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Levels of Truth

ANDREA CANTINI

Abstract This paper is concerned with the interaction between formal se-
mantics and the foundations of mathematics. We introduce a formal theory of
truth, TLR, which extends the classical first order theory of pure combinators
with a primitive truth predicate and a family of truth approximations, indexed
by a directed partial ordering. TLR naturally works as a theory of partial clas-
sifications, in which type-free comprehension coexists with functional abstrac-
tion. TLR provides an inner model for a well known subsystem ATR0 of second
order arithmetic; indeed, TLR is proof-theoretically equivalent to Predicative
Analysis.

1 Introduction It is well known that if we axiomatize the basic closure properties
of fixed point models for partial self-referential truth à la Kripke over a given the-
ory (say Peano Arithmetic) we obtain rather extensive systems which are appealing
not only for formal semantics but also for the foundations of mathematics (cf. Fefer-
man [14], Reinhardt [27]).

Nevertheless, systems based on self-referential truth, T in short, are far from
being satisfactorily closed: they show a limited ability in reflecting negative infor-
mation and hypothetical reasoning. For instance, the inference from T A → T B to
T (A → B), which corresponds to the usual implication introduction rule, is gener-
ally unsound unless we have the additional information that A is a proposition in the
sense of T, i.e., T A ∨ T¬A. (In this introduction we neglect details concerning Gödel
numbering, and we simply write T A instead of T[A], where [A] is a suitable encoding
of A).

In general, we have no chance to reduce negative external information ¬T A to
internal negative information T¬A: T is essentially partial. Thus we are naturally
confronted with the problem of designing formal frameworks which can reflect, at
least to a certain extent, negative semantic information and hence can exhibit a higher
degree of completeness.

Of course, a number of formal moves are conceivable here. In this paper we
choose to develop a formal theory of (abstract) self-referential truth which is supple-
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mented with levels of truth. The basic intuition, which is certainly not new, stems
from the observation that, once we have fixed a semantic schema (here Kleene’s
strong three valued logic), the truth predicate T is parametric: T depends upon a set
K 0 including complete information about given primitive predicates, to be regarded
as the context T is about. Thus T is properly T(K 0), for some K 0. Furthermore,
by Tarski’s theorem the context cannot include complete information about T itself.
Hence, if we consider T(K 0) as completed or fully grasped, we shift from the con-
text K 0 to a new one K 1, which also includes a complete description of T(K 0) as
primitive. For instance, if A is any sentence such that A /∈ T(K 0) (or A ∈ T (K 0)),
we must have (¬T0 A) ∈ K 1 (or (T0 A) ∈ K 1, T0 being the formal counterpart of
T (K 0)). We underline that we must add (¬T0 A) to K 1 and not simply (¬A): (¬A)

would in general conceal its context dependence, and this might lead to paradoxes.
These considerations are rough, but they naturally suggest that the parametric

dependence of truth ought to be made explicit by means of levels: the shift from
T (K 0) to T (K 1) is seen as a step to a higher reflection stage and, formally, from truth
of ground level T0 to truth of higher level T1. On the other hand, the step from level 0
to level 1 can actually be understood as a general uniform method for generating new
truth predicates from given ones. For the sake of generalization, we simply identify
levels with ordinals, and we imagine a language in which, besides T , we also dispose
of level dependent truth predicates Ti. Informally, we can sum up the fundamental
tenets behind our theory TLR (= truth with levels and reflection) in three points.

1. If i, j are levels and i ≺ j ( where ≺ is the precedence order on levels), Ti is
related to Tj in such a way that:

(a) whatever is declared true by Ti, is declared true by Tj, i.e., ∀x(Tix →
Tjx);

(b) Ti is decidable with respect to Tj, i.e., TjTi A or Tj¬Ti A (A arbitrary; we
neglect formalization details).

2. Each local truth predicate Ti satisfies the closure principles of the general theory
of partial truth à la Kripke and Feferman.

3. There is also a level-free truth predicate T which is conceived as the “limit”
of the local truth predicates; in addition, we still assume that T itself has the
self-referential abilities of the Tis.

Principles (1)–(3) are formally implemented in the theory TLR of Sections 2–3
(actually we consider a more general system without number-theoretic induction up
to Section 8). TLR is a first order extension of combinatory logic, expanded with a
level-free truth predicate and a binary predicate Ti (truth of level i). The level ordering
is assumed to be only partial, not well-founded and unbounded; but it also satisfies a
nontrivial reflection principle, implying the second part of 3 above.

We underline that TLR has a built-in theory of total untyped operations, which
takes care of predicate abstraction and self-referential constructions in a very uniform
way. We also postulate an injection of levels into objects in order to codify sentences
involving levels. This move puts important constraints for building models of TLR
and it also requires non-trivial facts about admissible ordinals (projectibility; see Sec-
tion 7).
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Section 4 surveys elementary closure conditions for truth and truth predicates
with levels, whereas Section 5 is concerned with the development in TLR of a theory
of partial classifications and type-free abstraction in the sense of Feferman [13]. In
particular, we can distinguish i-classes, i.e., predicates which are total relative to truth
of level i, from classes, i.e., total predicates tout court; i-classes are nicely closed
under forms of elementary comprehension and effective disjoint union.

Section 6 investigates the influence of the local structure on the closure prop-
erties of the level-free statements. CL := {x : x class} splits into a directed family
{CLi : i level}, where each CLi := {x : x class of level i} is itself a class at any higher
level j � i. As a consequence, classes are closed under an analog of Weyl’s Itera-
tionsprinzip (see Weyl [31]), a transfinite recursion principle along CL-well-founded
linear orderings. We can also recover in the present context a satisfactory notion of
universe (see Feferman [12], Jäger [21], Martin-Löf [24], Marzetta [25]).

Section 7 describes a model C ι for a strengthening TLR+ of TLR, which also
contains linearity, well-foundedness of level ordering, and number-theoretic axioms
(induction schema included). The model is built up by means of a suitable iterated in-
ductive definition along the first recursively inaccessible ordinal; the step from truth
of a given level to truth of higher level essentially corresponds to the hyperjump op-
eration of generalized recursion theory (see Hinman [20]). In the final section 8 we
consider the relation with classical subsystems of second order arithmetic: we can
produce a model to Friedman’s subsystem ATR0 (Friedman et al. [16]) within TLR
(with number-theoretic induction for classes of arbitrary level). Indeed, this interpre-
tation yields a proof-theoretic lower bound on TLR; the lower bound is sharp and
TLR is a strong version of Predicative Analysis. In this connection it might be inter-
esting to settle the precise relation between TLR and the theory of iterated admissi-
bility without foundation, which is also known to have the proof-theoretic strength of
Predicative Analysis by Jäger [21].

We conclude this section by briefly discussing the relation of the present work to
the literature. First of all, the philosophical paper of Burge [4] already contains an in-
teresting approach to semantical paradoxes based on the indexical nature of truth and
on the notion of level (see also Parsons [26]; related ideas are independently sketched
by Gaifman [17]). In this respect, we might consider TLR as a sort of axiomatization
for (a version of) Burge’s proposal, in which the problem of extending the construc-
tion of truth predicates into the transfinite is explicitly tackled.

The idea of internalizing negative information by means of a reflective process
indexed by levels, is already present in earlier work about “type-free logic” (e.g.,
Schütte [29] and Fitch [15]). In this respect, the paper of Lorenzen and Myhill [23]
deserves a special mention (in particular, cf. pp. 47–49), as well as for its applications
to foundational issues and to recursion theory.

Subsequently, similar ideas emerge anew in connection with the problem of ex-
panding lambda calculus models with truth by Scott [30]; an earlier version of TLR
(outlined in Cantini [6]) was directly inspired by an attempt to investigate Scott’s
model for a hierarchy of self-referential truth predicates. In Cantini [8] we defined
a theory of abstraction based on truth of arbitrary finite levels and a stronger seman-
tical schema.

Recently Aczel, Carlisle, and Mendler [1] introduced a hierarchy of propositions
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and truth predicates as a basis for logical theories of constructions to be used in the-
oretical computer science.

2 Truth with levels: preliminaries In this section we describe the formal language
of reflective truth with levels, and we summarize the basic facts of combinatory logic
needed below; finally we define a suitable Gödel numbering.

The language L V includes:

1. a denumerable list of individual variables x1, x2, x3, . . . ;
2. a denumerable list of variables for levels i0, i1, . . . (in short L-variables);

3. the individual constants K, S (combinators); the binary function symbol Ap
(functional application); the unary function symbol LT (level injection);

4. four binary predicates = (object equality), � (level ordering), =l (level equal-
ity), V (local truth); two unary predicates T (for truth) and N (for natural num-
bers);

5. the logical constants ¬, ∧, ∀.

x, y, u, v,w, z are used as syntactical variables for object variables x1, x2, x3, etc.

2.1 L(evel)-terms, terms, formulas of L V and acceptable formulas

1. L-variables are exactly the L-terms (i, j, k metavariables for L-terms);

2. the set of L V -terms is the least collection which is closed under the following
clauses: individual variables and constants are terms; if j is an L-term, LT ( j)
is a term; if t, s are terms, Ap(t, s) is a term;

3. the set of L V -formulas is the smallest collection closed under the following
clauses: if j and i are L-terms, i � j and i =l j are atoms (and hence formu-
las); if t, s are terms and i is an L-term, Nt, t = s, Tt and V (i, t) are atoms
(and hence formulas); if A, B are formulas, ¬A, A ∧ B are formulas; if A is a
formula, x an individual variable and j is an L-variable, then ∀xA and ∀ jA are
formulas (where x, j occur bound).

Atoms of the form t = s and Nt are called e-atoms (e = elementary).

4. The collection �+ of acceptable formulas of L V is the smallest collection
which includes the atoms Tt, Tit, t = s, Nt and is closed under negation, con-
junction and universal quantification on object variables.

The intended meaning of V (i, t) is that “t is true at level i”; we write Tit for V (i, t);
Tt := “t is true”; i � j (i =l j) := “the level i is less than or equal (equal tout court) to
the level j.” If i, j are L-terms, i = j is a shortening for i =l j; we also write i ≺ j for
(¬i = j) ∧ (i � j). The intended meaning of Nt is “t is a natural number”; however,
N will not play any active role until Section 8 in the comparison with a subsystem of
second order arithmetic.

2.2 The fragments L and Lop of L V

1. L is obtained from L V by omitting L-variables, LT , V , �, =l;

2. Lop is obtained from L by omitting the predicate T .
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We write (ts) for Ap(t, s) and outer parentheses are omitted, and the missing ones are
restored by associating to the left. For clarity, we sometimes use f , g, h for variables
occurring in operand position (e.g., f x instead of yx).

The systems we consider in this paper include combinatory logic as a ground
theory of (untyped) operations.

2.3 The system TO (= total operations)
TO is the formal theory in the language L V which contains:

1. classical (two-sorted) predicate logic with identity in the language L V ;
2. the combinatory axioms,

C1 K 	= S;

C2 ∀x∀y∀z(Kxy = x ∧ Sxyz = xz(yz)).

We inductively introduce λ-abstraction according to the standard definitions of com-
binatory logic, i.e., λx.x = SK K; λx.t = Kt, provided x is not free in t; λx.ts =
S(λx.t)(λx.s). As with the quantifiers, we usually insert a dot between λx and its
body, for the sake of readability; occasionally, we use dots as separating symbols in
place of parentheses. If E is any expression (term or formula), E[x := t] denotes the
result of replacing x with t in E. λ-abstraction satisfies β-conversion and the fixed
point theorem provably in TO:

Lemma 2.1

1. TO proves (λx.t)u = t[x := u].
2. We can define a closed term Y such that TO proves ∀x(Yx = x(Yx) ).

Proviso: in (1) u is free for x in t.

A pairing operation with projections can be defined in Lop; e.g., we can choose:

PAIR := λxyu.uxy; LEFT := λx.xK; RIGHT := λx.x(K I),

where I := λx.x.
Henceforth we adopt the familiar notations: 〈t, s〉 := PAIR ts; (t)1 = LEFT t and

(t)2 := RIGHT t. Then by Lemma 2.1 we have the following.

Lemma 2.2 TO � ∀x1∀x2((〈x1, x2〉)i = xi) (where i = 1, 2).

We can obviously define a coding of n-tuples; in particular, we choose 〈t1, t2, t3〉 :
= 〈t1, 〈t2, t3〉〉. The pairing system based on PAIR is also used to represent standard
numerals in TO. NUM, the collection of numerals, is the least set X of closed Lop-
terms such that 0 := I ∈ X; if n ∈ X, then n + 1 := (PAIR nK) ∈ X. Successor and
predecessor on NUM are then defined by the terms SUC := λx.PAIR xK, PRED :=
LEFT. By Lemma 2.1, we can also find a term D representing definition by cases on
numbers (for details see Barendregt [2]). In fact, one has, for each n, m, the following.

Lemma 2.3

TO � ¬(n + 1) = 0 ∧ ((n + 1) = (m + 1) → n = m)) ∧ (PRED(n + 1) = 0);
TO � Dn nxy = x ∧ Dn mxy = y ( for n 	= m).
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In the following, we ambiguously use n, m, k as symbols ranging both on natural
numbers and the corresponding numerals of NUM.

Definition 2.4 (Terms representing acceptable formulas)

1. Terms representing logical operators and predicates of L V :

ID := λxy.〈1, x, y〉; TR := λx.〈2, x〉; NAT := λx.〈3, x〉;
NEG := λx.〈4, x〉; AND := λxy.〈5, x, y〉〉; ALL := λx.〈6, x〉;
TRi := λx.〈7, LT (i), x〉.

2. We then define the map A → [A] by induction on the notion of acceptable L V -
formula:

[t = s] := (ID t)s; [Ns] := NAT s; [Tt] := TRt;
[Tit] := TRit; [¬A] := NEG[A];
[A ∧ B] := AND [A][B]; [∀xA] := ALL(λx[A]).

Observe that [A] has exactly the same free variables as A, and it commutes with sub-
stitution ([A][x := t] = [A[x := t]]). Moreover ID, TR, TRi, NEG, AND, ALL denote
distinct objects and enjoy unique readability and independence conditions, at least if
the following projectibility axiom PROJ is assumed.

Axiom 2.5 ∀i∀ j(LT (i) = LT ( j) → i = j).

Lemma 2.6 (Independence of combinators representing logical constructors)

1. If L1, L2 ∈ LOG1 := {NAT, NEG, TRi, TR, ALL}, then
TO + PROJ � L1x = L2 y → .L1 = L2 ∧ x = y;

2. if G1, G2 ∈ LOG2 := {ID, AND}, then
TO � G1xy = G2x′y′ → .G2 = G2 ∧ x = x′ ∧ y = y′;

3. if L1 ∈ LOG1, L2 ∈ LOG2, then TO � ¬L1x = L2 yz; if L1, L2 are distinct ele-
ments of LOG1 ∪ LOG2, then TO � ¬L1 = L2.

Proof: By pairing axioms, β-conversion and the projection axiom PROJ in the case
where L1 = L2 = TRi.

Remark 2.7 The choice of [−] is largely a matter of taste, as soon as the condi-
tions of Lemma 2.6 are met. As a viable alternative, one could assume new constants
ID, NAT, TR, TRi, AND, NEG, ALL with axioms corresponding to the conditions of
Lemma 2.6, or even assume [−] as a primitive term constructor.

2.4 Conventions We henceforth adhere to the following conventions:

1. T A is a shorthand for T[A];
2. To enhance readability, we use ¬, ∧, ∀, etc., and infix notation instead of

the terms NEG, AND, ALL, etc. Thus t ∧ s, ∀x.t, ¬t, etc. stand for the terms
(AND t)s, ALL(λx.t), NEG t (in the given order).

3. We also adopt the obvious shorthands ¬¬t := ¬(¬t), and t ∨ s, t → s instead
of (respectively) ¬(¬t ∧ ¬s), (¬t ∨ s). As to the existential operator, we let

∃( f ) := ¬(∀(λu.(¬( f u)))) and ∃x.t := ∃(λx.t).
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3 Truth with levels: axioms The truth principles are grouped into local truth ax-
ioms, level and connection axioms, and a reflection axiom. Number-theoretic axioms
will be introduced later in order to investigate the relation with subsystems of analy-
sis.

3.1 Local truth axioms

1. Ti A ↔ A, if A := (x = y), Nx, (¬x = y), ¬Nx;
2. Tix → TiTix; Ti¬x → Ti¬Tix;
3. Ti¬¬x ↔ Tix;
4. Ti(x ∧ y) ↔ Tix ∧ Ti y; Ti¬(x ∧ y) ↔ Ti¬x ∨ Ti¬y;
5. Ti(∀ f ) ↔ ∀xTi( f x); Ti¬(∀ f ) ↔ ∃xTi¬( f x);
6. ¬(Tix ∧ Ti¬x) (Local consistency).

3.2 Level axioms These include standard equality axioms for level equality (=l)
and state that � is a directed unbounded partial order.

1. ∀i∀ j∀k((i � i) ∧ (i � j ∧ j � k → i � k) ∧ (i � j ∧ j � i → i = j)).
2. ∀i∀ j∃k(i ≺ k ∧ j ≺ k).

3.3 Connection axioms These are the crucial principles of the theory, relating truth
predicates of different level.

1. Limit: Tx → ∃i.Tix; Tix → Tx;
2. Persistence: i � j ∧ Tix → Tjx;
3. Localization: TiTx ↔ Tix; Ti¬Tx ↔ Ti¬x;
4. Potential Completeness: i ≺ j → (TjTix ∨ Tj¬Tix);
5. Positive Soundness: TjTix → i � j ∧ Tix;
6. Negative Soundness: Tj¬Tix → (i = j ∧ Ti¬x) ∨ (i ≺ j ∧ ¬Tix).

3.4 The Reflection principle (REF)

∀i∀y∀z{∀x∃ j(xηi y → xη jz) → ∃k∀x∃ j( j � k ∧ (xηi y → xη jz))}.

Definition 3.1

1. TL− is the theory based on two sorted classical predicate logic with equality
axioms (for the two sorts of objects and levels), which includes the system TO
of Section 2.3, the projectibility axiom PROJ of Axiom 2.5 and the axioms of
groups from Sections 3.1–3.3.

2. TLR− is TL− plus REF.

N.B. The − sign means that no assumption is made on the predicate N.

A few words of comment. By the principles of group from Section 3.1, truth of
any level i satisfies an abstract version of the KF-axioms for reflective truth (‘KF’ =
Kripke-Feferman; see [14]). The abstract character of truth predicates is to be found
in the fact that they are not, like the usual formalized truth predicates, attributes of
(codes of) sentences, but, more generally, predicates of objects in a given combinatory
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algebra. As to Section 3.3, potential completeness ensures that negative information
about any level i becomes internal at higher levels, whereas limit and localization ax-
ioms imply that global truth statements always reduce to local truth statements (of
sufficiently high level). Finally, by persistence and soundness no information is lost
at later levels, and later levels do not conflict with earlier ones, even on negative in-
formation. The reflection principle says that there are enough levels for T , in order
to internalize universal statements about objects, and it exactly implies that T itself is
a model of KF-axioms (see Proposition 4.3 below and the characterization of the in-
clusion relation in Lemma 5.5). The level axioms are presented in a general form and
do not assume linearity or well-foundedness; however the recursion-theoretic model
will interpret ≺ as the standard ordering on a suitable segment of countable ordinals.

4 Elementary consequences We consider elementary closure properties of Ti and
T .

Definition 4.1

1. Let i be any L-variable: the i-transform of A ∈ L is the L V -formula Ai, which
results from A by substituting each occurrence of T with Ti (e.g., (∀xT (ax))i =
∀xTi(ax), (TTt)i = TiTt).

2. An L V -formula A is T-positive iff A belongs to the least collection which con-
tains expressions of the form t = s, ¬t = s, Nt, ¬Nt, Tit, ¬Tit, Tt and is closed
under conjunction, disjunction, and quantifiers (on either sort).

3. A is a k-formula iff A belongs to the least collection of formulas which is closed
under ∧, ¬, universal object quantification, and contains atoms of the form
t = s, Nt, Tkt.

Proposition 4.2

1. Global consistency: ¬(Tx ∧ T¬x);
2. TL− � Tix ↔ TiTix and Ti¬x ↔ Ti¬Tix;
3. �+-soundness: T L− � Ti A → A(A ∈ �+);
4. TL− � Ti A → Ai (A ∈ �+);
5. TL− � i � j ∧ Ti A → Tj A (A ∈ �+);
6. If A is a k-formula,

T L− � k ≺ j → ((Tj A ↔ A) ∧ (Tj A ∨ Tj¬A)),

hence:
T L− � (T A ↔ A) ∧ (T A ∨ T¬A).

Proof: (1) If Tx and T¬x are assumed, then by limit axiom Tix and Tk¬x, for some
i, k; hence there exists by Section 3.2 some j � i, k, such that by persistence Tjx and
Tj¬x, against local consistency.

(2) By local truth axioms 3.1.2, positive and negative soundness.
(3) Induction on A. If A is an e-atom or has the form Tjt,¬Tjt, we apply Ax-

iom 3.1.1, positive and negative soundness and local consistency 3.1.6. Let A := ¬Tt
and assume Ti¬Tt; then Ti¬t by localization, hence T¬t by limit and ¬Tt by (1)
above. The remaining cases are straightforward by IH and local truth axioms.



LEVELS OF TRUTH 193

(4) Induction on A, using localization if A = Tit.
(5) Apply persistence axiom.
(6) Potential completeness and �+-soundness yield the first statement, which,

in turn, implies the second one by limit, persistence, and unboundedness axioms.

Proposition 4.3

1. TL− proves:

T A ↔ A, if A := x = y, Nx,¬x = y,¬Nx;
TTx ↔ Tx; T¬Tx ↔ T¬x;
T¬¬x ↔ Tx;
T (x ∧ y) ↔ Tx ∧ Ty; T¬(x ∧ y) ↔ T¬x ∨ T¬y;
T (∀ f ) → ∀xT( f x); ∃xT¬( f x) ↔ T¬(∀ f );

2. TLR− � ∀x∃iTi( f x) → ∃k∀xTk( f x) (positive reflection);
3. TLR− � ∀xT ( f x) → T(∀ f );
4. if A is acceptable and A is T-positive,

TLR− � A ↔ ∃i.Ti A ↔ T A ↔ ∃i Ai.

Proof: (1) By limit, localization, and local truth axioms, together with the directed-
ness of the level ordering.

(2) Apply reflection with y := {u : u = u} and persistence.
(3) Apply limit, positive reflection, and local truth axiom 3.1.5.
(4) Let us consider the first equivalence. From right to left, it follows from �+-

soundness (Proposition 4.2). As to the reverse direction, we argue by induction on
A. If A := ¬Tjt, choose k � j by unboundedness of ≺: then Tk¬Tjt by potential
completeness, negative soundness. If A := ∀xB, we use IH, positive reflection and
the local truth axiom for ∀. The other cases are easy and left to the reader. The sec-
ond equivalence is just a restatement of the limit axiom. As to the third equivalence,
T A → ∃iTi A → ∃i.Ai (use Proposition 4.2.4). Ai → T A is inductively checked
(Proposition 4.3.3 above being used in the case A := ∀xB).

By Proposition 4.3, T will satisfy the same basic axioms as the Tis; there is a
“harmony” between global and local structure of truth.

As to the Liar paradox, in the present framework we can distinguish a “local”
version (“I am not true at level i”), which is formally decidable at any higher level
and hence true, from a T-undecidable “global” version (“I am not true”).

Proposition 4.4

1. Let L(i) be the term such that TL− � L(i) = [¬Ti L(i)]. Then

T L− � i ≺ j → (Tj L(i) ∧ ¬Ti L(i) ∧ ¬Ti(¬L(i)));
T L− � ∀i.T (L(i)).

2. Let L be the term such that TL− � L = [¬T L]. Then T L− � ¬T L ∧ ¬T¬L.
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Proof: The existence of L and L(i) is ensured by Lemma 2.1.
(1) ¬Ti L(i) ∧ ¬Ti(¬L(i)) follows by Axiom 3.1.2, local consistency, and Ax-

iom 3.1.3. On the other hand if i ≺ j, we have by Proposition 4.2.6 Tj¬Ti L(i) and
hence Tj L(i) by identity logic. The second statement follows by unboundedness,
limit and persistence.

(2) Apply Propositions 4.3.1 and 4.2.1.

If we call i-proposition any object x such that Tix ∨ Ti¬x, Proposition 4.4 implies the
existence of j-propositions which are not i-propositions, for any j � i.

5 Truth with levels and abstraction In TL− and TLR− we can develop a theory of
partial classifications; it is closely related to nonextensional systems based on type-
free comprehension.

Definition 5.1

1. Fit := Ti¬t; Ft := T¬t;
tηis := Ti(st) and tη̄is := Fi(st);
tηs := T (st); tη̄s := F(st);
Cli(t) := ∀x(xηit ∨ xη̄it) (t is an i-class);
Cl(t) := ∀x(xηt ∨ xη̄t) (t is a class).

2. The abstraction operator: if A is acceptable {x : A} := λx.[A].
3. CL := {x : Cl(x)}; CLi := {x : Cli(x)};

R := {x : ¬xηx}; R(i) := {x : ¬xηix};
x ≡i y := (Tix ↔ Ti y) ∧ (Fix ↔ Fi y);
x ≡ y := (Tx ↔ Ty) ∧ (Fx ↔ Fy).

4. A formula B is elementary in the list x1, . . . , xn iff B is built up from e-atoms,
T-atoms of the form tηxi (where 1 ≤ i ≤ n), by means of ¬,∧,∀y, (y /∈
{x1, . . . , xn}).

Lemma 5.2

1. If A is a T-positive L-formula, T L− � Ak ↔ Tk A;
2. If A(u, x) is an L-formula elementary in x,

T L− � Clk(x) → Tk A(u, x) ∨ Fk A(u, x);
3. If A(u, x) is an L-formula elementary in x,

TL− � Clk(x) → A(u, x) ↔ Ak(u, x) ↔ Tk A(u, x).

Proof: (1–2) Induction on A, applying by Proposition 4.2.2 and local truth axioms.
(3) Assume that x is a k-class. The second equivalence is a consequence of (2)

and the first equivalence with Proposition 4.2.3. Thus we verify only the first equiva-
lence by induction on A. If A is an atom different from uηx, the conclusion is trivial.
If A(u, x) := uηx, uηkx implies uηx by the limit axiom. In the opposite direction, we
get a contradiction from uηx and ¬uηkx (apply Clk(x), persistence, limit, unbound-
edness and local consistency). If A(u, x) is a negation, a conjunction or a universal
quantification, we simply apply IH.
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Suitable forms of untyped comprehension hold provably in TL−; it also follows that
the notion of i-class determines a class at any level j � i, whereas the collection of
i-classes form a strictly increasing chain. As to the (analogue of the) Russell sentence
relativized to level i, it becomes true at strictly higher levels.

Proposition 5.3

1. The extended abstraction schema for acceptable formulas: if A ∈ �+,

T L− � ∀u(uη{x : A(x)} ≡ A[x := u]);

2. The local abstraction schema for acceptable formulas: if A ∈ �+,

T L− � ∀i∀u(uη{x : A} ≡i A[x := u]);

3. if A(x) is a j-formula, j ≺ i → ∀u(uηi{x : A} ↔ A[x := u]); (u free for x in
A in (1)–(3) above); hence: T L− � ∀u(uη{x : A} ↔ A[x := u]);

4. TL− � ∀i.¬Cli(R);
5. TL− � ∀i(i � j → Cli(R( j)) ∧ ¬Cl j(R( j)) ∧ R( j)ηi R( j));
6. TL− � i ≺ k → CLi ηk CLk ∧ CLi ⊂ CLk.

Proof: (1) By β-conversion and Proposition 4.3.1.
(2) Immediate by β-conversion and localization axioms.
(3) By (2) and Proposition 4.2.6.
(4) By localization and local consistency.
(5) Let i � j. As to the first conjunct, R( j) is defined by a j-formula and hence

we apply Proposition 4.2.6 and local abstraction; the second conjunct is Russell’s
paradox for level j; the third conjunct follows from the second one with (3).

(6) Assume k � i: then CLi ⊂ CLk by persistence and (5). As to CLiηkCLk,

apply local abstraction and Proposition 4.2.6.

Proposition 5.4

1. Closure of CLk under elementary comprehension:

T L− � Clk(x) → (Clk({u : A(u, x)}) ∧ ∀v(vη{u : A(u, x)} ↔ A(v, x))),

where A is an L-formula, elementary in x.
2. Closure of CLk under join: define �(x, f ) := {〈v,w〉 : vηx ∧ wη( f v)}. Then

T L− � ∀u(uη�(x, f ) ↔ ∃v∃w(u = 〈v,w〉 ∧ vηx ∧ wη( f v)))

T L− � (Clk(x) ∧ f : x → CLk) → Clk(�(x, f )).

(where f : a → b := ∀x(xηa → ( f x)ηb)).

Proof: (1) If x is a k-class, so is {u : A(u, x)} by Lemma 5.2.2. The second equiv-
alence is an immediate consequence of Proposition 5.3.1 and Lemma 5.2.3.

(2) Ad (1): apply Proposition 5.3.1 and Proposition 4.3.4, observing that the
reflection axiom is not necessary if no universal quantifier is present, and hence
we can work in TL−. Ad (2): let f be a family of classes indexed by the class
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x and ¬uηk�(x, f ). By Proposition 5.3.2 and local truth axioms for Tk, we get
¬Ak(u, x, f ), where

A(u, x, f ) := ∃v∃w(u = 〈v,w〉 ∧ vηkx ∧ wηk( f v)).

If ¬u = 〈v,w〉 or ¬vηkx is assumed, Tk¬A(u, x, f ) follows by Clk(x) and the lo-
cal truth axioms for Tk; else we can assume u = 〈v,w〉 and vηkx, which implies
Clk( f v) by assumption on f, x and hence wη̄k( f v). The axioms for Tk again im-
ply Tk¬A(u, x, f ), whence by abstraction uη̄k�(x, f ).

Elementary comprehension and join ensure that the notion of k-class is nicely closed
(e.g., k-classes are closed under boolean operation, generalized products over fam-
ilies of k-classes indexed by a k-class). Elementary comprehension and join were
introduced by Feferman [11].

Lemma 5.5

1. If A(x) is T-positive and acceptable, TLR− � ∀u(uη{x : A} ↔ A[x := u]);
2. TLR− � Cl(a) ↔ ∃iCli(a);
3. let a ⊆ b := ∀x(xηa → xηb); then TLR− � a ⊆ b ↔ ∀i∃k∀x(xηia → xηkb);
4. a class of classes is always an i-class, for some level i:

TLR− � Cl(a) ∧ a ⊆ CL → ∃i.a ⊆ CLi.

Proof: (1) By Propositions 4.3.4 and 5.3.1.
(2) Apply the limit axiom from right to left. The reverse direction is a conse-

quence of Proposition 4.3.4, as the formula defining Cl is acceptable and T-positive.
(3) ⇒: by limit and reflection; the converse is trivial.
(4) Assume that a is a class of classes. Then by (2), a is an i-class and

a ⊆ CL ⇒ ∀ j∃k∀x(xη ja → xηkCL) by (3);
⇒ ∀ j∃k∀x(xη ja → Clk(x)), by localization, local abstraction;
⇒ ∃k∀x(xηia → Clk(x)) by logic;
⇒ a ⊆ CLk for some k,

as xηa ↔ xηia, by assumption on a and global consistency Proposition 4.2.1.

6 Existence of universes and the extended Weyl iteration principle The level
structure affects the set of level-free provable statements; the theme is illustrated by
two significant statements.

The first principle says that, if we are concerned with logical constructions de-
pending on classes as initial data, we can always work within a nicely closed universe,
which is itself a class of classes and to which the initial data belong. We make the
idea precise with a lemma and a definition.

Now let z =e w := ∀u(uηz ↔ uηw) (= η-extensional equality). Then we have
the following.

Lemma 6.1 There is an L-formula Elemclos(y) such that, for every L-formula
A(x, u1, . . . , un) elementary in u1, . . . , un, TLR− proves

Elemclos(y) → ∀u1 . . .∀un(u1ηy ∧ . . . ∧ unηy →
→ ∃z(zηy ∧ z =e {x : A(x, u1 . . . un)})).
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The lemma is an intensional version of the well known class theorem of Gödel-
Bernays set theory; one can show that classes defined by elementary conditions can
be generated by a finite number of operations from a finite stock of initial classes.
Thus there is a finite number of axioms characterizing the closure of y under elemen-
tary comprehension; these axioms are collected into a single formula Elemclos(y),
which can be read as “y is elementarily closed.” In essence, this result is already in
Gordeev [19], pp. 66–67, though in a constructive framework; so we omit the proof
(a direct verification relies on the closure conditions of classes, established by Propo-
sition 5.4). Incidentally, we remark that a term witnessing z in (∗) can be effectively
found from the given formula A.

Definition 6.2

1. y |= J := ∀ f ∀c(cηy ∧ f : c → y. → (�(c, f )ηy ∧ ∀u(uη�(c, f ) ↔
∃v∃w(u = 〈v,w〉 ∧ vηc ∧ wη( f v)))));

�(c, f ) is the term of Proposition 5.4.1 and y |= J states that the join principle
of Proposition 5.4.2 holds relativized to y.

2. y is a universe of classes iff y is an elementarily closed class of classes, which
is also closed under join; in symbols: Univ(y) := Cl(y) ∧ y ⊆ CL ∧ y |= J ∧
Elemclos(y), where Elemclos(y) is the L-formula given by Lemma 6.1.

Theorem 6.3

1. TL− � ∀k.Univ(CLk).
2. TLR− � ∀y(Univ(y) → ∃k(y ⊆ CLk).

Proof: (1) That CLk is closed under join and elementary comprehension already
follows from Proposition 5.4; CLk ⊆ CL and CLkηCL are consequences of the limit
axioms of Section 3.3 and Proposition 5.3.6.

(2) immediate by Lemma 5.5.4.

Corollary 6.4 Let LIM := ∀x(Cl(x) → ∃y(Univ(y) ∧ xηy )); then TLR− � LIM.

Proof: If x is a class, x is already a k-class (Lemma 5.5.2), for some k and CLk is a
universe by the theorem.

Remark 6.5

1. LIM is investigated by [12], [21], and [25].
2. Each CLk is closed under the basic type constructors of Martin-Löf’s type the-

ory, and Martin-Löf’s intuitionistic type theory with arbitrarily many finite uni-
verses without W-types can be interpreted in the theory TLR.

The second principle we deal with concerns transfinite recursion over well-orderings.
It is a priori unclear how to render the notion of well-ordering in the present context:
shall we quantify over classes or arbitrary possibly partial predicates? We observe
that the two alternatives yield radically different notions and that the sharpest notion
is obtained by quantifying over classes (this point can be clarified with the help of the
proof-theoretic analysis; details are given in Cantini [9]).

Definition 6.6
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1. If w is used for encoding a binary relation, we use the infix notation x ≺w y
in place of 〈x, y〉ηw. Field(≺w) stands for the term {x : ∃z(x ≺w z ∨ z ≺w x)}
representing the field of ≺w, whereas the x-segment of ≺w determined by x is
defined by the term ≺w �x := {u : u ≺w x}).

2. LO(≺w) states that ≺w is a linear ordering:

LO(≺w) :=∀x∀y∀z(¬(x ≺w x)∧(x ≺w y∧y ≺w z → x ≺w z)∧Conn(≺w)),

where Conn(≺w) := ∀x∀y(xη Field(≺w) ∧ yη Field(≺w) → x ≺w y ∨ x =
y ∨ y ≺w x)).

3. Progr(b,≺w) := (∀xη Field(≺w)) (∀y ≺w x.yηb → xηb).

Progr(≺w, b) is to be read “b is progressive (relative to ≺w).” We also define:

TI(≺w, b) := Progr(≺w, b) → Field(≺w) ⊆ b.

4. A linear ordering ≺w is called a pseudo-well-ordering (in symbols PW O(≺w),
and, for short, ≺w is a p.w.o.) iff ∀b(Cl(b) → TI(≺w, b)).

5. Let A(u, x, y, z) be a formula with the free variables shown;

TR(y, A,≺w, z) := ∀x∀u(xη Field(≺w) → (uηy(x) ↔ A(u, x, y�x, z)));

here y(x) := {v : 〈x, v〉ηy} and y�x := {〈u, v〉 : u ≺w x ∧ vηy(u)}.
6. A formula A of L is elementary extensional in the list x1, . . . , xn iff A be-

longs to the least class of formulas inductively generated by means of ∧, ¬,

∀y (where y /∈ {x1, . . . , xn}) from atoms of the form t = s, Nt, tηxi, provided
x1, . . . , xn do not occur in t, s.

7. We recall that x =e y := ∀u(uηx ↔ uηy) ( η-extensional equality).

TR(y, A,≺w, z) says that y encodes a sequence of predicates {yx}, which begins with
an initial class z and is indexed by elements in ≺w-order; each yx is recursively com-
puted by application of the functional a �→ {u : A(u, x, a, z)} to the collection (en-
coded by) y�x of previously defined predicates.

One may wonder whether there is a class y satisfying TR(−, A,≺w, z). If the
given z is a class, ≺w is a p.w.o. and A is elementary extensional in the relevant pa-
rameters, the answer is affirmative and makes essential use of the level structure of
TL.

Lemma 6.7 If A(u, x, y) is an L-formula (see Section 2.2), which is elementary
extensional in x, y, then we can prove in pure logic:

A(u, x, y) ∧ x =e x′ ∧ y =e y′ → A(u, x′, y′).

Theorem 6.8 (The Weyl Principle WP for p.w.o.s) Let A(u, x, y, z) be an L-form-
ula elementary extensional in y, z with the free variables shown. Then we have, prov-
ably in TLR−:

1. Cl(≺w) ∧ PW O(≺w)∧ Cl(z) → ∃y(Cl(y)∧ TR(y, A,≺w, z)).
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2. Uniqueness: if y and y′ are two classes satisfying TR(−, A,≺w, z), then y and
y′ are pointwise extensionally equivalent, i.e., TLR− proves:

[Cl(≺w) ∧ PW O(≺w) ∧ Cl(z) ∧ TR(y, A,≺w, z) ∧ TR(y′, A,≺w, z)∧
∧Cl(y) ∧ Cl(y′)] → ∀x(xη Field(≺w) → (y(x) =e y′(x))).

Proof: (1) Existence: Put gxzy := {u : A(u, x, y�x, z)}. Then by the fixed point for
operations (Lemma 2.1.2) we can find a term RC[g,≺w] such that

RC[g,≺w]zx = gxz�(≺w �x, λu.RC[g,≺w]zu).

(� is the join operation of Proposition 5.4.2).
Also, if z and ≺w are classes, then z, ≺w, and Field(≺w) are k-classes for some k

(by Lemma 5.5.2, directedness and unboundedness of ≺ and Proposition 5.3.6). Con-
sider

d := {x : xηkField(≺w) ∧ Clk(RC[g,≺w]zx)}.
If we choose j � k, d is a j-class (its defining condition being a k-formula; see
Proposition 4.2.6). Hence d is a class and we can apply induction on ≺w. Assume
xηField(≺w) and ∀y ≺w x.yηd: then by Proposition 5.3.3, RC[g,≺w]zy is a k-class,
for each y ≺w x. Hence by closure of CLk under join (Proposition 5.4.2), the term
t := �(≺w �x, λu.RC[g,≺w]zu) is a k-class and so is t�x. Since A(u, x, y, z) is
elementary in y and z and CLk is closed under elementary comprehension, gxzt =
RC[g,≺w]zx is a k-class, which implies xη jd, whence xηd. Therefore the class d is
≺w-progressive and we can conclude that RC[g,≺w]zx is a k-class for every x in the
field of ≺w, whence, again by join,

RC[A,≺w, z] := �(b, λu.RC[g,≺w]zu) is a k-class (where b is Field(≺w)).

If x is in the field of ≺w, we have with Proposition 5.4 and the extensionality property
of A:

uηRC[A,≺w, z](x) ↔ uηRC[g,≺w]zx

↔ uηgxz(�(≺w �x, λu.RC[g,≺w]zu)

↔ A(u, x,�(≺w �x, λu.RC[g,≺w]zu)�x, z)

↔ A(u, x, RC[A,≺w, z]�x, z).

In the last step, we use the fact that if x is in b := Field(≺w),

〈v, u〉η(�(≺w �x, λu.RC[g,≺w]zu))�x ↔ 〈v, u〉η(�(b, λu.RC[g,≺w]zu))�x.

It follows that RC[A,≺w, z] is a class satisfying TR(−, A,≺w, z).
(2) The uniqueness (modulo extensional equivalence) follows by applying trans-

finite induction to B(x) := xη Field(≺w) → ∀u(uηy(x) ↔ uηy′(x)) (Note that
{u : B(u)} is a class if y, y′ are classes and xη Field(≺w)).

Remark 6.9
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1. The existence of ω-sequences of properties, obtained by iterating a given pred-
icative operation (here the map x �−→ {u : A(u, x, y�x, z)}), is stated in [31],
“Iterationsprinzip,” p. 27. Thus the schema embodied in Theorem 6.8 is an ex-
tension of the Iterationsprinzip to p.w.o.s.

2. A special form of WP. Assume number-theoretic induction for classes (see also
Definition 8.1 below). Observe that Proposition 5.4.2 and Theorem 6.8 are
schematic in the choice of the pairing function. In particular, if we interpret
〈−,−〉 as a number-theoretic pairing operation (i.e., an injection of N × N into
N) and we assume that,

(a) the parameters ≺w and z in the statement of WP are subclasses of N;

(b) {u : A(u, x, b�x, z)} ⊆ N, whenever xηField(≺w), z, y�x ⊆ N (A elemen-
tary extensional in b, z),

then we obtain a subclass y of N such that TR(y, A,≺w, z).

7 A recursion-theoretic interpretation We produce a model of TLR− plus addi-
tional principles on numbers and the level ordering. The construction is carried out
within a fragment of (powerless) set theory and it hinges upon admissible set theory
and generalized recursion theory. The results we presuppose are covered in Richter
and Aczel [28], Barwise [3], and Hinman [20]. However, in order to make the paper
reasonably self-contained, we define the basic notions and state the required results.

Step 1: the ground model. We fix a countable model M of combinatory logic TO;
M can be assumed to be arithmetically definable. To be more definite, we identify
M with the closed term model CTM of combinatory logic.

Definition 7.1

1. Let CTM := {t: t is a closed term in the language Lop} (thus LT does not occur
in elements of CTM). The closed term model CTM is the structure 〈CTM,∗,

=, K, S〉, where K, S are the basic combinators and

∗ : CTM2 → CTM is the operation of juxtaposition of terms (i.e.,
t ∗ s = Ap(t, s));

= ⊆ CTM2 and t = s holds iff TO � t = s.

2. We also let N∗ := {t : t ∈ CTM and TO � t = n̄, for some n ∈ ω}.
That the model is well defined is ensured by the Church-Rosser theorem (see [2]);
moreover N∗ is isomorphic with ω. Thus we have the following.

Lemma 7.2

1. CTM is a nontrivial model of TO.

2. The expansion CTM∗ := 〈CTM, N∗〉 satisfies the axioms:

NAT.1 N0̄ ∧ ∀x(Nx → (N(x + 1)∧ ¬(x + 1) = 0̄ ∧ PRED(x + 1) = x));
NAT.2 ∀x∀y∀u∀v(Nx∧ Ny∧ ¬x = y → Dxxuv = u∧ Dxyuv = v);
NIND A(0̄) ∧ ∀x(A(x) → A(x + 1)) → ∀x(Nx → A(x)) (A an arbitrary for-

mula).
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(For notations, see after Lemma 2.2).

Step 2: set-theoretic preliminaries. The next step is the interpretation of the level
axioms: the level ordering is identified with the standard ordering relation on ordi-
nals < ι, the first recursively inaccessible ordinal, and the projection operation LT is
assigned a suitable projection of ι into ω and hence into CTM. We recall the relevant
set-theoretic notions.

The pure set-theoretic language Ls is the standard first-order language with iden-
tity and a binary predicate symbol ∈ for membership. If X is a predicate symbol 	= ∈,
Ls(X) is Ls ∪ {X}; Ls(X) has new atoms of the form Xt; the intended meaning of X
is that X is a class (in set-theoretic sense).

Lα is the collection of constructible sets up to the ordinal α, where L0 = ∅, Lλ =
∪{Lα : α < λ}(λ limit), and Lα+1 is the family of subsets of Lα first order definable
with parameters in the standard set-theoretic language over the structure 〈Lα,∈ �Lα〉.

L := ∪{Lα : α ∈ ON} is the constructible universe. A set-theoretic formula A
is �1 iff A has the form ∃zB, for some bounded formula B; B is bounded if it con-
tains only bounded set quantifiers (i.e., of the form ∀y ∈ z, ∃y ∈ z). The principle of
bounded collection is the schema:

∀x ∈ u∃yA(x, y) → ∃w∀x ∈ u∃y ∈ w.A(x, y) (A bounded).

When we deal with semantical notions (e.g., definability over L), we tacitly assume
that the set-theoretic language is expanded with (distinct) constants for (distinct) pa-
rameters from a suitably large segment of L; but we use the same symbol for the object
a ∈ L and its name. Lower case Greek letters will range over the class ON of ordinal
numbers.

Definition 7.3

1. An ordinal α > ω is admissible iff α is a limit ordinal and Lα satisfies the
bounded collection schema (equivalently, Lα is a model of Kripke-Platek set
theory KP plus infinity; cf. [3]).

2. An admissible ordinal α > ω is recursively inaccessible iff it is the limit of the
admissible ordinals < α.

3. ι := the smallest recursively inaccessible ordinal.
4. If C is a class of ordinals and P any (set-theoretic) class, an n-ary relation R is

uniformly �1(Lα) in P for α∈C, iff there exists a �1-formula A(x1, . . . , xn, X)

of the expanded set-theoretic language Ls(X), such that, if α ∈ C, then

R ∩ Lα = {〈c1, . . . , cn〉 : c1, . . . , cn ∈ Lα,

and
〈Lα, P ∩ Lα〉 |= A(c1, . . . , cn, X)},

where X is interpreted by P ∩ Lα.
If R is uniformly �1(Lα) in P for α ∈ C together with its complement, we
say R is uniformly �1(Lα) in P for α ∈ C. An n-ary relation R ⊆ Ln

α is
�1(Lα)(�1(Lα)) iff R is uniformly �1(Lα)(�1(Lα)) in P = ∅ for α ∈ C,
C being {α}.
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5. A (possibly partial) function F is uniformly �1(Lα) in a class P for α ∈ C iff its
graph is uniformly �1(Lα) in P for α ∈ C. Then by Definition 7.3.4, it makes
sense to speak of a �1(Lα)-, �1(Lα)-function, etc.

6. LEVι is the structure 〈ι,=,≤〉, where =, ≤ are respectively the equality and
the less-than-equal relations restricted to ordinals < ι.

7. α is projectible iff there exists a �1(Lα)-injection from α into ω.

Remark 7.4 If a �1(Lα)-function F : Lα → Lα is total, then F is also �1(Lα).
In general, every partial �1(Lα)-function F : C → Lα, whose domain C ⊆ Lα is
�1(Lα), can be extended to a total �1(Lα)-function. As a consequence, the relation
RF(a, x) := a ∈ F(x) is �1(Lα), provided F is �1(Lα) and total, or defined on a
�1(Lα)-subset. The same considerations hold for uniform definability.

Now let the level variables range over ordinals below ι, whereas level identity and �
are realized on ordinal theoretic =, and ≤ (in the given order); then we trivially have
the following.

Lemma 7.5 LEVι is a model of the level axioms of Section 3.2. Indeed, the model
satisfies linearity and well-foundedness of ≺.

For convenience, we identify closed terms of Lop with their respective number codes
in the arithmetized version of CTM, and hence we regard CTM as a subset of ω. Since
every arithmetically definable subset is definable by a bounded formula on Lα, for
α > ω, we have the following by inspection of the definition of the term model CTM.

Lemma 7.6 The sets CTM, N∗, the application function ∗: CTM × CTM → CTM,
and the conversion relation = on CTM are all elements of Lα, for every α > ω.

Step 3: satisfying the projectibility axiom. The choice of a denotation for the func-
tion symbol LT requires an injection IN of ι into CTM, which is reasonably defined.
First, we summarize a few facts, to be applied later.

Lemma 7.7

1. The predicate Ad(α) := “α is admissible” is uniformly �1(Lβ) for β limit > ω.

2. The operation β �−→ β+ = the least admissible > β is uniformly �1(Lα), for
α limit of admissibles.

3. Let τ0 = ω and τα = least admissible γ > τβ, for every β < α, whenever
α > 0. Then the sequence 〈τα : α < δ〉 is uniformly �1(Lτδ

).

4. ι is the least α such that τα = α. In particular the restriction of τ to ι is �1(Lι ).

Proof: (1) follows by standard techniques of formal set-theoretic semantics and the
well-known uniform �1-definability of the operation δ �−→ Lδ (see [3]; Devlin [10]);
(2) is immediate by (1), and (3) is a consequence of (1)–(2) and closure of admissible
sets under �1-recursion. (4) is an easy corollary of (3).

Lemma 7.8 (after [28]) There exists a function IN, uniformly �1(Lβ) for β admis-
sible > ω, such that IN�τα : τα → ω is total and injective, for every 0 < α ≤ ι (here
IN�τα is the restriction of IN to τα).
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Proof (sketch): The theorem is implied by the existence of an arithmetical notation
system Nι for ι; this in turn is obtained by iteration of a suitable nonmonotone oper-
ator. Let us recall the basic definitions.

1. If � : P (ω) → P (ω) (P (ω) = power set of ω), where � is possibly nonmono-
tone, we recursively define for α ∈ ON:

I(�, α) = ∪{�(I(�, β)) : β < α};
I(�) = ∪{I(�, α) : α ∈ ON};
if n ∈ I(�), |n| = least α such that n ∈ I(�, α + 1).

Since the sequence 〈I(�, α) : α ∈ ON〉 is nondecreasing with respect to inclu-
sion, it makes sense to define the closure ordinal |�| of �,

|�| := least α such that I(�, α) = I(�, α + 1).

� is called arithmetical if there exists an arithmetical formula A(u, X) (i.e., A
is built up by means of boolean operations and number quantifiers from atoms
of the form t = s and Xt), such that, if P ⊆ ω, then

�(P) :={m ∈ ω : 〈m, P〉satisfies A(u, X) in thestandardmodel of arithmetic}.

Observe that arithmetical formulas become �1 in Lα if α > ω; hence by �1-
recursion we have the following.

2. If � is arithmetical, the sequence 〈I(�, β) : β < α〉 is uniformly �1(Lα) for α

admissible > ω. In particular, I(�, β) ∈ Lα, for each β < α.
By corollary 9.4 (i) of [28], we have the following essential result.

3. There exists an arithmetical operator � whose closure ordinal is ι, i.e., |�| = ι.

Now, if � is the operator given by (3), I(�, α) is a proper subset of I(�, α + 1) for
every α < ι and the function

IN(α) = least n ∈ ω with n ∈ I(�, α + 1) and n /∈ I(�, α)

is always defined on ι and is trivially injective. By (2) IN satisfies the required defin-
ability conditions.

Remark 7.9

1. In the statement of Lemma 7.8 we can assume that the range of the projection
IN is CTM. Indeed, it is enough to consider the obvious �1-bijection σ between
ω and the set of numerals of CTM. Henceforth, we still maintain IN as a symbol
for the projection of ι into CTM.

2. Lemma 7.8 still holds if we replace ι by much larger ordinals, e.g., the first
recursively Mahlo ordinal. However, the uniformity of the function IN is not
shared by all countable admissible projectible ordinals, since there exist non-
projectible ordinals below projectible ones (see [3], [20], p. 424).

To sum up, by Lemmas 7.2, 7.5 and 7.8, if we realize the function symbol LT on the
map IN, we have the following.
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Lemma 7.10 The structure CTMι = 〈CTM∗, LEVι, IN〉 is a model of TO extended
by the level axioms of Section 3.2, the projectibility axiom PROJ of Axiom 2.5 and
the number-theoretic axioms NAT.1, NAT.2, NIND of Lemma 7.2.

Step 4: satisfying the truth axioms. We expand CTMι with a family V of truth pred-
icates indexed by the ordinal ι, such that 〈CTMι,V 〉 is a model of an extension of
TLR−. The model construction requires only closure of admissible sets under �1-
recursion and �1-inductive definitions (see [3], p. 26; p. 208) and the fact that ι is
an admissible, which is limit of smaller admissibles. We split the construction in a
sequence of lemmas.

Henceforth, we assume that the language L V of Section 2 is enlarged to a lan-
guage L +

V with constants for ordinals < ι; lower case Greek letters represent both
ordinals < ι and their names in L +

V . a, b, c are used as metavariables for arbitrary
elements of CTM, while we keep i, j, k ranging over level variables.

If t is a closed term of L +
V , possibly containing LT and ordinal constants,

CTMι(t) is the value of t in CTMι: in other words, CTMι(t) is the unique closed term
of L , obtained from t by replacing each subterm of the form LT (α) by IN(α) (which
is a term of CTM by Remark 7.9; of course, the first occurrence of α stands for the
name of α in the expanded language L +

V ).
We lift to the present context the notations and conventions of Section 2; if a,

b are elements of CTM and α < ι, then ab, ∀a, ¬a, a ∧ b, tr(α, a), id(a, b), tr(a),
nat(a) denote the following elements of CTM (in the given order): Ap(a, b), ALL a,
NEG a, AND ab, CTMι([Tαa]), [a = b], [Ta], [Na].

Combining Lemma 2.2, Remark 7.4 and Lemma 7.8 yields the following.

Lemma 7.11

1. tr(α, a) = 〈7̄, IN(α), a〉 and the operation 〈α, a〉 �−→ tr(α, a) ∈ CTM is injec-
tive (in each coordinate separately);

2. if β < τα, c, a ∈ CTM, the relation R(c, β, a) := c = tr(β, a) is uniformly
�1(Lτα

) for every α ≤ ι.

Hence if β < τα, the function a �−→ tr(β, a) is uniformly �1(Lτα
), for every α ≤ ι.

Definition 7.12

1. If S ⊆ ι × CTM, let, for α < ι:

S(α) := {a : a ∈ CTM and 〈α, a〉 ∈ S}.

The structure 〈CTMι, S〉 is the realization of L V+ , in which Tα is interpreted by
S(α) (α < ι) and T is assigned the set ∪{S(α) : α < ι}.

2. If δ < ι, S ⊆ δ × CTM, X ⊆ CTM, �(δ, S, X) is the subset of CTM such that
a ∈ �(δ, S, X) iff for some b, c ∈ CTM, one of the following cases holds:

(a) a = (¬)tr(β, b) and b ∈ S(β)(b /∈ S(β)), for some β < δ;

(b) a = (¬)id(b, c) and CTM |= (¬)b = c;

(c) a = (¬)nat(b) and b ∈ N∗(b /∈ N∗; cf. Definition 7.1);

(d) a = (¬)tr(b) and b ∈ X((¬b) ∈ X);

(e) a = (¬)tr(δ, b) and b ∈ X((¬b) ∈ X);
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(f) a = ¬¬b and b ∈ X;

(g) a = (¬)b ∧ c and b, c ∈ X (respectively (¬b) ∈ X or (¬c) ∈ X);

(h) a = (¬)∀b and for every d ∈ CTM, (bd) ∈ X (for some d ∈ CTM,
(¬bd) ∈ X).

Lemma 7.13 Assume δ < ι, S ⊆ δ × CTM.

1. � is monotone in the third variable:

X ⊆ Y ⊆ CTM, then �(δ, S, X) ⊆ �(δ, S, Y ).

2. �(δ, S, X) is uniformly �1(Lα) in X, S for α admissible with ω < α < ι and
δ < α. Lα is closed under � in the following sense: if δ < α, X and S are
�1(Lα), then �(δ, S, X) ∈ P (CTM) ∩ Lα(P = the power set operation).

Proof: (1) Its defining condition positively depends on X.
(2) By inspection of Definition 7.12.2, Lemma 7.11.2, and Remark 7.4, we see

that �(δ, S, X) is uniformly �1(Lα) in X, S and we can apply �1-separation for Lα,
since �(δ, S, X) ⊆ CTM ∈ Lα.

Lemma 7.14 (Inversion) Let δ < ι, S ⊆ δ × CTM, X ⊆ CTM, a, b ∈ CTM. Then:
if A has the form a = b, ¬a = b, Na, ¬Na, [A] ∈ �(δ, S, X) iff CTM∗ |=A (see
Lemma 7.2 for CTM∗);

tr(β, a) ∈ �(δ, S, X) iff either β = δ and a ∈ X or β < δ and a ∈ S(β);
(¬tr(β, a)) ∈ �(δ, S, X) iff eitherβ < δanda /∈ S(β)orβ = δand (¬a) ∈ X;
(a ∧ b) ∈ �(δ, S, X) iff a ∈ X and b ∈ X;
(¬(a ∧ b)) ∈ �(δ, S, X) iff (¬a) ∈ X or (¬b) ∈ X;
(∀a) ∈ �(δ, S, X) iff (ac) ∈ X, for all c ∈ CTM;
(¬(∀a)) ∈ �(δ, S, X) iff (¬(ac)) ∈ X, for some c ∈ CTM;
(tr(a)) ∈ �(δ, S, X) iff a ∈ X;
(¬tr(a)) ∈ �(δ, S, X) iff (¬a) ∈ X;
(¬¬a) ∈ �(δ, S, X) iff a ∈ X.

Proof: From right to left, it holds by definition of �. Conversely, we apply the in-
dependence Lemma 2.6.

Definition 7.15 Let δ < ι, S ⊆ δ × CTM. The β-th iteration It(�, δ, S, β) of � is
recursively defined by

It(�, δ, S, 0) = ∅; for λ limit, It(�, δ, S, λ) = ∪{It(�, δ, S, β) : β < λ};
It(�, δ, S, β + 1) = �(δ, S, It(�, δ, S, β)).

Clearly ξ < ζ implies It(�, δ, S, ξ) ⊆ It(�, δ, S, ζ) by monotonicity of �.

Lemma 7.16 Let S ⊆ δ × CTM and δ < ι.
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1. If a ∈ CTM, β < α, and δ < α, then the relation

P(a, δ, β, S) := “a ∈ It(�, δ, S, β)”

and the function β �−→ It(�, δ, S, β) are uniformly �1(Lα) in S for α admissi-
ble with ω < α < ι. Hence if S is �1(Lα), It(�, δ, S,−) : α → Lα ∩ P (CTM).

2. If γ = α+, δ < α, α is admissible with ι > α > ω, S is �1(Lα) and I :=
It(�, δ, S, α), then

(∗) I = �(δ, S, I);

(∗∗) I ∈ Lγ ∩ P (CTM).

Proof: (1) It(�, δ, S,−) is recursively and uniformly defined by means of the oper-
ation �, which is uniformly �1(Lα) in S, and we can apply Lemma 7.13.2 and closure
of Lα under �1-recursion.

(2) If Lα is admissible, the least fixed point of any given positive �1(Lα)-
operator is �1(Lα) (this is Gandy’s theorem, [3], pp. 208–210). Hence by definition
I is a �1(Lγ )-subset of CTM ∈ Lγ and (∗) is immediate by Lemma 7.13.

Definition 7.17 If δ < ι, It is the functional of Definition 7.15, let

(+) V (δ) = It(�, δ,V �δ, τϕ(δ)),

where V �δ = {〈β, a〉 : β < δ and a ∈ V (β)} and ϕ(δ) = δ if δ is a limit; else ϕ(δ) =
δ + 1. V is well defined on ordinals < ι, by �1-recursion and Lemmas 7.16 and 7.7.

In the following V denotes the unique function satisfying (+) above.

Lemma 7.18

1. The relation R(δ, a) := a ∈ V (δ) is uniformly �1(Lτϕ(δ)+1 ) for every δ < ι.
Hence V (δ) ∈ Lτϕ(δ)+1 and V : ι → Lι ∩ P (CTM) is �1(Lι );

2. if δ < ι, V (δ) = �(δ,V �δ,V (δ));
3. if δ < ι, either a /∈ V (δ) or (¬a) /∈ V (δ), for every a ∈ CTM;
4. for every β < δ < ι, a ∈ CTM, either tr(β, a) ∈ V (δ) or (¬(tr(β, a)) ∈ V (δ);
5. if β < δ < ι, V (β) is a proper subset of V (δ).

Proof: (1) and (2) follow from Lemmas 7.7 and 7.16 and closure of admissible sets
under �1-recursion.

(3) By main transfinite induction on δ < ι, and a secondary induction on τϕ(δ),
using (1) and the inversion Lemma 7.14 at the successor step.

(4) Assume β < δ and a ∈ V (β). It follows that tr(β, a) ∈ �(δ,V �δ,∅) ⊆
�(δ,V �δ,V (δ)) ⊆ V (δ) by definition of �, monotonicity and (2)); if a /∈ V (β), the
argument is similar.

(5) If β < δ and V (β, ξ) := It(�, β,V �β, ξ), it is enough to verify by induction
on ξ < τϕ(β):

V (β, ξ) ⊆ V (δ) (1)

If ξ is 0 or a limit, the proof is trivial. Assume (1) by IH and a ∈ �(β,V �β,V (β, ξ)):
we show a ∈ V (δ) as a consequence of the inversion lemma and the property men-
tioned in Lemma 7.18.2 above. We have to distinguish several cases according to
the form of a. Let a = (¬(tr(ν, b)) for some ν: then by inversion either ν < β
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and b /∈ V (ν) or ν = β and (¬b) ∈ V (β, ξ). In the first case, since ν < δ, a ∈
�(δ,V �δ,∅) ⊆ V (δ) by definition of � and Lemma 7.18.2. In the second case,
(¬b) ∈ V (β) by definition and hence b /∈ V (β) by consistency (see Lemma 7.18.3
above). Since β < δ, a ∈ �(δ,V �δ,∅) ⊆ V (δ). Let a = (b ∧ c); by assumption and
inversion b ∈ V (β, ξ) and c ∈ V (β, ξ), whence b, c ∈ V (δ) by IH. By definition of
�, a ∈ �(δ,V �δ, V(δ)) and a ∈ V (δ) by Lemma 7.18.2. The extant cases are easily
checked as an exercise. As to proper inclusion, consider the term R(β) := {x : ¬xηβx}
and observe that Lemmas 7.18.2 and 7.18.4 imply (R(β)R(β)) ∈ V (β + 1) −V (β)

(see Proposition 5.3).

Definition 7.19 TLR+ is the extension of TLR− that includes the axioms NAT.1–
NAT.2, the schema of number-theoretic induction NIND (see Lemma 7.2), plus the
schema of transfinite induction on levels TI(lev), where,

TI(lev) := ∀i(∀ j ≺ i.B( j) → B(i)) → ∀iB(i)(B arbitrary).

Theorem 7.20 (Soundness) C ι = 〈CTMι, V〉 |= TLR+.

Proof: NIND, NAT.1–NAT.2, the level axioms, TI(lev) and the projectibility ax-
ioms hold in the model by Lemma 7.10. The local truth axioms of Section 3.1 and
the connection axioms of Section 3.3 are straightforward consequences of the defi-
nition of �, inversion, Definition 7.12 and the previous lemma. As to the reflection
principle, assume,

C ι |= ∀x∃ j(xηγa → xη jb) ( f or a, b ∈ CTM and γ < ι). (2)

By �1(Lι )-definability of R(α, a) := a ∈ V (α) (by Lemma 7.18.1), condition 2 is
equivalent, by the well-known absoluteness of �1-conditions, to:

Lι |= (∀x ∈ CTM)(∃β)A(x, γ, β, a, b), (3)

for a suitable �1-formula A(x, y, z, u, v); hence by �1-collection (derivable from
bounded collection), for some ξ < ι, we have Lι |= (∀x ∈ CTM)(∃β < ξ)A(x, γ, β,

a, b), which yields by equivalence of equations (2) and (3) the required conclusion
C ι |= ∃k∀x∃ j( j � k ∧ (xηγa → xη jb)).

Remark 7.21 It is is possible to strengthen the consistency result in two directions.
First of all, the arithmetical definability of ground model and the Kleene basis theorem
imply the consistency of a reducibility schema for classes:

RPC i ≺ k ∧ Cli(x) ∧ ∃y(Cl(y) ∧ A(u, x, y)) → ∃y(Clk(y) ∧ A(u, x, y))),

for every L-formula A(u, x, y) with the free variables shown, which is elementary
extensional in x, y. Hence, at least for elementary predicates, quantification on arbi-
trary classes is reducible to quantification on classes of a fixed level.

TLR + RPC yields an interpretation of the fragment of second order arithmetic
based on �1

1-comprehension. According to the second direction, we can consistently
assume that levels are objects and hence that the projection function LT collapses to
identity; we can apply reflective truth to expressions containing bounded level quan-
tification. This move implies that classes are closed under �1

2-comprehension.



208 ANDREA CANTINI

8 Levels of truth and proof theory We investigate the relation between theories of
truth with levels and standard mathematical systems.

Definition 8.1 TLR is obtained from TLR+ (see Definition 7.19) by omitting the
full transfinite induction schema for levels TI(lev) and replacing the schema of N-
induction by the axiom of local N-induction LIND:

Cli(x) ∧ Closi(x) → ∀u(Nu → uηix),

where Closi(x) := 0̄ηix ∧ ∀v(vηix → (v + 1)ηix).

It turns out that, although TLR is based on the logical notions of truth and iteration
of the reflection process, TLR is strictly connected with an important subsystem of
second order arithmetic Z2: by the Weyl iteration principle of Section 6, it is easy
to relate TLR with a well known system ATR0 of Reverse Mathematics ([16]). We
define the system ATR0.

First of all, the language L 2 of second order arithmetic contains the following
elements: a denumerable list of number variables x1, x2, x3, . . .; a denumerable list of
set variables X0, X1, X2, . . .; the individual constant 0̄; the function symbols ′ (suc-
cessor, 1-ary), + (addition, 2-ary), · (product, 2-ary); the binary predicates < (order-
ing on ω) and ε (membership); classical logical operations (say ¬, ∀, ∧); and =.

L 2-terms are inductively generated from number variables and the constant 0̄ by
application of the function symbols ′ , · , + . Atoms of L 2 have the form t = s, t ε X,
t < s, where t, s are terms, X is a set variable. Formulas are inductively generated
from atoms by means of negation, conjunction and universal quantification on indi-
vidual and set variables. A L 2-formula A is arithmetical if no set variable occurs
bound in A.

Definition 8.2 ATR0 is the theory in the language L 2, which contains classical
predicate calculus with identity for L 2 and

1. standard number-theoretic axioms:

∀x(¬x′ = 0̄) ∧ ∀x∀y(x′ = y′ → x = y);
∀x(¬x < 0̄) ∧ ∀x∀y(x < y ↔ ∃z(z′ + x = y));
∀x(x + 0̄ = x) ∧ ∀x(x · 0̄ = 0̄) ∧ ∀x∀y(x + y′ =

= (x + y)′ ∧ x · y′ = x · y + x);

2. the induction axiom Ax-IND: 0̄ ∈ X ∧ ∀x(x ∈ X → x′ ∈ X) → ∀x(x ∈ X);
3. arithmetical comprehension schema: ∃X∀u(uεX ↔ A(u, Y )), where A(u, Y )

is an arbitrary arithmetical L 2-formula and X does not occur in A;
4. the schema ATR of arithmetical transfinite recursion:

∀X∀Z∃Y (W O(<X ) → ∀y∀u(yεYu ↔ A(y, u, Y�u, Z))),

where WO(<X ) is the formula, stating that X encodes a linear ordering of
ω such that ∀Y (∀x(∀y(y <X x → y ∈ Y ) → x ∈ Y ) → ∀x(x ∈ Y )) {here
y <X x := 〈y, x〉 ∈ X; 〈x, y〉 stands for a primitive recursive pairing function};
A is an arithmetical formula and Y�u is contextually defined by 〈v, y〉εY�u :=
v <X u ∧ 〈v, y〉 ∈ Y , and y ∈ Yu := 〈u, y〉 ∈ Y .
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Theorem 8.3 ATR0 is interpretable in TLR.

Proof: We define a translation ∗ of L 2 into the level free part of the language of TLR.
Informally speaking, we simply verify that N plus the subclasses of N is a model of
ATR in TLR. Formally, we can choose combinators 0̄, ·, +,′, in order to interpret the
basic function symbols of L 2 (we adopt the same notation). Hence we can inductively
assign to each L 2-term t a term t∗ in the language Lop (= the operational fragment
of L V ), with the same free variables. Moreover, if t = s, t ε X, t < s are atoms of
L 2, we put (t = s)∗ := (t∗ = s∗); (t ε X)∗ := (t∗ηx)(x fresh); (t < s)∗ := t∗ < s∗

(the second occurrence of < being now a canonically chosen Lop-definition of <).
We then extend ∗ to arbitrary formulas of L 2 by stipulating that the map∗ commutes
with ¬, ∧ and

(∀X A)∗ := ∀x(ClN (x) → A∗), (∀xA)∗ := ∀x(Nx → A∗) = ∀nA∗,

where ClN (x) := Cl(x)∧ ∀u(uηx → Nx). It is clear that ∗ is a well-defined trans-
lation of L 2 into L . Let A be an L 2-formula with free variables in the list X =
X0, . . . , Xn, y = y0, . . . , yk: then we check by induction on the definition of ATR0-
provability:

if ATR0 � A(y, X), then TLR � Ny ∧ ClN (x) → A∗(y, x). (4)

The translation of the number-theoretic axioms is disposed of by means of local class
N-induction and the fixed point theorem (Lemma 2.1 takes care of the existence of
plus and times, and suitable Lop-instances of N-induction ensure that the definitions
are correct). It remains to check that the ∗-translations of Ax-IND, arithmetical com-
prehension schema and ATR are provable in TLR. As to the first axiom, we have to
verify

TLR � Cl(x) → (Clos(x) → N ⊆ x).

Since x is an i-class for some i (Lemma 5.5.2), Clos(x) ↔ Closi(x) by Lemma 5.2.3
and hence we can apply local class N-induction.

The translation of arithmetical comprehension becomes an instance of elemen-
tary comprehension and hence is provable in TLR by Proposition 5.4.1, Lemma 5.5.2,
and Lemma 5.2.3.

Note that, if ClN (X)∧ (W O(<X ))∗ is assumed, then <X encodes a subclass of
N which is a p.w.o. Hence if z is any subclass of N and A(u, x, Y, Z) is arithmetical,
uηN ∧ A∗(u, x, y, z) is elementary extensional in y, z (y, z fresh variables ). Now
the hypothesis of Theorem 6.8 and Remark 6.9 are trivially met and there exists a
subclass of N satisfying the ∗-translation of the ATR-consequent.

It is well known that ATR0 has the same proof-theoretic strength as Predicative Anal-
ysis (cf. [16]). On the other hand, the lower bound is also an upper bound for TLR.
Indeed, we can state a stronger result.

Theorem 8.4 TLR + TI(lev) is proof-theoretically reducible to ATR0 (i.e., the for-
mal consistency of TLR + TI(lev) is implied by the formal consistency of ATR0 over,
say, Peano arithmetic).
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The only proof we are aware of is complex and cannot be given here (details are pre-
sented in [9], chs. 10–11). However, the gist of the argument can hopefully be gained
from an outline of the basic idea.

Step 1: TLR + TI(lev) �→ STLR. we give a sequent style presentation STLR (=
sequent calculus of truth with levels and reflection) of a system which contains TLR
and the full transfinite induction schema on levels.

Step 2: STLR �→ STLR∞. STLR is embedded into an infinitary system STLR∞

where TI(lev) is dropped in favor of an ω-rule, which forces the level variables
to range over finite standard ordinals. Since STLR∞ contains a reflection princi-
ple for levels, STLR∞ cannot have ω-standard models; yet, because of the weak
number-theoretic induction, STLR∞ is consistent. STLR∞ enjoys a crucial quasi-
normalization property: the cut-rule can be restricted to formulas, which contain only
unbounded universal or existential level quantifiers.

Step 3: STLR∞ �→ {STLRn : n ∈ ω}. This is the central step of the construc-
tive interpretation. First we define a sequence of finitary approximations STLRn to
STLR∞, in which only bounded level quantifiers are allowed and where we can ex-
plicitly refer only to the first n levels. The main fact to establish is that STLR∞-
theorems can be suitably interpreted in the STLRn’s. The result is based on an asym-
metric treatment of unbounded universal and existential level quantifiers. The infor-
mal idea is to reinterpret unbounded quantifiers on levels according to a potentialistic
point of view, so that ∀ j only refers to arbitrary finite segments of the level ordering.
Thus the meaning of ∃ j depends on the given initial segments, and this dependence
is expressed by majorizing functions whose complexity depends upon the transfinite
ordinal height of the given quasi-normalized STLR∞-derivations.

Step 4: STLRn �→ IT∞
n . One carries out a complete elimination of bounded

level quantification and level structure: each STLRn-system is embedded in a level
free infinitary system IT∞

n , where the number-theoretic induction schema is replaced
by an infinitary rule for N.

Step 5: IT∞
n �→ RSn. We design an infinitary ramified system RSn in which Tn

is split into a family {Tα
n : α < �0} of approximations. The Tα

n ’s are linked together by
natural recursive conditions, which can be encoded by symmetric introduction rules
with the cut elimination property (see the model construction of Section 7). We em-
bed IT∞

n into RSn by a modified version of the asymmetric interpretation technique
of Step 3 (see Girard [18], Cantini [5]). An analysis of cut free RSn-derivations read-
ily implies that RSn-theorems of level < n (i.e., theorems without Tα

n -occurrences)
are already derivable without Tn-rules and hence in IT∞

m , for some m < n.
By finite iteration of the T-elimination procedure, we finally obtain that T-free

sentences of TLR have T-free (infinitary constructively presented) derivations, whose
correctness demands only arithmetical principles and suitable instances of the schema
TI(< �0) of transfinite induction along each α < �0. Here �0 is the well known or-
dinal of predicative analysis.

In view of Theorem 8.4, TLR + TI(lev) can be regarded as a predicatively re-
ducible theory of degrees of predicative evidence: the higher the level, the lower the
predicative evidence; a truth of level j � i is in generally only conditionally predica-
tive relative to the truths of lower level.

A final remark on a possible criticism. It might be objected that we have re-
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stored a hierarchy of truth predicates, which is strictly reminiscent of the Tarskian
language/metalanguage hierarchy, and it seems that we have destroyed the freedom
of the original level-free formalism of truth. This is only partly true: indeed the new
framework is quite distant from the Tarskian one. In particular by the local truth ax-
ioms of Section 3.1 each Ti already encompasses the standard Tarskian predicates,
as to closure properties and self-referential ability. Furthermore, the level structure
greatly strengthens the deductive force and it can be profitably applied for justifying
level-free principles in the context of type-free systems, as it appears from Sections 6–
8.
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[21] Jäger, G., “The strength of admissibility without foundation,” The Journal of Symbolic
Logic, vol. 49 (1984), pp. 867–879. Zbl 0585.03032 MR 86m:03090 1, 1, 1

[22] Kripke, S., “Outline of a theory of truth,” Journal of Philosophy, vol. 72 (1975),
pp. 690–716. Zbl 0952.03513

[23] Lorenzen, P., and J. Myhill, “Constructive definitions of certain analytic sets of num-
bers,” The Journal of Symbolic Logic, vol. 24 (1959), pp. 37–49. MR 22:14 1
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