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Levels of Truth

ANDREA CANTINI

Abstract  This paper is concerned with the interaction between formal se-
mantics and the foundations of mathematics. We introduce a formal theory of
truth, TLR, which extends the classical first order theory of pure combinators
with a primitive truth predicate and a family of truth approximations, indexed
by adirected partial ordering. TLR naturally works as atheory of partial clas-
sifications, in which type-free comprehension coexists with functional abstrac-
tion. TLR providesaninner model for awell known subsystem ATR, of second
order arithmetic; indeed, TLR is proof-theoretically equivalent to Predicative
Analysis.

1 Introduction Itiswell known that if we axiomatize the basic closure properties
of fixed point models for partial self-referential truth a la Kripke over a given the-
ory (say Peano Arithmetic) we obtain rather extensive systems which are appealing
not only for formal semantics but aso for the foundations of mathematics (cf. Fefer-
man [14], Reinhardt [27]).

Nevertheless, systems based on self-referential truth, T in short, are far from
being satisfactorily closed: they show a limited ability in reflecting negative infor-
mation and hypothetical reasoning. For instance, the inference from TA — TB to
T(A — B), which corresponds to the usual implication introduction rule, is gener-
ally unsound unless we have the additional information that Aisa propositioninthe
senseof T, i.e, TAvV T—A. (Inthisintroduction we neglect detailsconcerning Godel
numbering, and we simply write T Ainstead of T[ A], where[ A] isasuitable encoding
of A).

In general, we have no chance to reduce negative external information —=TA to
internal negative information T—A: T is essentially partial. Thus we are naturally
confronted with the problem of designing formal frameworks which can reflect, at
least to a certain extent, negative semantic infor mation and hence can exhibit ahigher
degree of completeness.

Of course, a number of formal moves are conceivable here. In this paper we
chooseto develop aformal theory of (abstract) self-referential truth which is supple-
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mented with levels of truth. The basic intuition, which is certainly not new, stems
from the observation that, once we have fixed a semantic schema (here Kleene's
strong three valued logic), the truth predicate T is parametric: T depends upon a set
X o including complete information about given primitive predicates, to be regarded
as the context T isabout. Thus T is properly T(X ), for some X o. Furthermore,
by Tarski’s theorem the context cannot include complete information about T itself.
Hence, if we consider T (X ) as completed or fully grasped, we shift from the con-
text K o to a new one X 1, which also includes a complete description of T(% ) as
primitive. For instance, if Aisany sentencesuchthat A ¢ T(%K ) (or Ae T(X)),
we must have (=ToA) € K1 (or (ToA) € K1, To being the formal counterpart of
T(Xp)). Weunderline that we must add (—TgA) to K 1 and not simply (—A): (—A)
would in general conceal its context dependence, and this might lead to paradoxes.
These considerations are rough, but they naturally suggest that the parametric
dependence of truth ought to be made explicit by means of levels: the shift from
T(K ) to T(K 1) isseen asastep to ahigher reflection stage and, formally, from truth
of ground level Ty to truth of higher level T;. Onthe other hand, the step from level 0
tolevel 1 can actually be understood as ageneral uniform method for generating new
truth predicates from given ones. For the sake of generalization, we simply identify
levelswith ordinals, and we imagine alanguage in which, besides T, we a so dispose
of level dependent truth predicates T;. Informally, we can sum up the fundamental
tenets behind our theory TLR (= truth with levels and reflection) in three points.

1. Ifi, jarelevelsand i < j ( where < isthe precedence order on levels), T is
related to Tj in such away that:

() whatever is declared true by T, is declared true by Tj, i.e., YX(Tix —
Tjx);

(b) T; isdecidablewith respectto Tj, i.e., TjTiAor T;—T; A (A arbitrary; we
neglect formalization details).

2. Eachlocal truth predicate T; satisfiesthe closure principlesof the general theory
of partial truth ala Kripke and Feferman.

3. Thereis also alevel-free truth predicate T which is conceived as the “limit”
of the local truth predicates; in addition, we still assume that T itself has the
self-referential abilities of the Tis.

Principles ([J—@) are formally implemented in the theory TLR of Sections233]
(actually we consider a more general system without number-theoretic induction up
to Section[8). TLR isafirst order extension of combinatory logic, expanded with a
level-freetruth predicate and abinary predicate T; (truth of level i). Thelevel ordering
is assumed to be only partial, not well-founded and unbounded; but it also satisfiesa
nontrivial reflection principle, implying the second part of Blabove.

We underline that TLR has a built-in theory of total untyped operations, which
takes care of predicate abstraction and self-referential constructionsinavery uniform
way. We also postulate an injection of levelsinto objectsin order to codify sentences
involving levels. This move puts important constraints for building models of TLR
and it also requires non-trivial factsabout admissible ordinals (projectibility; see Sec-

tionD).
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Section lsurveys elementary closure conditions for truth and truth predicates
with levels, whereas Section[5lis concerned with the development in TLR of atheory
of partial classifications and type-free abstraction in the sense of Feferman [[13]. In
particular, we can distinguish i-classes, i.e., predicateswhich aretotal relativetotruth
of level i, from classes, i.e., total predicates tout court; i-classes are nicely closed
under forms of elementary comprehension and effective digoint union.

Section Blinvestigates the influence of the local structure on the closure prop-
erties of the level-free statements. CL := {x : x class} splitsinto a directed family
{CL; :ilevel}, whereeach CL; := {x: x class of level i} isitself aclass at any higher
level | > i. Asaconseguence, classes are closed under an analog of Weyl's Itera-
tionsprinzp (see Weyl [IE), atransfinite recursion principle along CL-well-founded
linear orderings. We can aso recover in the present context a satisfactory notion of
universe (see Feferman [[12], Jager [[21], Martin-Lof [24], Marzetta [[25]).

Section [Zldescribes amodel C, for a strengthening TLR™ of TLR, which also
contains linearity, well-foundedness of level ordering, and number-theoretic axioms
(induction schemaincluded). Themodel isbuilt up by means of asuitableiteratedin-
ductive definition along the first recursively inaccessible ordinal; the step from truth
of agiven level to truth of higher level essentially corresponds to the hyperjump op-
eration of generalized recursion theory (see Hinman [[20]). In the final section[8lwe
consider the relation with classical subsystems of second order arithmetic: we can
produce a model to Friedman's subsystem ATR, (Friedman et . [[L6]) within TLR
(with number-theoretic induction for classes of arbitrary level). Indeed, thisinterpre-
tation yields a proof-theoretic lower bound on TLR; the lower bound is sharp and
TLRisastrong version of Predicative Analysis. In this connection it might be inter-
esting to settle the precise relation between TLR and the theory of iterated admissi-
bility without foundation, which isalso known to have the proof-theoretic strength of
Predicative Analysis by Jager [1].

We concludethis section by briefly discussing the relation of the present work to
the literature. First of all, the philosophical paper of Burge [[4] already containsan in-
teresting approach to semantical paradoxes based on theindexical nature of truth and
on the notion of level (seea so Parsons m; related ideas are independently sketched
by Gaifman [[IZ7]). In thisrespect, we might consider TLR as asort of axiomatization
for (aversion of) Burge's proposal, in which the problem of extending the construc-
tion of truth predicates into the transfinite is explicitly tackled.

The idea of internalizing negative information by means of areflective process
indexed by levels, is aready present in earlier work about “type-free logic” (e.g.,
Schiitte [29] and Fitch [I5]). In this respect, the paper of Lorenzen and Myhill [23]
deservesaspecial mention (in particular, cf. pp. 47-49), aswell asfor its applications
to foundational issues and to recursion theory.

Subsequently, similar ideas emerge anew in connection with the problem of ex-
panding lambda cal culus models with truth by Scott [[30]; an earlier version of TLR
(outlined in Cantini [B]) was directly inspired by an attempt to investigate Scott’s
model for a hierarchy of self-referential truth predicates. In Cantini [[8] we defined
atheory of abstraction based on truth of arbitrary finite levels and a stronger seman-
tical schema.

Recently Aczel, Carlisle, and Mendler [lintroduced ahierarchy of propositions
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and truth predicates as a basis for logical theories of constructions to be used in the-
oretical computer science.

2 Truthwith levels: preliminaries  Inthissection we describe theformal language
of reflective truth with levels, and we summarize the basic facts of combinatory logic
needed below; finally we define a suitable Godel numbering.

The language Ly includes:

1. adenumerablelist of individual variables x1, X2, X3, .. .;

2. adenumerable list of variablesfor levelsig, iy, ... (in short L-variables);

3. the individual constants K, S (combinators); the binary function symbol Ap
(functional application); the unary function symbol LT (level injection);

4. four binary predicates = (object equality), < (level ordering), = (level equal-
ity), V (local truth); two unary predicates T (for truth) and N (for natural num-
bers);

5. thelogica constants —, A, V.

X, Y, U, v, w, Z are used as syntactical variables for object variables x;, X, X3, €tc.

2.1 L(evel)-terms, terms, formulas of £y and acceptable formulas

1. L-variablesare exactly the L-terms (i, j, k metavariables for L-terms);

2. the set of Ly-termsisthe least collection which is closed under the following
clauses: individua variables and constants are terms; if j isan L-term, LT (j)
isaterm; if t, sareterms, Ap(t, s) isaterm;

3. the set of Ly-formulas is the smallest collection closed under the following
clauses: if jandi areL-terms, i < jandi = j are atoms (and hence formu-
las); if t, saretermsandiisan L-term, Nt, t = s, Tt and V (i, t) are atoms
(and hence formulas); if A, B areformulas, = A, AA Bareformulas; if Aisa
formula, x anindividual variableand j isan L-variable, then VxAand VA are
formulas (where X, j occur bound).

Atoms of theformt = sand Nt are called e-atoms (e = elementary).

4. The collection A™ of acceptable formulas of Ly is the smallest collection
which includesthe atoms Tt, Tit, t = s, Nt and is closed under negation, con-
junction and universal quantification on object variables.

The intended meaning of V (i, t) isthat “t istrue at level i”; we write Tit for V(i, t);
Tt:="tistrue’;i < j (i= j) :="theleved i islessthan or equal (equal tout court) to
thelevel j.” Ifi, jareL-terms,i = jisashorteningfori = j; wealsowritei < j for
(=i = j) A (i < J). Theintended meaning of Ntis“tisanatura number”; however,
N will not play any active role until Section[8lin the comparison with a subsystem of
second order arithmetic.

2.2 Thefragments £ and Loy of Ly

1. Lisobtained from Ly by omitting L-variables, LT, V, <, =|;
2. Lop isobtained from L by omitting the predicate T.
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Wewrite (ts) for Ap(t, s) and outer parentheses are omitted, and the missing onesare
restored by associating to theleft. For clarity, we sometimesuse f, g, h for variables
occurring in operand position (e.g., fx instead of yx).

The systems we consider in this paper include combinatory logic as a ground
theory of (untyped) operations.

2.3 The system TO (= total operations)
TO istheformal theory in the language Ly which contains:

1. classical (two-sorted) predicate logic with identity in the language Lv;
2. the combinatory axioms,

Cl K#S
C2 VXVYVWZ(KXy = X A SXyz = Xz(yz)).

We inductively introduce A-abstraction according to the standard definitions of com-
binatory logic, i.e., Ax.x = SKK; Ax.t = Kt, provided x is not freein t; Ax.ts =
S(Ax.t)(Ax.s). Aswith the quantifiers, we usually insert a dot between Ax and its
body, for the sake of readability; occasionally, we use dots as separating symbolsin
place of parentheses. If E isany expression (term or formula), E[X := t] denotes the
result of replacing x with t in E. A-abstraction satisfies g-conversion and the fixed
point theorem provably in TO:

LemmaZz2.l

1. TO proves (AX.t)u=t[x:=u].

2. We can define a closed term Y such that TO proves VX(Yx = X(YX) ).
Proviso: in (D) uisfreefor xint.

A pairing operation with projections can be defined in Lop; €.9., we can choose:
PAIR = AXYU.UXY; LEFT := AX.XK; RIGHT := AX.X(KI),

where | := AX.X.
Henceforth we adopt the familiar notations: (t, s) := PAIR tS; (t); = LEFT t and
(t)2 := RIGHT t. Then by LemmaR.Tlve have the following.

Lemma22 TOF VXiVX(({X1, X2))i = %) (Wherei =1, 2).

We can obviously define a coding of n-tuples; in particular, we choose (ty, t, t3) :
= (3, (to, t3)). The pairing system based on PAIR is also used to represent standard
numeralsin TO. NuM, the collection of numerals, is the least set X of closed Lop-
teemssuchthat 0:= | € X;if ne X, thenn+1:= (PAIRNK) e X. Successor and
predecessor on NUM are then defined by the terms SUC := AX.PAIR XK, PRED =
LEFT. By Lemmal2_1] we can also find aterm D representing definition by cases on
numbers (for details see Barendregt [[2]). Infact, onehas, for each n, m, thefollowing.

Lemma 2.3

TOF-=(N+1)=0A((N+1)=(m+1) ->nA=m) A (PRED(N+ 1) = 0);
TOF Dnnxy = XA Dnmxy =y ( for n # m).
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In the following, we ambiguously use n, m, k as symbols ranging both on natural
numbers and the corresponding numerals of NUM.

Definition 2.4 (Terms representing acceptable formulas)
1. Termsrepresenting logical operators and predicates of Ly:

ID = AXY.(1, X, ¥); TR:=AX.(2,X); NAT:=X.(3,X);

NEG = AX.(4,X); AND :=AXy.(5,X,y)); ALL :=AX.(6, X);
TR = Ax.(7, LT (i), X).

2. Wethen definethe map A — [ A] by induction on the notion of acceptable Ly-
formula:

[t=9:=(Dt)s; [Ns]:=NATS; [Tt] :=TRt;
[Tit] :=TRit; [—A] :=NEG[A];
[AA B]:=AND[A][B]; [VXA]:=ALL(AX[A]).

Observethat [ A] has exactly the samefree variablesas A, and it commutes with sub-
stitution ([A][x :=t] = [A[x:=t]]). Moreover ID, TR, TR, NEG, AND, ALL denote
distinct objects and enjoy unique readability and independence conditions, at least if
the following projectibility axiom PROJ is assumed.

Axiom 25 VIiVj(LT(@()=LT(j) —i=)).
Lemma 2.6 (Independence of combinators representing logical constructors)

1. If Ly, Lo € LOG; := {NAT, NEG, TR, TR, ALL}, then
TO+PROJF Lix=Ly— .Li=LoAax=Yy;

2. if G1, G, € LOG, .= {ID, AND}, then
TORGXy=GXy — .G =G AX=X Ay=Y,

3. ifL; € LOGy, Ly € LOGy, then TO F =L x = Lyyz; if Ly, Ly aredistinct ele-
ments of LOG; U LOGy, then TO - —L; = L.

Proof: By pairing axioms, g-conversion and the projection axiom PROJ inthe case
whereL; = L, = TR.

Remark 2.7 The choice of [—] is largely a matter of taste, as soon as the condi-
tions of LemmalZ.6lare met. Asaviable alternative, one could assume new constants
ID, NAT, TR, TR, AND, NEG, ALL with axioms corresponding to the conditions of
Lemmal2.6] or even assume [—] as a primitive term constructor.

2.4 Conventions We henceforth adhere to the following conventions:

1. TAisashorthand for T[A];

2. To enhance readability, we use —, A, V, etc., and infix notation instead of
the terms NEG, AND, ALL, etc. Thust A S, VXx.t, —t, etc. stand for the terms
(AND 1)S, ALL(AX.1), NEG t (in the given order).

3. We also adopt the obvious shorthands ——t ;= —(=t), andt v s, t — sinstead
of (respectively) —(—=t A =), (=t Vv s). Asto the existentia operator, we let

3(f) :=—=(V(Au.(—=(fu)))) and Ix.t ;= J(AX.1).
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3 Truth with levels: axioms  The truth principles are grouped into local truth ax-
ioms, level and connection axioms, and areflection axiom. Number-theoretic axioms
will beintroduced later in order to investigate the relation with subsystems of analy-
Sis.

3.1 Local truth axioms

TA< Aif Ai=(X=Y), NX, (=x=1Y), =NX;
Tix > TTix; Timx — Ti=Tix;

Ti—==X < TiX;

TiXAY) < TiXATY, Ti=(XAY) < Ti=xVv Ti=y;
Ti(VT) < VXTi(fx); Ti—=(Vf) < IXTi—(FX);
—(Tix A Ti=x) (Local consistency).

o s~ wODNPE

3.2 Level axioms These include standard equality axioms for level equality (=)
and state that < is adirected unbounded partial order.

LVIVIVK((I DA (= jAJ=k= 1<K A(=jA]=i—T=)).
2. Vivjak(i < kA j < k).

3.3 Connectionaxioms Thesearethecrucial principlesof thetheory, relating truth
predicates of different level.

1. Limit: TX — 3i.Tix; Tix — TX;

Persistence: i < j A Tix — TjX;

Localization: TiTx < Tix; Ti=TX < Ti—X;

Potential Completeness: i < j — (T Tix v Tj=Tix);

Positive Soundness: TjTix — i < j A TiX;

Negative Soundness: Tj—=Tix — (i = j A Ti=x) v (i < j A =Tix).

o0k~ wN

3.4 The Reflection principle (REF)

VIiVWZ{VX3j(xniy — Xnjz) — IKYXIj(] < KA (Xniy — Xnj2))}.

Definition 3.1

1. TL™ isthe theory based on two sorted classical predicate logic with equality
axioms (for the two sorts of objects and levels), which includesthe system TO
of Section[2.3] the projectibility axiom PROJ of Axiom[2.5land the axioms of
groups from Sections[3.TH3.3]

2. TLR™isTL™ plusREF.

N.B. The = sign means that no assumption is made on the predicate N.

A few words of comment. By the principles of group from Section [3.1] truth of
any level i satisfies an abstract version of the KF-axioms for reflective truth (‘KF' =
Kripke-Feferman; see [[[4]). The abstract character of truth predicates s to be found
in the fact that they are not, like the usual formalized truth predicates, attributes of
(codes of) sentences, but, moregenerally, predicates of objectsin agiven combinatory
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algebra. Asto Section[3.3] potential completeness ensures that negative information
about any level i becomesinternal at higher levels, whereaslimit and localization ax-
ioms imply that global truth statements always reduce to local truth statements (of
sufficiently high level). Finally, by persistence and soundness no information is lost
at later levels, and later levels do not conflict with earlier ones, even on negative in-
formation. The reflection principle says that there are enough levels for T, in order
tointernalize universal statements about objects, and it exactly impliesthat T itself is
amodel of KF-axioms (see Proposition[4.3]below and the characterization of thein-
clusionrelationin Lemma@. Thelevel axiomsare presented in ageneral form and
do not assume linearity or well-foundedness; however the recursion-theoretic model
will interpret < asthe standard ordering on a suitable segment of countable ordinals.

4 Elementary consequences We consider elementary closure properties of T; and
T.

Definition 4.1

1. Leti beany L-variable: thei-transformof A € L isthe Ly-formula A;, which
resultsfrom A by substituting each occurrenceof T with T (e.g., (VXT (ax))j =
VxT(ax), (TTt); = T; Tt).

2. An Ly-formula Ais T-positiveiff A belongsto theleast collection which con-
tainsexpressionsof theformt =s, =t =s, Nt, =Nt, Tit, =T;t, Ttandisclosed
under conjunction, digunction, and quantifiers (on either sort).

3. Aisak-formulaiff Abelongsto theleast collection of formulaswhichisclosed
under A, —, universal object quantification, and contains atoms of the form
t=s, Nt, Tgt.

Proposition 4.2

1. Globa consistency: —=(Tx A T—=X);

TL™ F Tix < TiTixand Ti=x < T,=T;X;
At-soundness; TL™ + TTA— A(Ae A');
TL-FTA— A (Ac AY);

TL Hi<xjATIA—> TA(Ae AT);

If Aisak-formula,

o s~ LN

TL Fk<j— (TiA< A A (T{AVT-A)),

hence:
TL = (TA< AA(TAVT=A).

Proof: (1) If Tx and T—x are assumed, then by limit axiom Tjx and Ty—x, for some
i, k; hencethere exists by Section[3.2lsome j = i, k, such that by persistence Tjxand
T;—X, against local consistency.

(@ By local truth axioms[31I2] positive and negative soundness.

(3) Induction on A. If Aiisan e-atom or has the form Tt, = T;t, we apply Ax-
iom[B1I1] positive and negative soundnessand local consistency B1F] Let A := —Tt
and assume T,—Tt; then T;—t by localization, hence T—t by limit and =Tt by (1)
above. The remaining cases are straightforward by IH and local truth axioms.
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(@) Induction on A, using localization if A = Tit.

(5] Apply persistence axiom.

(6] Potential completeness and A -soundness yield the first statement, which,
in turn, implies the second one by limit, persistence, and unboundedness axioms.

Proposition 4.3
1. TL™ proves.

TA< A If Ai=x=Yy, NXx,=x=y, =NX;
TTXx< Tx;, T=TXx< T—Xx;

T——=X< TX;

TXAY) <« TXATY; To(XAY) < T=xV Ty,
TVF) > YXT(fX):  IXT=(fx) < T=(Vf):

2. TLR™ FVx3iTi(fx) — kYT ( fx) (positive reflection);
3. TLR™ FYXT(fx) - T(VT);
4. if Aisacceptableand A is T-positive,

TLR™TF A< 3i.TI A<« TA<« JiA.

Proof: dI] By limit, localization, and local truth axioms, together with the directed-
ness of the level ordering.

(@) Apply reflection with y := {u : u = u} and persistence.

@) Apply limit, positive reflection, and local truth axiomB15]

(4) Let us consider the first equivalence. From right to left, it follows from A -
soundness (Proposition[42). As to the reverse direction, we argue by induction on
A. If A= —Tjt, choose k > j by unboundedness of <: then T,—T;t by potential
compl eteness, negative soundness. If A := VxB, we use IH, positive reflection and
the local truth axiom for V. The other cases are easy and left to the reader. The sec-
ond equivalenceisjust arestatement of the limit axiom. Asto the third equivalence,
TA — JiTA — 3i. A (use Proposition[42[4). A; — TA isinductively checked
(Proposition[4.33]labove being used in the case A := VYxB).

By Proposition[4.3] T will satisfy the same basic axioms as the Tjs; there is a
“harmony” between global and local structure of truth.

Asto the Liar paradox, in the present framework we can distinguish a “local”
version (“I am not true at level i”), which is formally decidable at any higher level
and hence true, from a T-undecidable “globa” version (*1 am not true”).

Proposition 4.4
1. Let L(i) bethetermsuchthat TL™ - L(i) = [—TiL(i)]. Then

TL™ F i< j— (TjL() A=TiL@) A =Ti(=L(3)));
TL™ F Vi.T(L(3)).

2. Let L bethetermsuchthat TL™ = L =[—-TL]. Then TL™ - =TL A =T—L.
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Proof: Theexistenceof L and L(i) isensured by Lemmal2.1]

(@M —TiL(®i) A =Ti(=L(i)) follows by Axiom[3:TIZ]local consistency, and Ax-
iom[B1I3] On the other hand if i < j, we have by Proposition[Z21T;—T,L(i) and
hence T;L(i) by identity logic. The second statement follows by unboundedness,
limit and persistence.

Apply Propositions[4.3[1]land[4.2]1]

If we call i-proposition any object x such that T;x v T;—x, Proposition[4.4limpliesthe
existence of j-propositions which are not i-propositions, for any j > i.

5 Truthwith levelsand abstraction InTL™ and TLR™ we can develop atheory of
partia classifications; it is closely related to nonextensional systems based on type-
free comprehension.

Definition 5.1

1 Ft=T—-t; Ft:=T-t;
tnis:= Ti(st) and tyis = Fi(sb);
tns:=T(st); tns:= F(st);
Cli(t) := Vx(xnjt v xpit) (tisani-class);
Cl(t) .= Vx(xnt v xit) (tisaclass).

2. The abstraction operator: if Aisacceptable {x: A} := AX[A].

3. CL:={x:Cl(x)}; CLj:={x:CLix}
R:={x:=xnx}; R(@):={X:—xnix};
x=jy:= (Tix< Tiy) A (Fx< Ry);
X=Yy:=(Tx< Ty) A (FX< Fy).

4. A formula Biselementary inthelist X4, ..., X, iff Bisbuilt up from e-atoms,
T-atoms of the form tnx; (where 1 < i < n), by means of —, A, VY, (Y ¢
{Xl, e ey Xn})
Lemmabs.2

1. If Aisa T-positive L-formula, TL™ + Ag <> TYA;
2. If A(u, X) isan L-formula e ementary in x,

TL™ F Clg(X) — TcA(u, X) v FA(U, X);
3. If A(u, x) isan L-formula elementary in X,
TL™ F Clg(X) = A(u, X) < Ac(u, X) < TcA(u, X).

Proof:  (132) Induction on A, applying by Proposition[4.2nd local truth axioms.

(3] Assume that x is a k-class. The second equivalence is a consequence of (2}
and the first equivalence with Proposition 22B] Thus we verify only thefirst equiva-
lence by induction on A. If Aisanatom different from unx, the conclusionistrivial.
If A(u, X) := unx, unXimpliesunx by thelimit axiom. Inthe opposite direction, we
get a contradiction from unx and —unx (apply Clk(x), persistence, limit, unbound-
edness and local consistency). If A(u, X) isanegation, a conjunction or a universal
guantification, we simply apply IH.
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Suitable forms of untyped comprehension hold provably in TL™; it also follows that
the notion of i-class determines a class at any level j > i, whereas the collection of
i-classesform astrictly increasing chain. Asto the (analogue of the) Russell sentence
relativized to level i, it becomestrue at strictly higher levels.

Proposition 5.3
1. The extended abstraction schema for acceptable formulas: if Ac AT,

TL™ FVu(up{x: A(X)} = A[x:=U)]);
2. Thelocal abstraction schema for acceptable formulas: if Ae AT,
TL™ FVivu(un{x: A} = AlXx:=U]);

3. if A(x)isa j-formula, j <i — Yu(uni{x: A} < A[x:=U]); (ufreefor xin
Ain (IJ<B) above); hence: TL™ - Yu(un{x: A} < A[X:=U]);
4. TL™ FVi.=Cl(R);
5 TL™ FVi(i = ] — Cli(R())) A =CIj(R(j)) A R()niR(})));
6. TL” Fi < k— CL; nk CLx A CL;j C ClLy.
Proof: (1J By g-conversion and PropositionZ.3[1]

(2] Immediate by B-conversion and localization axioms.

(3] By (2] and Proposition Z.2I6]

(4) By localization and local consistency.

(5 Leti = j. Astothefirst conjunct, R(j) is defined by a j-formulaand hence
we apply Proposition [ ZZJ6]and local abstraction; the second conjunct is Russell’s
paradox for level j; the third conjunct follows from the second one with (3).

(6) Assume k > i: then CL; c CL by persistence and (§}. Asto CL;nCLy,
apply local abstraction and Proposition 221

Proposition 5.4

1. Closure of CLy under elementary comprehension:
TL™ F Clg(X) = (Clx({u: A(u, X)}) AVv(vn{u: AU, X)} < A(v, X)),

where Aisan L-formula, elementary in x.
2. Closure of CLy under join: define (X, f) := {{v, w) : vpx A wn(fv)}. Then

TL™ FVu(unZ(x, f) < Jvawu = (v, w) AvnpX A wn(fv)))
TL™ F (Clg(X) A f:x— CLy) = Cl(Z(x, T)).

(where f : a— b:=Vx(xna — (fx)nb)).

Proof: (1) If xisak-class, sois{u: A(u, x)} by Lemmal5.22] The second equiv-
aenceis an immediate consequence of Proposition E.3Iand Lemmal5.213]

(@) Ad (1): apply Proposition B3l ]and Proposition [£3M4] observing that the
reflection axiom is not necessary if no universal quantifier is present, and hence
we can work in TL™. Ad (2): let f be a family of classes indexed by the class
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x and —unS(x, f). By Proposition 5.3[2]and local truth axioms for Ty, we get
—=A(u, x, f), where

A, x, T) = Fvdwu = (v, w) A vX A wnk( fo)).

If —=u = (v, w) or —vnKX is assumed, Ty—A(uU, X, ) follows by Cl(x) and the lo-
cal truth axioms for Ty; else we can assume u = (v, w) and vnkX, which implies
Clk(fv) by assumption on f, x and hence wik( fv). The axioms for Ty again im-
ply Te—A(u, X, ), whence by abstraction un X (X, f).

Elementary comprehension and join ensure that the notion of k-classisnicely closed
(e.0., k-classes are closed under boolean operation, generalized products over fam-

ilies of k-classes indexed by a k-class). Elementary comprehension and join were
introduced by Feferman [[11].

Lemmab.5

1. If A(X) is T-positive and acceptable, TLR™ - Vu(un{x: A} < A[X:=U]);
2. TLR™ I Cl(a) « 3iClj(a);
3. letaC b:=Vx(xna— xnb); then TLR™ I a C b <> Vidkvx(xnja — Xnkb);
4. aclassof classesisalways an i-class, for some level i:

TLR™FCl(a) Aa< CL — di.ac CL;.

Proof: (1) By Propositions[4.3Wand[5.311]
(2] Apply the limit axiom from right to left. The reverse direction is a conse-
quence of PropositionZ.314] as the formula defining Cl is acceptable and T-positive.
(3) =: by limit and reflection; the converseistrivial.
Assumethat aisaclass of classes. Then by (2), aisani-classand

acCL = Vj3akvx(xnja— xnCL) by &);
= Vj3Ikvx(xnja— Cl(x)), by localization, local abstraction;
= 3Jkvx(xnja — Cl(x)) by logic;
= aC CLyforsomek,

as xna <> xn;ja, by assumption on a and global consistency Proposition[2.2I1]

6 Existence of universes and the extended Weyl iteration principle The level
structure affects the set of |evel-free provable statements; the theme isillustrated by
two significant statements.

Thefirst principle says that, if we are concerned with logical constructions de-
pending on classesasinitial data, we can alwayswork within anicely closed universe,
which isitself a class of classes and to which the initial data belong. We make the
idea precise with alemmaand a definition.

Now let z=¢ w := Yu(unz <> unw) (= n-extensiona equality). Then we have
the following.

Lemma6.1 Thereisan L-formula Elemclos(y) such that, for every L-formula
A(X, Uy, ..., Uy elementaryinuy, ..., u,, TLR™ proves

Elemclos(y) — Vui...VUp(Uiny A ... AUy —
— Z(ZYy A Z=¢ {X: A(X, U1 ... Up)})).
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The lemma is an intensional version of the well known class theorem of Godel-
Bernays set theory; one can show that classes defined by elementary conditions can
be generated by a finite number of operations from a finite stock of initial classes.
Thusthereisafinite number of axioms characterizing the closure of y under el emen-
tary comprehension; these axioms are collected into a single formula Elemclos(y),
which can beread as“y is elementarily closed.” In essence, thisresult is aready in
Gordeev [[19], pp. 66-67, though in a constructive framework; so we omit the proof
(adirect verification relies on the closure conditions of classes, established by Propo-
sition @ Incidentally, we remark that aterm witnessing zin (x) can be effectively
found from the given formula A.

Definition 6.2
1. yEJ = Vive(enya fic—y. — (2(c, finyAVuunZ(c, f) <
Fvaw(u = (v, w) Avnc A wn(fv)))));

¥ (c, f)isthetermof Proposition[5.4lland y = J statesthat the join principle
of Proposition[5.ZPlholds relativized to .

2. yisauniverse of classesiff yisan elementarily closed class of classes, which
isalso closed under join; in symbols: Univ(y) :=Cl(Y) AYC CLAYE JA
Elemclos(y), where Elemclos(y) is the £-formula given by Lemmal6.1]

Theorem 6.3

1. TL™ F Vk.Univ(CLy).
2. TLR™ F VYy(Univ(y) — 3k(y C CLy).

Proof: That CLy is closed under join and elementary comprehension already
follows from Proposition[5.4] CLy € CL and CLynCL are consequences of the limit
axioms of Section[3.3]and Proposition[5.3JE]

@) immediate by LemmaBE.SH]

Corollary 6.4 LetLIM = VX(CI(X) — Jy(Univ(y) A xny)); then TLR™ - LIM.

Proof: If xisaclass, x isalready ak-class (Lemmal5.5D), for somek and CLy isa
universe by the theorem.

Remark 6.5

1. LIM isinvestigated by [[12], [21], and [25].

2. Each CL isclosed under the basic type constructors of Martin-L 6f'stype the-
ory, and Martin-L 6f'sintuitionistic type theory with arbitrarily many finite uni-
verses without W-types can be interpreted in the theory TLR.

The second principlewe deal with concernstransfinite recursion over well-orderings.
Itisapriori unclear how to render the notion of well-ordering in the present context:
shall we quantify over classes or arbitrary possibly partial predicates? We observe
that the two alternatives yield radically different notions and that the sharpest notion
is obtained by quantifying over classes (this point can be clarified with the help of the
proof-theoretic analysis; details are given in Cantini [I]).

Definition 6.6
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1. If wisused for encoding a binary relation, we use the infix notation x <,, y
in place of (x, y)nw. Field(<,,) standsfor theterm {x : 3z(X <, ZV Z <y, X)}
representing the field of <,,, whereas the x-segment of <,, determined by x is
defined by theterm <, [X:={u: u <y X}).

2. LO(=y) statesthat <, isalinear ordering:

LO(<y) :i=VXYWZ(—(X <y X)A (X <y YAY <y Z— X <y 2)AC0oNN(<y,)),

where Conn(<,,) = YxXVy(xn Fidd(<,) A yn Fidd(<,) &> X <y, YV X =
YyVY <y X)).

3. Progr(b, <) := (Vxn Fidd(<y)) (VY <y, X.ynb — xnb).
Progr(<.,, b) isto beread “b is progressive (relative to <,,).” We also define:

Tl(<y, b) :=Progr(<,, b) — Fidd(<,) € b.

4. A linear ordering <., iscalled a pseudo-well-ordering (in symbols PWO(<,,),
and, for short, <,, isap.w.o.) iff Vb(Cl (b) — Tl(<,, b)).
5. Let A(u, X, Y, 2) be aformulawith the free variables shown;

TR(Y, A, <y, 2) = VYXVU(xnp Field(<,) — (Uny(X) < AU, X, YTX, 2)));

here y(X) ;= {v: (X, v)ny} and y[X = {{u, v) : U <, XA vny(U)}.

6. A formula A of L is elementary extensional in the list X4, ..., X, iff A be-
longs to the least class of formulas inductively generated by means of A, —,
Vy (wherey ¢ {Xq, ..., Xn}) fromatomsof theformt = s, Nt, tnx;, provided
X1, ..., %n donotoccurint, s.

7. Werecall that X =¢ y := Yu(unX <> uny) ( n-extensiona equality).

TR(Y, A, <y, 2) saysthat y encodes asequence of predicates { Yy}, which beginswith
aninitia class zand isindexed by elementsin <,,-order; each yy isrecursively com-
puted by application of the functional a — {u: A(u, X, a, )} to the collection (en-
coded by) y[x of previously defined predicates.

One may wonder whether there is a class y satisfying TR(—, A, <y, 2). If the
given zisaclass, <, isap.w.o. and A is elementary extensional in the relevant pa-
rameters, the answer is affirmative and makes essential use of the level structure of
TL.

Lemma6.7 If A(u, X, Y) isan L-formula (see Section[2.2], which is elementary
extensional in x, y, then we can prove in purelogic:

AU X, Y)AX=eX AY=eY — AU, X,Y).

Theorem 6.8 (The Weyl Principle WP for p.w.0.s) Let A(u, X, Y, z) bean L-form-
ula elementary extensional in y, zwith the free variables shown. Then we have, prov-
ablyinTLR™:

1. Cl(=<y) A PWO(<y)A Cl(2) — y(CI(Y)A TR(YY, A, <y, 2)).
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2. Uniqueness: if yand y’ aretwo classes satisfying TR(—, A, <y, 2), then yand
y' are pointwise extensionally equivalent, i.e., TLR™ proves:

[Cl(<y) A PWO(<y) ACH(2) ATR(Y, A, <4, 2) ATR(Y, A, <u, 2)A
ACI(y) A CH(Y)] = YX(xn Fidld(<y) = (Y(X) =e Y (X))).

Proof: (I) Existence: Put gxzy := {u: A(u, X, Y[X, 2)}. Then by the fixed point for
operations (Lemmaf.1I2) we can find aterm RC[g, <,,] such that

RC[g, <w]ZX = gXZX (=<4 [X, AU.RC[Q, <] 2u).

(X isthe join operation of Proposition54D).
Also, if zand <, areclasses, then z, <,,, and Field(<,,) arek-classesfor some k
(by Lemmal5.512] directedness and unboundedness of < and Proposition[5.36). Con-
sider
d:= {x: xpFied(<y,) A Clg(RC[g, <] 2X)}.

If we choose | > Kk, d is a j-class (its defining condition being a k-formula; see
Proposition[4.2J6). Hence d is a class and we can apply induction on <,,. Assume
xnField(<,,) and Yy <,, X.ynd: then by Proposition[5.3[3] RC[g, <.,]zy isak-class,
for each y <,, X. Hence by closure of CLy under join (Proposition[5.4P), the term
t = X(=<y [X AU.RC[g, <y]2u) isak-class and so ist[x. Since A(U, X, Y, 2) is
elementary in y and z and CLy is closed under elementary comprehension, gxzt =
RC[g, <w]zxisak-class, which implies xn;d, whence xnd. Thereforetheclassd is
<w-progressive and we can concludethat RC[g, <,,]zx isak-classfor every xinthe
field of <, whence, again by join,

RC[A, <y, 7] := (b, AU.RC[Qg, <] 2zu) isak-class (whereb isField(<,,)).

If xisinthefield of <,,, we havewith Proposition[5.4]land the extensionality property
of A

unRCI[A, <y, (X) < unpRC[g, <y]2X

< UngXZ(X(<y [X, AU.RC[Q, <,]2zu)

< AU X Z(=<y [X AURC[g, <w]ZW)[X, 2)
< AU, x, RC[A, <y, Z[X, 2).

In the last step, we use the fact that if xisin b := Field(<,,),
(v, N(B(<yw X AU.RC[g, <y]ZU) [X < (v, u)n(X(b, AU.RC[g, <y ]2zU))[X.

It followsthat RC[ A, <y, Z] isaclass satisfying TR(—, A, <y, 2).

The uniqueness (modul o extensional equivalence) followsby applying trans-
finite induction to B(x) := xn Fied(<,) — Yu(upy(X) < uny (X)) (Note that
{u: B(u)}isaclassif y, y areclassesand xn Field(<y,)).

Remark 6.9
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1. Theexistence of w-sequences of properties, obtained by iterating a given pred-
icative operation (here the map x — {u: A(U, X, Y[X, 2)}), is stated in [21],
“|terationsprinzip,” p. 27. Thus the schemaembodied in Theorem|6.8lis an ex-
tension of the Iterationsprinzip to p.w.o.s.

2. A special form of WP. Assume number-theoretic induction for classes (see also
Definition [BI]below). Observe that Proposition [E.4I2Jand Theorem BE8lare
schematic in the choice of the pairing function. In particular, if we interpret
(—, —) asanumber-theoretic pairing operation (i.e., aninjection of N x N into
N) and we assume that,

(@) the parameters <, and zin the statement of WP are subclasses of N;
(b) {u: A(u, x, blx, 2} €N, whenever xnField(<), z, y[X € N (A elemen-
tary extensiond in b, 2),

then we obtain asubclass y of N such that TR(y, A, <., 2).

7 A recursion-theoretic interpretation  We produce a model of TLR™ plus addi-
tional principles on numbers and the level ordering. The construction is carried out
within afragment of (powerless) set theory and it hinges upon admissible set theory
and generalized recursion theory. The results we presuppose are covered in Richter
and Aczel [28], Barwise [B], and Hinman [[20]. However, in order to make the paper
reasonably self-contained, we define the basic notions and state the required results.

Sep 1: the ground model. We fix a countable model A of combinatory logic TO;
M can be assumed to be arithmetically definable. To be more definite, we identify
M with the closed term model CTM of combinatory logic.

Definition 7.1

1. Let CTM := {t: tisaclosed termin the language Lop} (thus LT does not occur
in elements of CTM). The closed term model CTM is the structure (CTM, x,
=, K, S), where K, Sare the basic combinators and

% 1 CTM? — CTM isthe operation of juxtaposition of terms (i.e.,
txs=Ap(,s));
= CCTM?andt =sholdsiff TO+t=s.

2. Wedsolet N*:={t:te CTMand TO -t =n, for somen € w}.

That the mode! is well defined is ensured by the Church-Rosser theorem (see [2]);
moreover N* isisomorphic with w. Thus we have the following.

Lemma7.2
1. CTM isanontrivial model of TO.
2. Theexpansion CTM* ;= (CTM, N*) satisfies the axioms:
NAT.1 NOAVX(NX— (N(X+ 1)A =(x+ 1) = 0A PRED(X+ 1) = X));
NAT.2 VXVYWUYU(NXA NYA =X =y — Dxxuv = UA Dxyuv = v);

NIND A(0) A VX(A(X) = A(X+ 1)) = YX(Nx — A(X)) (A an arbitrary for-
mula).
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(For notations, see after Lemma2.2).

Step 2: set-theoretic preliminaries.  The next step is the interpretation of the level
axioms: the level ordering is identified with the standard ordering relation on ordi-
nals < ¢, thefirst recursively inaccessible ordinal, and the projection operation LT is
assigned a suitable projection of ¢ into w and hence into CTM. Werecall the relevant
set-theoretic notions.

The pure set-theoretic language Ls isthe standard first-order language with iden-
tity and abinary predicate symbol € for membership. If X isapredicate symbol # €,
Ls(X) is LsU {X}; Ls(X) has new atoms of the form Xt; the intended meaning of X
isthat X isaclass (in set-theoretic sense).

L. isthecollection of constructible setsup totheordina o, where Lo = &, L, =
U{Ly : o < A}(A limit), and L, isthe family of subsets of L, first order definable
with parametersin the standard set-theoretic language over the structure (L, € [Lg).

L := U{L, : « € ON} isthe constructible universe. A set-theoretic formula A
is X iff A hasthe form 3zB, for some bounded formula B; B is bounded if it con-
tains only bounded set quantifiers (i.e., of theform Vy € z, 3y € z). The principle of
bounded collection is the schema:

VX € UFYA(X, ¥) — JwVx € udy € w.A(X, ¥) (A bounded).

When we deal with semantical notions (e.g., definability over L), we tacitly assume
that the set-theoretic language is expanded with (distinct) constants for (distinct) pa-
rametersfrom asuitably large segment of L; but we usethe same symbol for the object
a € L anditsname. Lower case Greek |etters will range over the class ON of ordinal
numbers.

Definition 7.3

1. Anordinal @ > w isadmissible iff « is alimit ordinal and L, satisfies the
bounded collection schema (equivalently, L, isamodel of Kripke-Platek set
theory KP plus infinity; cf. [3]).

2. Anadmissibleordina o > w isrecursively inaccessibleiff it isthelimit of the

admissible ordinals < «.

. 1 ;= the smallest recursively inaccessible ordinal .

4. If Cisaclassof ordinalsand P any (set-theoretic) class, an n-ary relation Ris
uniformly 21(Ly) in Pfor e e C, iff thereexistsa X1-formula A(Xq, . . ., Xn, X)
of the expanded set-theoretic language Ls(X), such that, if « € C, then

w

RN Ly ={{C1,...,Ch):C1,...,Ch € Ly,

and
(Le, PN Ly) E A(Cq, ..., Ch, X)},

where X isinterpreted by PN L.

If Risuniformly X;1(L,) in P for « € C together with its complement, we
say Ris uniformly A;(L,) in P for « € C. An n-ary relation R C L] is
Y1(Le) (A1(Ly)) iff Risuniformly X;(Ly)(A1(Ly)) in P =@ for a € C,
C being {«}.



202 ANDREA CANTINI

5. A (possibly partial) function F isuniformly 1 (L,) inaclass Pfor « € Ciffits
graphisuniformly X;(L,) in P for « € C. Then by Definition [Z.3[4] it makes
sense to speak of a X1 (L, )-, A1(Ly)-function, etc.

6. LEV, isthe structure (1, =, <), where =, < are respectively the equality and
the less-than-equal relations restricted to ordinals < «.

7. aisprojectibleiff there existsa X1 (L )-injection from « into w.

Remark 7.4 If a¥;(Ly)-function F : L, — L, istotal, then F isaso A;1(Ly).
In general, every partial X, (L,)-function F : C — L, whose domain C C L, is
A1(Ly), can be extended to atotal X1 (L, )-function. As aconsequence, the relation
Rr(a,xX) :=a € F(X) is A1(Ly), provided F is X1(L,) and total, or defined on a
A1(Ly)-subset. The same considerations hold for uniform definability.

Now let the level variables range over ordinals below ¢, whereas level identity and <
arerealized on ordina theoretic =, and < (in the given order); then wetrivialy have
the following.

Lemma7.5 LEV, isamodel of the level axioms of SectionB.2] Indeed, the model
satisfies linearity and well-foundedness of <.

For convenience, weidentify closed terms of Lo, with their respective number codes
inthe arithmetized version of CTM, and henceweregard CTM asasubset of w. Since
every arithmetically definable subset is definable by a bounded formula on L, for
a > w, we have the following by inspection of the definition of theterm model CTM.

Lemma7.6 ThesetsCTM, N*, theapplication functionx: CTM x CTM — CTM,
and the conversion relation = on CTM are all elements of L, for every o > w.

Sep 3: satisfying the projectibility axiom.  The choice of a denotation for the func-
tion symbol LT requires aninjection IN of ¢ into CTM, which is reasonably defined.
First, we summarize afew facts, to be applied later.

Lemma7.7

1. Thepredicate Ad(«) :=" aisadmissible” isuniformly A1(Lg) for glimit > w.

2. Theoperation 8 — B+ = theleast admissible > gisuniformly A;(L,), for
o limit of admissibles.

3. Let 19 = w and 7, = least admissible y > 75, for every 8 < o, whenever
o > 0. Then the sequence (7, : « < §) isuniformly A1 (L;,).

4. istheleast o suchthat 7, = «. In particular therestrictionof ttocisX1(L,).

Proof: () follows by standard techniques of formal set-theoretic semantics and the
well-known uniform A ;-definability of the operation § —> L (see[3]; Devlin [10]);
(2) isimmediate by (1}, and (B) is a consequence of and closure of admissible
sets under =;-recursion. {4} isan easy corollary of (3).

Lemma 7.8 (after [8]) Thereexistsafunction IN, uniformly =1 (Lg) for g admis-
sible > w, such that IN[z,, : 7, — w istotal and injective, for every 0 < o <« (here
IN[t, istherestriction of IN to ).
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Proof (sketch): The theorem isimplied by the existence of an arithmetical notation
system N, for ¢; thisin turn is obtained by iteration of a suitable nonmonotone oper-
ator. Let usrecall the basic definitions.

1 IfI': P(w) > P(w) (P(w) = power set of w), whereI" is possibly nonmono-
tone, we recursively define for « € ON:

I, ) =U{I'((T, B)) 1 B < af;
I(T) =U{I(T,a) :a € ON};
ifne (), |n|=leasta suchthatne | (I, « + 1).

Since the sequence (1 (T, &) : @ € ON) isnondecreasing with respect to inclu-
sion, it makes sense to define the closure ordina |T'| of T,

IT| := least & suchthat I (T", &) = I (T, + 1).

I' is called arithmetical if there exists an arithmetical formula A(u, X) (i.e.,, A
is built up by means of boolean operations and number quantifiers from atoms
of theformt = sand Xt), such that, if P C w, then

['(P):={me w: (m, P)satisfies A(u, X) inthestandardmodel of arithmetic}.

Observe that arithmetical formulas become A1 in L, if « > w; hence by A;-
recursion we have the following.

2. If T isarithmetical, the sequence (1 (T, 8) : B < «) isuniformly (L) for «
admissible > w. In particular, 1 (T, B) € Lq, for each 8 < «.
By corollary 9.4 (i) of [28], we have the following essential result.

3. There exists an arithmetical operator I' whose closure ordinal is¢, i.e., |I'| = «.

Now, if I is the operator given by (3), I (", @) is a proper subset of | (I, « + 1) for
every a < ¢ and the function

IN(@) = leastne wwithne I(I',a+ 1 andn ¢ I (T, )

isalways defined on  and istrivially injective. By (2) IN satisfies the required defin-
ability conditions.

Remark 7.9

1. Inthe statement of LemmalZ.8lwe can assume that the range of the projection
INisCTM. Indeed, itisenough to consider the obvious X -bijection o between
w and the set of numeralsof CTM. Henceforth, westill maintain IN asasymbol
for the projection of ¢ into CTM.

2. LemmalZ8lstill holds if we replace : by much larger ordinals, e.g., the first
recursively Mahlo ordinal. However, the uniformity of the function IN is not
shared by al countable admissible projectible ordinals, since there exist non-
projectible ordinals below projectible ones (see [B], [20], p. 424).

To sum up, by Lemmas[Z.2][Z5land[Z.8] if we realize the function symbol LT on the
map IN, we have the following.
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Lemma7.10 ThestructureCTM, = (CTM*, LEV,, IN) isamodel of TO extended
by the level axioms of Section[3:2] the projectibility axiom PROJ of Axiom[Z.5]and
the number-theoretic axioms NAT.1, NAT.2, NIND of Lemmal7.2]

Sep 4: satisfyingthetruth axioms.  Weexpand CTM, with afamily 9/ of truth pred-
icates indexed by the ordinal ¢, such that (CTM,, V) is a model of an extension of
TLR™. The model construction requires only closure of admissible sets under -
recursion and X1-inductive definitions (see [[3], p. 26; p. 208) and the fact that ¢ is
an admissible, which is limit of smaller admissibles. We split the construction in a
sequence of lemmas.

Henceforth, we assume that the language Ly of Section[2]is enlarged to a lan-
guage Ly, with constants for ordinals < ¢; lower case Greek letters represent both
ordinals < ¢ and their namesin L¢. a, b, ¢ are used as metavariables for arbitrary
elements of CTM, whilewekeep i, j, k ranging over level variables.

If tis aclosed term of Ly, possibly containing LT and ordinal constants,
CTM, (1) isthevalueof tin CTM,: in other words, CTM, (t) isthe unique closed term
of L, obtained from t by replacing each subterm of the form LT («) by IN(«) (which
isaterm of CTM by Remark [7.9] of course, the first occurrence of « stands for the
name of « in the expanded language L)

We lift to the present context the notations and conventions of Section[2] if a,
b are elements of CTM and « < ¢, then ab, VYa, —a, a A b, tr(«, a), id(a, b), tr(a),
nat(a) denote the following elements of CTM (in the given order): Ap(a, b), ALL a,
NEG a, AND ab, CTM, ([T,a]), [a= b], [Ta], [Na].

Combining LemmaR.2] Remark [Z.4land LemmalZ.8lyields the fol lowing.

Lemma?7.11
1. tr(e, @) = (7, IN(), a) and the operation («, @) —> tr(«, @) € CTM isinjec-
tive (in each coordinate separately);
2. if B < 14, C,a € CTM, therelation R(c, 8,a) := ¢ = tr(B, a) is uniformly
Aq1(L,,) for every o <.
Henceif B < 74, thefunction a+— tr (B, a) isuniformly A;(L,,), for every o <.
Definition 7.12

1. If SC . x CTM, let, for o < ¢:
S(a) :={a:aeCTMand («, a) € S}.

Thestructure (CTM,, S) istheredlization of L+, inwhich T, isinterpreted by
S(a) (o < t) and T isassigned the set U{S(«) : o < t}.

2. 1f8 <1, SCé§x CTM, X C CTM, I'(, S, X) isthe subset of CTM such that
aeI'(4, S X)iff for someb, c € CTM, one of the following cases holds:

(@ a= (m)tr(B,b)andb e S(B)(b ¢ S(B)), for some g < §;
(b) a= (—)id(b,c) andCTM & ()b =¢;

(c) a= (—)nat(b) and b € N*(b ¢ N*; cf. Definition[7.1];
(d) a= (—)tr(b) andb € X((=b) € X);

(e) a= (—)tr(8,b) and b € X((=h) € X);
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(fl a=—-—bandbe X;
(g9 a=(—)bAacandb, c e X (respectively (—b) € X or (—c) € X);

(h) a = (—)vb and for every d € CTM, (bd) € X (for some d € CTM,
(—bd) € X).

Lemma7.13 Assumed <, SC§ x CTM.

1. T ismonotonein thethird variable:
XCYCCTM, thenT'(5,S X)CTI'(5,SY).

2. T'(8, S, X) isuniformly A1(Ly) in X, Sfor o« admissible with w < o < ¢ and
8 < a. Ly isclosed under T in the following sense: if § < «, X and Sare
A1(Ly),thenT'(8, S, X) € P(CTM) N L, (P = the power set operation).

Proof: Its defining condition positively depends on X.

By inspection of Definition [Z.12I2] LemmalZ.1112] and Remark [Z.4] we see
that ' (8, S, X) isuniformly A;(L,) in X, Sand we can apply Aq-separation for L,
sincel'(§, S, X) € CTM € L,.

Lemma7.14 (Inversion) Lets <, SCéx CTM, X C CTM, a,b € CTM. Then:
if Ahastheforma = b, —a= Db, Na, =Na, [A] € I'(8, S, X) iff CTM* =A (see
Lemma[7Zlfor CTM*);

tr(g,a) eI'(s, S, X) iffeither =5andae Xor 8 <dandae S(B);
(=tr(B,a)) e I'(8, S, X)iff either 8 < sanda ¢ S(B)or B = sand(—a) € X;
(@anb)er(, S X)iffae Xandb e X;

(—=(@anb)) el'(s, S X)iff (—ma) € Xor (=b) € X;

(Va) e I'(8, S, X) iff (ac) € X, for all c e CTM;

(=(Va)) e I'(48, S, X) iff (=(ac)) € X, for somec € CTM;

(tr(@) eI'(s, S, X)iffae X;

(—tr(@)) e I'(8, S, X) iff (—a) € X;

(—a)eTl(, S X)iffae X.

Proof: From right to left, it holds by definition of I". Conversely, we apply thein-
dependence Lemmal2.6]

Definition 7.15 Let§ <, SC § x CTM. The B-thiteration I1t(I", 6, S, B) of " is
recursively defined by

It(T, 8, S, 0) = @; for x limit, 1t(T, 8, S, A) = U{IL([, 8, S, B) : B < A}:
I, 8,S, B+1) =T, S LT, 8, S B)).

Clearly &€ < ¢implies It(T, 8, S, &) C 1t(T, 8, S, ¢) by monatonicity of T'.
Lemma7.16 LeeSC§xCTMand$ < ¢.
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1 Ifae CTM, B8 < a,and § < «, then therelation
P@ s, 8,5 :="ae ltl,s,S p)”

and thefunction g — I1t(T", 8, S, ) areuniformly A;(L,) in Sfor o admissi-
blewithw < o < t. Henceif SisA1(Ly), It(I', 8, S, —) : a — L, NP(CTM).

2 Ify=0a", § < a, a isadmissible with: > o« > o, Sis A1(L,) and | =
It(l, 4, S, a), then

(x) 1 =T@,S1);
(%) | € L, NP(CTM).

Proof: (I It(T, 8, S, —) isrecursively and uniformly defined by means of the oper-
ation ", whichisuniformly A1(L,) in S, and we can apply LemmalZ13Pland closure
of L, under A;-recursion.

@ If L, is admissible, the least fixed point of any given positive X1 (L,)-
operator is X1 (L) (thisis Gandy’s theorem, [3], pp. 208-210). Hence by definition
l isaAq(L,)-subset of CTM € L, and (x) isimmediate by LemmalZ.13]

Definition 7.17 1f § < ¢, It isthe functional of Definition[7-15] let
(+) V(&) =1, 8, V18, 1y(5))s

where V18 ={(B,a): B < sandae V(B)} and ¢(8) = §if s isalimit; else p(§) =
8+ 1. V iswell defined on ordinals < ¢, by A;-recursion and Lemmas[7.16Jand[7.7]

In the following ¥ denotes the unique function satisfying (+) above.
Lemma 7.18

1. Therelation R(8,a) := a € 9/(8) isuniformly Ay(L,,,,,) for every § < «.
Hence V(8) € Ly, and ¥ 1t — L, N P(CTM) is A1 (L,);

if 8 <, V(6) =T, V18, V(5));

if § <, either a¢ V(8) or (—a) ¢ V(8), for every a € CTM;

for every B < 8 < (,ae CTM, either tr (8, @) € V() or (—=(tr(B,a)) € V(8);
5. if B <8<, V(B) isaproper subset of 7 (5).

Proof: and (2 follow from Lemmas[Z.7land[7.16 bnd closure of admissible sets
under Aq-recursion.

(3) By main transfinite induction on § < ¢, and a secondary induction on ),
using (1 and the inversion LemmalZ_14]at the successor step.

(4 Assume 8 < § and a € V(B). It follows that tr (8, a) € I'(8, V18, @) €
(8, V18, V(8)) € V(8) by definition of I", monotonicity and @@)); if a ¢ 7 (8), the
argument is similar.

GlIf B<sand V (B, &) := I, B, V1B, &), itisenough to verify by induction
oné < Tp(p)-

E SN

V(B.& S V©) 1)

If £isOor alimit, the proof istrivial. Assume ([ by IHanda e I'(B8, V18, V (B, £)):
we show a € 1/(8) as a consequence of the inversion lemma and the property men-
tioned in LemmalZ.18P]above. We have to distinguish several cases according to
the form of a. Let a = (—=(tr (v, b)) for some v: then by inversion either v <
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andb ¢ V(v) orv=pgBand (=b) € V(B,&). Inthefirst case, sincev < §, a €
'S, V18, @) € V(8) by definition of I' and Lemmal[Z-I8IZ] In the second case,
(=b) € V(B) by definition and hence b ¢ 1/ (B) by consistency (see LemmalZ181]
above). Since 8 < §,ac I'(8, V18, @) € V(8). Leta= (b A c); by assumption and
inversionb € V(B,&) andc € V(B, &), whence b, c € V() by IH. By definition of
ILae (8, 718, V() andac 7 (8) by Lemmal7.18P] The extant cases are easily
checked asan exercise. Asto proper inclusion, consider theterm R(B) = {X: =Xngx}
and observe that Lemmas[7.18Dand[7.18Bimply (R(B)R(B)) € V(B + 1) — V(B)
(see Proposition[5.3).

Definition 7.19 TLR™ isthe extension of TLR™ that includes the axioms NAT.1—
NAT.2, the schema of number-theoretic induction NIND (see Lemmal(Z.2), plus the
schema of transfinite induction on levels Tl (Iev), where,

Tl(lev) :=Vi(Vj <i.B(j) — B(i)) — ViB(i) (B arbitrary).

Theorem 7.20 (Soundness) C, = (CTM,, V) = TLR*.

Proof: NIND, NAT.1-NAT.2, the level axioms, Tl(lev) and the projectibility ax-
ioms hold in the model by Lemmal[Z.10] The local truth axioms of Section[3.1]and
the connection axioms of Section[3.3]are straightforward consequences of the defi-
nition of T, inversion, Definition[7.12]and the previous lemma. Asto the reflection
principle, assume,

C, E=vx3dj(xn,a— xnjb) (fora,be CTMand y < ¢). 2

By Aq(L,)-definability of R(a, @) := a € V() (by LemmalZ.18I1}, condition 2lis
equivalent, by the well-known absoluteness of A;-conditions, to:

L, E (Yxe CTM)(3B)A(X, ¥, B,a, b), (3)

for a suitable A;-formula A(X, Y, z, u, v); hence by X4-collection (derivable from
bounded collection), for some & < «, wehave L, = (Yx € CTM)(38 < &) A(X, v, B,
a, b), which yields by equivalence of equations (2) and (3} the required conclusion
C, = 3kvx3j(j < KA (xn,a— xn;jb)).

Remark 7.21 Itisispossibleto strengthen the consistency result intwo directions.
First of al, thearithmetical definability of ground model and the Kleenebasistheorem
imply the consistency of areducibility schemafor classes:

RPC i < kKACLEX) AY(ClLy) A AU, X, Y)) = TY(Cl(y) A A(u, X, ¥))),

for every L-formula A(u, X, y) with the free variables shown, which is elementary
extensional in X, y. Hence, at least for elementary predicates, quantification on arbi-
trary classesis reducible to quantification on classes of a fixed level.

TLR + RPC yields an interpretation of the fragment of second order arithmetic
based on l'[}-comprehensi on. According to the second direction, we can consistently
assume that levels are objects and hence that the projection function LT collapsesto
identity; we can apply reflective truth to expressions containing bounded level quan-
tification. This move impliesthat classes are closed under A%—comprehensi on.
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8 Levelsof truth and proof theory  Weinvestigate the relation between theories of
truth with levels and standard mathematical systems.

Definition 8.1 TLR is obtained from TLR™ (see Definition[7.19) by omitting the
full transfinite induction schema for levels Tl (lev) and replacing the schema of N-
induction by the axiom of local N-induction LIND:

Cli(x) A Clos (X) = Yu(Nu — unjx),

where Clos; (x) := Onix A Yo(vix — (v + 1)niX).

It turns out that, although TLR is based on the logical notions of truth and iteration
of the reflection process, TLR is strictly connected with an important subsystem of
second order arithmetic Z,: by the Weyl iteration principle of Section[g] it is easy
to relate TLR with awell known system ATR, of Reverse Mathematics ([16]). We
define the system ATR,.

First of all, the language L, of second order arithmetic contains the following
elements. adenumerablelist of number variables X1, Xo, X3, . . .; adenumerablelist of
set variables Xg, X1, Xo, .. .; theindividual constant 0; the function symbols ’ (suc-
cessor, 1-ary), + (addition, 2-ary), - (product, 2-ary); the binary predicates < (order-
ing on w) and € (membership); classical logical operations (say —, V, A); and =.

Lo-termsareinductively generated from number variables and the constant 0 by
application of thefunction symbols ', -, 4+. Atomsof L, havetheformt =s,te X,
t < s, wheret, sareterms, X is aset variable. Formulas are inductively generated
from atoms by means of negation, conjunction and universal quantification on indi-
vidual and set variables. A L,-formula A is arithmetical if no set variable occurs
boundin A.

Definition 8.2 ATRy is the theory in the language L,, which contains classical
predicate calculus with identity for £, and

1. standard number-theoretic axioms;

YX(=X = 0) AVXVY(X =Y — X=Y);

VX(—X < 0) AVXVY(X < Y < 32(Z + X = Y));

VX(X4+0=X) AVX(X-0=0) AVXVY(X+ Y =
= (X+Y) AX-Y =X y+X);

2. theinduction axiom Ax-IND: 0 € X AVX(Xx € X — X € X) — VX(X € X);

3. arithmetical comprehension schema: IXVYu(ue X < A(u, Y)), where A(u, Y)
isan arbitrary arithmetical L,-formulaand X does not occur in A,

4. the schema ATR of arithmetical transfinite recursion:

VXVZIY(WO(<x) — YYVU(YeYy < A(Y, U, Y[u, 2))),

where WO(< x) is the formula, stating that X encodes a linear ordering of
o such that VY (VX(VYy(y <x X —=> Y€ Y) > xeY) - Vx(Xx € Y)) {here
y <x X:= (¥, X) € X; (X, y) stands for aprimitive recursive pairing function};
Aisan arithmetical formulaand Y[u is contextually defined by (v, y)eYTu :=
v<xUA{(nyyeY,andyeY,:=(UYy) €Y.
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Theorem 8.3 ATRgpisinterpretablein TLR.

Proof: Wedefineatrandation* of L, intothelevel freepart of thelanguageof TLR.
Informally speaking, we simply verify that N plus the subclasses of N isamodel of
ATRin TLR. Formally, we can choose combinators0, -, +,’, in order to interpret the
basi c function symbolsof £, (weadopt the same notation). Hencewe caninductively
assign to each Lo-term t aterm t* in the language Lop (= the operational fragment
of Ly), with the same free variables. Moreover, if t = s, t € X, t < s are atoms of
Lo, weput (t=9)* = (t* =5); (te X)* := (t*nx)(Xfresh); (t < 9)* :=1t* < &*
(the second occurrence of < being now a canonically chosen Lop-definition of <).
We then extend * to arbitrary formulas of L, by stipulating that the map* commutes
with =, A and

(VXA)* :=VX(Cly(X) = A"), (YXA)* ;= VX(NX — A*) =VnA*,

where Cly (X) := CI(X)A Yu(unx — NX). It isclear that * is awell-defined trans-
lation of L, into L. Let A be an Lo-formula with free variables in the list X =
X0, ..., Xn, Y= VYo, ..., Y. then we check by induction on the definition of ATRg-
provability:

if ATRg - A(y, X), then TLR Ny A Cln(X) — A*(Y, X). (4

Thetrandation of the number-theoretic axiomsis disposed of by means of local class
N-induction and the fixed point theorem (Lemmal2.Tkakes care of the existence of
plus and times, and suitable Lop-instances of N-induction ensure that the definitions
are correct). It remainsto check that the *-trangd ations of Ax-IND, arithmetical com-
prehension schema and ATR are provable in TLR. Asto the first axiom, we have to
verify

TLRF ClI(x) — (Clos(x) - N C x).

Since xisani-classfor somei (Lemmal5.512), Clos(x) <> Closi (x) by Lemmal5.2]3]
and hence we can apply local class N-induction.

The tranglation of arithmetical comprehension becomes an instance of elemen-
tary comprehension and henceisprovablein TLR by Proposition5.4IT] Lemmal5.5E]
and Lemmal5.2B]

Notethat, if Clny(X)A (WO(<x))* isassumed, then <x encodes a subclass of
N whichisap.w.0. Henceif zisany subclassof N and A(u, x, Y, Z) isarithmetical,
unN A A*(U, X, Y, 2) is elementary extensional in y, z (y, z fresh variables ). Now
the hypothesis of Theorem[6.8]land Remark [E.9]are trivially met and there exists a
subclass of N satisfying the *-trandation of the ATR-consequent.

Itiswell known that ATRg hasthe same proof-theoretic strength as Predicative Anal -
ysis (cf. [[6])). On the other hand, the lower bound is also an upper bound for TLR.
Indeed, we can state a stronger result.

Theorem 84 TLR+ Tl(lev) isproof-theoretically reducibleto ATRy (i.e., the for-
mal consistency of TLR + Tl (lev) isimplied by the formal consistency of ATRg over,
say, Peano arithmetic).
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The only proof we are aware of is complex and cannot be given here (details are pre-
sentedin [[9], chs. 10-11). However, the gist of the argument can hopefully be gained
from an outline of the basic idea.

Stepl: TLR+ Tl(lev) — STLR. wegiveasequent style presentation STLR (=
sequent calculus of truth with levels and reflection) of a system which contains TLR
and the full transfinite induction schema on levels.

Step 2: STLR— STLR™. STLRisembedded into an infinitary system STLR*
where Tl(lev) is dropped in favor of an w-rule, which forces the level variables
to range over finite standard ordinals. Since STLR™ contains a reflection princi-
ple for levels, STLR> cannot have w-standard models; yet, because of the weak
number-theoretic induction, STLR™ is consistent. STLR> enjoys a crucial quasi-
normalization property: the cut-rule can be restricted to formulas, which contain only
unbounded universal or existential level quantifiers.

Step 3: STLR™ — {STLRy : n € w}. Thisisthe centra step of the construc-
tive interpretation. First we define a sequence of finitary approximations STLR, to
STLR*, in which only bounded level quantifiers are allowed and where we can ex-
plicitly refer only to the first n levels. The main fact to establish is that STLR*™-
theorems can be suitably interpreted in the STLR,’s. Theresult is based on an asym-
metric treatment of unbounded universal and existential level quantifiers. Theinfor-
mal ideaisto reinterpret unbounded quantifiers on levels according to apotentialistic
point of view, so that V j only refersto arbitrary finite segments of the level ordering.
Thus the meaning of 3] depends on the given initial segments, and this dependence
is expressed by majorizing functions whose complexity depends upon the transfinite
ordinal height of the given quasi-normalized STLR*-derivations.

Step 4: STLR, — I TS, One carries out a complete elimination of bounded
level quantification and level structure: each STLRy-system is embedded in a level
freeinfinitary system I T3°, where the number-theoretic induction schemaisreplaced
by aninfinitary rule for N.

Step 5: I T > RS,. Wedesign an infinitary ramified system RS, in which T,
issplitintoafamily {T¥ : « < T'o} of approximations. The T’ sarelinked together by
natural recursive conditions, which can be encoded by symmetric introduction rules
with the cut elimination property (see the model construction of Section[7). We em-
bed I T3¢ into RS, by amodified version of the asymmetric interpretation technique
of Step 3 (see Girard [[I8], Cantini [5]). An analysisof cut free RS,-derivations read-
ily implies that RS,-theorems of level < n (i.e., theorems without T -occurrences)
are already derivable without Ty-rulesand hencein I T°, for somem < n.

By finite iteration of the T-elimination procedure, we finally obtain that T-free
sentencesof TLR have T-free(infinitary constructively presented) derivations, whose
correctnessdemandsonly arithmetical principlesand suitableinstances of the schema
Tl (< I'p) of transfinite induction along each o < I'y. Here I'y is the well known or-
dinal of predicative analysis.

In view of Theorem[8:4] TLR + Tl (lev) can be regarded as a predicatively re-
ducible theory of degrees of predicative evidence: the higher the level, the lower the
predicative evidence; atruth of level j > i isin generally only conditionally predica-
tive relative to the truths of lower level.

A final remark on a possible criticism. It might be objected that we have re-
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stored a hierarchy of truth predicates, which is strictly reminiscent of the Tarskian
language/metalanguage hierarchy, and it seems that we have destroyed the freedom
of the original level-free formalism of truth. Thisis only partly true: indeed the new
framework is quite distant from the Tarskian one. In particular by the local truth ax-
ioms of Section[3T]each T; already encompasses the standard Tarskian predicates,
as to closure properties and self-referential ability. Furthermore, the level structure
greatly strengthens the deductive force and it can be profitably applied for justifying

level-free principlesin the context of type-free systems, asit appearsfrom Sectionslel-
3]
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