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The Logic of Non-contingency
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Abstract We consider the modal logic of non-contingency in a general set-
ting, without making special assumptions about the accessibility relation. The
basic logic in this setting is axiomatized, and some of its extensions are dis-
cussed, with special attention to the expressive weakness of the language whose
sole modal primitive is non-contingency (or equivalently, contingency), by
comparison with the usual language based on necessity (or equivalently, pos-
sibility).

1 Introduction We investigate the general logic of the singulary operatawith

the intended reading af A (A any formula) being “it is non-contingent whether A.”
A was introduced in Montgomery and Routl},[along with an invertech oper-
ator (which we shall not use) for expressing “it is contingent whethet l’more
detail, we take the language of truth-functional logic, with, for definitenesg&ero-
ary) and— (binary) as primitive boolean connectives, the other boolean connectives
introduced as by any standard definitions, as well as singWlagand work with the
language based on a $ebf countably many propositional variables (sentence let-
ters)py, ..., Pn, ... (We write ‘p’, ‘g for ‘py’, * p2’.) Models are triplesW, R, V)
withW# 2, RCWx W, V:P— P(W), with an inductive definition of the truth

of a formulaA at a pointx € W in a modelM of this form (notation:M =, A) as
follows.

M =x pi iff xeV(p) (1.2)
M bexL: M =x A— B iff M ey Aor M =« B (1.2)
M Ex AA iff Vy,ze RX), if M Ey AthenM =, A (1.3)

In (1.3) R(x) denotefw € W | xRw} : the set of points “accessible” to Alter-
native formulations of (1.3) which it is sometimes convenient to work with include
the following.

M Ex AA iff forall y,ze R(x), M =y Aiff M =, A (1.4)
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M E=x AA iff either M =, Aforall y € R(x) or
M By Aforally € R(x) (1.5)

If the first disjunct of the right-hand side of (1.5) holds, we spealk afs necessary
atx (in M), and if the second disjunct holds, Afas impossible at. (Note that these
cases are not mutually exclusive, sirieé) may be empty.) Of course in the usual
language of modal logic, one would writéA andd0— A (or = A), respectively, for
these cases, so thatA becomes definable in that language as the disjunction of these
representations.

Conversely, the definability afl in terms of A and the boolean connectives is
explored in Cresswell]). Specifically, Cresswell there considers normal modal log-
ics with O as primitive, and asks wheth&rp is provably equivalent to some for-
mula built up fromp with the boolean connectives ard(taking A A as abbreviat-
ing JA v O—-A). He in effect partitions the class of normal modal logics into three
subclasses:

Class 1. SystemsSwith =g L,
Class 2. SystemsSwith Fg—0 L,
Class 3. SystemsSsuch that/s [ L andt/s =1 1.

With respect to this partition the results found are as follolalss definable in the
sole normal system in Class 1 (théefum” or “Absurd” system), even without the
aid of A, since here we hava p (like O p itself) provably equivalent tgp — p. In

no system in Class 3, is definable (£], Theorem 3). In some systems in Class 2 (=
normal extensions of the systdfD), (1 is definable, whereas in others it is not. The
logics originally investigated iflg] are all in this class, and in fact all exteKd, for
which the definition of JA asA A A Ais available. (See also Mortensé) and the
references therein to other papers by Montgomery and Routley, in which nonnormal
as well as normal systems are considered, all of them sharifgdtieemalA — A.)
Cresswell also gives an examplE]([Theorem 9) of a logic in Class 2 not extending
KT in whichO is definable. (Nomenclature for normal modal logics here and below
follows Chellasl[[], g.v. also for any other terminology not explained here; note that
we use the terms ‘logic’ and ‘system’ interchangeably.) It would be interesting to
have a general characterization of the normal modal logics in vihistdefinable in
terms ofA; inview of Cresswell’s observations, what is required is an analysis of the
situation in Class 2.

We should note, in view of the fact that we are considering arbitrary (classes of)
models, as well as arbitrary normal modal logics, that the reading 8f as “it is
non-contingent whethef” i s not universally appropriate, for the same reason as it
is not always appropriate to read” as “necessarily” (or ' as “possibly”). Such
readings are particularly ill-suited, if taken literally, to systems withoufltlsehema
and theirA-based analogues. (Accordingly, von Wridh, p. 61, spoke of its being
(morally)indifferent whetherA, to express the deontic analogue of contingency.) We
retain them only for the sake of convenience. Likewise with the use of ‘necessary’
and ‘impossible’ introduced after (1.5) above.

Before proceeding, we need to adapt some familiar semantic terminology. Let a
non-contingency logic be any set of formulas in the language described in our opening
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paragraph, which includes all truth-functional tautologies and is closed under Uni-
form Substitution (of arbitrary formulas for propositional variables) and Modus Po-
nens (equivalently: under tautological consequencell i a class of models, in
which formulas are interpreted as by (1.1)—(1.3), an axiomatically presented proof-
system for non-contingency logicssund with respect tC if every formula provable

in the system is true at every point in every modeCincomplete with respect t€

if every formula true at every point in every model@his provable in the system,
and isdetermined by C if it is both sound and complete with respect@o Given a
normal modal logicS, we understand by S), the set of theorems d containing

the boolean connectives ard(with A A taken as abbreviating A v O—A). This
same collection of formulas is then a non-contingency logic (in fact what we shall
later call annc-normal such logic) whenr is regarded as a primitive connective in

its own right. Clearly, whenevesis determined by, (S) 4 is also determined b§.

The converse is false, since one may hé&8g A = ($) even whenS; # S,: we

shall see several illustrations of this possibility in Seqdas 4 It arises because

of differences betwee§, andS, which do not emerge when attention is restricted to
their respective fragments in which the only occurrences afe in subformulas of

the formOJA v O—-A.

Now if, in some normal modal logi§, O is definable in terms of the boolean
connectives and, then an axiomatization dcan be converted, using the resulting
interdefinability of A and[], into an axiomatization ofS) o, by a method indicated
in Hiz [3]. Montgomery and Routle¥g] (from which—see the referencesij{-the
above {S)A” notation is adapted) in effect further processes the cumbersome results
of this direct method into a much more elegant axiomatization, arriving, in the case
of KT, for example, at an axiomatization ¢ T) o with the following rule,

A

— 1.
AA’ (1.6)
added to a basis for truth-functional logic, together with axiom schefnata,
AA < A=A a.7)
A— (A(A— B)— (AA— AB). (1.8)

They further show that we obtain non-contingency formulation§4oand S5 by
adding the schemata (1.9), (1.10), respectively.

AA = AAA (1.9)
AAA (1.10)

Elegant as these results are, they leave untouched the general case, in which we
do not have definable in terms ofA. (As Segerberdd], p. 128, remarks of the
Montgomery-Routley enterprise, the definitiorofA asA A A A“accord(s) with in-
tuitive preconceptions” only in extensions KiT; see the parenthetical comment at
the end of the proof of Theorem 1 in Cresswi]ifior a sharpening of this remark.) At
its most general, the case that needs to be considered is that of the non-contingency
logic determined by the class alf models—the analogue fdx of the systenk, the
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smallest normal modal logic, fad (in the notation introduced above, this is the sys-
tem (K)4). We shall axiomatize this system in Sectl@eciion.delow, with some
remarks on extensions (as well as on the non-contingency analogue of modal defin-
ability) deferred to Sectidisection.4 In Sectior2secfion.2we make some prepara-

tory remarks.

2 Some principlesfor non-contingency We use the term ‘principle’ here to cover
rules as well as (potential) axiom schemata. The schema (1.7) of the Montgomery-
Routley axiomatization mentioned in the preceding section does not owe its validity
to any restriction of attention to models with reflexive accessibility relations, so we
shall need to prove all instances of this schema in any non-contingency logic com-
plete with respect to the class of all models. The left-to-right direction is particularly
interesting as an illustration of something more general.

AA— A=A (2.2)
The more general principle involved here is
(AALA ... AAAY) = AL(AL, ..., An) (2.2)

inwhicht is any f-ary,n > 0) boolean mode of composition. (Thatfigps, ..., pn)
is a formula built from at most the displayed variables using only boolean connec-
tives, andi(Aq, ..., An) is the result of substitutingy for p; in this formula.) (2.1)
is the special case in whiagh= 1 andg(A) is —=A. No instance of (2.2) can be false
at any pointx in a model, since if the antecedent is truexathen all elements of
R(x) assign the same truth valueAq, the same truth value t&,, . . ., the same truth
value to A, in which case all elements &(x) must assign the same truth value to
t(A4, ..., An), Snce the latter is whatever value is dictated by the truth function as-
sociated (in the obvious way) wittwhen this is applied to the shared truth values of
A, ..., An

The Montgomery-Routley rule (1.6), analogous to the familiar rule of Neces-
sitation, is also closely related to our general compositional principle (2.2), in the
case where = 0. The conjunctive antecedent vanishes in this case, and we are left
with the consequent. So when we takasT (= — L, or, in fully primitive notation,
1—1), we have,

AT (2.3)

as a special case of (2.2). So all we should need, for deriving (1.6) from (2.2) would
be the rule of “congruentiality” (substitutivity of provable equivalents)Aor

A< B
AA < AB’
Then from A we can pass te A A using (A Cong), Modus Ponens, and (2.3). Al-
ternatively, if we start with the following schema considered by Mortensen[{@ee [
and alsolf]),

(ACong)

A(A < B) = (AA < AB), (2.4)

then from (the provability of) a premise foACong), we can prefix aA” by (1.6),
and then detach the consequent by appeal to (2.4), obtaining the corresponding con-
clusion of (ACong). Going in the reverse direction, we may derive (2.4) from
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(ACong) and (2.2) by using the following special case of the latter principle:
(AAAAB) > A(A < B). (2.5)
More specifically still, we have
(A(A< B)AAA) - A((A< B) < A). (2.6)
(ACong) and some purely truth-functional manipulations then give (2.7) and (2.8):

(A(A<> B)AAA) > AB 2.7)
A(A < B) = (AA— AB) (2.8)

By a parallel derivation, we obtain a schema like (2.8) wAthnd B interchanged in

the consequent, and the conjunction of these two is of course equivalent to (2.4).
For the axiomatization we shall show in the following section to be complete

(with respect to the class of all models), however, we proceed somewhat differently

and set aside (2.2) along with its special cases (2.1), (2.3), (2.5,6). We will there

work with the converse of (2.1), which we célh—), aswell as a collection of rules,

only one of which will be discussed here, to be called (NG Re letters standing for

“Noncontingency Rule’. We will deriveACong) from this rule shortly and, in the

following section, derive (2.2) from the collection of rules just mentioned as gener-

alizing (NCR).

(A=) A=A —> AA
A— Bo —-A— Bl

(NCR) AA— (AByV ABy)

We check that (NCR) preserves truth throughout any model. Suppose the premises
for an application of (NCR)are true throughout a modél = (W, R, V) and that
the antecedent of the conclusion is trueaW. Then, atx, Ais either necessary or
impossible. IfAis necessary, then, since the left premise is true throughQug, is
necessary, so that By is true atx. If Ais impossible, them A is necessary, so, the
right premise being true throughof, B; is necessary, making B; true atx. So
either way, the disjunctive consequexBy v A By is true atx.

For those who find the detour through the necessity Afin the preceding ar-
gument distasteful, we note a more symmetriedtee version of (NCR).

A— B C— A
AA— (ABv AC)

(2.9)

This rule is interderivable with (NCR) given (A—). Its import can be seen more
readily by contraposing the conclusion, which then says thBtdhdC are contin-
gent (as of some point in some model), then sA.i$2.9) thus amounts to a convex-
ity principle for contingency: anything (hew) “inferentially sandwiched” between
contingenciesB, C) isitself contingent. (It would not, of course, be correct to claim
that whatever followed from—or that whatever implied—something contingent was
itself contingent.) We shall continue to work with (NGRhowever, for continuity
with material in the following section.
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The replacement principledCong) mentioned above is derivable from (NGR)
and(A-), since if A < B, wehave A — B and- —-A — =B, s0 by (NCR),
taking B as By and—B as B,, we conclude that- AA — (AB Vv A—-B), whence
by (A—) and truth-functional logic;- AA — AB. Appealing to ACong), we may
derive the converse qfA—), by beginning with an instance of the latter principle,
A——A — A=A, and then replacing— A by Ain accordance withACong), which
delivers (2.1) above. (Of course, we could equally well reverse this argument, and
derive(A—) from (2.1).)

By way of preparation for the following section, let us see what becomes of an
attempt to show that the smallest non-contingency logic containing all instances of
(A=) and closed under the rule (NCR¥ complete with respect to the class of all
models. (We know already that the corresponding claim of soundness would be cor-
rect.) As usual, we build a canonical modélfor the system, wherd/ = (W, R, V)
andW is the set of all sets of formulas maximal consistent with respect to the present
logic. V is defined in the usual way (p;) = {x € W | p; € X}, whereasR is de-
fined in terms of a certain functioh we proceed to describe. The intuitive idea is
that forx € W, A (X) is the set of formulas which are necessary.atve think of A (x)
as a “labeling” of all formulasA such thatA A € x, labeling each such formula as
Necessary (recorded by puttingA into A (X)) or dse asimpossible (putting—A into
A(X)). Since necessity is not only not a primitive connective of our language but,
as remarked in Sectidj is in the general case—and therefore in particular, for the
current minimal system—not definable, we cannot take the usual course at this point
(putting A (x) = {A | OA € x}) and must exercise greater ingenuity.

Provisionally, we might entertain the following definitionof Forx € W, put

A(X) ={A]| AAe xandVB such that- A — B, AB e x}.

The idea of the entry condition of, that only suchA (with A A € x) should be la-
beled as Necessary if all their consequences are non-contingent, is that although the
class of non-contingencies is not closed under logical implication (so that a Monotony
Rule analogous toACong) but with<> replaced by—) would destroy the sound-
ness of our logic), those non-contingencies which qualify as such because they, rather
than their negations, are necessary and have only non-contingent consequences, since
those consequences are themselves necessary.

The above definition of allows us to show (by an argument the interested reader
can easily provide) the following.

For any formulaA, anyx e W, AA € xiff A€ A(X) or —A € A(X), (2.10)

and we should like to define in termsthe accessibility relatioR of the canonical
model by saying: fok, y € W, xRy if and only if A(x) C y. The strategy would then
be to show (cf. (1.5)) that for all formula&, and allx € W,

AAeX < VY(XRy= Acy)orVy(xRy= AdYy), (2.11)

as is needed for the case Afin the inductive proof of the claim that membership
and truth coincide in the canonical model. (We assume familiarity with the Scott-
Makinson canonical model technique here; the claim mentioned is the analogue of
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Theorem 5.7 off].) The=> direction follows from the=> direction of (2.10). But for
<, we neelthat if AA ¢ xtheni(x) U {A} andX(x) U {—A} are consistent. Nothing
has been said to guarantee this. Take the latter case. We should need to show we
cannot haveA following (according to the present logic) frokt(x), to show which
we would presumably need to know that, for aByfollowing from A(x) we have
AB € X, in order to get a contradiction from the fact thaA ¢ x. Our rule (NCR)
does not guarantee this, and the developments of the following section can be seen as
supplementing the basis consisting of this rule together (ith) so that this part of
the argument will go through.

Itis clear anyway that (NCR)and(A—) cannot constitute the whole non-truth-
functional part of a complete basis for the general logidgfo that the hitch just
noted is not merely a difficulty for the particular completeness-proof strategy at-
tempted. For (2.3), by way of example, is certainly not provable on this basis, even
though true at every point in every model. To see this, interpkét's expressing
the constant false (1-ary) truth-function rather than in accordance with (1.3). All in-
stances of A—) are true at every point in every model, with this change to the truth-
definition, whereas the rule (NCRpreserves this property; since no formula of the
form A A has the property thus preserved, no such formula is provable.

3 Axiomatizing the general logic of non-contingency We respond to the difficul-

ties encountered in the would-be completeness proof of the preceding section by pro-
viding a more general non-contingency rule than (NCRlo be more precise, we

offer a whole battery of such rules, namely rules (NE®) eachk € w, of which

our old rule is indeed thk = 1 case. For the general case, we schematically denote

bys(Aq, ..., Ay) a“state-description” in théy;: ak-termed conjunction, thatis, each
of whose conjuncts is eithek; or else—A; (i =1, ..., K). Enumerate these& 2tate
descriptions by subscripting the™with 1, .. ., 2. Then, for eaclk, the rule we need

is the following.
S1(Aq, ..., A — Bl...SZk(A]_,..., Ay) — sz
(AAIA...ANAA) — (ABy V...V ABx)

For the same reasons as in the special case already consikesely, we have, for
anyk € w, that the rule (NCR) preserves the property of being true throughout an ar-
bitrary model Thus the smallest non-contingency logic containing all instances of
(A—) and closed under each of the rules (NER)logic we shall callNC, is sound
with respect to the class of all models. It is this logic we will be showing to be deter-
mined by that class of models, but before passing to the “completeness” half of this
claim, we make a couple of remarks about the rules (NCR)

The first remark concerns the caséef 0. As always, we havepremises, so
in the present instance we are dealing with a 1-premise rule. Since there Arg no
the antecedent of the premise vanishes, with the effect that rule licenses transitions
from B, to AB;. So here we have the Necessitation-like rule (“Noncontingentiza-
tion,” more accurately) called (1.6) above, and whose underivability from (NCR)
together with(A—) is evident from the unprovability on that basis (remarked on at
the end of the preceding section) of (2.3).

Secondly, we consider the fate of the compositionality principles (2.R)Gn
(AAL A ... ANAAY) — AB(A4, ..., An). Recall thatg(Aq, ..., Ay) here is any

(NCR)
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boolean compound ofy, ..., As. (Here we assuma > 1.) Thus for each state-
descriptions; (1 <i <2")in Ay, ..., Ay, we have either,

l_NC S(Al,a An) - H(A]_’-"aAn)’

or else,
Fne S(Ag, ..., An) = (AL ..., An).

The rule (NCR) therefore delivers the conclusion whose antecedent is the conjunc-
tion AAL A ... A AA,, (Which is the antecedent of (2.2)) and whose consequent is
adisjunction of various occurrences At (Aq, ..., Ay) andA—g(Ag, ..., Ay). By

(A—) and truth-functional logic, this disjunction collapses to the desired consequent
of (2.2): Afi(Ag, ..., An).

We now turn to the completeness proof fd€C. It will be convenient to use the
abbreviatiorSyc A, whereSis any set of formulas, to mean that for some conjunc-
tion B (in some arbitrary order) of finitely many elementsSyive have-\c B — A.

As in the preceding section, we define the canonical model for the present system,
Myc , to be(Wie, Rues Vne), understandingViyc andVyc asW andV were in that
discussion, except now taking (maximal) consistency with respé¢€Cteather than

with respect to the weaker logic there in play. And we shall defiRgcy to hold
precisely wher.(X) € y, with A yet to be defined. (Actually, “defined” is the wrong
word, given the nonconstructive nature of the proof which follows: “shown to exist”
would be more accurate.) Recall the idea th@t) is to be a “labeling” of the formu-

las A; for which A A; € x: we label a formula with the identity prefix (with nothing

at all, that is) to mark it as necessary according,tand with a—, to mark it as im-
possible according tg.

We work up to the general labeling by noting the existence of suitable finite la-
belings of sets of formulady, ..., Ay with AAq, ..., AA € X € Wyc. “Suitable”
here means that we want our partial labeling—calkitx)—to satisfy the condition
(2.10) of the preceding section, as far as these formulas are concerned,

() AAexiff Ae r(X),for Ae {Aq,..., A,
as well as the condition we noted the need for in that section:
(B) For any formulaB, if Ax(X) Fnc B, thenAB e x.

We can choose as the desirgdx) the set of conjuncts of some state-description
S (A4, ..., Ay). Clearly any of these satisfiga). If no such state-description pro-
vides a set of conjuncts satisfyirig), then for eacts (Aq, ..., Av), there existB;
with Fne S (A, ..., A) — B and AB; € x. But all theses(Aq, ..., Ax) — B
(with 1 < i < 2K) make up the premises for an application of (NGR)hose conclu-
sion then gives us a contradiction, since its antecedenti¢as each\ A € x), but

its consequent is not (since WoOB; € X). Therefore some(x) satisfying(g) does
indeed exist.

The next problem is: how do we infer the existence of a suitalbie which
works for all A such thatA A € x, rather than, as, (x) does, justforAq, ..., Ac with
AAy, ..., AA¢ € X? For this purpose we use a variant oiirkg's Lemma which we
shall call the Word Lemma: its derivation fronbKig's Lemma is deferred to an ap-
pendix. The setting for this result is formal language theory, in which we consider sets
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of words on some alphabet, including infinite wordsgwewords, in the terminology
of Salomaalf]; we use the phrase “initial segment” for what is often expressed by
the term “(proper) prefix.”

Lemma 3.1 (Word Lemma) Suppose acceptability is some property of wordson a
finite alphabet such that any initial segment of an acceptable word is acceptable and
any infinite word is acceptable whenever all of itsinitial segments are. Then if there
are acceptable words of each finite length, there is an acceptabl e infinite word.

Take now as our finite alphabet the set 0,1, and, for an arbikraYV\c, consider
the setsAg(X), A1(X), ..., An(X), ... such thatA,(x) comprises all candidates for
the role ofAx(X): that is, each contains, for the formuladdq, ..., A A¢ € X, either
A or else— A (= («)), and satisfies the conditio¢B) above, that for any formula
B, such thatiy(x) Fnc B, we have AB € x. We have seen, using (NCR)that for
everyk, there is at least one such candidatéx), sothe setsAg(x) are all nonempty.
Now continuing in terms of our fixed enumeratiéa, . .., A, ... of all the formulas
A for which AA; € x, let us call a wordy, finite or infinite, whosd!" letter i<
length ofu) is u; (€ {0, 1}) acceptable when, for the set

S(u)={C|C=A if 4 =1, andC = —Aif u=0}

we have: S(u) Fne B implies AB € x, for all formulasB. This is a notion of ac-
ceptability which meets the conditions of the Word Lemma. The first condition was
that any initial segment of an acceptable word is acceptable. Supjmae initial
segment ofi but thatt is not acceptable. Thus we ha®é) Fyc B for someB for

which AB ¢ x. Sincet is an initial segment afi, S(t) € S(u), and so (“monotonicity

of Fne”) we have S(u) Fye B, meaning thatl is not acceptable. The second con-
dition was that if every initial segment of an infinite waunds acceptable, theais
acceptable. To check this, suppose tn& not acceptable, so th&u) Fyc B for
someB with AB ¢ x. Then (“finitariness of-\c") for some finite subsef, of S(u),

we haveS Hye B; but thenS is a subset of som&(t), t an initial segment ofl,

so S(t) Fne B. Thus not every initial segment afis acceptable. Thus the Word
Lemma assures us that if there are acceptable words, on the present understanding of
acceptability, of each finite length, there is an acceptable infinite word. And, each of
the Ax being nonempty, there are acceptable words of every finite length. So there is
an infinite acceptable word. Letbe such a word, and defingx) asS(u): this set

now contains eitheA or — A for each formulaA such thatA A € x and meets the con-
dition called () in the finite case aboveB follows from the set only ifAB € x, for

all formulasB. For later reference, we formulate what the Word Lemma has proved
for us.

Lemma 3.2 (Existence Lemma) Where A4, ..., A,, ... is an enumeration of all
the formulas A; such that A A; € X € Wi , thereisa set A (x) with («) each element
of A(x) iseither A; or = A;, and (B) for any formula B, if A(x) Fnc B, then AB € x.

Thus we can usg(x), for eachx € Wy, to definexRycy by: y 2 A(X). In more
detail, we have the following analogue of the “Fundamental Theorem” of nofal (
based) modal logic for our non-contingency logics.

Theorem 3.3  For anyformula Aandany x € Wyc: Mnc =x Aifandonlyif A e x.
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Proof: By induction on the construction @& The only novelty here is the case in
which A'is AB for some formulaB, for which case it suffices (with the help of the
inductive hypothesis) to show,

ABex& Vye Wyc(XRyey = B e y)orvVy e Wyc(XRyey = B € y).

The = direction follows from &) of the Existence Lemma, since B < X, then
either B or =B belongs to, (x) and hence to aly 2 A (x). For the« direction, we

must show that on the assumption thaB ¢ x, A (x) U {—B} andx (x) U {B} are both
NC-consistent, so that each has a maximal extension to falsify the respective disjuncts
on the right above. Taking the first case first, supposeitgtu {—B} is notNC-
consistent. Thua(x) Fne B. So by () of the Existence Lemma\ B € x, contra-
dicting our assumption. For the second case(¥) U { B} is not consistent, we have

A(X) Fne —B, 0 again A—B € x. Butby (A—), AB € X, again contradicting our
assumption.

Corollary 3.4 NC isdetermined by the class of all models.

Proof: Wehave already seen thd€C is sound with respect to the class of all models.
It is complete with respect to this class sincé/§c A then theNC-consistent set
{— A} is included in some& € W¢, with (for consistencyA € x, so by the Theorem

%C b&x A

In the notation introduced in Sectifii this Corollary tells us thak , = NC. The
completeness half of CorollalB4ls more general. Calling a non-contingency logic
nc-normal if it includes all instances ofA—) and is closed under the rules (NGR)
for all k € w, we have proved a special case of a general fact ahoabrmal logics

S, whose canonical model®fs are defined ad/yc was, except thatVs comprises
the sets of formulas maximal consistent with respe@to

Corollary 3.5 If Sisany nc-normal logic, Sis determined by Ms .

In the following section we shall consider a few of these stromgarormal logics.

We close the present section with a question which naturally arises in view of the use,
alongside the truth-functional basis and the scheta)( of the infinitely many rules
(NCR) to axiomatize the non-contingency logic determined by the class of all mod-
els. DoedNC have an axiomatization using only finitely many rules and schemata?
(As mentioned in Sectiofl] Montgomery and RoutleyB] showinter alia that the
non-contingency logic determined by the class of all models with reflexive accessi-
bility relations has an axiomatization with this finiteness property.)

4 Some extensions of the basic system In Section[I] we alapted the model-
oriented terminology of conventional modal logic to the language of non-contingency
logic. To avoid various circumlocutions, it will be helpful here to make a similar
adaptation of the frame-oriented terminology. Recall thixame is a pair(W, R)

with W £ @ andR C W x W, and that a mode(W, R, V) is said to be a model on

the frame(W, R). A formula isvalid on a frame(W, R), which we notate by writing

(W, R) = Awhen for every modeM on (W, R), wehaveM =, Aforeveryx e W.

A non-contingency logic is sound (complete) with respect to a class of frames when
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all (only) formulas provable in the logic are valid on each frame in the class, and is
determined by a class of frames when both sound and complete with respect to that
class. Thus Corollafg.4lcan be rephrased asiC is determined by the class of all
frames. Note that the non-contingency logic determined by any class of frames is
normal, just as the modal logic determined by any class of frames is normal. (In the
latter case, it is well known—see van Benthem and HumbersEjrethat not ev-

ery normal modal logic is determined by some class of frames; although there is pre-
sumably nothing to prevent a similar manifestation of “Kripke-incompleteness” for
non-contingency logics, the author does not have an examplerfaarmal logic
determined by no class of frames.) Finally, a class of frames-tefined by a set

Sof formulas (not necessarily a non-contingency logic) when the frames in the class
are all and only those on which all formulas$are valid, and isic-definable when

there is some set of formulas whiob-defines it. (This is theA-based analogue of

the usual box-based notion of modal definability, asih) [

Let us begin by considering five normal modal logics determined by various sub-
classeg(W, R) | Yx € W.|R(X)| < 1}. (Here|X] is the cardinality of the seX.) We
haveK D, determined by the class of all such framkg)!, determined by the class
of all (W, R) in which|R(x)| = 1 for all x e W; KT, determined by the class of all
(W, R) in whichxRy = x =y for all x, y € W; KT!, determined by the class of all
(W, R) in which R(x) = {x} for all x e W; and finally theverum system, determined
by the class of allW, R) in which R(x) = @, for all x € W. In all these cases, the
logics cited are not just determined by the classes of frames mentioned, but modally
define those classes of frames. We consigedefinability in a moment, after first
enquiring into the non-contingency logics these various classes of frames determine.
The plural turns out to be inappropriate, since a single non-contingency logic is de-
termined by all five classes.

The logic in question is the smallest non-contingency logic containing all in-
stances of the schem®A. Notice that this automatically qualifies as actnormal
logic: just as the smallest modal logic containing all instancesl Af—the Verum
system—qualifies as a normal modal logic. Let us call thisvs@m,c system, in
fact, because, as in the caséftereA can be thought of as expressing the constant-
true truth-function. Soundness with respect to the most comprehensive class of all
frames mentioned above,

{(W, R) | Yx € W.|R(X)| < 1}, (4.1)

is clear, sinceA A can only be false at a point in a model if that point beRr® at
least two distinct points (one to verify and one to fals#y;, in which case the frame
of the model lies outside our class.

The extreme simplicity of theerum,; system allows us to bypass the canonical
model construction of the preceding section to obtain our five completeness results.
We use falsifying models (for nontheorems) in whid| = 1. WhereW = {x}, put
Ry for @ andR; for {(x, X)}. WhereC is not provable in th&erum,. system, lek be
amaximal consistent (with respect to the system) superget®f. PutV(p;) = {x}
if pi € x, and= @ otherwise. Then for each of the modél§ = (W, Ry, V) and
M, = (W, Ry, V) we have,

M =x A< Ac x, for all formulasA. 4.2)
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For, in the non-boolean case of interest, the cage-6fA B, the left and right sides of
(4.2) are both invariably true: the right becausB is provable, and the left because
IR (X)| <1, fori =0,1. Thus theVerumy; system is complete (as well as sound)
with respect to the class of alW, R) satisfyingR(x) = {x}, by taking R; asR, and
also therefore the class of frames satisfying the weaker conditio®R(%)| = 1;

2) xRy = x=1vy; (3) IRX)| <1 (all x,y € W). Finally, takingRy as R, we get
completeness with respect to the class of frames in wRigH = @ for all frame el-
ementx. We can re-express this multiple determination conclusion in terms of the
non-contingency fragments of the normal modal logics listed abovevepumy,. sys-
tem is(S)a whereSis any of: theverum system (=K Ver, whereVer is the formula
O, or the schem@lA), KD¢, KD!, KT¢, KT!.

Multiplicity of determining classes of frames for a single logic is of course a
measure of expressive weakness, since it reflects the unavailability of formulas valid
on all frames in one determining class but not in another. This phenomenon is fa-
miliar from conventional modal logic, so the point of interest here is the decrease in
expressive power as we pass from the language tofthe language oh. The only
one of the five classes of frames described above thatdefinable is the largest,
given by (4.1). It isnc-defined by the class of theorems of ¥ um,. system, or
alternatively, by the class of all formulas of the forA, or again, simply by{ A p}.

We have already observed that all formulas in any of these classes are valid on any
frame satisfying the condition in (4.1); conversely, suppose we have a frame not sat-

isfying this condition: since there is a poirtwith more than oneR-successor, we

can arrangé/ to put one but not the other of these successors\iio), falsifying

A patxin the resulting model. (It follows, for the same reasons as-lmased modal

logic, that where several classes of frames determine the same logic, at most one of
those classes ix-definable.)

We have introduced our discussion id-normal logics with a look at the top
end of the lattice of such logics (with zerdNC, unit = the inconsistent system): the
\Verumy, system is the sole Post-compleate;normal logic (lattice-theoretically: the
only co-atom)* But an important moral may be drawn from our consideration of that
case, with repercussions further down amongst weaker systems with greater interest
for deontic, alethic, etc., applications. The relation between the fraWwe&,) and
(W, Ry) above is a paradigm of a relationship we shall describe by calling one frame
an “R-reduction” of another. Informally, thinking of frames pictorially represented
with arrows from one point to another indicating the holding of the accessibility re-
lation, we “reduce” a frame by discarding some or all arrows which go from points
X to pointsy in cases where no arrows frorgo to points other thag. More pre-
cisely: (W, R7) is an R-reduction of (W, R) justin caseR™ U {{x,y) € W x W |
R(x) = {y}} = R We then have the a simple observation given as Hartf the
following Lemma. For Partii) we need an additional piece of terminology: we de-
fine frames to beeduction-related if both are R-reductions of some common frame
(equivalently: if they stand in the ancestral of the union of faeeduction relation
with its converse).

Lemma 4.1 (Reduction Lemma) (i) If (W, R™) isan R-reduction of (W, R), then
for all formulas A, (W, R™) = Aifand only if (W, R) &= A. (ii) Frames which are
reduction-related validate the same formulas.



226 LLOYD HUMBERSTONE

Proof: (i) follows from the fact that for any model3/~ = (W, R, V), M =
(W, R, V) on the given frames, we hav® ~ =, A if and only if M = A, for all
x € W, all formulasA. This is established by induction on the constructionfof
(i) is an immediate consequence of (i).

It follows from the Reduction Lemma that ang-definable class of frames must be
closed under reduction-relatedness. (A question arises as to whether we have a con-
verse: are all modally definable classes of frames which are in addition closed under
reduction-relatednessg-definable?) We can obtain negative results by finding cases

in which this necessary condition foc-definability is not satisfied. We assemble
some examples here.

Theorem 4.2 Thefollowing classes of framesare not nc-definable: Theclassof (i)
reflexive frames, (ii) serial frames, (iii) symmetric frames, (iv) transitive frames, (v)
transitive reflexive frames.

Proof: In all cases we observe that the relevant class of frames is not closed under
reduction-relatedness, so the result follows by the Reduction Lemma. By way of ex-
ample, take (iii) and (iv).

For (iii), consider the frameéW, R) and (W, R™) whereW = {w,, w,} with
wy # wo, R={{w1, wa), (wo, w1)}, R~ = {{wy, wa)}. (W, R) is symmetricwhereas
(W, R™) is not, though the latter is aR-reduction of the former. The same example
works for (iv), since of these two reduction-related frames ¢y R™) is transitive.

Cashing in on the application of the Reduction Lemma to Part (ii) of the Theorem,
we have a further completeness resultf&E: in addition to being determined by

the class of all frames (as we saw, in effect, in the preceding section), this logic is
determined by the class of all serial frames, since we can “reflexivize the dead ends”
to obtain an equivalent frame. That is, giveW, R), we pass to the serial frame of
which it is anR-reduction,(W, R™) whereR™ = RU {(x, X) | X € W, R(X) = @}.

By the Reduction Lemma, then, any frame invalidating a nontheoré¥Cajives us
aserial frame which does the same job. In the notation of Seltjime have(K), =

(KD)a = NC.

Recalling that a logic is said to be Ha#ld-incomplete if it has some disjunc-
tion as a theorem, where neither disjunct is a theorem and the disjuncts have no
propositional variables in common, we may observe a difference in respect of this
property between the modal logic determined by the class of all frames, and the
non-contingency logidNC determined by the class of all frames. The former is
Hallden-incomplete (sed®]), whereas the latter is Hakkh-complete. The Hal&h-
completeness dfiIC can be deduced directly from Theorem 2[B], [which states
that any normal modal logic determined by a class of serial frames which is closed
under direct products is Hakah-complete. The same reasoning establishes this re-
sult for nc-normal (non-contingency) logics. Since the class of all serial frames sat-
isfies this closure condition, and we have just obseiN€do be determined by this
class, Hall@n-completeness follows. Alternatively, we may take the resulKir
and transfer it across fdC using the obvious fact that if a normal modal lo@ds
Halldén-complete, then so is the l0gi§) . Note that, in view of the fact that not
only doesNC = (KD)x, but alsoNC = (K)A, we do not have a similar transfer
of Halldén-incompleteness froi8to (S)». The same phenomenon arises with the
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Verum,,; system, which is Hallen-complete since it is the non-contingency fragment
(image undex ), ) of the Hallden-completeK T! (the class of framesW, R) with
R(x) = {x} for all x € W being a class of serial frames closed under direct products)
even though this system is aléiiD¢) » andK D¢ is Halldén-incomplete (in view of
examples such agl(p A —p) v (0g < 0Qq).°

As remarked in Sectiofl] Mongomery and Routley5| axiomatize the non-
contingency logic determined by the class of reflexive frames using, to supplement
the purely truth-functional basis, (1.6)—(1.8), in which the only ingredient not valid
on every frame is (1.8), represented here by means of a characteristic instance.

p— (A(p—q) — (Ap— AQ)) (4.3)

Since (4.3) is valid on every reflexive frame, it follows from Part (i) of Theoliesh
above that (4.3) is also valid on some nonreflexive frames. What class of franges is
defined by (4.3), then? The following answer, which will accordingly be the answer
to the same question asked of the set of all theorem(& @) », is easily checked:

it is the class of allW, R) such that for allx € W, eitherxRx or |R(X)| < 1. The
completeness of the Montgomery-Routley system with respect to the class of reflex-
ive frames, thanc-undefinability of that class notwithstanding, can easily be shown
without appeal to the derivability of the rules (NGR¥nce we can exploit the ex-
pressibility of A’s being necessary (a8sA A A), to definei (x) in the canonical model
as{A| AAA Ae x}. Propertieda) and(B) of the Existence Lemma of the preced-
ing section are satisfied, in the latter case because the following rulek(dh [[I],

p. 19) is derivable using (1.6) and (1.8).

(Ain...ANA)— B
(AALAADA...A(AALAAY)) > AB

(4.4)

From this point on the argument proceeds ad\iGr(with the additional observation
that the canonical accessibility relation, holding betwgeandy wheni(x) C v,
is reflexive). Of course, we already knew the conclusion of this argument—that the
system is determined by the class of reflexive frames—from the res(dj af fhe
effect that the present system is indg&d ) A.

Similar remarks apply in the case of the other systems presen{g}j sirfce in
all cases we have the A A A definition ofl]. This leaves open such questions as how
to axiomatize(K4),, or, otherwise put, the question of what the non-contingency
logic determined by the class of transitive frames looks like. We cannot use (1.8) in
any such axiomatization, since in view of the above remarks about (4.3), this would
cost us soundness. A plausible conjecture would be that the logic we are after is
the leashc-normal logic containing all instances of tig fchema (1.9j= AA —
AAA), but the author has not succeeded in adapting the argument of J&ltton
obtain this result.

Appendix Deriving the Word Lemma In this Appendix we show how the Word
Lemma, appealed to in SectiBhfollows from Konig’s Lemma. We take the latter in
the following form: Any finitary tree with nodes of level n for all n € w hasan infinite
branch. (For the equivalence of this formulation with customary form “Any finitary
tree with infinitely many nodes has an infinite branch,” as well as a proof of the latter,
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see Smullyarld], p. 32, q.v. also for the terminology of ‘branch’ and ‘path’.) We re-
peat the Word Lemma here, including some additional numbering for back-reference.

Lemma 3.1 (Word Lemma) Suppose acceptability is some property of words on a
finite alphabet such that (i) any initial segment of an acceptable word is acceptable
and (i) any infinite word isacceptable whenever all of itsinitial segmentsare. Theniif
there are acceptable words of each finite length, there is an acceptabl e infinite word.

To obtain the Word Lemma from&hig’s Lemma (as formulated above), we begin by
noting that the set of all words (finite or infinite) on a finite alphabet can be thought of
as the set of paths in the finitary tree with the empty word as root node and the succes-
sors of any node correspond to the letters of the alphabet. (Thus all branches in this
tree are infinite.) This induces a one-one correspondence between words and paths
in the tree. Finite paths are also in a one-one correspondence with nodes, since each
node is the terminal node of a unique path and each finite path has a unique termi-
nal node; thus in the finite case there is a derivative one-one correspondence between
words and nodes.

We now proceed to prune the above tree on the basis of a notion of acceptability
satisfying (i) and (ii) in the Word Lemma. A path is deemed to be unacceptable just
in case the corresponding word is unacceptable (i.e., not acceptable). A node is un-
acceptable just in case the corresponding finite path (hence the corresponding finite
word) is unacceptable. To prune the tree, delete all unacceptable nodes along with the
subtrees they dominate. We are left with a tree whose paths are precisely the accept-
able paths of the original tree, since a path in the original tree is unacceptable if (by
(ii)) and only if (by (i)) some node on the path is unacceptable. It remains to show, to
conclude the proof of the Word Lemma, that, on the assumption that there are accept-
able words of each finite length, there is an acceptable infinite word. In terms of the
pruned tree, the assumption means that this (finitary) tree contains nodes of arbitrary
finite depth (or “level”). By Konig’s Lemma, then, this tree has an infinite branch.
Since all of its paths are acceptable, such an infinite branch corresponds to an infinite
acceptable word.

NOTES

1. Writers on this topic generally suggest readings in terms of its being (non-) contingent
that A. We have replaced “that” by “whether” since talk of its being contingent that
seems appropriate only when it is true that A disadvantage (in respect of general-
ity) of talk of (non-) contingency, in thevhether-construction no less that in ttibat-
construction, will be pointed out shortly.

2. In fact Montgomery and Routley use axioms and a rule of Uniform Substitution rather
than schemata.

3. We indicate how the argument goes for the dase2. For an application of (NCR)
the premises aréA; A Ay) — By, (ArA—AY) — By, (A1 A Ay) — Bzand(—A; A
—A,) — By, and the conclusion is:

(AA]_/\AAZ) — (AB]_\/ABQVAB3\/AB4).
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The main part of the justification of the claim that the conclusion is true throughout a
model, on the supposition that the premises are, consists in first making a supposition.
Suppose further that the antecedent of the conclusion is true at axgoirthat model).

By way of example, suppose that this is becafisés impossible (ak) and A, is neces-

sary. Now look at the third premise, supposedly true throughout the model. We conclude
that B is necessary (&f), and hence that the third disjunct of the consequent of the con-
clusion, and hence the whole of the disjunction, is true at

From this fact about theer um,. system, we may conclude that no consisteabormal
logic has any theorems of the forsA A (which is obvious anyway, since no consistent
normal modal logic has any theorems of the farla A o—A).

. We could make the same point using the fact (established above) thét ting,. sys-

temis alsaKT¢), andK T has the “Hall&n-unreasonable” disjunctian(p A —p) v
Ha < ).
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