OvY)" = Peven = M(Podd = 2 Peven = V).

Definereductions f and g asfollows:

f(p1 A He2) = <p'1 A [T Peven — ‘P/z) A Peven\
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A(—(Podd A Peven) A (Peven —> DPodd) A (Podd —> <@ Peven))

(@1 A FHe2) = w& A F(Peven — (P/z) A Peven\
(= (Podd A Peven) A (Peven = PPodd) A (Podd —> @ Peven))

Let M = (N, S 7) beamodel suchthat M, 0 = ¢, and let F = (W, Ry, R,) bethe
@ P framedefined above. Define M = (F 7) suchthat for all i € Nandall propo-
stlonal variables p, M, i = pif and only if M, 2i &= P and such that for al w e W,
M, w = Peven if and only w € N and w iseven, and M, w E Podq if and only w € N
and w isodd. Then, for aII i € Nandall formulas v with [ asonly modal operator,
M, i = v if and only if M, 2i = 1// In particular, M O|:<p1and M, 2i = ¢, for all
i € N. It followsimmediately that M,0 = f(¢) and M, 0 E g(p).

It remainsto show that if f(¢)is[ % & ,‘Fz] -satisfiable or g(¢) is[ A & ] m-
satisfiable, then ¢ is[(N, §)] g-satisfiable. Let M = (W, Ry, Ry, ) and wg € W be
suchthat M, wo = f(g) or M, wg = g(p) and (W, Ry, Ry) € 1 @ %. By definition
of f and g, there exists a sequence wq, wy, wp, ws, ... of (Not necessarily distinct)
worldsin W such that M, wi = Pogq if and only if i isodd, and M, wi = Peven if and
only if i iseven. Since % and % do not contain generated subframes of size larger
than two, this sequenceisunique. Define M = (N, S, ) sothat M, i = pif and only
if M, wyi = p. A simple induction will show that M, O = ¢ as required. O

To finish the proof of Theorem[5.3] it remains to show that [‘A & R]m-sdtisfiability
isin PSPACE.

Lemmab.6 Let % and % be closed under isomorphismand digjoint union. If %
and %, have rooted subframes of size two, but not of size three, then [ /A & K] m-
satisfiability isin PSPACE.

The proof isnot that hard, but involves alot of messy encoding details. Thisis often
the case in PSPACE upper bound proofs, but especially so in this case, since we have
to prove the lemma for a whole bunch of logics at the same time.

From Lemmal4.3] we may assumethat % @ % is closed under generated sub-
frames. Suppose ¢ issatisfiableinworld w onthe 7 & % frame (W, Ry, Ry). Every
world has at most one R; successor other than itself, and at most one R, successor
other than itself. Also, since ¢ containsonly [, [2, and [ as modal operators, ¢ will
till be satisfied if we restrict the frame to the set of worlds reachable from w.

From these observations, it followsthat ¢ is[ # @ H]m-satisfiable if and only
if ¢ issatisfiableintheroot of agenerated F & %, framewith an underlying skeleton
of the form depicted in Figure 2, where both branches can be finite or infinite.

Figure 2:
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Wewill call theclass of frames of thisform 74 (for two linear aternating). Note that
the extra edges needed to turn an %5 frame into a generated F @ % frame are al
“local,” i.e., an extral (2) edge can only be areflexive edge or asymmetric backward
edge, that is, a1 (2) edge connecting two worldsthat are already connected by a1 (2)
edge in the skeleton.

As afirst step, we will show that satisfiability with respect to linear aternating
framesisin PSPACE. That is, satisfiability with respect to finite and infinite frames
of the form OR11R,2R13R4R15R, . ... We will use this result to show that 75-
satisfiability isin PSPACE, and then, finally, prove Lemmal5.6]

Lemmab.7 Let %, be the class of frames (W, Ry, Ry), where W a prefix of N,
Ri={(2,2i+1)|ieN2+1eW,adR ={(2i+1,2+2) |ieN,2+2¢
W}. [ fa] m-satisfiability isin PSPACE.

We will use the fact that satisfiability with respect to finite and infinite frames of the
form ORLR2R3R4R5R. . . isin PSPACE.

Lemmab58 [{(W,S | W prefixof Nand S= {{i,i +1) | i + 1 € W}]g-satisfi-
ability isin PSPACE.

Proof:  Immediatefrom LemmalZ.8hnd from Sistlaand Clarke [25] asstated in The-
orem[5.4] O

Proof of Lemmal5.Z]  First suppose ¢ is %a-satisfiable. Let M = (W, Ry, Ry, 7),
where Wisaprefix of N, Ry = {(2i,2i+1) |i e N,2i+1 € W}, and R, = {(2i +
1,2i+2) |i eN,2i+2e W}, and supposethat M, k = ¢ for somek € W.

Toencode M intoamodel M’ = (W, S, =), wewill useanew propositional vari-
able f1. fy will betruein worlds that have an Ry successor in M. Formally, we en-
code M by model M’ = (W, S, ') asfollows: 7 and 7’ coincide on all propositional
variablesin g, and M’,i = f1if andonly if i Ryi+1. Itisimmediate that the modality
[ playstherole of [@inworldswhere f; holds, and therole of [2]in worldswhere f;
doesnot hold. Furthermore, the transitive closures of corresponding frames coincide.
These observations lead to the following. Define ¢’ by replacing all subformulas of
the form @y by f; — Ov/, and al subformulas of the form 21y by — f; — Ov/'.
Thenforalie W, M,i Egifandonlyif M',i = ¢'.

Not all vauations on aframe (W, S) with W a prefix of N correspond to an %,
frame, so we still need to ensure that the linear encoding model behaveslike an %5
frame. We need to construct aformula g;i,, such that for all M’ = (W, S, 7’) with W
aprefix of N, if M’, k = ¢jin, then M’ starting at k correspondsto a %, frame, in the
sense as described above. It is easy to seethat thisis equivalent to the following two
conditionsforal i € W, i > k:

o if M',i = f1, theni+le Wand M,i+1 = —fy, and
o if M',i = —fy, theni+2¢ Wor M,i+1 [ fi.

Define the reduction f asfollows:
fp) =¢' ABE((f1 = OT A=) A (=fp — O(fyvOL)).

It is easy to verify that an formula ¢ is satisfiable on an %, frame if and only
if f(e)issatisfiable onaframe (W, S) with W a prefix of N. Since f is obviously
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polynomial time computable, it follows from LemmalB.8lthat %,-satisfiability isin
PSPACE. (]

Next, we will show that [ F15] -satisfiability isin PSPACE aswell, where %5 is de-
fined after the statement of Lemmal5.6] This satisfiability problem has PsPACE writ-
ten al over it, since 74 frames consist of two %, branches.

Lemmab5.9 [ FHa]m-satisfiability isin PSPACE.

Proof: First note that ¢ is Fa-satisfiable if and only if ¢ is Jio-satisfiable or ¢ is
satisfiable in the root of an 5, frame, and this root has an R; and an R, successor.
Since F4-satisfiability isin PsPACE by Lemmal5.7] it remains to show that deter-
mining whether ¢ is satisfiable in the root of an %5 frame that hasan Ry and an R,
successor isin PSPACE aswell. We claim that thisisthe caseif and only if there exist
subsets T, I'1, and T, of Cl(¢) such that

e gel,

V=i € Cl(p), e Tifand only if v & T,
VinEeClp),pnéeTlifandonlyifyyeTand& e T,

VEay € Cl(e), @y € T'if andonly if ¢ € Ty,

VEY € Cl(p), ®y e Tifandonly if ¥ € T, Ey € 'y, and Fy € T'p, and

AT1A /\WEC|(</J)\F1 —~yA@Land AT2A /\lpec|(¢)\r2 —Y AL ae[ falm-
satisfiable.

Since subsets of Cl(¢) can be represented in space polynomial in the length of ¢, and
[ hal m-setisfiability isin PSPACE, it followsthat [ ] m-Setisfiability isin PSPACE as
well. It remainsto prove the claim.

First suppose ¢ is satisfiable in the root of an 7,5 frame, and thisroot hasan Ry
successor and an R, successor. Let M be the model and w the world that witness this
and let wq bethe Ry successor and w, bethe R, successor of w. Let I' be the set of
Cl(p) formulassatisfiedin M at w, let I'; bethe set of Cl(¢) formulas satisfied at w1,
and let ", bethe set of Cl(¢) formulas satisfied at w,. It isimmediatethat I, 'y, and
", fulfill the requirements.

For the converse, suppose there exist sets T, I'1, and T, that fulfill the require-
ments. Let M = (W, R, Ry, ) and M’ = (W', R}, R}, 7’) be two models based
on ‘%5 frames such that WN W' = &, w is the root of M, w’ is the root of M’,
M,w = AT1A Ayecaipnr, "¢ A TL, and M w' = AT2 A Aycainr, ~¥ A
L. Let @ be anew world and define M as follows: M = (WU W' U {@}, Ry U
R, U {(@, w)}, Ry U R, U {(i, w')}, ). M isbased on a %, frame, since w doesn’t
have an R; successor and w’ doesn’'t have an R}, successor. Define 7w on all proposi-
tional variables pin ¢ such that 7 agreeswith = on worldsin W and with =" inworlds
in W and so that IVT, w = pifandonlyif p e I'. Withinduction, we can show that for
al ¥ € Cl(p), M, w = yif andonly if v € T". Sinceg € T, it followsthat M, w k= ¢
asrequired. O

Proof of Lemmal5.6] Suppose ¢ is 1 @ ‘K-satisfiable. Then ¢ is satisfiable in the
root of agenerated f, & %, frame F = (W, Ry, Ry) with an underlying %, skeleton
FE = (W, Ry, Ry) insuch away that the extra edges needed to turn this structureinto a
generated f, @ %, frameareadl “local,” i.e., anextral (2) edge can only beareflexive
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edge or asymmetric backward edge, that is, an 1 (2) edge connecting two worlds that
are already connected by a1 (2) edge in the skeleton.

To encode the extraedges, wewill use new propositional variablesrq, r,, by, and
by. Fora= 1,2, ra will be true in worlds that are R, reflexive, and b, will be true
in worlds that have an R, backedge. To ensure that an %5 frame indeed encodes a
generated 7, @ %, frame, wefirst of all ensure that no world can have both aforward
and backward R; edge at the sametime. Thisisforced by the following formula:

(BT — —bg).

To ensure that the 75 frame encodes agenerated 71, & % frame, it sufficesto force
that every world with no R, backedge generates aframein %,. For every generated
frame F € 7,, we can construct aformula g that will be true exactly in those worlds
that generate F. For F = ({w}, R}) € %4, let ¢ betheformulaencoding the situation
at w:

pr=@LATIfwRw; gp = @LA-T,if ~wR w.

And for F = ({w, w'}, R,) aframein % such that wR,w’, let ¢¢ be the formula
encoding the situation at w:

AT A Nwraw @a A ALy rw ~@Pa A N\ yryw Fa
VAN /\—-ngw _‘ra AN /\w/Réw/ @ra A /\—-w’ng’ ﬁ@ra.

Now add the following formulafora =1, 2.

B-ba— ( \/ ).

Fe Fagenerated

To construct a polynomial time reduction from [ @& ] m-satisfiability to [ Foia] m-
satisfiability, let ¢ be the propositional version of :

P=p P ==y @A =y A (@) = pay: (EV) = Pay-

Now define f (¢) asthe conjunction of ¢’, the frame formul as given above, and
the following formulas which force proper behavior of the new propositional vari-
ables. Wefirst treat the casefor pgy fora e {1, 2} and @y € Cl (). Thisisrelatively
straightforward, asall R, successors are given by ﬁa and thevariablesb, and ry. We
treat al occurring combinations. First suppose that wRaw'. If wis Ry reflexive, then
raistrueat w, and w and w’ arethe R, successorsof w. If wis Ry irreflexive, thenr,
isfaseat w, and w’ isthe only R, successor of w. Thisisenforced by the following
formula:

H(@T Ara— (Pay < ¥ ADY)) A (BT A—Ta— (Pgy < 0Y))).
We argue in asimilar way in the case that w’ﬁaw and wRyw’, that is, by true at w.
E((Qba A Ora— (Opay <> ¥ A QYD) A (Oba A =0ra — (Opay < ¥))).
And if w does not have any nonreflexive R, successors:

E(=@T A—bg — (Pgy <> (ra— ¥')).
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Finally, we ensure the proper behavior of pgy for Ey € Cl(¢). For worlds with-
out backedges, the transitive closure on generated /1 @ % frames coincideswith the
transitive closure on the underlying %5 frame:

E((=by A =bp) = (pgy < BHY)).

On the other hand, if wﬁaw’ and w’ Raw, then [Fy holds at w if and only if Fy
holds at w’:

E(Q(by v b2) = (Pmy < O Pmy))-

It is easy to verify that ¢ is satisfiable in the root of agenerated F; & % frame
if and only if f(¢) A —=by A =by, issatisfiable on the underlying %5 frame. Since f
is obviously polynomial time computable, this proves that [ 1 @ ] m-satisfiability
iSin PSPACE. O

Now that we have completely classified [/ @ F]-satisfiability, we turn our atten-
tionto [ A & F] g-satisfiability.

Theorem 510 Let % and % be closed under isomorphism, digoint union, and
generated subframes. If % and % contain a rooted subframe of size two, but do
not contain a rooted subframe of sizethree, then[ #; & %] g-satisfiability is PSPACE-
complete.

Proof: From Theorem [5:3] we know that [ 1 @ %] m-satisfiability isin PSPACE.
Since % and %, are closed under isomorphism, digjoint union, and generated sub-
frames, so is 71 @ %. Since PSPACE is closed under <N? reductions, the theorem
follows from Corollary 42] O

Inthe previous section, we showed that there are caseswhen [ 1 @ ] g-satisfiability
isharder than [ 1 @ %] m-satisfiability. Surprisingly, we can find an example of this
phenomenon even in the restricted case where #; and % do not contain arooted sub-
frame of sizethree, under the assumption that EXPTIME # PSPACE.

Theorem 5.11  Let 7 consist of the closure under disjoint union of f\a and let
> consist of the closure under digoint union of «—e. Then[# @& k] g-satisfiability
iSEXPTIME-hard.

Proof: Let ’?\1 consist of the closure under digjoint union of the frame /\Q . We
will construct areduction from [, @ %] g-satisfiability to [ & %] g-satisfiability.
This proves the theorem, since [’f\l @ B]g-satisfiability is EXPTIME-hard by Theo-
remB.1]

First supposethat ¢ is[ @ %] g-satisfiable. Let M = (W, Ry, Ry, 7) and wg €

W be such that M, wo = ¢, (W, Ry) consists of the digjoint union of &, and
(W, Ry) consists of the disjoint union of «—s. The easiest way to turn (W, Ry, Ry)

intoan # & % frame, isby replacing al /\.Q framesin (W, ﬁl) by /\.Q . Thatis,
wewill look at model M = (W, ’R\Il, Ry, ), where r and 7 coincide on propositional
variablesin ¢.

What do we do with formula ¢? The only thing changed in the model are the 1
edges, so it stands to reason that we can expect difficulties with subformulas of the

form @y. Inamodel of the form /\.g , thefollowing hold for all @y € Cl(¢):
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e theroot satisfies @My if and only if both children satisfy v,
o theirreflexive child satisfies [Ty no matter what, and
o thereflexive child satisfies My if and only if it satisfies .

Since we are simulating /\.Q by ./'\Q , we will introduce two new propositional
variablesirref,, and ref, for al @y € Cl(¢). Intheroot, irref,, will denote that the
irreflexive child satisfies v, and ref,, that the reflexive child satisfies . Note that
worlds that are roots are exactly those worlds satisfying ML in M, that irreflexive
children areexactly thoseworldssatisfying T A ML in M, and that reflexive chil-
dren are exactly those worlds satisfying & T in M. First define ¢ inductively as
follows:

P=p; =) =Y WA =Y AE (@Y) ==Y, (Uy) =Ty
(@) = (ML — irref, Aref,) A (DDT — ).

Extend 7 such that for al @y € Cl(¢), andfor al rootsw € W, M, w = irrefI/, if and
only if " holdsin w’sirreflexivechild, and M, w |= ref,, if and only if ¥ holdsinw’s
reflexive child. A simple induction will show that Yw € W, ¥ € Cl(¢), M, w &= ¢/
if and only if M, w = v.

It remainsto force the proper behavior for irref,, and ref,,. That is, for al @y €
Cl(¢) andfor all w € W, weneed to ensurethat if w isaroot, thenirref,, holdsif and
only if theirreflexive child satisfies v/, and that ref,, holdsif and only if the reflexive
child satisfies v/’. Reformulating this, we need to ensure that for al @y € Cl(¢) and
for all w e W, if w is an irreflexive child, then v holds if and only if w’s parent
satisfiesirref,,, and if w isareflexive child, then ¢’ holds if and only if w’s parent
satisfies ref,,. This requirement can be enforced by the following formula

/\ TOT ADmL — (Y < Pirref,)A
myeCl(e)

ANDDT = (V' < M(ML — refy))).

Define f(¢) as the conjunction of ¢’ and this formula. It is obviousthat M, wg &=
f(g).

For the converse, suppose M = (W, Ry, Ry, ) is a model based on an # &
% frame, and suppose that M, wg = f(¢). We have to show that ¢ is [/}\'1 @ Blu-
satisfiable. Wewill turn M into an ?1 @ % frameinthesameway asinthefirst part of
the proof. Define M = (W, Ry, Ry, 7). Then (W, R;%, Ry) € 1 @ %. It remains
to show that M, wg = @. Wewill show by induction on v that for al v € Cl(¢) and
weW, M, w = v if and only if M, w = Y. Thecrucial caseis of course for [Ty.
We haveto show that M, w = (@Y)' (= (@L — irref, Aref, ) A (DDT — ') if
andonly if M, w = [y Therearethreesituationsto consider, depending on whether
w isaanirreflexive child, areflexive child, or aroot.

1. If wis an irreflexive child, then M, w &= —@L A =BT and therefore
M, w = (@Y)’. Sincew hasno Rgl successors, it also holdsthat M, w = Iy.

2. If wisareflexive child, then M, w = —~@L A ODT. Itfollowsthat M, w =
(@my)' if and only if M, w = v if and only if (by induction) M, w = . Since
w istheonly RIl successor of w, thisis equivaent to M, w = My.
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3. Finally, suppose that w isaroot. Then M, w = ML A =@<DT. We have to
prove that M, w |= irref,, A ref,, if and only if M, w = [@y. Let wy be w's
irreflexive child, and w, be w’sreflexive child. Then M, w; = &T A @ADL,
M, wo = @}@}T, w1 Riw, and wo Ryw.

First supposethat M, w [=irref,, Aref,,. Then M, wy = Dirref,,, and therefore
M, wy = v/, and M, w, = @I(ML — ref,,), and therefore M, w; = Y. Now
look at M. By induction, M, w1 = ¢ and M, w; = . Since wq and w, are
the only worlds reachable from w by R;1, it follows that M, w = Ty

For the converse, suppose that M, w = [@y. Then M, wy = v and M, w; =
Y, and, withinduction, M, w, = ¢ and M, w, = /. It followsthat M, w, =
Qirref,, and that M, w; = @(@L — ref,). It isimmediate that M, w =
irref,, Aref,,. O

5.1 General join Sofar, wehaveinvestigated what happenswith the complexity if
weadd [@ or ¥ to thejoin of two uni-modal logics. Theuse of thejoinintheliterature
however, is not restricted to this simple case. We will now investigate to what extent
our resultsfor thejoin of two uni-modal logics go through for the join of an arbitrary
number of uni-modal logics.

Let @ beaprefix of N* of sizeat |east two. Asbefore, wewill look at the satisfia-
bility problem with respect to aclassof frames. For { % }icq classesof frames, thejoin
of { %ilicq, denoted by P, %, consists of the frames (W, { R }icq) such that for all
ieQ, (W, R)e % Wewill look at the complexity of [, Filwand [Dicq Film-
satisfiability.

As pointed out in Fine and Schurz [[6] and Hemaspaandra [[14], a problem is that
the permutation of the %’s can have an impact on the complexity. In fact, as pointed
out in [B]], it can be the case that the join of decidable logicsis undecidable. Consider
for instance the following example. Let A be an arbitrary subset of N, and let Q@ =
NT. Forali e N, let % consist of the closure under disjoint union of the reflexive
singletonif i € A, and of the closure under digoint union of theirreflexivesingleton if
i & A. Obvioudly, forall i e NT, %-satisfiability isin NP. Furthermore, every framein
P+ Fi consists of the disjoint union of singletons. In this sense, thejoinistrivial,
but Aisreducibleto b, y+ %i-satisfiability, by Ai. T

To avoid this problem, we will restrict the choice of the classes of frames{ % }icq
in such away that the permutation of the %’s does not contribute to the complexity.
We want these restrictions to be reasonable, in the sense that the logics encountered
inthe literature should satisfy these restrictions. The problem sketched above canin-
formally be stated as follows: given i, determining % should not contribute to the
complexity. Note that this problem only occurs when €2 isinfinite. We will ensure
that there exist a finite number of classes of frames such that for every i € @, %-
satisfiability isisomorphic to the satisfiability problem with respect to one of these
classes, and that these isomorphisms can be computed in polynomial time. Formal-
izing the above, we obtain the following.

Definition 5.12 Let Q be aprefix of N*, and for every i € Q, let % be aclass of
frames. We call { %}icq well-behaved if

1. foradli, % isnonempty and closed under isomorphism and disjoint union, and
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2. thereexist iy, ..., ix €  and a polynomial time computable function f from
Qtof{iy,..., ik} such that for al i € @, F-satisfiability isisomorphic to ﬁj—
satisfiability by f.

Under these restrictions, we obtain the following general analog of the results from
earlier in this section.

Theorem 5.13 Let Q bea prefix of N of sizeat least two, and for all i € Q, let %
be a class of frames such that { %}, iswell-behaved in the sense of Definition[5.12]
Then we are in one of the following four cases.

1. There exist two distinct indices i, j € © such that % contains a rooted sub-
frame of sizethree, and ; contains a rooted subframe of sizetwo. In thiscase,
[Dicq Flu-satisfiability and [D; ., ] m-satisfiability are EXPTIME-hard.

2. Thereexistthreedistinctindicesi, j, k € Q suchthat %, ¥, and % haverooted
subframes of sizetwo. Inthiscase, [P ., Filu-satisfiability and [P, Film-
satisfiability are EXPTIME-hard.

3. Thereexistsanindexi € 2 such that for all j € Q with j # i, every framein
F; consists of the digioint union of singletons. In this case, [P ., %i]u-satis-
fiability is polynomial time reducible to [ ] g-satisfiability, and [P, . %]~
satisfiability is polynomial time reducible to [ %] g-satisfiability.

4. There exist two distinct indicesi, j € Q suchthat % and ¥ are closed under
disoint union, contain a rooted subframe of size two, but not of size three, and
forall ke Qwithk #1, j, everyframein % consists of the digoint union of sin-
gletons. Inthiscase, [P, %]m-satisfiability is PsPACE-complete. If % and
¥ are also closed under generated subframes, then [P, ., #]g-satisfiability
IS PSPACE-compl ete.

Proof Sketch

1. This case follows with the same argument as Theorem[5.1]

2. Inthiscase, % @ ¥ has arooted subframe of size three, and  has a rooted
subframe of size two. The claim follows with the same argument as Theo-
rem[.1]

3. For this case, we can follow the construction of Theorem[5.2] For every | €

Q, j # 1, wewill encode R;j by anew propositional variabler;. Define ¢’ by
replacing all subformulas of theform [y ing by (r; — /) foral j e @, j #1i.
¢’ can be computed in polynomial time.
Again, our reductions need to restrict the valuation of ther;’sin an appropriate
manner. The situation is different for [@ and [, and we will start with [@. We
clamthat f isapolynomial time reduction from [D,;_, F]g-satisfiability to
[ Flg-satisfiability, where f is defined as follows:

f(p)= ¢ A /{@rj | j #i, Moceursin ¢ and al worldsin 7 are
reflexive} A

@-r; | j # i, doccursing and al worlds in % are
irreflexive} A

/N©rj | | # i, [Docecursin g, F contains no irreflexive
frames} A
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N@—rj | j # i, Moccursin g, ; contains no reflexive
frames}.
That f isreduction follows with the same argument as in Theorem[5.2] That
f ispolynomial time computable follows from clause 2 of well-behavedness.
Similarly, polynomial time reduction g from [P, %] m-satisfiability to
[ F]m-satisfiability is defined as follows:

9(p) = ¢ A N{Er | j # 1, Moccursin g and al worldsin % are
reflexive} A
ME-T| | | # i, Moceursing and al worlds in % are
irreflexive}.

4. Findly, note that if we are not in case 1, 2, or 3, then there exist exactly two

indicesi and j in © suchthat % and ; contain arooted subframe of size two
and not of sizethree, andfor al k1, j, % consistsof thedisjoint union of sin-
gletons. By the construction from case 3, [D; ., %] w-satisfiability is polyno-
mial time reducible to [ % @ %] g-satisfiability, and [P, %] -Satisfiability
is polynomial time reducible to [ @ ] m-satisfiability. The claim now fol-
lows from Theorems[E31nd B10]
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