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The Logic of Non-contingency

I. L. HUMBERSTONE

Abstract We consider the modal logic of non-contingency in a general set-
ting, without making special assumptions about the accessibility relation. The
basic logic in this setting is axiomatized, and some of its extensions are dis-
cussed, with special attention to the expressive weakness of the language whose
sole modal primitive is non-contingency (or equivalently, contingency), by
comparison with the usual language based on necessity (or equivalently, pos-
sibility).

1 Introduction We investigate the general logic of the singulary operator� with
the intended reading of�A (A any formula) being “it is non-contingent whether A.”
� was introduced in Montgomery and Routley [5], along with an inverted� oper-
ator (which we shall not use) for expressing “it is contingent whether A.”1 In more
detail, we take the language of truth-functional logic, with, for definiteness,⊥, (zero-
ary) and→ (binary) as primitive boolean connectives, the other boolean connectives
introduced as by any standard definitions, as well as singulary�, and work with the
language based on a setP of countably many propositional variables (sentence let-
ters) p1, . . . , pn, . . . (We write ‘p’, ‘ q’ for ‘ p1’, ‘ p2’.) Models are triples(W, R, V )

with W �= ∅, R ⊆ W × W, V : P −→ P (W ), with an inductive definition of the truth
of a formulaA at a pointx ∈ W in a modelM of this form (notation:M |=x A ) as
follows.

M |=x pi iff x ∈ V (pi) (1.1)

M �|=x⊥;M |=x A → B iff M �|=x A or M |=x B (1.2)

M |=x �A iff ∀y, z ∈ R(x), if M |=y A thenM |=z A (1.3)

In (1.3) R(x) denotes{w ∈ W | xRw} : the set of points “accessible” tox. Alter-
native formulations of (1.3) which it is sometimes convenient to work with include
the following.

M |=x �A iff for all y, z ∈ R(x), M |=y A iff M |=z A (1.4)
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M |=x �A iff either M |=y A for all y ∈ R(x) or

M �|=y A for all y ∈ R(x) (1.5)

If the first disjunct of the right-hand side of (1.5) holds, we speak ofA as necessary
at x (in M ), and if the second disjunct holds, ofA as impossible atx. (Note that these
cases are not mutually exclusive, sinceR(x) may be empty.) Of course in the usual
language of modal logic, one would write�A and�¬A (or ¬♦A), respectively, for
these cases, so that�A becomes definable in that language as the disjunction of these
representations.

Conversely, the definability of� in terms of� and the boolean connectives is
explored in Cresswell [2]. Specifically, Cresswell there considers normal modal log-
ics with � as primitive, and asks whether�p is provably equivalent to some for-
mula built up fromp with the boolean connectives and� (taking�A as abbreviat-
ing �A ∨ �¬A). He in effect partitions the class of normal modal logics into three
subclasses:

Class 1. SystemsS with �S � ⊥,

Class 2. SystemsS with �S ¬� ⊥,

Class 3. SystemsS such that��S � ⊥ and ��S ¬� ⊥.

With respect to this partition the results found are as follows.� is definable in the
sole normal system in Class 1 (the “Verum” or “Absurd” system), even without the
aid of �, since here we have�p (like �p itself) provably equivalent top → p. In
no system in Class 3, is� definable ([2], Theorem 3). In some systems in Class 2 ( =
normal extensions of the systemKD), � is definable, whereas in others it is not. The
logics originally investigated in [5] are all in this class, and in fact all extendKT, for
which the definition of�A as�A ∧ A is available. (See also Mortensen [4] and the
references therein to other papers by Montgomery and Routley, in which nonnormal
as well as normal systems are considered, all of them sharing theT schema�A → A.)
Cresswell also gives an example ([2], Theorem 9) of a logic in Class 2 not extending
KT in which� is definable. (Nomenclature for normal modal logics here and below
follows Chellas [1], q.v. also for any other terminology not explained here; note that
we use the terms ‘logic’ and ‘system’ interchangeably.) It would be interesting to
have a general characterization of the normal modal logics in which� is definable in
terms of�; in view of Cresswell’s observations, what is required is an analysis of the
situation in Class 2.

Weshould note, in view of the fact that we are considering arbitrary (classes of)
models, as well as arbitrary normal modal logics, that the reading of ‘�A’ as “it is
non-contingent whetherA” i s not universally appropriate, for the same reason as it
is not always appropriate to read ‘�’ as “necessarily” (or ‘♦’ as “possibly”). Such
readings are particularly ill-suited, if taken literally, to systems without theT schema
and their�-based analogues. (Accordingly, von Wright [10], p. 61, spoke of its being
(morally) indifferent whetherA, to express the deontic analogue of contingency.) We
retain them only for the sake of convenience. Likewise with the use of ‘necessary’
and ‘impossible’ introduced after (1.5) above.

Before proceeding, we need to adapt some familiar semantic terminology. Let a
non-contingency logic be any set of formulas in the language described in our opening
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paragraph, which includes all truth-functional tautologies and is closed under Uni-
form Substitution (of arbitrary formulas for propositional variables) and Modus Po-
nens (equivalently: under tautological consequence). IfC is a class of models, in
which formulas are interpreted as by (1.1) – (1.3), an axiomatically presented proof-
system for non-contingency logic issound with respect toC if every formula provable
in the system is true at every point in every model inC, complete with respect toC
if every formula true at every point in every model inC is provable in the system,
and isdetermined by C if it is both sound and complete with respect toC. Given a
normal modal logicS, we understand by(S)� the set of theorems ofS containing
the boolean connectives and� (with �A taken as abbreviating�A ∨ �¬A). This
same collection of formulas is then a non-contingency logic (in fact what we shall
later call annc-normal such logic) when� is regarded as a primitive connective in
its own right. Clearly, wheneverS is determined byC, (S)� is also determined byC.
The converse is false, since one may have(S1)� = (S2)� even whenS1 �= S2: we
shall see several illustrations of this possibility in Section4section.4. It arises because
of differences betweenS1 andS2 which do not emerge when attention is restricted to
their respective fragments in which the only occurrences of� are in subformulas of
the form�A ∨ �¬A.

Now if, in some normal modal logicS, � is definable in terms of the boolean
connectives and�, then an axiomatization ofS can be converted, using the resulting
interdefinability of� and�, into an axiomatization of(S)�, by a method indicated
in Hiż [3]. Montgomery and Routley [5] (from which—see the references in [4]—the
above “(S)�” notation is adapted) in effect further processes the cumbersome results
of this direct method into a much more elegant axiomatization, arriving, in the case
of KT, for example, at an axiomatization of(KT)� with the following rule,

A
�A

, (1.6)

added to a basis for truth-functional logic, together with axiom schemata,2

�A ↔ �¬A (1.7)

A → (�(A → B) → (�A → �B). (1.8)

They further show that we obtain non-contingency formulations ofS4 and S5 by
adding the schemata (1.9), (1.10), respectively.

�A → ��A (1.9)

��A (1.10)

Elegant as these results are, they leave untouched the general case, in which we
do not have� definable in terms of�. (As Segerberg [7], p. 128, remarks of the
Montgomery-Routley enterprise, the definition of�A as�A ∧ A “accord(s) with in-
tuitive preconceptions” only in extensions ofKT; see the parenthetical comment at
the end of the proof of Theorem 1 in Cresswell [2] for a sharpening of this remark.) At
its most general, the case that needs to be considered is that of the non-contingency
logic determined by the class ofall models—the analogue for� of the systemK, the
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smallest normal modal logic, for� (in the notation introduced above, this is the sys-
tem(K)�). We shall axiomatize this system in Section3section.3below, with some
remarks on extensions (as well as on the non-contingency analogue of modal defin-
ability) deferred to Section4section.4. In Section2section.2, wemake some prepara-
tory remarks.

2 Some principles for non-contingency Weuse the term ‘principle’ here to cover
rules as well as (potential) axiom schemata. The schema (1.7) of the Montgomery-
Routley axiomatization mentioned in the preceding section does not owe its validity
to any restriction of attention to models with reflexive accessibility relations, so we
shall need to prove all instances of this schema in any non-contingency logic com-
plete with respect to the class of all models. The left-to-right direction is particularly
interesting as an illustration of something more general.

�A → �¬A (2.1)

The more general principle involved here is

(�A1 ∧ . . . ∧ �An) → ��(A1, . . . , An) (2.2)

in which� is any (n-ary,n > 0) boolean mode of composition. (That is,�(p1, . . . , pn)

is a formula built from at most the displayed variables using only boolean connec-
tives, and�(A1, . . . , An) is the result of substitutingAi for pi in this formula.) (2.1)
is the special case in whichn = 1 and�(A) is ¬A. No instance of (2.2) can be false
at any pointx in a model, since if the antecedent is true atx, then all elements of
R(x) assign the same truth value toA1, the same truth value toA2, . . . , the same truth
value toAn, in which case all elements ofR(x) must assign the same truth value to
�(A1, . . . , An), since the latter is whatever value is dictated by the truth function as-
sociated (in the obvious way) with� when this is applied to the shared truth values of
A1, . . . , An.

The Montgomery-Routley rule (1.6), analogous to the familiar rule of Neces-
sitation, is also closely related to our general compositional principle (2.2), in the
case wheren = 0. The conjunctive antecedent vanishes in this case, and we are left
with the consequent. So when we take� as�(= ¬ ⊥, or, in fully primitive notation,
⊥→⊥), we have,

�� (2.3)

as a special case of (2.2). So all we should need, for deriving (1.6) from (2.2) would
be the rule of “congruentiality” (substitutivity of provable equivalents) for�:

(�Cong)
A ↔ B

�A ↔ �B
.

Then from� A we can pass to� �A using (� Cong), Modus Ponens, and (2.3). Al-
ternatively, if we start with the following schema considered by Mortensen (see [4],
and also [5]),

�(A ↔ B) → (�A ↔ �B), (2.4)

then from (the provability of) a premise for (�Cong), we can prefix a “�” by (1.6),
and then detach the consequent by appeal to (2.4), obtaining the corresponding con-
clusion of (�Cong). Going in the reverse direction, we may derive (2.4) from
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(�Cong) and (2.2) by using the following special case of the latter principle:

(�A ∧ �B) → �(A ↔ B). (2.5)

More specifically still, we have

(�(A ↔ B) ∧ �A) → �((A ↔ B) ↔ A). (2.6)

(�Cong) and some purely truth-functional manipulations then give (2.7) and (2.8):

(�(A ↔ B) ∧ �A) → �B (2.7)

�(A ↔ B) → (�A → �B) (2.8)

By a parallel derivation, we obtain a schema like (2.8) withA andB interchanged in
the consequent, and the conjunction of these two is of course equivalent to (2.4).

For the axiomatization we shall show in the following section to be complete
(with respect to the class of all models), however, we proceed somewhat differently
and set aside (2.2) along with its special cases (2.1), (2.3), (2.5,6). We will there
work with the converse of (2.1), which we call(�¬), aswell as a collection of rules,
only one of which will be discussed here, to be called (NCR)1, the letters standing for
“Noncontingency Rule’. We will derive (�Cong) from this rule shortly and, in the
following section, derive (2.2) from the collection of rules just mentioned as gener-
alizing (NCR)1.

(�¬) �¬A → �A

(NCR)1
A → B0 ¬A → B1

�A → (�B0 ∨ �B1)
.

We check that (NCR)1 preserves truth throughout any model. Suppose the premises
for an application of (NCR)1 are true throughout a modelM = (W, R, V ) and that
the antecedent of the conclusion is true atx ∈ W. Then, atx, A is either necessary or
impossible. IfA is necessary, then, since the left premise is true throughoutM , B0 is
necessary, so that�B0 is true atx. If A is impossible, then¬A is necessary, so, the
right premise being true throughoutM , B1 is necessary, making�B1 true atx. So
either way, the disjunctive consequent�B0 ∨ �B1 is true atx.

For those who find the detour through the necessity of¬A in the preceding ar-
gument distasteful, we note a more symmetrical¬-free version of (NCR)1.

A → B C → A
�A → (�B ∨ �C)

(2.9)

This rule is interderivable with (NCR)1, given (�¬). Its import can be seen more
readily by contraposing the conclusion, which then says that ifB andC are contin-
gent (as of some point in some model), then so isA. (2.9) thus amounts to a convex-
ity principle for contingency: anything (hereA) “inferentially sandwiched” between
contingencies (B, C) is itself contingent. (It would not, of course, be correct to claim
that whatever followed from—or that whatever implied—something contingent was
itself contingent.) We shall continue to work with (NCR)1, however, for continuity
with material in the following section.
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The replacement principle (�Cong) mentioned above is derivable from (NCR)1

and(�¬), since if� A ↔ B, we have� A → B and� ¬A → ¬B, so by (NCR)1,
taking B as B0 and¬B as B1, we conclude that� �A → (�B ∨ �¬B), whence
by (�¬) and truth-functional logic,� �A → �B. Appealing to (�Cong), we may
derive the converse of(�¬), by beginning with an instance of the latter principle,
�¬¬A → �¬A, and then replacing¬¬A by A in accordance with (�Cong), which
delivers (2.1) above. (Of course, we could equally well reverse this argument, and
derive(�¬) from (2.1).)

By way of preparation for the following section, let us see what becomes of an
attempt to show that the smallest non-contingency logic containing all instances of
(�¬) and closed under the rule (NCR)1 is complete with respect to the class of all
models. (We know already that the corresponding claim of soundness would be cor-
rect.) As usual, we build a canonical modelM for the system, whereM = (W, R, V )

andW is the set of all sets of formulas maximal consistent with respect to the present
logic. V is defined in the usual way:V (pi) = {x ∈ W | pi ∈ x}, whereasR is de-
fined in terms of a certain functionλ we proceed to describe. The intuitive idea is
that forx ∈ W, λ(x) is the set of formulas which are necessary atx. Wethink of λ(x)

as a “labeling” of all formulasA such that�A ∈ x, labeling each such formula as
Necessary (recorded by puttingA into λ(x)) or else asImpossible (putting¬A into
λ(x)). Since necessity is not only not a primitive connective of our language but,
as remarked in Section1, is in the general case—and therefore in particular, for the
current minimal system—not definable, we cannot take the usual course at this point
(puttingλ(x) = {A | �A ∈ x}) and must exercise greater ingenuity.

Provisionally, we might entertain the following definition ofλ. For x ∈ W, put

λ(x) = {A | �A ∈ x and∀B such that� A → B,�B ∈ x}.
The idea of the entry condition onA, that only suchA (with �A ∈ x) should be la-
beled as Necessary if all their consequences are non-contingent, is that although the
class of non-contingencies is not closed under logical implication (so that a Monotony
Rule analogous to (�Cong) but with↔ replaced by→) would destroy the sound-
ness of our logic), those non-contingencies which qualify as such because they, rather
than their negations, are necessary and have only non-contingent consequences, since
those consequences are themselves necessary.

The above definition ofλ allows us to show (by an argument the interested reader
can easily provide) the following.

For any formulaA, anyx ∈ W,�A ∈ x iff A ∈ λ(x) or ¬A ∈ λ(x), (2.10)

and we should like to define in terms ofλ the accessibility relationR of the canonical
model by saying: forx, y ∈ W, xRy if and only if λ(x) ⊆ y. The strategy would then
be to show (cf. (1.5)) that for all formulasA, and allx ∈ W,

�A ∈ x ⇐⇒ ∀y(xRy ⇒ A ∈ y) or ∀y(xRy ⇒ A �∈ y), (2.11)

as is needed for the case of� in the inductive proof of the claim that membership
and truth coincide in the canonical model. (We assume familiarity with the Scott-
Makinson canonical model technique here; the claim mentioned is the analogue of
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Theorem 5.7 of [1].) The⇒ direction follows from the⇒ direction of (2.10). But for
⇐, we need that if �A �∈ x thenλ(x) ∪ {A} andλ(x) ∪ {¬A} are consistent. Nothing
has been said to guarantee this. Take the latter case. We should need to show we
cannot haveA following (according to the present logic) fromλ(x), to show which
we would presumably need to know that, for anyB following from λ(x) we have
�B ∈ x, in order to get a contradiction from the fact that�A �∈ x. Our rule (NCR)1
does not guarantee this, and the developments of the following section can be seen as
supplementing the basis consisting of this rule together with(�¬) so that this part of
the argument will go through.

It is clear anyway that (NCR)1 and(�¬) cannot constitute the whole non-truth-
functional part of a complete basis for the general logic of�, so that the hitch just
noted is not merely a difficulty for the particular completeness-proof strategy at-
tempted. For (2.3), by way of example, is certainly not provable on this basis, even
though true at every point in every model. To see this, interpret ‘�’ as expressing
the constant false (1-ary) truth-function rather than in accordance with (1.3). All in-
stances of(�¬) are true at every point in every model, with this change to the truth-
definition, whereas the rule (NCR)1 preserves this property; since no formula of the
form �A has the property thus preserved, no such formula is provable.

3 Axiomatizing the general logic of non-contingency Werespond to the difficul-
ties encountered in the would-be completeness proof of the preceding section by pro-
viding a more general non-contingency rule than (NCR)1. To be more precise, we
offer a whole battery of such rules, namely rules (NCR)k for eachk ∈ ω, of which
our old rule is indeed thek = 1 case. For the general case, we schematically denote
by s(A1, . . . , Ak) a“state-description” in theAi: ak-termed conjunction, that is, each
of whose conjuncts is eitherAi or else¬Ai (i = 1, . . . , k). Enumerate these 2k state
descriptions by subscripting the “s” with 1, . . . ,2k. Then, for eachk, the rule we need
is the following.

(NCR)k
s1(A1, . . . , Ak) → B1 . . . s2k (A1, . . . , Ak) → B2k

(�A1 ∧ . . . ∧ �Ak) → (�B1 ∨ . . . ∨ �B2k )
.

For the same reasons as in the special case already considered(k = 1), we have, for
anyk ∈ ω, that the rule (NCR)k preserves the property of being true throughout an ar-
bitrary model.3 Thus the smallest non-contingency logic containing all instances of
(�¬) and closed under each of the rules (NCR)k, a logic we shall callNC, is sound
with respect to the class of all models. It is this logic we will be showing to be deter-
mined by that class of models, but before passing to the “completeness” half of this
claim, we make a couple of remarks about the rules (NCR)k.

The first remark concerns the case ofk = 0. As always, we have 2k premises, so
in the present instance we are dealing with a 1-premise rule. Since there are noAi,
the antecedent of the premise vanishes, with the effect that rule licenses transitions
from B1 to �B1. So here we have the Necessitation-like rule (“Noncontingentiza-
tion,” more accurately) called (1.6) above, and whose underivability from (NCR)1

together with(�¬) is evident from the unprovability on that basis (remarked on at
the end of the preceding section) of (2.3).

Secondly, we consider the fate of the compositionality principles (2.2) inNC:
(�A1 ∧ . . . ∧ �An) → ��(A1, . . . , An). Recall that�(A1, . . . , An) here is any
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boolean compound ofA1, . . . , An. (Here we assumen ≥ 1.) Thus for each state-
descriptionsi (1 ≤ i ≤ 2n) in A1, . . . , An, wehave either,

�NC si(A1, . . . , An) → �(A1, . . . , An),

or else,
�NC si(A1, . . . , An) → ¬�(A1, . . . , An).

The rule (NCR)n therefore delivers the conclusion whose antecedent is the conjunc-
tion �A1 ∧ . . . ∧ �An, (which is the antecedent of (2.2)) and whose consequent is
a disjunction of various occurrences of��(A1, . . . , An) and�¬�(A1, . . . , An). By
(�¬) and truth-functional logic, this disjunction collapses to the desired consequent
of (2.2): ��(A1, . . . , An).

Wenow turn to the completeness proof forNC. It will be convenient to use the
abbreviationS �NC A, whereS is any set of formulas, to mean that for some conjunc-
tion B (in some arbitrary order) of finitely many elements ofS, we have�NC B → A.
As in the preceding section, we define the canonical model for the present system,
MNC , to be(WNC, RNC, VNC), understandingWNC andVNC asW andV were in that
discussion, except now taking (maximal) consistency with respect toNC rather than
with respect to the weaker logic there in play. And we shall definexRNC y to hold
precisely whenλ(x) ∈ y, with λ yet to be defined. (Actually, “defined” is the wrong
word, given the nonconstructive nature of the proof which follows: “shown to exist”
would be more accurate.) Recall the idea thatλ(x) is to be a “labeling” of the formu-
las Ai for which �Ai ∈ x: we label a formula with the identity prefix (with nothing
at all, that is) to mark it as necessary according tox, and with a¬, to mark it as im-
possible according tox.

We work up to the general labeling by noting the existence of suitable finite la-
belings of sets of formulasA1, . . . , An with �A1, . . . ,�Ak ∈ x ∈ WNC. “Suitable”
here means that we want our partial labeling—call itλk(x)—to satisfy the condition
(2.10) of the preceding section, as far as these formulas are concerned,

(α) �A ∈ x iff A ∈ λk(x), for A ∈ {A1, . . . , Ak},
as well as the condition we noted the need for in that section:

(β) For any formulaB, if λk(x) �NC B, then�B ∈ x.

We can choose as the desiredλ(x) the set of conjuncts of some state-description
si(A1, . . . , Ak). Clearly any of these satisfies(α). If no such state-description pro-
vides a set of conjuncts satisfying(β), then for eachsi(A1, . . . , Ak), there existsBi

with �NC si(A1, . . . , Ak) → Bi and�Bi �∈ x. But all thesesi(A1, . . . , Ak) → Bi

(with 1 ≤ i ≤ 2k ) make up the premises for an application of (NCR)k, whose conclu-
sion then gives us a contradiction, since its antecedent is inx (as each�A j ∈ x), but
its consequent is not (since no�Bi ∈ x). Therefore someλk(x) satisfying(β) does
indeed exist.

The next problem is: how do we infer the existence of a suitableλ(x) which
works for all A such that�A ∈ x, rather than, asλk(x) does, just forA1, . . . , Ak with
�A1, . . . ,�Ak ∈ x? For this purpose we use a variant on König’s Lemma which we
shall call the Word Lemma: its derivation from König’s Lemma is deferred to an ap-
pendix. The setting for this result is formal language theory, in which we consider sets
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of words on some alphabet, including infinite words, orω-words, in the terminology
of Salomaa [6]; we use the phrase “initial segment” for what is often expressed by
the term “(proper) prefix.”

Lemma 3.1 (Word Lemma) Suppose acceptability is some property of words on a
finite alphabet such that any initial segment of an acceptable word is acceptable and
any infinite word is acceptable whenever all of its initial segments are. Then if there
are acceptable words of each finite length, there is an acceptable infinite word.

Take now as our finite alphabet the set 0,1, and, for an arbitraryx ∈ WNC, consider
the sets�0(x),�1(x), . . . ,�n(x), . . . such that�k(x) comprises all candidates for
the role ofλk(x): that is, each contains, for the formulas�A1, . . . ,�Ak ∈ x, either
Ai or else¬Ai (= (α)), and satisfies the condition(β) above, that for any formula
B, such thatλk(x) �NC B, we have�B ∈ x. We have seen, using (NCR)k, that for
everyk, there is at least one such candidateλk(x), sothe sets�k(x) are all nonempty.
Now continuing in terms of our fixed enumerationA1, . . . , An, . . . of all the formulas
Ai for which �Ai ∈ x, let us call a wordu, finite or infinite, whoseith letter (i ≤
length ofu) is ui (∈ {0,1}) acceptable when, for the set

S(u) = {C | C = Ai if ui = 1, andC = ¬A if u = 0}

we have:S(u) �NC B implies�B ∈ x, for all formulasB. This is a notion of ac-
ceptability which meets the conditions of the Word Lemma. The first condition was
that any initial segment of an acceptable word is acceptable. Supposet is an initial
segment ofu but thatt is not acceptable. Thus we haveS(t) �NC B for someB for
which�B �∈ x. Sincet is an initial segment ofu, S(t) ⊆ S(u), and so (“monotonicity
of �NC”) we haveS(u) �NC B, meaning thatu is not acceptable. The second con-
dition was that if every initial segment of an infinite wordu is acceptable, thenu is
acceptable. To check this, suppose thatu is not acceptable, so thatS(u) �NC B for
someB with �B �∈ x. Then (“finitariness of�NC”) for some finite subsetS0 of S(u),
we haveS0 �NC B; but thenS0 is a subset of someS(t), t an initial segment ofu,
so S(t) �NC B. Thus not every initial segment ofu is acceptable. Thus the Word
Lemma assures us that if there are acceptable words, on the present understanding of
acceptability, of each finite length, there is an acceptable infinite word. And, each of
the�k being nonempty, there are acceptable words of every finite length. So there is
an infinite acceptable word. Letu be such a word, and defineλ(x) asS(u): this set
now contains eitherA or¬A for each formulaA such that�A ∈ x and meets the con-
dition called (β) in the finite case above:B follows from the set only if�B ∈ x, for
all formulasB. For later reference, we formulate what the Word Lemma has proved
for us.

Lemma 3.2 (Existence Lemma) Where A1, . . . , An, . . . is an enumeration of all
the formulas Ai such that �Ai ∈ x ∈ WNC , there is a set λ(x) with (α) each element
of λ(x) is either Ai or ¬Ai, and (β) for any formula B, if λ(x) �NC B, then �B ∈ x.

Thus we can useλ(x), for eachx ∈ WNC, to definexRNC y by: y ⊇ λ(x). In more
detail, we have the following analogue of the “Fundamental Theorem” of normal (�-
based) modal logic for our non-contingency logics.

Theorem 3.3 For any formula A and any x ∈ WNC: MNC |=x A if and only if A ∈ x.
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Proof: By induction on the construction ofA. The only novelty here is the case in
which A is �B for some formulaB, for which case it suffices (with the help of the
inductive hypothesis) to show,

�B ∈ x ⇔ ∀y ∈ WNC(xRNC y ⇒ B ∈ y)or ∀y ∈ WNC(xRNC y ⇒ B �∈ y).

The⇒ direction follows from (α) of the Existence Lemma, since if�B ∈ x, then
eitherB or ¬B belongs toλ(x) and hence to ally ⊇ λ(x). For the⇐ direction, we
must show that on the assumption that�B �∈ x, λ(x) ∪ {¬B} andλ(x) ∪ {B} are both
NC-consistent, so that each has a maximal extension to falsify the respective disjuncts
on the right above. Taking the first case first, suppose thatλ(x) ∪ {¬B} is notNC-
consistent. Thusλ(x) �NC B. So by (β) of the Existence Lemma,�B ∈ x, contra-
dicting our assumption. For the second case: ifλ(x) ∪ {B} is not consistent, we have
λ(x) �NC ¬B, so again�¬B ∈ x. But by (�¬), �B ∈ x, again contradicting our
assumption.

Corollary 3.4 NC is determined by the class of all models.

Proof: Wehave already seen thatNC is sound with respect to the class of all models.
It is complete with respect to this class since if��NC A then theNC-consistent set
{¬A} is included in somex ∈ WNC, with (for consistency)A ∈ x, so by the Theorem
MNC �|=x A.

In the notation introduced in Section1, this Corollary tells us thatK� = NC. The
completeness half of Corollary3.4is more general. Calling a non-contingency logic
nc-normal if it includes all instances of (�¬) and is closed under the rules (NCR)k

for all k ∈ ω, wehave proved a special case of a general fact aboutnc-normal logics
S, whose canonical modelsMS are defined asMNC was, except thatWS comprises
the sets of formulas maximal consistent with respect toS.

Corollary 3.5 If S is any nc-normal logic, S is determined by MS .

In the following section we shall consider a few of these strongernc-normal logics.
Weclose the present section with a question which naturally arises in view of the use,
alongside the truth-functional basis and the schema (�¬), of the infinitely many rules
(NCR)k to axiomatize the non-contingency logic determined by the class of all mod-
els. DoesNC have an axiomatization using only finitely many rules and schemata?
(As mentioned in Section1, Montgomery and Routley [5] show inter alia that the
non-contingency logic determined by the class of all models with reflexive accessi-
bility relations has an axiomatization with this finiteness property.)

4 Some extensions of the basic system In Section1, we adapted the model-
oriented terminology of conventional modal logic to the language of non-contingency
logic. To avoid various circumlocutions, it will be helpful here to make a similar
adaptation of the frame-oriented terminology. Recall that aframe is a pair(W, R)

with W �= ∅ and R ⊆ W × W, and that a model(W, R, V ) is said to be a model on
the frame(W, R). A formula isvalid on a frame(W, R), which we notate by writing
(W, R) |= A when for every modelM on(W, R), wehaveM |=x A for everyx ∈ W.
A non-contingency logic is sound (complete) with respect to a class of frames when
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all (only) formulas provable in the logic are valid on each frame in the class, and is
determined by a class of frames when both sound and complete with respect to that
class. Thus Corollary3.4can be rephrased as:NC is determined by the class of all
frames. Note that the non-contingency logic determined by any class of frames isnc-
normal, just as the modal logic determined by any class of frames is normal. (In the
latter case, it is well known—see van Benthem and Humberstone [9]—that not ev-
ery normal modal logic is determined by some class of frames; although there is pre-
sumably nothing to prevent a similar manifestation of “Kripke-incompleteness” for
non-contingency logics, the author does not have an example of annc-normal logic
determined by no class of frames.) Finally, a class of frames isnc-defined by a set
S of formulas (not necessarily a non-contingency logic) when the frames in the class
are all and only those on which all formulas inS are valid, and isnc-definable when
there is some set of formulas whichnc-defines it. (This is the�-based analogue of
the usual box-based notion of modal definability, as in [9].)

Let us begin by considering five normal modal logics determined by various sub-
classes{(W, R) | ∀x ∈ W.|R(x)| < 1}. (Here|X| is the cardinality of the setX.) We
haveKDc, determined by the class of all such frames;KD!, determined by the class
of all (W, R) in which |R(x)| = 1 for all x ∈ W; KTc, determined by the class of all
(W, R) in which xRy ⇒ x = y for all x, y ∈ W; KT!, determined by the class of all
(W, R) in which R(x) = {x} for all x ∈ W; and finally theVerum system, determined
by the class of all(W, R) in which R(x) = ∅, for all x ∈ W. In all these cases, the
logics cited are not just determined by the classes of frames mentioned, but modally
define those classes of frames. We considernc-definability in a moment, after first
enquiring into the non-contingency logics these various classes of frames determine.
The plural turns out to be inappropriate, since a single non-contingency logic is de-
termined by all five classes.

The logic in question is the smallest non-contingency logic containing all in-
stances of the schema�A. Notice that this automatically qualifies as annc-normal
logic: just as the smallest modal logic containing all instances of�A—the Verum
system—qualifies as a normal modal logic. Let us call this theVerumnc system, in
fact, because, as in the case of�, here� can be thought of as expressing the constant-
true truth-function. Soundness with respect to the most comprehensive class of all
frames mentioned above,

{(W, R) | ∀x ∈ W.|R(x)| ≤ 1}, (4.1)

is clear, since�A can only be false at a point in a model if that point bearsR to at
least two distinct points (one to verify and one to falsifyA), in which case the frame
of the model lies outside our class.

The extreme simplicity of theVerumnc system allows us to bypass the canonical
model construction of the preceding section to obtain our five completeness results.
Weuse falsifying models (for nontheorems) in which|W| = 1. WhereW = {x}, put
R0 for ∅ andR1 for {〈x, x〉}. WhereC is not provable in theVerumnc system, letx be
amaximal consistent (with respect to the system) superset of{¬C}. PutV(pi) = {x}
if pi ∈ x, and= ∅ otherwise. Then for each of the modelsM0 = (W, R0, V ) and
M1 = (W, R1, V ) we have,

Mi |=x A ⇔ A ∈ x, for all formulasA. (4.2)
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For, in the non-boolean case of interest, the case ofA = �B, the left and right sides of
(4.2) are both invariably true: the right because�B is provable, and the left because
|Ri(x)| ≤ 1, for i = 0,1. Thus theVerumnc system is complete (as well as sound)
with respect to the class of all(W, R) satisfyingR(x) = {x}, by taking R1 asR, and
also therefore the class of frames satisfying the weaker conditions (1)|R(x)| = 1;
(2) xRy ⇒ x = y; (3) |R(x)| ≤ 1 (all x, y ∈ W). Finally, taking R0 as R, we get
completeness with respect to the class of frames in whichR(x) = ∅ for all frame el-
ementsx. We can re-express this multiple determination conclusion in terms of the
non-contingency fragments of the normal modal logics listed above: ourVerumnc sys-
tem is(S)� whereS is any of: theVerum system ( =KVer, whereVer is the formula
�⊥, or the schema�A), KDc, KD!, KTc, KT!.

Multiplicity of determining classes of frames for a single logic is of course a
measure of expressive weakness, since it reflects the unavailability of formulas valid
on all frames in one determining class but not in another. This phenomenon is fa-
miliar from conventional modal logic, so the point of interest here is the decrease in
expressive power as we pass from the language of� to the language of�. The only
one of the five classes of frames described above that isnc-definable is the largest,
given by (4.1). It isnc-defined by the class of theorems of theVerumnc system, or
alternatively, by the class of all formulas of the form�A, or again, simply by{�p}.
We have already observed that all formulas in any of these classes are valid on any
frame satisfying the condition in (4.1); conversely, suppose we have a frame not sat-
isfying this condition: since there is a pointx with more than oneR-successor, we
can arrangeV to put one but not the other of these successors intoV (p), falsifying
�p at x in the resulting model. (It follows, for the same reasons as in�-based modal
logic, that where several classes of frames determine the same logic, at most one of
those classes isnc-definable.)

We have introduced our discussion ofnc-normal logics with a look at the top
end of the lattice of such logics (with zero =NC, unit = the inconsistent system): the
Verumnc system is the sole Post-complete,nc-normal logic (lattice-theoretically: the
only co-atom).4 But an important moral may be drawn from our consideration of that
case, with repercussions further down amongst weaker systems with greater interest
for deontic, alethic, etc., applications. The relation between the frames(W, R0) and
(W, R1) above is a paradigm of a relationship we shall describe by calling one frame
an “R-reduction” of another. Informally, thinking of frames pictorially represented
with arrows from one point to another indicating the holding of the accessibility re-
lation, we “reduce” a frame by discarding some or all arrows which go from points
x to pointsy in cases where no arrows fromx go to points other thany. More pre-
cisely: (W, R−) is an R-reduction of (W, R) just in caseR− ∪ {〈x, y〉 ∈ W × W |
R(x) = {y}} = R. We then have the a simple observation given as Part(i) of the
following Lemma. For Part(ii) we need an additional piece of terminology: we de-
fine frames to bereduction-related if both areR-reductions of some common frame
(equivalently: if they stand in the ancestral of the union of theR-reduction relation
with its converse).

Lemma 4.1 (Reduction Lemma) (i) If (W, R−) is an R-reduction of (W, R), then
for all formulas A, (W, R−) |= A if and only if (W, R) |= A. (ii) Frames which are
reduction-related validate the same formulas.
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Proof: (i) follows from the fact that for any modelsM − = (W, R−, V ), M =
(W, R, V ) on the given frames, we haveM −|=x A if and only if M |= A, for all
x ∈ W, all formulas A. This is established by induction on the construction ofA.
(ii) is an immediate consequence of (i).

It follows from the Reduction Lemma that anync-definable class of frames must be
closed under reduction-relatedness. (A question arises as to whether we have a con-
verse: are all modally definable classes of frames which are in addition closed under
reduction-relatedness,nc-definable?) We can obtain negative results by finding cases
in which this necessary condition fornc-definability is not satisfied. We assemble
some examples here.

Theorem 4.2 The following classes of frames are not nc-definable: The class of (i)
reflexive frames, (ii) serial frames, (iii) symmetric frames, (iv) transitive frames, (v)
transitive reflexive frames.

Proof: In all cases we observe that the relevant class of frames is not closed under
reduction-relatedness, so the result follows by the Reduction Lemma. By way of ex-
ample, take (iii) and (iv).

For (iii), consider the frames(W, R) and(W, R−) whereW = {w1,w2} with
w1 �= w2, R = {〈w1,w2〉, 〈w2,w1〉}, R− = {〈w1,w2〉}. (W, R) is symmetric whereas
(W, R−) is not, though the latter is anR-reduction of the former. The same example
works for (iv), since of these two reduction-related frames only(W, R−) is transitive.

Cashing in on the application of the Reduction Lemma to Part (ii) of the Theorem,
we have a further completeness result forNC: in addition to being determined by
the class of all frames (as we saw, in effect, in the preceding section), this logic is
determined by the class of all serial frames, since we can “reflexivize the dead ends”
to obtain an equivalent frame. That is, given(W, R), we pass to the serial frame of
which it is anR-reduction,(W, R+) whereR+ = R ∪ {〈x, x〉 | x ∈ W, R(x) = ∅}.
By the Reduction Lemma, then, any frame invalidating a nontheorem ofNC gives us
aserial frame which does the same job. In the notation of Section1, wehave(K)� =
(KD)� = NC.

Recalling that a logic is said to be Halldén-incomplete if it has some disjunc-
tion as a theorem, where neither disjunct is a theorem and the disjuncts have no
propositional variables in common, we may observe a difference in respect of this
property between the modal logicK determined by the class of all frames, and the
non-contingency logicNC determined by the class of all frames. The former is
Halldén-incomplete (see [9]), whereas the latter is Halldén-complete. The Halld́en-
completeness ofNC can be deduced directly from Theorem 2 of [9], which states
that any normal modal logic determined by a class of serial frames which is closed
under direct products is Halldén-complete. The same reasoning establishes this re-
sult for nc-normal (non-contingency) logics. Since the class of all serial frames sat-
isfies this closure condition, and we have just observedNC to be determined by this
class, Halld́en-completeness follows. Alternatively, we may take the result forKD
and transfer it across toNC using the obvious fact that if a normal modal logicS is
Halldén-complete, then so is the logic(S)�. Note that, in view of the fact that not
only doesNC = (KD)�, but alsoNC = (K)�, we do not have a similar transfer
of Halldén-incompleteness fromS to (S)�. The same phenomenon arises with the
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Verumnc system, which is Halld́en-complete since it is the non-contingency fragment
(image under( )� ) of the Halld́en-completeKT! (the class of frames(W, R) with
R(x) = {x} for all x ∈ W being a class of serial frames closed under direct products)
even though this system is also(KDc)� andKDc is Halldén-incomplete (in view of
examples such as:�(p ∧ ¬p) ∨ (�q ↔ ♦q).5

As remarked in Section1, Mongomery and Routley [5] axiomatize the non-
contingency logic determined by the class of reflexive frames using, to supplement
the purely truth-functional basis, (1.6) – (1.8), in which the only ingredient not valid
on every frame is (1.8), represented here by means of a characteristic instance.

p → (�(p → q) → (�p → �q)) (4.3)

Since (4.3) is valid on every reflexive frame, it follows from Part (i) of Theorem4.2
above that (4.3) is also valid on some nonreflexive frames. What class of frames isnc-
defined by (4.3), then? The following answer, which will accordingly be the answer
to the same question asked of the set of all theorems of(KT)�, is easily checked:
it is the class of all(W, R) such that for allx ∈ W, eitherxRx or |R(x)| ≤ 1. The
completeness of the Montgomery-Routley system with respect to the class of reflex-
ive frames, thenc-undefinability of that class notwithstanding, can easily be shown
without appeal to the derivability of the rules (NCR)k, since we can exploit the ex-
pressibility ofA’s being necessary (as�A ∧ A), to defineλ(x) in the canonical model
as{A | �A ∧ A ∈ x}. Properties(α) and(β) of the Existence Lemma of the preced-
ing section are satisfied, in the latter case because the following rule (cf.RK in [1],
p. 19) is derivable using (1.6) and (1.8).

(A1 ∧ . . . ∧ An) → B
((�A1 ∧ A1) ∧ . . . ∧ (�An ∧ An)) → �B

(4.4)

From this point on the argument proceeds as forNC (with the additional observation
that the canonical accessibility relation, holding betweenx and y whenλ(x) ⊆ y,
is reflexive). Of course, we already knew the conclusion of this argument—that the
system is determined by the class of reflexive frames—from the result of [5] to the
effect that the present system is indeed(KT)�.

Similar remarks apply in the case of the other systems presented in [5], since in
all cases we have the�A ∧ A definition of�. This leaves open such questions as how
to axiomatize(K4)�, or, otherwise put, the question of what the non-contingency
logic determined by the class of transitive frames looks like. We cannot use (1.8) in
any such axiomatization, since in view of the above remarks about (4.3), this would
cost us soundness. A plausible conjecture would be that the logic we are after is
the leastnc-normal logic containing all instances of the [5] schema (1.9)(= �A →
��A), but the author has not succeeded in adapting the argument of Section3 to
obtain this result.

Appendix Deriving the Word Lemma In this Appendix we show how the Word
Lemma, appealed to in Section3, follows from König’s Lemma. We take the latter in
the following form:Any finitary tree with nodes of level n for all n ∈ ω has an infinite
branch. (For the equivalence of this formulation with customary form “Any finitary
tree with infinitely many nodes has an infinite branch,” as well as a proof of the latter,
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see Smullyan [8], p. 32, q.v. also for the terminology of ‘branch’ and ‘path’.) We re-
peat the Word Lemma here, including some additional numbering for back-reference.

Lemma 3.1 (Word Lemma) Suppose acceptability is some property of words on a
finite alphabet such that (i) any initial segment of an acceptable word is acceptable
and (ii) any infinite word is acceptable whenever all of its initial segments are. Then if
there are acceptable words of each finite length, there is an acceptable infinite word.

Toobtain the Word Lemma from K̈onig’s Lemma (as formulated above), we begin by
noting that the set of all words (finite or infinite) on a finite alphabet can be thought of
as the set of paths in the finitary tree with the empty word as root node and the succes-
sors of any node correspond to the letters of the alphabet. (Thus all branches in this
tree are infinite.) This induces a one-one correspondence between words and paths
in the tree. Finite paths are also in a one-one correspondence with nodes, since each
node is the terminal node of a unique path and each finite path has a unique termi-
nal node; thus in the finite case there is a derivative one-one correspondence between
words and nodes.

Wenow proceed to prune the above tree on the basis of a notion of acceptability
satisfying (i) and (ii) in the Word Lemma. A path is deemed to be unacceptable just
in case the corresponding word is unacceptable (i.e., not acceptable). A node is un-
acceptable just in case the corresponding finite path (hence the corresponding finite
word) is unacceptable. To prune the tree, delete all unacceptable nodes along with the
subtrees they dominate. We are left with a tree whose paths are precisely the accept-
able paths of the original tree, since a path in the original tree is unacceptable if (by
(ii)) and only if (by (i)) some node on the path is unacceptable. It remains to show, to
conclude the proof of the Word Lemma, that, on the assumption that there are accept-
able words of each finite length, there is an acceptable infinite word. In terms of the
pruned tree, the assumption means that this (finitary) tree contains nodes of arbitrary
finite depth (or “level”). By K̈onig’s Lemma, then, this tree has an infinite branch.
Since all of its paths are acceptable, such an infinite branch corresponds to an infinite
acceptable word.

NOTES

1. Writers on this topic generally suggest readings in terms of its being (non-) contingent
that A. We have replaced “that” by “whether” since talk of its being contingent thatA
seems appropriate only when it is true thatA. A disadvantage (in respect of general-
ity) of talk of (non-) contingency, in thewhether-construction no less that in thethat-
construction, will be pointed out shortly.

2. In fact Montgomery and Routley use axioms and a rule of Uniform Substitution rather
than schemata.

3. We indicate how the argument goes for the casek = 2. For an application of (NCR)2,
the premises are(A1 ∧ A2) → B1, (A1 ∧ ¬A2) → B2, (¬A1 ∧ A2) → B3 and(¬A1 ∧
¬A2) → B4, and the conclusion is:

(�A1 ∧ �A2) → (�B1 ∨ �B2 ∨ �B3 ∨ �B4).
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The main part of the justification of the claim that the conclusion is true throughout a
model, on the supposition that the premises are, consists in first making a supposition.
Suppose further that the antecedent of the conclusion is true at a pointx (in that model).
By way of example, suppose that this is becauseA1 is impossible (atx ) andA2 is neces-
sary. Now look at the third premise, supposedly true throughout the model. We conclude
thatB3 is necessary (atx), and hence that the third disjunct of the consequent of the con-
clusion, and hence the whole of the disjunction, is true atx.

4. From this fact about theVerumnc system, we may conclude that no consistentnc-normal
logic has any theorems of the form¬�A (which is obvious anyway, since no consistent
normal modal logic has any theorems of the form�A ∧ �¬A).

5. We could make the same point using the fact (established above) that theVerumnc sys-
tem is also(KTc)� andKTc has the “Halld́en-unreasonable” disjunction�(p ∧ ¬p) ∨
(�q ↔ q).
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