
435

Notre Dame Journal of Formal Logic
Volume 36, Number 3, Summer 1995

A Finitely Axiomatized Formalization
of Predicate Calculus with Equality

NORMAN D. MEGILL

Abstract We present a formalization of first-order predicate calculus with
equality which, unlike traditional systems with axiom schemata or substitution
rules, is finitely axiomatized in the sense that each step in a formal proof admits
only finitely many choices. This formalization is primarily based on the infer-
ence rule of condensed detachment of Meredith. The usual primitive notions of
free variable and proper substitution are absent, making it easy to verify proofs
in a machine-oriented application. Completeness results are presented. The ex-
ample of Zermelo-Fraenkel set theory is shown to be finitely axiomatized un-
der the formalization. The relationship with resolution-based theorem provers
is briefly discussed. A closely related axiomatization of traditional predicate
calculus is shown to be complete in a strong metamathematical sense.

1 Introduction We define a formal theory to be finitely axiomatized if each step of
a formal proof in the theory admits only finitely many choices. This definition implies
that the underlying logic is finitely axiomatized; it is stricter than the usual definition,
which requires only that the number of nonlogical axioms of the theory be finite.

Traditional axiom systems of first-order predicate calculus are usually presented
with axiom schemata each of which represents infinitely many axioms (e.g., Hamil-
ton [4], p. 73). Throughout this paper we assume familiarity with such a system and
refer to it as traditional predicate calculus. Church [2], pp. 218–219, presents a for-
malization of predicate calculus with a finite number of axioms together with substi-
tution rules. However, a substitution rule is really a rule schema admitting an infinite
number of choices, so Church’s system is not finitely axiomatized in our sense.

The finiteness of the number of nonlogical axioms in a theory is often considered
philosophically or aesthetically desirable, as in, for example, NBG (von Neumann-
Bernays-Gödel) set theory (cf. Mendelson [10], pp. 173–219). However, the under-
lying logic usually tends to be viewed only in terms of schemata of infinite axioms.
Kleene [8], p. 140 writes that whether we set up propositional calculus with axiom

Received July 18, 1990; revised July 14, 1995

436 NORMAN D. MEGILL

schemata or with particular axioms and a substitution rule, “the rules of inference
must have the character of schemata, i.e., they must employ metamathematical vari-
ables, since infinitely many applications have to be provided for.” Tarksi and Gi-
vant [18], p. 7, state that “[the] set of logical axioms is necessarily infinite” in a for-
malization of predicate calculus.

We shall describe a new formalization of predicate calculus with equality that
is finitely axiomatized when the number of nonlogical symbols in the language is fi-
nite. Finite axiomatization is achieved by treating what are ordinarily thought of as
metavariables as the primitive variables of the system and providing inference rules
to manipulate these directly. We then show how to map a subset of the resulting
“metatheorems” directly into the theorems of traditional predicate calculus and show
that this mapping is complete. (However, not all formulas of our system that are true
when interpreted as metatheorems are provable; see Remark 9.2 in Section 9.)

Our formalization uses Meredith’s [11] inference rule of condensed detachment
(Rule D) in place of modus ponens and substitution. Any axiom system with Rule D
as its rule of inference is finitely axiomatized in our sense because at any point in a
proof there are only finitely many earlier steps to which Rule D can be applied, and
the outcome of Rule D is unique (up to renaming variables). However the underlying
axiom system has to have a certain minimum strength in order for the system to be
complete, in the sense of being able to prove all possible substitution instances of the-
orems. Some properties sufficient to achieve this D-completeness for weak implica-
tional systems are discussed in Hindley and Meredith [5] and Megill and Bunder [9].

The remaining remarks in this section assume the reader is familiar with resolu-
tion and related techniques in the field of automated reasoning.

An inference rule related to Rule D is the resolution principle of Robinson [16],
commonly used in automated theorem proving. A deductive system of logic whose
inference rules are resolution together with the related rules of factoring and paramod-
ulation can be considered finitely axiomatized in our sense and can produce clauses
(theorems) that correspond to Skolemizations of theorems of predicate calculus with
equality. But such a system is not “deduction complete” so that, for example, Gödel’s
completeness theorem fails to hold (cf. Wos and Robinson [21]).

However, it is possible to use resolution with our system S1 below to achieve
deduction completeness in an indirect way. Kalman [7] showed that Rule D can be
subsumed within resolution by treating formulas of logic as terms and introducing a
provability predicate, a method now often used (in refutation systems) to find proofs
in fragments of propositional calculus (cf. Wos et al. [20], pp. 355 and 480–482). This
method represents Rule D with the clause −P(x)| − P(i(x, y))|P(y), where P is the
provability predicate and i represents the binary connective → in system S1. The
other inference rule we will need for system S1, condensed generalization, also can
be subsumed within resolution with the clause −P(x)|P(a(y, x)), where a represents
the binary connective ∀ in system S1. Because resolution-style inferences preserve
the positions of arguments, individual and propositional variables will not mix and
thus will not allow us to prove ill-formed formulas.

Resolution-based theorem provers typically have other inference rules involving
substitution, and we must ensure that these also will not mix variables in the presence
of a candidate theorem that qualifies as a wff (as defined below). If we are uncertain

PREDICATE CALCULUS 437

about the substitution rules used by a theorem prover, we can restore confidence in
its output by verifying that each step of the generated proof is a wff. Roughly, any
resolution-based prover suitable for assisting D-completeness proofs (e.g., Mints and
Tammet [12]) is sound for system S1. However a brief experiment showed that the
theorem prover described in [20], which is not suitable in this sense, did correctly
prove general cases of our lemmas L1–L22 whenever it was able (on a small com-
puter) to find a proof (from which the exact lemmas follow by the Substitution The-
orem below).

2 The system S1 To simplify our notation, we shall restrict our study to a subset
of predicate calculus that has equality, one additional binary predicate symbol, and
no function or constant symbols. This subset suffices for set theory, and the choice
of the symbol ∈ for the additional binary predicate is not accidental, but the axioms
apply to any binary predicate. It is possible to add an arbitrary finite number of n-
place predicate symbols to the system in a straightforward fashion and, using methods
described in [8], pp. 405–420, to add constants and function symbols by means of
definitions.

We now describe S1, the main system of our discourse. The undefined symbols
of S1 are represented by an infinite number of variables in sequence a, b, c, . . .; a
unary connective ¬; and binary connectives →, ∀, =, ∈. A formula is a string of
these symbols. The axioms of S1 are the following formulas.

A1 → a → ba

A2 →→ a → bc →→ ab → ac

A3 →→ ¬a¬b → ba

A4 → ∀a → ∀abc → ∀ab∀ac

A5 → ∀abb

A6 → ∀a∀bc∀b∀ac

A7 → ¬a∀b¬∀ba

A8 →= ab →= ac = bc

A9 → ¬∀a = ab → ¬∀a = ac →= bc∀a = bc

A10 → ∀a →= ab∀acc

A11 → ∀a = ab → ∀ac∀bc

A12 →= ab →∈ ac ∈ bc

A13 →= ab →∈ ca ∈ cb

A14 → ¬∀a = ab → ¬∀a = ac →∈ bc∀a ∈ bc

The inference rules of S1 are condensed detachment (Rule D) and condensed
generalization (Rule G). They are analogous to modus ponens and generalization in
traditional predicate calculus, but we shall defer their precise definition until the next
section.

Unless otherwise stated, we shall use F, G, and H (possibly with subscripts)
as metavariables ranging over formulas, and u and v as metavariables ranging over
variables.

438 NORMAN D. MEGILL

To facilitate the description of the rules of S1, we have displayed its axioms in
Polish prefix notation, in which a variable is an atomic primitive formula, and if F
and G are primitive formulas, so are ¬F, → FG, ∀FG, = FG, and ∈ FG.

A proof in S1 is a finite sequence of theorems, each of which is an axiom, the
result of Rule D applied to two previous theorems in the sequence (if the result exists),
or the result of Rule G applied to a previous theorem in the sequence. The result of
a proof is the last theorem in the sequence. A D-derivation is a proof from a finite
number of axioms that uses D and G as the only rules; thus all proofs in system S1
are D-derivations.

To avoid ambiguity, we shall sometimes call an arbitrary variable of system S1
a primitive variable. We define an individual variable as a (primitive) variable that
occurs as the first argument of a ∀ connective or as either argument of an = or ∈ con-
nective. A variable in any other position is defined as a propositional variable.

We define an atomic well-formed formula (wff) as either a (propositional) vari-
able or a primitive formula of the form = uv or ∈ uv; and if F and G are wffs, so
are ¬F, → FG, and ∀uF, provided that no variable becomes both a propositional
variable and an individual variable. It may be observed that each axiom of S1 is a
wff.

The variables in a formula are normalized if they occur in alphabetic order
a, b, c, . . . by first appearance. The axioms and rules of S1 are such that all theorems
have normalized variables.

The connectives = and ∈ are predicate symbols. The connectives ¬, →, and ∀
are logical connectives. The predicate symbol ∈ is a nonlogical symbol.

3 The rules D and G The rule of condensed detachment, which we shall call Rule
D, was introduced by Meredith [11] as a method for abbreviating proofs in propo-
sitional calculus. In traditional propositional calculus, the result of applying modus
ponens (with some appropriate substitutions), if it can be applied, to theorems of the
form → FG and H is an infinite set of substitution instances of G. From this set Rule
D picks a theorem that is most general in the sense that all other theorems in the set
are substitution instances of it. To make it unique, the most general theorem that is
picked is the one with its variables normalized according to some convention. We
denote this most general theorem by D(→ FG, H) and say that it is the result of de-
taching H from → FG. Rigorous treatments of Rule D are provided in [5] and [7],
and an informal tutorial is presented in Zeman [22], pp. 2–6. A specific example is
given in the Appendix of this paper.

We extend the use of Rule D to system S1, treating all connectives as if they were
propositional connectives. It is important to note that in system S1, unlike proposi-
tional calculus, the general substitution of a variable with a wff is not a defined or
derived rule, nor will such a substitution necessarily result in a valid theorem. We
shall show later that when operating on the axioms of S1, Rule D will perform only
acceptable substitutions and, less obviously, can perform all possible acceptable sub-
stitutions. This is the essential feature that allows the predicate calculus to be com-
plete yet still finitely axiomatized, because each application of Rule D (or Rule G)
results in a unique theorem. The nature of Rule D is such that when it is applied to
two wffs, the result, if it exists, is a wff; in particular, Rule D will never mix individual

PREDICATE CALCULUS 439

and propositional variables.
The following algorithm from Peterson [15], with the addition of step 10, gen-

erates D(→ FG, H) or shows that it does not exist. A subformula is the shortest
sequence of symbols that begins at an indicated point in a formula and satisfies the
definition of a primitive formula. F is the subformula beginning at the second sym-
bol in → FG. To find D(→ FG, H), we represent formulas F, G, and H as strings
of nonzero integers stored left-justified in arrays A, B, and C such that (for example)
the variables are represented by positive integers and the connectives by negative in-
tegers. A zero represents the end of a string.

Algorithm D (Condensed detachment) Step 1. Renumber the variables in C so that
it has no variables in common with A and B. Step 2. Set i to 0. Step 3. Increase i by 1
until A[i] �= C[i] or C[i] = 0. Step 4. If C[i] = 0 then go to 10. Otherwise continue.
Step 5. If C[i] is a variable then set m to C[i] and place the subformula beginning with
A[i] in array E. Go to 8. Otherwise continue. Step 6. If A[i] is a variable then set m
to A[i] and place the subformula beginning with C[i] in array E. Go to 8. Otherwise
continue. Step 7. Terminate the algorithm. D(→ FG, H) does not exist. Step 8. If
m occurs in array E then go to 7. Otherwise continue. Step 9. Substitute the content
of array E for each occurrence of m throughout arrays A, B, and C. Go to 3. Step 10.
(Normalization) Renumber the variables in B so that they occur, by first appearance,
in alphabetic order a, b, c, Terminate the algorithm. The content of array B is
D(→ FG, H).

Condensed generalization or Rule G quantifies a theorem F with a variable not ap-
pearing in the theorem and normalizes the result. The following algorithm performs
this rule.

Algorithm G (Condensed generalization) Step 1. Change each variable in F to the
next variable in the language’s list of variables, so that a becomes b, b becomes c,
etc. Step 2. Preface F with “∀a.” Terminate the algorithm.

4 The system S2 We next define S2, an axiomatization that represents an interme-
diate step between S1 and traditional predicate calculus. We shall later show that S1
and S2 are equivalent.

S1 and S2 differ only in their rules. Except for notation, the axioms of system
S2 are the same as those of S1. The individual and propositional variables of S1 are
replaced with distinguished groups of symbols, and the notation is changed from Pol-
ish prefix to a more conventional one. Implicitly, each theorem of S2 is a metamath-
ematical representation of a theorem in the normalized notation of S1, even though
the axioms of S2 do not explicitly exhibit nor the rules explicitly require variable nor-
malization. We allow the theorems of S2 to contain unnormalized variables only as
a metamathematical convenience. Henceforth, we shall restrict the metavariables u
and v to range over individual variables (and not propositional variables) unless oth-
erwise stated.

The symbols of S2 are represented by propositional variables P, Q, R, S, . . .;
individual variables x, y, z, . . .; unary connective ¬; binary connectives →, ∀, =, ∈;
and parentheses ().

440 NORMAN D. MEGILL

In system S2, an atomic wff is either a propositional variable or an expression of
the form u = v or u ∈ v; and if F and G are wffs, so are ¬F, (F → G), and ∀uF. For
readability we omit the outermost parentheses when writing formulas. The axioms
of S2 follow, separated into related groups:

(Axioms for propositional calculus)

B1 P → (Q → P)

B2 (P → (Q → R)) → ((P → Q) → (P → R))

B3 (¬P → ¬Q) → (Q → P)

(Axioms for pure predicate calculus)

B4 ∀x(∀xP → Q) → (∀xP → ∀xQ)

B5 ∀xP → P
B6 ∀x∀yP → ∀y∀xP
B7 ¬P → ∀x¬∀xP

(Axioms for equality and substitution)

B8 x = y → (x = z → y = z)
B9 ¬∀xx = y → (¬∀xx = z → (y = z → ∀xy = z))
B10 ∀x(x = y → ∀xP) → P
B11 ∀xx = y → (∀xP → ∀yP)

(Axioms for a binary predicate)

B12 x = y → (x ∈ z → y ∈ z)
B13 x = y → (z ∈ x → z ∈ y)

B14 ¬∀xx = y → (¬∀xx = z → (y ∈ z → ∀xy ∈ z))

The inference rules of system S2 are the following. (1) Modus ponens: From
F and F → G, infer G. (2) Generalization: From F, if u is any individual variable,
infer ∀uF. (3) Substitution for propositional variables: From F, infer a new formula
obtained by replacing all occurrences of some propositional variable in F with any
wff. (4) Substitution for individual variables: From F, infer a new formula obtained
by replacing all occurrences of some individual variable in F with any other individ-
ual variable.

In the modus ponens inference, F is called the minor premise and F → G the
major premise. In the major premise, F is called the antecedent and G the consequent.
We say that F is detached from F → G to result in G (although usually we shall use
the word “detach” in the sense of condensed detachment defined above). We may use
the term “antecedent” somewhat informally; for example in F → (G → H), F and
G may both be called antecedents.

It will be convenient to have available other logical connectives defined in terms
of the primitive connectives; we define F ∨ G (disjunction), F ∧ G (conjunction),
F ↔ G, and ∃uF as abbreviations for ¬F → G, ¬(F → ¬G), ¬((F → G) →
¬(G → F)), and ¬∀u¬F respectively.

Unlike S1, S2 is not finitely axiomatized because of its substitution rules. How-
ever, S2 is interesting in its own right because the axioms have no verbal restrictions
on variables, i.e., there are no primitive notions of free, bound, or distinct individual

PREDICATE CALCULUS 441

variables, nor are there complex rules for proper substitutions. This property is essen-
tial for compatibility with Rule D of S1, but as a side benefit the inherent simplicity
of S2 can make it easy to study as a formal system.

Because the wffs of S2 are the same as those of S1 except for notation, we shall
usually represent wffs of S1 in the more standard notation of S2. We shall also in-
terchangeably refer to axioms A1 through A14 and B1 through B14, whichever are
more convenient for the situation at hand. It should be emphasized, however, that the
wffs of S2 are metamathematical representations of those of S1 and at the primitive
level there is no distinction between individual and propositional variables in S1. Af-
ter we show that S1 and S2 are equivalent, we shall interchangeably refer to these two
systems.

5 Equivalence of systems S1 and S2 We say that two formal systems are equiva-
lent if any theorem that can be proved in one system can also be proved in the other
(except for a possible difference of notation). In the case of systems S1 and S2, our
main task is to prove from S1 the substitution rules of S2. The rest of the proof fol-
lows as easy corollaries.

Theorem 5.1 (Substitution Theorem) Rules D and G of system S1 generate ex-
actly those substitution instances defined by the substitution rules of system S2.

Proof: First, we show that Algorithm D can generate only those substitution in-
stances defined by the substitution rules of system S2. By inspection of Algorithm
D and the axioms of S1, we notice that only individual variables (never wffs) will be
substituted for individual variables. This follows from the fact that the axioms are
wffs, so that no wff appears as an argument of an = or ∈ connective nor as the first
argument of a ∀ connective. Similarly, we notice that only wffs (never individual vari-
ables) will be substituted for propositional variables. Thus Rule D will never violate
the substitution rules of system S2.

Similarly, Algorithm G will generate only acceptable substitution instances of
the generalization rule of S2.

It remains to be shown that Rules D and G are complete, i.e., that they can derive
all instances of the substitution rules of system S2.

Assume that a proof exists in system S2 for some theorem Fs. We want to show
that we can prove this theorem using the axioms and rules of system S1.

First we convert the proof in S2 to a proof in S1 by deleting all applications of the
substitution rules, replacing modus ponens with Rule D and replacing generalization
with Rule G. The result of the new proof will be a most general theorem Fg of which
the desired theorem Fs is a substitution instance.

Rule D has the following property. If Fs is any substitution instance of a theorem
Fg, then D(→ Fs Fs, Fg) (i.e., Fg detached from Fs → Fs) is Fs. This is easy to see
by examining Algorithm D.

We shall show that any formula of the form Fs → Fs, where Fs is a wff, is D-
derivable, i.e., can be proved in system S1. Then by applying the property of Rule D
just mentioned, we can D-derive Fs when it is a substitution instance of some theorem
Fg. This will complete our proof of the Substitution Theorem.

First we construct a proof of a theorem of the form Fv → (Fd → Fd). Fd is
a wff identical to Fs except that all appearances of the propositional variables and

442 NORMAN D. MEGILL

individual variables in Fd will be distinct, i.e., each variable will appear only once.
Fv is a disjunction of all of the propositional variables contained in Fd and also of
formulas of the form ∀uG, one for each individual variable u contained in Fd (and G
is a dummy “place holder” propositional variable not in Fd nor elsewhere in Fv).

We prove Fv → (Fd → Fd) by induction on the number of connectives in the
wff Fd (i.e., in Fs). The induction basis is one of the D-derivable lemmas

(L1) P → (P → P)

(L2) (∀xP ∨ ∀yQ) → (x = y → x = y)

(L3) (∀xP ∨ ∀yQ) → (x ∈ y → x ∈ y)

corresponding to the atomic wffs P, x = y, and x ∈ y. (The proofs of all lemmas are
given in the Appendix.) Note that in L2 and L3, P and Q are dummy place holder
propositional variables mentioned above, and their purpose is to capture x and y so
that x and y can be manipulated in a manner similar to propositional variables.

For the induction hypothesis, we assume that all theorems with fewer connec-
tives than Fv → (Fd → Fd) and of that form can be proven. Fd, if not atomic,
must be of the form ¬G, G → H, or ∀uG by the definition of a wff. We prove
Fv → (Fd → Fd) by detaching from one of the D-derivable lemmas

(L4) (P → (Q → Q)) → (P → (¬Q → ¬Q))

(L5) (P → (Q → Q)) → ((R → (S → S)) →
((P ∨ R) → ((Q → S) → (Q → S))))

(L6) (P → (Q → Q)) → ((P ∨ ∀xR) → (∀xQ → ∀xQ))

corresponding to the connectives ¬, →, and ∀ respectively. In L6, R is a dummy
propositional variable that captures x.

At this point we have completed constructing a proof of Fv → (Fd → Fd). Each
variable in Fd will appear only once, whereas in Fs some variables will probably ap-
pear more than once. We must transform Fd to Fs by forcing some of the distinct
propositional variables and distinct individual variables in Fd to become identical to
each other. Pick two such propositional variables G and H. If Fv has more than two
disjuncts, we detach Fv → (Fd → Fd) repeatedly from the D-derivable lemmas

(L7) ((P ∨ Q) → R) → ((Q ∨ P) → R)

(L8) (((P ∨ Q) ∨ R) → S) → ((P ∨ (Q ∨ R)) → S)

to make G and H become the leftmost disjuncts of Fv, so that Fv is of the form (G ∨
H) ∨ F where F is the rest of the disjunction. (We are implicitly assuming that we
are keeping track of the variables metamathematically, since the actual subtheorems
in the notation of system S1 have normalized variables after each application of Rule
D.) Next we detach from one of the D-derivable lemmas

(L9) ((P ∨ P) → Q) → ((P ∨ P) → Q)

(L10) (((P ∨ P) ∨ Q) → R) → (((P ∨ P) ∨ Q) → R)

(L9 if Fv has only two disjuncts, L10 otherwise) to force the two distinct propositional
variables G and H to match each other. The result is a theorem of the form F′

v →
(F′

d → F′
d) in which the propositional variables G and H are now identical.

PREDICATE CALCULUS 443

To make individual variables identical to each other, we perform the same kinds
of manipulations with L7 and L8, except that we move disjuncts of the form ∀uG
and ∀vH to the leftmost positions. Detaching from L9 or L10 will force u and v to
match each other; G and H in this case will also become identical, but this is irrelevant
because they are dummy propositional variables.

We repeat the above steps for all distinct variables in Fd that must be made iden-
tical to obtain a theorem of the form F′′

v → (Fs → Fs). We detach this from the D-
derivable lemma

(L11) (P → (Q → Q)) → (Q → Q)

to discard the antecedent and finally obtain Fs → Fs.
A simple example is helpful to understand these steps. Suppose we have proved

P → P in system S1, and we want to prove the substitution instance ¬P → ¬P.
Let Fg be P → P and Fs be ¬P → ¬P. First we construct a proof for Fs → Fs,
i.e., (¬P → ¬P) → (¬P → ¬P). We start with Lemma L1, P → (P → P). We
detach this from L4 to obtain P → (¬P → ¬P), which we then detach twice from
L5 to obtain (P ∨ Q) → ((¬P → ¬Q) → (¬P → ¬Q)). We must make P and
Q identical. Since there are only two propositional variables, we do not need L7 or
L8. Detaching from L9, we obtain (P ∨ P) → ((¬P → ¬P) → (¬P → ¬P)).
Detaching from L11, we obtain (¬P → ¬P) → (¬P → ¬P), which is the desired
Fs → Fs. Detaching P → P from (¬P → ¬P) → (¬P → ¬P), we finally obtain
¬P → ¬P. This completes the proof of the Substitution Theorem. �
The Substitution Theorem shows that the substitution rules of S2 can be derived from
the axioms and rules of S1. As an easy corollary, the modus ponens rule of S2 is a
special case of Rule D of S1, and the generalization rule of S2 follows from Rule G
of S1 and the Substitution Theorem. Conversely, since Rule D can be used as a rule
of inference in a substitution and detachment system (cf. [7]), Rule D of S1 follows
from modus ponens and the substitution rules of S2, and Rule G of S1 follows as a
special case of the generalization rule of S2. The axioms of S1 and S2 are identical
except for notation. It follows that S1 and S2 have the same power of proof.

Having proved the Substitution Theorem, we shall make use of it implicitly
henceforth in order to shorten proofs. Thus in the Appendix, a formal proof of any of
the remaining lemmas in this paper may yield a more general case of the lemma.

6 The system S3 Tarski [17] presents a simplified axiom system for traditional
predicate calculus. His system shares some similarities with our S2 above, and it will
be convenient to prove the completeness of S2 (and hence S1) by deriving from S2
that fragment of Tarski’s system which contains only the predicate symbols = and ∈.
We shall call this fragment system S3. (For simplicity we are concerned with com-
pleteness of systems with only these two predicate symbols; extension to an arbitrary
finite number of predicate symbols is straightforward.) We denote the infinite set of
(individual) variables of S3 arranged in sequence x, y, z, If u and v are variables,
then u = v and u ∈ v are atomic wffs; and if F and G are wffs, so are ¬F, F → G,
and ∀uF. The following are the axiom schemata of S3, where F, G, and H are wffs.

C1 (F → G) → ((G → H) → (F → H))

C2 (¬F → F) → F

444 NORMAN D. MEGILL

C3 F → (¬F → G)

C4 ∀u(F → G) → (∀uF → ∀uG)

C5 F → ∀uF, where u is not among the set of variables occurring in F

C6 ¬∀u¬u = v, where u and v are distinct variables

C7 u = v → (F → G), where F is any atomic wff in which u occurs, and G
is obtained from F by replacing a single occurrence of u with v

The inference rules of S3 are modus ponens and generalization.

7 Mapping formulas from S1 into S3 We define a distinctor as a formula in S1, S2,
or S3 of the form ¬∀uu = v where u and v are distinct variables. We define as propo-
sitionless a formula of S1 (or S2) containing only individual variables. We recall that
the variables of S1 are arranged in sequence a, b, c, . . . and those of S3 in sequence
x, y, z, In this section we shall use non-Polish notation when displaying formulas
of system S1.

Certain axioms of S3 require that some individual variables be distinct from
one another, a requirement absent from S1; in particular, the Substitution Theorem
permits arbitrary substitutions of individual variables for individual variables in S1.
Therefore we must represent the formulas of S3 indirectly in S1 by means of a suit-
able mapping. The completeness of S1 will then be proved by showing that the set
of propositionless theorems of S1 maps onto the set of theorems of S3. (We shall not
be concerned with those theorems of S1 that have propositional variables since any
such theorem corresponds to a theorem schema, not a particular theorem, of system
S3.)

The mapping we shall use in the completeness proof of S1 is the method of dis-
tinctor elimination. This mapping requires that we sacrifice soundness in the one-
element domain because, as we shall see, the theorem ¬∀aa = b → ¬∀aa = b in S1
maps to the formula ¬∀xx = y in S3, which is false in an interpretation of S3 with
a one-element domain. However, we have chosen to use this mapping because of its
simplicity. (It is possible to devise other mappings that are sound in all nonempty do-
mains. S1 is complete in the one-element domain provided that we add to any theory
with that domain the nonlogical axiom a → ∀ba.)

The method of distinctor elimination makes use of the following fact. A dis-
tinctor ¬∀uu = v in S3 is true in all multiple-element domains (it also a theorem of
set theory). It can therefore be detached when used as an antecedent of a theorem of
S3, which under this mapping is implicitly extended to exclude the one-element do-
main. Specifically, this mapping first replaces the variables a, b, c, . . . in a theorem
of S1 with the variables x, y, z, . . . of S3 on a one-to-one basis. It then discards the
theorem’s antecedent (if there is one) when the antecedent is a distinctor or a con-
junction of distinctors. For example, the theorems ∃aa = b, (¬∀aa = b ∧ ¬∀aa =
c) → ∃aa = b, ¬∀aa = b → (¬∀aa = c → ∃aa = b), and ¬∀aa = a → ∃aa = b
are mapped to ∃xx = y, ∃xx = y, ¬∀xx = z → ∃xx = y, and ¬∀xx = x → ∃xx = y
respectively (note that ¬∀xx = x is not a distinctor). The completeness proof of S2
(and thus S1) will show that any theorem of S3 can be proved in S2 provided we al-
low the theorem to be prefixed with a possible antecedent consisting of a distinctor
or a conjunction of distinctors.

PREDICATE CALCULUS 445

Distinctors are primarily intended to specify those pairs of variables in the the-
orem that must be distinct. If the Substitution Theorem is used to replace the two
variables in a distinctor with a single variable, the distinctor becomes the false for-
mula ¬∀uu = u, and the theorem will remain valid because ¬∀uu = u is conjoined
to its antecedent. After making such a substitution, the method of distinctor elimina-
tion will not discard ¬∀uu = u, thus ensuring validity of the theorem in S3.

Distinctors have two other roles. First, the variables in any theorem of S1
are normalized, whereas S3 permits any permutation of variables in a theorem. To
achieve an arbitrary permutation of variables in the representation in S3, the order of
the distinctors can be rearranged as needed and dummy distinctors added so that the
part of the theorem after the conjunction of distinctors has its variables appear with
the desired permutation. For example, ¬∀aa = b → ∃bb = a becomes ∃yy = x and
(¬∀aa = b ∧ ¬∀aa = c) → ∃cc = a becomes ∃zz = x. The rearranging and adding
of distinctors is done using simple tautologies, the Substitution Theorem and the fol-
lowing lemma.

(L12) ¬∀aa = b → ¬∀bb = a

Second, a result of Andréka (proved in Nemeti [14]) shows that if we restrict S3
to the fragment containing only a finite number n of variables (n > 2) then infinitely
many wff metavariables are required for a complete axiomatization. Since the axiom-
atization of S3 has finitely many wff metavariables, it follows that dummy variables,
distinct from the variables in the theorem to be proved, must sometimes be introduced
during the course of a proof in S3. In system S2 (and thus S1), these dummy indi-
vidual variables must remain embedded in the result of the proof, for otherwise we
could simply substitute for them, throughout a proof, some other individual variable
that occurs in the result, then restate the proof in the language of S3, contrary to [14].
However, propositionless theorems can be proved so that the dummy variables ap-
pear only in the conjunction of distinctors that forms the antecedent of the theorem.
This fact falls out of the method we use to construct a proof for axiom C5 in the next
section, C5 being the only axiom that is not valid unless certain variables are distinct.
Distinctors can thus serve to collect the dummy variables and discard them when the
theorem is mapped into S3.

8 Completeness and consistency of system S2 We now focus on the completeness
of system S2, from which the completeness of S1 will follow because of its equiva-
lence with S2. In this discussion, we may implicitly assume that distinctors are being
used as described above to indicate distinct variable restrictions, eliminate dummy
variables, and force specific permutations of variables in the theorems of S3.

In this section we assume that system S3 is consistent and complete. The proofs
are found in [17] and Kalish and Montague [6].

First we show that S2 is consistent. The axioms of S2 are easily seen to be
metatheorems of S3 when the propositional and individual variables of S2 are in-
terpreted as metavariables ranging over wffs and variables of S3. It is also easy to
verify that the axioms remain metatheorems when subjected to the substitution rules,
i.e., that there are no distinct variable restrictions on the axioms. The rules of modus
ponens and generalization are the same as in system S3. These two rules preserve

446 NORMAN D. MEGILL

soundness. Finally, it is easy to see that a substitution rule applied to the result of an-
other rule can be eliminated by making appropriate substitutions at earlier steps in a
proof, so that an equivalent proof can be obtained in which substitutions apply only
to axioms. Therefore system S2 is consistent.

It remains to be shown that system S2 is complete. We shall do this by deriving
from S2 the axioms and rules of system S3.

Axiom schemata C1 through C4 correspond to all substitution instances of the
following four lemmas of S2, whose proofs are in the Appendix.

(L13) (P → Q) → ((Q → R) → (P → R))

(L14) (¬P → P) → P

(L15) P → (¬P → Q)

(L16) ∀x(P → Q) → (∀xP → ∀xQ)

Axiom schema C7 corresponds to all substitution instances of the following
three axioms and one lemma of S2.

B8 x = y → (x = z → y = z)

(L17) x = y → (z = x → z = y)

B12 x = y → (x ∈ z → y ∈ z)

B13 x = y → (z ∈ x → z ∈ y)

Axiom schema C6 has the unneccessary verbal restriction “where u and v are
distinct variables.” In S2, we can prove the following more general restrictionless
lemma.

(L18) ¬∀x¬x = y

Axiom schema C5 is proved as a metatheorem of S2 by induction on the number
of connectives in the wff F in F → ∀uF. The basis for the induction are the following
two axioms of S2 along with those substitution instances in which x remains distinct
from y and z.

B9 ¬∀xx = y → (¬∀xx = z → (y = z → ∀xy = z))

B14 ¬∀xx = y → (¬∀xx = z → (y ∈ z → ∀xy ∈ z))

Here, the antecedents of the form ¬∀uu = v are distinctors specifying (when mapping
to S3) that u and v be distinct variables. Thus B9 and B14 state, in effect, “y = z →
∀xy = z where x does not occur in y = z” and “y ∈ z → ∀xy ∈ z where x does not
occur in y ∈ z.”

In the induction step that follows, we shall implicitly use the lemma

(L19) ¬∀xx = y → ∀z¬∀xx = y

which in effect states that a distinctor behaves as if no variable were free in it (in-
cluding y, as can be seen by substituting y for z in L19). According to the Deduction
Theorem for predicate calculus (which can be proved for S2 in a manner analogous
to that in [4], p. 77, with the slight complication that applications of the substitution
rule inside a deduction may affect the assumptions; cf. [8], p. 140), Lemma L19 al-
lows us to use distinctors as assumptions or hypotheses in a deduction without having

PREDICATE CALCULUS 447

to worry about any undesirable side effects that may result from using the generaliza-
tion rule inside of a deduction. In what follows we shall assume that all distinctors
have been temporarily removed and placed into an assumption list.

If the F in F → ∀uF is not an atomic wff then F → ∀uF must have one of
the three forms (G → H) → ∀u(G → H), ¬G → ∀u¬G, or ∀vG → ∀u∀vG by
the definition of a wff. As our induction hypothesis, we assume that we have proven
the shorter cases of C5, i.e., G → ∀uG and H → ∀uH (in the case of →). We can
prove F → ∀uF by first applying the generalization rule as needed to the shorter cases
then detaching from a substitution instance of the lemma of the following three that
corresponds to the form of F → ∀uF.

(L20) ∀x(P → ∀xP) → ((Q → ∀xQ) → ((P → Q) → ∀x(P → Q)))

(L21) ∀x(P → ∀xP) → (¬P → ∀x¬P)

(L22) ∀y(P → ∀xP) → (∀yP → ∀x∀yP)

There will be one assumption of the form ¬∀uu = v for each variable v in F
required to be distinct from u. We use the Deduction Theorem to re-attach a con-
junction of these assumptions as an antecedent G to the formula F → ∀uF, and we
interpret G as the informal phrase “where u is not among the set of variables occurring
in F.” The antecedent G is discarded when mapping G → (F → ∀uF) to system S3
by the method of distinctor elimination. (This completes the proof of axiom schema
C5. This proof is analogous to one given by Lemmas 22 through 25 in [13].)

Finally, the rules of S3 follow from the rules of S2 because they are identical.

9 Further remarks

Remark 9.1 The theorems of system S2 may be viewed as metatheorems of S3
(i.e., traditional predicate calculus), where the individual variables of S2 range over
the variables of S3 and the propositional variables of S2 range over wffs of S3. Three
correspondences are useful in this context. First, as described previously, an an-
tecedent in the form of a distinctor ¬∀uu = v can be interpreted as the requirement
that u and v be distinct. Second, if a propositional variable P is prefixed with ∀u
throughout a formula, we can interpret ∀uP as a formula metavariable F ranging over
wffs in which u is not free. Third, if we interpret a propositional variable P as F, the
formula (u = v → P)∧∃u(u = v∧ P) can be interpreted as F(u|v), i.e., as the proper
substitution of v for u in F; u and v need not be distinct. Note that F(u|u) ↔ F.

Remark 9.2 S2 (or S1) is not complete in the sense that some propositionless
formulas corresponding to metatheorems of S3 are not provable in S2 because any
dummy variable used in a proof must appear in the result of the proof. In particular,
for a given theorem of S3, we cannot know how it may be represented in S2 until
we have a proof and thus obtain an upper bound for the number of dummy variables
required. To achieve completeness in this sense we can add to S2 the inference rule
of quantifier elimination: if, in a theorem of S2, a variable u occurs as the first argu-
ment of one or more ∀ connectives but nowhere else, delete all occurrences of ∀u from
the theorem. (An analogous rule that preserves finite axiomatization can be added to
S1.) To use this rule we avoid any reference to B9 and B14 (whose quantifiers are the
source of dummy variables) in the construction of C5 in Section 8 and instead use the

448 NORMAN D. MEGILL

required instance of C5 (prefixed with quantifiers to bind its variables) as an assump-
tion for the proof. Applied to the result of the proof, the rule of quantifier elimination
will reduce these assumptions to (quantified) tautologies that can be discarded.

Remark 9.3 The following result for S2 is useful for eliminating unnecessary dis-
tinctors. (It will not eliminate distinctors containing dummy variables.) The proof,
whose details we omit, appeals to axiom B11 in particular to construct a proof of
∀uu = v → (F(u, u) → F(u, v)) by induction on the number of connectives in
F(u, v).

Theorem 9.4 (Distinctor Reduction Theorem) Let F(u, v) be any formula that
may contain variables u and v, free or bound in any combination, as well as any other
variables. Suppose we have proofs of two theorems of the forms: (1) ¬∀uu = v →
F(u, v) and (2) F(u, u) where all occurrences of v (both free and bound) in F(u, v)

are replaced with u. Then F(u, v) is a theorem.

Remark 9.5 An open question is whether in S2 we can prove

B15 ¬∀xx = y → (x = y → (P → ∀x(x = y → P))).

Remark 9.6 We define a simple metatheorem as any metatheorem of S3 consisting
only of connectives, individual metavariables, and wff metavariables (with no argu-
ments, i.e., no explicit substitutions) and possibly accompanied by a set of variable
restrictions of the two forms “where u and v are distinct variables” and “where u is not
among the set of variables occurring in F.” For example, all axiom schemata of S3
except C7 are simple metatheorems. We define a system as metalogically complete if
all of its simple metatheorems can be proved with simple metalogic as follows: each
step in the proof must be a simple metatheorem, and the inference metalogic consists
only of the two rules of S3, together with the obvious two substitution rules (for in-
dividual and wff metavariables) to produce new simple metatheorems from existing
ones provided that variable restrictions are not violated. At each step, the set of vari-
able restrictions is adjusted for any substitutions so that each restriction has only two
metavariables, and restrictions involving metavariables not contained in the step are
dropped. We do not formalize these notions here but it should be clear how to do so,
e.g., as in [17].

A metalogically complete system can be advantageous in a machine-oriented ap-
plication and perhaps in studies of logic since theorem schemata of traditional pred-
icate calculus, not just specific theorems, can be proved directly with simple meta-
logic.

We define system S3′ as follows. Rewrite B1 through B15 in the formalization
of S3 by replacing P with F, x with u, etc. and call them C1′ through C15′. Let S3′

consist of the language and rules of S3 along with axiom schemata C5, C1′ through
C13′, C15′, and

C16′ ∀uu = v → (F → ∀uF), where u and v are distinct variables.

All of the axiom schemata of S3′ are simple metatheorems. (C14′ is omitted from S3′

because it can be proved from the others using only simple metalogic.)

PREDICATE CALCULUS 449

It is not hard to show that S3′ is logically equivalent to S3 and thus has the same
set of simple metatheorems; the reasoning is similar to that in Section 8.

Theorem 9.7 (Metalogical Completeness Theorem) System S3′ is metalogically
complete.

Proof: We describe the main ideas of the proof but leave some details to the reader.
We let s and t (as well as u and v) represent individual metavariables and use F(u|v)

to abbreviate (u = v → F) ∧ ∃u(u = v ∧ F). Let H be the simple metatheorem we
wish to prove. Let u1, . . . , un be the distinct individual metavariables in H. We as-
sociate with each wff metavariable Fi in H an m-ary predicate Pi where m = n and
whose jth argument corresponds to individual metavariable u j in H, except that we
reduce the arity of Pi by one and remove its jth argument for each variable restriction
“where u j does not occur in Fi.” We temporarily extend S3′ with these predicates and
add equality axioms for them (similar to schema C7 of S3). Let He be the formula
of extended S3′ obtained by rewriting H with individual metavariables replaced with
actual variables x1, . . . , xn of S3′ and each wff metavariable Fi replaced with its cor-
responding extended m-ary predicate Pixi1 . . . xim (1 ≤ i1 < · · · < im ≤ n). Since He

is an instance of metatheorem H and hence an actual theorem, it has an ordinary proof
in extended S3′.

To construct a proof for H in the original S3′, using only simple metalogic, we
mimic the proof of He. In the proof, in place of variables x1, . . . , xn+d (where d is
the number of distinct dummy variables in the proof) outside of extended predicates
we use individual metavariables u1, . . . , un+d. In place of an extended predicate oc-
currence Pix j1 . . . x jm (1 ≤ jk ≤ n + d) we use the wff

Fi(ui1 |v1) . . . (uim |vm)(v1|u j1) . . . (vn|u jm),

where v1, . . . , vm are dummy individual metavariables distinct from each other and
from ui, . . . , un+d and that do not occur in Fi. At the end of the proof, we recover Fi

from
Fi(ui1 |v1) . . . (uim |vm)(v1|ui1) . . . (vm|uim)

using substitution laws F(u|v)(s|t) ↔ F(s|t)(u|v) (where u and s are distinct, u and
t are distinct, and s and v are distinct) and F(u|v)(v|u) ↔ F (where v does not occur
in F), both provable in S3′ with simple metalogic. (C15′ seems to be needed for these
proofs. Since we omit the proofs of these and a few other simple metatheorems, the
reader may just regard them as additional, though redundant, axioms of S3′ for the
purpose of understanding the main proof.)

In mimicking the proof, all applications of axioms and rules are analogous ex-
cept for three cases. (1) Whenever an equality axiom for an extended predicate is ref-
erenced, we use instead the metatheorem u = v → (F(s|u) → F(s|v)) (provable in
S3′ with simple metalogic; C15′ seems to be needed), manipulating F with the first
substitution law above before and after this metatheorem is applied. (2) Whenever
schema C5 is referenced, we instead construct with simple metalogic an appropriate
metatheorem of the form F → ∀uF (in a manner similar to the proof of C5 in Section
8, possibly using C5 itself and also making use of the metatheorem ∀uF → ∀u∀uF
as needed). We place in an assumption list any distinctors that arise. We use C16′

to eliminate a distinctor whenever H has a restriction of the form “where u and v

450 NORMAN D. MEGILL

are distinct” and whenever a (distinct) dummy variable is introduced. (3) Whenever
schema C16′ is referenced but the variables u and v are not required to be distinct in
H, we use instead the tautology ¬∀uu = v → (∀uu = v → (F → ∀uF)) and place
its antecedent in the assumption list of distinctors.

To eliminate any remaining distinctors not part of H, we apply the Distinctor
Reduction Theorem (restated in the language of S3′), repeating the entire procedure
above to obtain a proof of its special case F(u, u). �

10 ZF set theory Zermelo-Fraenkel (ZF) set theory is not a finitely axiomatizable
extension of traditional predicate calculus because the Axiom Schema of Replace-
ment requires a formula metavariable F ranging over certain wffs (cf. Cohen [3], p.
83: “No finite number of axioms of ZF imply all the axioms of ZF”). In the formaliza-
tion of system S2, however, we can represent a schema containing a wff metavariable
F by a formula containing a propositional variable P, allowing the Axiom Schema
of Replacement to become a particular axiom. At the primitive level of system S1,
this propositional variable is indistinguishable from the other variables but behaves
as if it were a formula metavariable when subjected to the axioms and rules of S1.
We can always write a formula of S3 in the formalization of S2 by anteceding it with
a conjunction of distinctors; in particular, we can state Replacement as

(¬∀xx = y ∧ ¬∀xx = z ∧ ¬∀yy = z) →
(∀x∃z∀y(∀zP → y = z) → ∃x∀y(y ∈ x ↔ ∃x(∀zP ∧ x ∈ z))).

Boyer et al. [1] write, “since [ZF] cannot be finitely axiomatized, it cannot be
input to a resolution-based theorem prover” and base theirs (see also Wos [19]) on
NBG, which is finitely axiomatized (in the customary sense). Although ZF cannot
be directly input to such a prover, using the formalization of S1 it can be indirectly
input via the provability predicate method described in the Introduction. Whether this
offers practical advantages is not known.

Appendix Proofs of lemmas We can make use of the fact that Rules D and G have
unique results to communicate, unambiguously, complete formal proofs in system S1
in a compact manner. We denote Axioms A1 through A9 by the characters 1 through 9
and A10 through A14 by the characters a through e. A character string is constructed
as follows. Dpq represents the result of Rule D when the theorem expressed by string
p is detached from the theorem expressed by string q. Gp is represents the result of
Rule G applied to the theorem expressed by string p. We call a proof expressed in
this notation a proof string.

As an example of how a proof string is constructed, consider a proof of ∀xP →
∀x∀xP. For readability the notation of system S2 is used to display the subtheorems,
but the proof is implicitly in system S1 and uses Rules D and G of system S1.

PREDICATE CALCULUS 451

Step Subtheorem Reason Proof string
a. (P → (Q → R)) → Axiom A2 2

((P → Q) → (P → R))

b. P → (Q → P) Axiom A1 1
c. (P → Q) → (P → P) Rule D,a,b D21
d. P → (Q → P) Axiom A1 1
e. P → P Rule D,c,d DD211
f. ∀x(P → P) Rule G,e GDD211
g. ∀x(∀xP → Q) → (∀xP → ∀xQ) Axiom A4 4
h. ∀xP → ∀x∀xP Rule D,g,f D4GDD211

Thus the proof string for this proof is D4GDD211. (The reader may wish to verify that
a shorter proof string for this theorem is D4GD4G5.)

A proof string, then, is essentially a list of the steps in a formal proof expressed
in a Polish prefix notation. A simple computer program (incorporating algorithms D
and G) can scan the proof string in reverse order and reconstruct the formal proof.

In general, proof strings cannot represent the shortest possible proofs in system
S1 because subtheorems used more than once must have their proof strings repeated.
However, the proof strings below are short enough so that we don’t bother to intro-
duce notation that permits references to repeated subtheorems or other lemmas. We
use the character S to abbreviate DD2D1 (representing a syllogism inference).

Because they are used to prove the Substitution Theorem, Lemmas L1 through
L11 are the exact theorems proved by their proof strings. The remaining lemmas may
be substitution instances of the theorems proved by their proof strings and in such
cases we implicitly apply the Substitution Theorem.

Proof of (L1): DDD21DD22D211 �
Proof of (L2): DD2SSD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S3S311S211D2-

D1SSD2S8DD28D3DD2S31SaSD4GSDDD22D219571S5SDD21bD4GSD3DD2S31SaSD4GSDDD-

22D219575D1S8S5SDD21bD4GSD3DD2S31SaSD4GSDDD22D219575 �
Proof of (L3): DD2SSD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S3S311S211D2-

D1SdS5SDD21bD4GSD3DD2S31SaSD4GSDDD22D219575D1ScS5SDD21bD4GSD3DD2S31Sa-

SD4GSDDD22D219575 �
Proof of (L4): D2D1S3SDDD21DD2D21D1SSDDD21DD2D21D1DD211331D211 �
Proof of (L5): SD2SSSDD22D11S12SD2D1SD2SD2D1DD2S3D2S311SDD2S21D1S3D2D-

1D3DD2S3S311S211S21D2D1S21SDD2S21D11S2D2D1S1SD2S211 �
Proof of (L6): DD2SSSDD22D11S12SD2D1SD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1-

D3DD2S3S311S211S21D1S4D4GSSDD2S21D15D1DD2115D2D1SSSD2D1D4G5D21DDDD21D-

D22D2115DD2S21D15 �
Proof of (L7): DD2S21D1S3D2D1D3DD2S3S311 �
Proof of (L8): DD2S21D1SS3D2D1D3DD2S3S311SSDD22D11S12D2DDD21S3D21D1S3D-

2D1D3DD2S3S311 �
Proof of (L9): DD2S21D1DD21D2S31 �
Proof of (L10): DD2S21D1DD21SD2D1DD21D2S31S3D21 �

452 NORMAN D. MEGILL

Proof of (L11): SDD2SD2211DDD21DD2S21S21D1DD211 �
Proof of (L12): D3SD3DD2S3S311SSD4GSDD28D3DD2S31SaSD4GSDDD22D219575DD-

2bD4G5DD2S3S311 �
Proof of (L13): SD2S211 �
Proof of (L14): DD2S3D2S311 �
Proof of (L15): SD2S311 �
Proof of (L16): S4D4GSDD2S21D155 �
Proof of (L17): SD2S8DD28D3DD2S31SaSD4GSDDD22D219571 �
Proof of (L18): DaGS7D3DD2S3S311 �
Proof of (L19): SD4GSD3SD3DD2S3S311SS6D4GDD3DD2S31SSSDD2S21D1DD2bD4G5b-

SD4GSDD28D3DD2S31SaSD4GSDDD22D219575DD2bD4G5D3SD3DD2S3S311DD3DD2S31SS-

1SbSD4GSDD28D3DD2S31SaSD4GSDDD22D219575DD2bD4G5D3SD3DD2S3S311SD2D1DD2-

S21D15911DD2S3S31157 �
Proof of (L20): SSD2SSDD22D11S12SD2D1SDD2S21D1S3D2D1D3DD2S3S311SD2D1DD-

2S3D2S311S21SS21D2D1D4GS151SD2SS4D4GSSDD2S21D15SS21S31571 �
Proof of (L21): SDD2S21D17S4D4GSSDD2S21D15SS3SDD22D2S3S311D2D1D3DD2S3-

S3115 �
Proof of (L22): SD2D16S4D4GSDD2S21D155 �

REFERENCES

[1] Boyer, R., E. Lusk, W. McCune, R. Overbeek, M. Stickel, and L. Wos, “Set theory in
first order logic: clauses for Gödel’s axioms,” Journal of Automated Reasoning, vol. 2
(1986), pp. 287–327. Zbl 0635.03008 10

[2] Church, A., Introduction to Mathematical Logic, Volume 1, Princeton University Press,
Princeton, 1956. Zbl 0073.24301 MR 18,631a 1

[3] Cohen, P. J., Set Theory and the Continuum Hypothesis, W. A. Benjamin, Reading,
1966. Zbl 0182.01301 MR 38:999 10

[4] Hamilton, A. G., Logic for Mathematicians, Cambridge University Press, Cambridge,
1988. Zbl 0653.03001 MR 89e:03002 1, 8

[5] Hindley, J. R., and D. Meredith, “Principal type-schemes and condensed detachment,”
The Journal of Symbolic Logic, vol. 55 (1990), pp. 90–105. Zbl 0708.03007
MR 91b:03020 1, 3

[6] Kalish, D., and R. Montague, “On Tarski’s formalization of predicate logic with iden-
tity,” Archiv für Mathematische Logik und Grundlagenforschung, vol. 7 (1965), pp. 81–
101. Zbl 0166.00105 MR 34:2438 8

[7] Kalman, J. A., “Condensed detachment as a rule of inference,” Studia Logica, vol. 42
(1983), pp. 443–451. Zbl 0568.03010 MR 86g:03016 1, 3, 5

[8] Kleene, S. C., Introduction to Metamathematics, Van Nostrand, Princeton, 1952.
Zbl 0047.00703 MR 14,525m 1, 2, 8

http://www.emis.de/cgi-bin/MATH-item?0635.03008
http://www.emis.de/cgi-bin/MATH-item?0073.24301
http://www.ams.org/mathscinet-getitem?mr=18,631a
http://www.emis.de/cgi-bin/MATH-item?0182.01301
http://www.ams.org/mathscinet-getitem?mr=38:999
http://www.emis.de/cgi-bin/MATH-item?0653.03001
http://www.ams.org/mathscinet-getitem?mr=89e:03002
http://www.emis.de/cgi-bin/MATH-item?0708.03007
http://www.ams.org/mathscinet-getitem?mr=91b:03020
http://www.emis.de/cgi-bin/MATH-item?0166.00105
http://www.ams.org/mathscinet-getitem?mr=34:2438
http://www.emis.de/cgi-bin/MATH-item?0568.03010
http://www.ams.org/mathscinet-getitem?mr=86g:03016
http://www.emis.de/cgi-bin/MATH-item?0047.00703
http://www.ams.org/mathscinet-getitem?mr=14,525m

PREDICATE CALCULUS 453

[9] Megill, N. D., and M. W. Bunder, “Weaker D-complete logics,” The University of Wol-
longong Department of Mathematics Preprint Series no. 15/94. Zbl 0845.03010 1

[10] Mendelson, E., Introduction to Mathematical Logic, second edition, Van Nostrand, New
York, 1979. Zbl 0498.03001 MR 80d:03001 1

[11] Meredith, D., “In memoriam Carew Arthur Meredith (1904–1976),” Notre Dame Jour-
nal of Formal Logic, vol. 18 (1977), pp. 513–516. Zbl 0357.01045 MR 58:10195 1,
3

[12] Mints, G., and T. Tammet, “Condensed detachment is complete for relevance logic: a
computer-aided proof,” Journal of Automated Reasoning, vol. 7 (1991), pp. 587–596.
Zbl 0751.03011 MR 92h:03028 1

[13] Monk, J. D., “Substitutionless predicate logic with identity,” Archiv für Mathematische
Logik und Grundlagenforschung, vol. 7 (1965), pp. 103–121. Zbl 0158.24603
MR 34:4111 8

[14] Nemeti, I., “Algebraizations of quantifier logics, an overview,” version 11.4, preprint,
Mathematical Institute, Budapest, 1994. A shortened version without proofs appeared
in Studia Logica, vol. 50 (1991), pp. 485–569. MR 93h:03082 7, 7

[15] Peterson, J. G., “An automatic theorem prover for substitution and detachment sys-
tems,” Notre Dame Journal of Formal Logic, vol. 19 (1978), pp. 119–122.
Zbl 0368.68086 MR 58:8552 3

[16] Robinson, J. A., “A machine-oriented logic based on the resolution principle,” Journal
of the Association for Computing Machinery, vol. 12 (1965), pp. 23–41. Zbl 0139.12303
MR 30:732 1

[17] Tarski, A., “A simplified formalization of predicate logic with identity,” Archiv für
Mathematische Logik und Grundlagenforschung, vol. 7 (1965), pp. 61–79.
Zbl 0166.00104 MR 34:2437 6, 8, 9.6

[18] Tarski, A., and S. Givant, A Formalization of Set Theory Without Variables, American
Mathematical Society Colloquium Publications, vol. 41, American Mathematical Soci-
ety, Providence, 1987. Zbl 0654.03036 MR 89g:03012 1

[19] Wos, L., Automated Reasoning: 33 Basic Research Problems, Prentice-Hall, Engle-
wood Cliffs, 1987 Zbl 0663.68102 10

[20] Wos, L., R. Overbeek, E. Lusk and J. Boyle, Automated Reasoning: Introduction and
Applications, second edition, McGraw-Hill, New York, 1992. Zbl 0820.68116
MR 93a:68129 1, 1

[21] Wos, L. T., and G. A. Robinson, “Maximal models and refutation completeness:
semidecision procedures in automated theorem proving,” pp. 609–639 in Word Prob-
lems: Decision Problems and the Burnside Problem in Group Theory, Studies in Logic
and the Foundations of Mathematics, vol. 71, edited by W. W. Boone, F. B. Cannonito,
and R. C. Lyndon, North-Holland, Amsterdam, 1973. Zbl 0283.68058 MR 53:7154 1

[22] Zeman, J. J., Modal Logic, Oxford University Press, Oxford, 1973. Zbl 0255.02014
MR 53:2638 3

19 Locke Lane
Lexington, Massachusetts 02173
email: ndm@shore.net

http://www.emis.de/cgi-bin/MATH-item?0845.03010
http://www.emis.de/cgi-bin/MATH-item?0498.03001
http://www.ams.org/mathscinet-getitem?mr=80d:03001
http://www.emis.de/cgi-bin/MATH-item?0357.01045
http://www.ams.org/mathscinet-getitem?mr=58:10195
http://www.emis.de/cgi-bin/MATH-item?0751.03011
http://www.ams.org/mathscinet-getitem?mr=92h:03028
http://www.emis.de/cgi-bin/MATH-item?0158.24603
http://www.ams.org/mathscinet-getitem?mr=34:4111
http://www.ams.org/mathscinet-getitem?mr=93h:03082
http://www.emis.de/cgi-bin/MATH-item?0368.68086
http://www.ams.org/mathscinet-getitem?mr=58:8552
http://www.emis.de/cgi-bin/MATH-item?0139.12303
http://www.ams.org/mathscinet-getitem?mr=30:732
http://www.emis.de/cgi-bin/MATH-item?0166.00104
http://www.ams.org/mathscinet-getitem?mr=34:2437
http://www.emis.de/cgi-bin/MATH-item?0654.03036
http://www.ams.org/mathscinet-getitem?mr=89g:03012
http://www.emis.de/cgi-bin/MATH-item?0663.68102
http://www.emis.de/cgi-bin/MATH-item?0820.68116
http://www.ams.org/mathscinet-getitem?mr=93a:68129
http://www.emis.de/cgi-bin/MATH-item?0283.68058
http://www.ams.org/mathscinet-getitem?mr=53:7154
http://www.emis.de/cgi-bin/MATH-item?0255.02014
http://www.ams.org/mathscinet-getitem?mr=53:2638
mailto: ndm@shore.net

