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Decidability and Completeness for
Open Formulas of Membership Theories

DORELLA BELLE and FRANCO PARLAMENTO

Abstract  We establish the decidability, with respect to open formulasin the
first order language with equality =, the membership relation €, the constant &
for the empty set, and a binary operation wwhich, applied to any two sets x and
y, yields the results of adding y as an element to X, of the theory NW having
the obvious axioms for @ and w. Furthermore we establish the completeness
with respect to purely universal sentences of the theory NW + E + R, obtained
from NW by adding the Extensionality Axiom E and the Regularity Axiom R,
and of the theory NW + AFA’ obtained by adding to NW (a slight variant of)
the Antifoundation Axiom AFA.

1 Introduction Investigationsinto the decision problemfor “small axiomatic frag-
ments of set theory,” to use Tarski’swordingin [IE , date back, at least, to Tarski and
Szmielew [[14] (see aso the ensuing Collins and Halpern [4]), which stated the inter-
pretability of Robinson’s Arithmetic Q into the theory having the axioms (N) VX(x &
@) and (W) VXVYWz(Xx € w(y, 2) < X € YV X = z) aswell asthe Extensionality Ax-
iom (E) VxXVy(Vz(z € X <> z€ y) — X =Y) to be henceforth denoted with NWE.
Quite recently that interpretability result has been extended also to the theory NW
having (N) and (W) as axioms (see Montagna and Mancini [[Z]). Althought such re-
sultsimply the essential undecidability of the theoriesNWE and NW, they areof little
help to assess precisely to which class of sentences, classified according to the quan-
tificational prefix, the undecidability of NW and NWE applies to. The obvious re-
duction, through the deduction theorem, to the decision problem for purelogic alone,
extensively investigated in Dreben and Goldfarb [[5] and Lewis[[], also doesnot yield
any useful information in that respect.

Significant undecidability resultsfor the above problem can be drawn from Par-
lamento and Policriti [[L2], which establishes the undecidability of the satisfiability in
w-models of ZF of formulasinvolving only restricted universal quantifiersin thelan-
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guage =, € with the addition of the unary predicate“xisa pair of distinct sets,” since
such apredicate is easily definable by using w and restricted universal quantifiers.

The present work provides a further contribution of a positive kind on the same
problem, as it shows that, the derivability of universal closures of open formulasin
=, €, &, w with respect to NW isdecidable. Actually such adecidability result holds
also for many extensions of NW. In fact it holds for the result NW + E; + E;, of
adding to NW the following two eguationa consegquences E; and E, of the Exten-
sionality Axiom: (E;) xwyw z=xwzw Yyand (E)) xw yw y=xwy. Further-
more it holds for all the extensions of NWE + R, namely the theory obtained from
NWE by adding the Regularity Axiom (R) VX(X # @ — 3y € XVze y(z & X)), and
for all the extensions of the theory NW + AFA’ obtained by adding to NW a dlight
variant of the Antifoundation Axiom AFA discussed in Aczel [[1], since we will show
that both NWE + R and NW + AFA’ are complete with respect to universal closures
of open formulas in the language =, €, &, w.

We will prove the above results by exploiting the eliminability of the operator
@ and w through the use of restricted universal quantificationsin the language =, €,
which effectively correlates to every open formula an equisatisfiable Vo o-formula,
namely a prenex formula in the language =, € involving only restricted universal
quantification without occurrences of nesting of quantified variables, like the one
which occursinVx € y Vz e x. Infact we show that the satisfiability of Vg o-formulas
with respect to NW as well as the extensions of NW mentioned above is decid-
able, and furthermore that both NWER and NW + AFA’ are complete with respect
to existential closures of Vg o-formulas. We stress that the decision methods devel-
oped in thiswork are extremely inefficient, as they rely on ablind exhaustive search
for afinite structure satisfying suitable conditions, as well as on a further reduction
to the case in which different variables are required to be interpreted with distinct
“nonempty sets.” Althought we are not interested in this paper with efficiency issues,
we should mention that more efficient decision procedures, which deal directly with
the language =, €, @, w, can be devised (cf. Bellé and Parlamento [2]).

2 Reduction toVq o-formulas  Following Parlamento and Policriti [9],[[L1] we give
the following definition.

Definition 2.1 gisa(V)-formulaiff itisequivalent toaconjunction g1 A ... A ¢m
suchthat, Vi, 1 <i<m,

o = (VXL ey ... (VX e Y)W V.. v,

whereyl # X, Vk, 1 <k < jjand ¢}, for 1 < k < hj, isaliteral of theformaeb,a¢
b,a=Dbora# bwithaandb variables. If no y'j isalsoax, wesay that g isa(¥)o,o-
formula.

The requirement y}, # X, vk, 1 < k < j; rules out quantifications of the form ¥x e
X, which cannot be regarded as restricted quantifications; it also implies that a V-
formula has at |east one free variable. Open formulas in the language with the func-
tional symbols @ and w can be translated into equisatisfiable, with respect to exten-
sions of NW, Vg o-formulas.
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Proposition 2.2  Every open formula v in =, €, @, w can be effectively trans-
formedinto a Vg o-formula g such that, for every extension T of NW, v issatisfiable
with respect to T iff 1/ is satisfiable with respect to T.

Proof:  Given an open formula v, let 7, be the closure under subterms of the set
of terms that occur in . Let Vy, = {vg, vy, ..., vq}, Whereq = |7, | if & ¢ T, and
q=|7y| — 1if @ € 7, aset of variableswhich do not occur in ; y avariable which
does not occur iny orin Vy, and Ty, = {(t1, to) 1ty wty € Ty}, Let 0 Ty, — V,, be
abijection suchthat @ = v if @ € 7y,

It is straightforward to check that for every extension T of NW,  is satisfiable
with respect to T iff the following formulais satisfiable with respect to T:

Yo = Y(yevw—>y#ENA \ (Yewltit) < (Yetivy=t)A
(t1,t2) €Ty

(h=kiAntp=kp) = w(ty, t2) = w(ky, ko)) A ¢,
(t1,12), (K1, ko) €Ty

where v is obtained from by replacing every term t occurring in v with the vari-
ablet. (Note that conjuncts of the third kind in v/ are needed; for example, if they
were omitted, the unsatisfiable formulax = X; A Z= X1 A X3 W X # X3 W zwould be
trandated into a satisfiable formula).

Furthermore, since every formula (X4, ..., Xn) with n free variables is logically
equivalent to adisunction of formulas of the form

YI# Y2A o AYk-1 F YA @,

where yy, ..., yx are taken from the free variblesin y» and ¢ is obtained from + by
identifying some of them; we may restrict our attention to the satisfiability problem
which requires that a formula be satisfied with distinct elements interpreting distinct
variables, a problem which we will call 1-1-satisfiability problem.

Proposition 2.3  For extensions of the theory NW, the satisfiability problem for
open formulas in =, €, @, w is reducible to the 1-1 satisfiability problem for V¥ o-
formulas.

Inview of the previous proposition, therest of the paper will deal almost entirely with
thedecision problem for 1-1-satisfiability of Vo o-formulas. Actually our first positive
result applies, thanksto the lack of the Extensionality Axiom in NW, to the full class
Yo.

3 NW

Proposition 3.1 If ¥(Xq,..., X is a (¥)g-formula, then ¥ (xq, ..., X) is 1-1-
satisfiable with respect to NW iff thereexistsafinite structure G = ({9, . . ., 9k}, Ro)
such that g1, ..., gk satisfy (X1, ..., ) in G.

Proof: (<) Given G fulfilling the stated conditions, we extend Ry to abinary rela-
tion R on the Herbrand Universe # over gy, ..., gk, 0, w where 0 is anew constant.
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Theelementsof # havetheform gpwty ... wt;,0<h <Kk, | € w, wherego = 0.
For r and ghwty ... wt; in H welet

R(r, ghwty ... wt)) iff Ry(r, gn) orr =t forsomel <i <|.

It is straightforward to check that # provides a (normal) model of NW with & inter-
preted as 0, € interpreted as R, and w having the canonical interpretation wH.
Furthermore R(r, gn) entails Ry(r, gn); in particular if R(r, gy) holds, then r
must be among s, ..., Ok- Since the R-predecessors of gy, .. ., gk are the same as
the Ry-predecessors of gy, ..., Ok, it isimmediate that gy, . . ., gy satisfy ¥ in .
=) IfM =M, eM, oM wM) isamodel of NW and g1, ...,0¢ € M 1-1-
satisfy ¥ (xq, ..., X), thenletting G = {gs, ... gk} and Ry =€M|¢, it is obvious that
Yyissdatisfied by g1, ... 0k in G = (G, Rp).
As an immediate consequence of Propositions2.3land B.Twe have the following.
Proposition 3.2

1. The problem of establishing whether a Vo-formula is satisfiable with respect to
NW isdecidable.

2. NW isdecidablewith respect to (the derivability of universal closures of) open
formulasin =, €, o, w.

The decidability results given in the previous proposition apply also to the theory
NW + E; + E,, with the same decision test derived from Proposition [3.1lsince we
have the following.

Proposition 3.3 NW + E; + E;, isa conservative extension of NW with respect to
(the derivability of) universal closures of formulasin =, €, involving only restricted
existential quantifiers, aswell aswith respect to universal closures of open formulas
in=,e,d,w.

Proof: It suffices to show that if a Vg-formula v is satisfiable with respect to NW
then it is satisfiable with respect to NW + E; + E, aswell.

If aVo-formula y(Xq, ..., X) is satisfied in a model of NW then, because of
Proposition[3.1] it is satisfied in the Herbrand model # = (H, 0, R, wH) defined in
the «< part of the proof of Proposition[3.1] Such a model can be refined by using
as domain, instead of the full Herbrand Universe H, only the set of canonical terms,
namely the values of the function Canon defined as follows, on the ground of atotal
order < of thetermsin H:

Canon(gi) = giforO<i<k

Canon(ghwriw...wr;) = ¢yw Canon(ri,) w...w Canon(ri,),
where Canon{ry, ..., r} = Canon{ri,, ..., ri,;}and, forl < j <k <n, Canon(rij) <
Canon(ri, ).

Letting H' = {Canon(t) : t € H} and forr,s € H’, r w"’ s = Canon(r w s),
since
Canon(Canon(t;) w Canon(t,)) = Canon(t; w ty),
it is easy to verify that when @ is interpreted as 0, € as R |y, and w as wH',
H’ provides a model M’ of NW in which gg, ..., gk satisfy the given Vo-formula
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Y (X1, ... X). Furthermoreit is obviousthat M’ isaso amodel of the two equations
E; and E>.

4 NW + Extensionality Axiom  When the Extensionality Axiom E isadded to NW
the situation changes considerably. For one thing, we have that NWE is not a conser-
vative extension of NW already with respect to universal closures of open formulas
involving only = and w. For example the following formula,

xwd=ywdAaywd=zwd) > XxX=yvXx=2zvy=7

isderivablein NWE but its negation can be seen to be satisfiable with respect to NW.

Furthermore, when dealing with the satisfiability of Vo-formulas with respect to
NWE, there cannot be any decision test asthe one provided by Proposition[3.1] In fact
from results in Parlamento and Policriti [10]l it follows that the following Vo-formula
(X1, X2),

X1 # Xo A XL & Xo A Xo &€ XN
VX € X1VY € X(Y € X2) AVYX € XoVY € X(Y € X1)A
VXY € XiVZw € Xo(X € ZAZEYAYE W — XE WA
VX e XVy € Xo(Xe YV YyeX),

isnot satisfiablein afinite structure (G, R) by any pair of elementsa, b of G, if Rhas
to be extensional on every pair of elementsof G containing either aor b; in particular
(X1, Xo) ishot satisfiable in any finite structure that can be extended into amodel of
NWE without introducing new e-predecessors to its members. As a matter of fact
no decision method to check the satisfiability of Vop-formulas with respect to NWE is
presently known, and this decision problem might very well be unsolvable (see [[LT]).
Definitely, for the time being, when dealing with satisfiability with respect to NWE
we haveto restrict our attention to Vo o-formulas, aswewill dointherest of this paper.

Proposition 4.1 If ¥(Xg, ..., X) isa (V)go-formula then ¥ (xy, ..., X) is 1-1-
satisfiable with respect to NW + E iff there exist a finite structure G = (G, Ry), with
|G| < 2k—1,and elements gy, ..., gk € G such that:

1. Ryisextensional over gi, ..., gk, i.e, for i # j,gi and g; have different set of
Ro-predecessorsin G,
2. O1,..., g satisfy ¢ in G.
Proof: (=) Let M = (M, eM, oM wM) be a model of NWE and suppose that

O1,...,0¢ € Msatisfy ¢(Xq, ... %). Since M |=E, eM isextensional on O1, - -, Ok,
i.e,forl<i# j<kthereisd; € M such that

d Mg iff di ¢M gy (1)

From the results in Parlamento, Policriti and Rao [13], it follows that there are
di,...,dg, € M, withky < k, suchthat {dy, ..., dy,} acts as adifferentiating set for
{01, ..., Ok}, namely, for every 1 < i # j < k, ad; satisfying Equation (0 can be
found in {dy, ..., d,}. Letting G = {g1, ..., Gk 01, ..., d,} and Ry =eM |g it is
immediate that G = (G, Rp) fulfills Conditions (1) and (2).
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(<) Assume we are given afinite structure G = (G, Rg) and g1, ..., 0k in G
satisfying the Conditions (1) and (2) and let G = {Q1, ..., Ok, d1, . . ., dk,} Withky <
k. Let A be the Herbrand Universe over gy, ..., gk, di, ..., dy,, O, w, whereQisa
new constant. Among the elements of # are the “numerals’ n, where Q isthe given
new constant and n + 1 isinductively defined asnw n. Let

e’:ROU{(i,di):lgigkd,2n+1+i <j<3n+2+i}

and " be the closure over H of €’ with respect to the axiom W, namely let €™ be
the least binary relation over H such that:

o c'cel,

e beawhb,

e ifcetathence awb.

L et ~ bethe minimal reflexive co-bisimulation over (H, €™), namely theleast binary
reflexive relation on H such that,

vxe" ady et b(x~y) Avye baxe axx~y) - a~b.

~ is an equivalence relation (see [Iﬂ). For a € H we let [a] be the ~-equivalence
class containing a. If we let

1. H"=H/.={a]:ae H},

2. o~ =10],

3. [a] € [b] iff therearea’, b’ € H suchthata~a’,b~b anda " b,

4. [a] w™ [b] =[awb],
itis easy to verify that H™~ = (H™, @™, €™, w™) isamodel of NWE. The canoni-
cal projection 7 : H — H™ isasystem map from (H, ™) into (H™, €™), namely
m@) = {r(b):bel a".

By induction it is easy to show that 7 is1-1 on N = {0, 1, ...}, and further-

more that (i) has exactly i distinct elements. Since € coincides with Ry over

{01,...0k, d1,...,dg,}, 01, ... Ok haveatmostn e H-predecrs. Therefore, since
wisasystemmap 7 (g1), ..., m(gk) haveat most n €~ -predecessors. For 1 < i <ky,

m(di) hasatleast n+ 1 €™ -predecessors, namely r(2n+1+i),...,7(3n+ 2+ 1).
Therefore we have that

n(dj) #n(g)forl<j<kgandl<i<k ()

Furthermore, since 7(3n+ 2+ j) isan €™ -predecessor of 7(d;) but itisnot an ™ -
predecessor of 7 (d;), we have that

m(di) #m(dj) for 1 <i# j <Kg. 3

Since ~ istheminimal reflexive co-bisimulationon (H, eM)yand M on{gs, ..., gk,
di, ..., dy,} isextensional over gy, ..., g, from Equations (2) and (@) it followsthat
misl-loveralof {gs,..., Ok d1,..., dg}.

Since r is asystem map, from the 1-1-ness of , it follows that 7 is actually an
isomorphism between ({g1, ..., Ok, di, ..., dk,}, Ro) and (H™, €™) and furthermore
that

m(gi) = {m(e):ec GARy(e )} . 4
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It follows that 7(g1), ..., w(gk) satisfy in H~ the formula vy (xq, ... Xk). For, sup-
pose the following conjunct v; of ,

VX €Y. YN eV (VL v ),

is not satisfied by 7(g1), ..., 7 (9k) in }[_”. Letaso fy,..., f; be e™-elementsin
m(Q1), ..., w(g) forwhich —¢) A ..—-Z'hi holds. Because of Equation (4) there are
elementsey, ...ejin Gsuchthat f; =m(ey), fj= (€j). Since 7 isan isomor-
phism between Gand # ™, ey, ... ej satisfy =€y A ... ={, in G, thereforeey, . . . €;
witness the fact that g, ..., Ok fail to satisfy ¢ in G, against the assumption that
O1, ..., Ok satisfy ¢ in G.

As an immediate consequence of Propositions[2.3]land[4.1lwe have the following.
Proposition 4.2

1. The problem of establishing whether a ¥ o-formula is satisfiable with respect
to NWE is decidable.

2. NWE is decidable with respect to (the derivability of universal closures of)
openformulasin =, €, o, w.

5 NWE + Regularity Axiom When the Regularity Axiom isadded to NWE, com-
pletenessin addition to decidability isachieved. In fact we have the following propo-
sition.
Proposition 5.1
1. A (¥)po-formulay(xy, ..., Xk) is1-1-satisfiable with respect to NW + E+ R
iff there exist a finite structure G = (G, Rp) with |G| < 2k — 1 and elements
01, ..., gk € G such that:

(@) Rpisextensional over gy, ..., Ok,
(b) Rpiswell founded,
(©) 91,..., 0 satisfy ¥ in G.
2. NW + E+ R is complete with respect to the existential closure of (V)g,o-
formulas and of open formulasin =, €, &, w.

Proof: The proof of the = part of (1) is essentially the same as for the = part of
Proposition[4.1] The < part of (1) follows from the following fact.

If yissatisfiedin G= ({91, ..., 0k d1,...,d¢,}, RO) by gy, ..., 0k, and Ry is
well founded as well as extensional on gy, . .., gk, then ¢ is satisfied in (HF,
€), HF being the collection of the ordinary hereditarily finite sets.

Let n = k+ky. Since Ry iswell foundedon G = {g1, ..., gk, d1, ..., d,}, wecan
define by induction on Ry amap * : G — HF by letting

g = (€ Roeg}

d" = {€:Reedi}U{{i,n-1}}.

Sincerank({i, n— 1}) = n, itisimmediate that rank(d*) > nfor 1 <i < ky. Further-
more, if in the Ry-transitive closure of g;j thereis no element in {dy, ..., dy,}, then



MEMBERSHIP THEORIES 311

rank(g*j‘) < k< n; if, onthe other hand, the Ry-transitive closure of g; contains some
elementin {dy, ..., dy,}, then rank(g]-*) > n. Thus, for every e € G, rank(e*) # n,
andsoe* # {i,n— 1} foral 1 <i < kg.

From that it follows very easily that * isa 1-1 map and in turn that

foral e, e € G, e1Roe; iff €] € €. 5)

We claim that v is satisfied by g7, ..., gi in HF. Assume by way of contradiction
that v isnot satisfied by g7, .. ., gi in HF, and let v; be a conjunct,

VX €Y. X ey (Vv g,

which is not satisfied by g7, ..., g;. Let fy,..., f; be elementsin gj, ..., g§ for
which =£3 AL A —-E'hi hold. Due to the definition of * on {go, ..., Ok}, f1,..., f;
are actually values of * itself, say f; =€, ..., fj = €j. Because of Equation (],
€1, ..., € would provide a counterexample to the assumed satisfiability of by
do, - -+ » Gk

(2) If ¢ issatisfied with respect to NW + E + R, combining the <= and = part of
(1) wehavethat v issatisfiedin (HF, €). Since (HF, €) isisomorphically embedded
as an e-initial part into every model of NW, it follows that v is satisfiable in every
model of NW + E + R; therefore the existential closure of y isderivable from NW +
E+R.

As an immediate consequence of Propositions[Z.3]land E.Ilwe have the following.
Proposition 5.2

1. The problem of establishing whether a ¥ o-formula is satisfiable with respect
to NWE + R isdecidable; actually NWE + R is complete with respect to Vg o-
formulas.

2. NWE + R is decidable with respect to (the derivability of universal closures
of) open formulasin =, €, @, w; actually NWE + R is complete with respect
to universal closures (equivalently existential closures) of open formulasin =,
€, T, W.

Remark 5.3  Itisclear fromthe proof that in Proposition[5.1the Regularity Axiom
R can be weakened to the schema:

RS —3X1...Xn(X{ € X2 A ... AXp—1 € Xn A Xn € X1),

which is derivable in NW from R. The example we have provided to show that
NWE is not a conservative extension of NW + E; + E, actually establishes also that
NWE + Risnot aconservative extension of NW + E; + E, + R for universal closures
of formulasin = and w alone. Thusthe completenessresult in Proposition[5.112 does
not hold any more if NWE + R or NWE + R® are weakened to NW + E; + E; + R
or N\W + E; + E» + RS,

For each n, in NW it is possible to introduce via an explicit definition the n-tuple op-
erator {X1, ..., Xnjn = I W X3 W ... W X,, and derive the following schema:

T: Xe{X{,..., Xnln <> X=X V...V X= Xp.

NW + E; + E, implies al the formulasin the following schema:
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ET: (X1, .-y Xdk = (Y1, - -5 Ynln,

wherey;, ..., Y, listswithout repetitions all the variablesinthe sequence xy, . . ., X.
Letting NT be the theory in the language containing & and for each n the n-ary func-
tional symboal {.. .}, whose axiomsare N and all the formulasin the schemaT; it can
be shown that NT + ET + RS is complete with respect to existential closure of open
formulasin its own language.

NT + ET + RS appears to be aminimal theory which, on one hand, ensures the
existence of the hereditarily finite setsand, on the other hand, enjoysthe completeness
property established in Proposition[5.1R (cf. also Ville [16]).

6 NW + Antifoundation Axiom  Let usrecall from [[1] that the anti-foundation ax-
iom AFA states that every graph (G, R) has a unique decoration, namely a function
f whose domainis G and suchthat Va € G, f(a) = {f(b) : bRa}. The uniqueness
of the decoration whose existenceis stated in AFA entailsastrong form of extension-
ality that can be analyzed using the notion of bisimulation, whichin [1] is defined as
follows. A binary relation Risabisimulation if

aRb = Vx € ady € b(xRy) A Vy € bax € a(xRy).

The uniqueness condition stated in AFA is equivalent (in ZF) to the nonexistence of
bisimulations different from the identity (proper bisimulations).

The Axiom of Regularity together with the Axiom of Extensionality readily en-
tails the nonexistence of bisimulations relating different sets. In particular no such
bisimulations can exist on HF. On the other hand, in ZF minus the Axiom of Reg-
ularity, the axiom of Extensionality immediately follows from the nonexistence of
proper bisimulations. However that it is not the case in NW asiit is shown by the
following model.

Let M bethe closure under w of HF U {v1, vo}, where vy, v, aredistinct objects
not belonging to HF; let €’ be the expansion of € over M obtained by letting e €’ v,
and e € v, for al e e HF U {vq, vo}; let €M be the least expansion of €’ such that
forala,b,cinM,beyawb;andif ceM athenceM awb.

Furthermore, let M be & € HF, and

M au{b} ifa,beHF

w" (@b = { awb  otherwise.
M= (M, eM, oM wM)isamodel of NW.

vy and vy as well as all those elements of M which are obtained by start-
ing with vy or v, and applying wM have al the elements in HF among their M-
predecessors. Furthermore they are the only elements of M which have infinitely
many eM-predecessors. Since v, and v, have the same eM-predecessors and they
are distinct, the Axiom of Extensionality failsin M. Nevertheless

M = vVab—3IR(Risabisimulation A (a,b) € R A a#b)

For, suppose a, b, R e M are such that M = (Risabisimulation A (a,b) € R A
a=£b). If a, b € HF then from R we could easily obtain a bisimulation on (HF, €)
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relating a and b; but, as we noticed, no such bisimulation on HF can exist. On the
other hand if, for example, a € M \ HF then either v, or vy, Say vy, isin the eM.
transitive closure of a. To every eM-predecessor of v, has to correspond an M-
ordered pair (x, y)M suchthat (x, y)M €M R, and to different €M-predecessors of v,
correspond different M-ordered pairs eM-related to R. Since v, hasinfinitely many
eM-predecessors, every element in HF iseM-related to R, in particular there are ele-
ments eM-related to Rwhich are not M-ordered pairs, so the assumptionthat M = R
isa bisimulation is contradicted.

A simple change in the notion of bisimulation suffices to give to AFA aform
whichinone hand is equivalent to the previous one with respect to ZF minusthe Reg-
ularity Axiom (ZF~), and on the other hand is appropriate when working with NW.
In fact it yields to NW enough strength to derive the Extensionality Axiom and to
sharewith ZF~ + AFA the completeness property to be proved in the following. We
say that abinary relation Risaweak bisimulation if

aRb = Vxea(xe bviayeb(xRy)) AVye b(yeavIxeaxRy)).

Furthermore R is proper if it contains at least one pair (a, b) with a # b. Note that
in ZF, due to the existence of transitive closures, this new version of the definition of
bisimulation is equivalent to the old one.

We formul ate the strong extensionality axiom SE as follows

(SE) there are no proper weak bisimulations,
and AFA’ as the conjuntion of SE and
(AFA,) every graph has at least one decoration.

Note that in NW, SE entailsE; in fact if a and b are different and have the same pre-
decessors then {(a, b)}, which existsin NW, is a proper weak bisimulation.

The role previously played by the structure HF of the hereditary finite setsis
played in the present context by the structure V; of the hereditary finite hyperset,
wh[iﬁ] wewill define following the construction of amodel for ZF~ + AFA described
in [l

Let usrecall from [[1] that an accessible pointed graph (apg) isagraph with adis-
tinguished node, called its point, from which any (other) node can be reached through
afinite path. Let V¢ betheclassof all thefiniteapgs. For a, b € Vs leta €g¢ b hold
iff aisasubgraph of b generated by one of the predecessor in b of the point of b. If
fora, b e Vo welet a ~y,, b mean that there is abisimulation R on Vg such that
(a, b) € R, then ~y,, isan equivalence relation.

We let V; be the quotient of Vo with respect to ~y,, and €+ be the relation
induced over V; by €g5. (V¢, €¢) isstrongly extensional in the sense that no proper
bisimulation with respect to € ¢ existson V¢, and it is called the strongly extensional
quotient of V. (Vi, €¢) isamodel of NW; actualy it isamodel of ZF deprived of
the Foundation and Infinity axioms.

For every finite graph G = (G, Rp) there is a unique system map from G into
Vs, namely afunction g : G — V; such that

aRoh = ﬂg(a)EfTL’g(b)
cefngb) = 3JaeGaRbarc=rng().
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7 gisastrongly extensional quotient of G inthe sensethat 7 induceson G an equiv-
aencerelation which isthe maximum bisimulationon G. (V¢, € ) isisomorphically
embedded, as an e-initial part, into every model of NW + AFA’.

If M = (M, eM, oM wM)isamode of NW, for a € M welet Ma denote the
eM_transitive closure of a, i.e.,

Ma = {be M: thereisafinite € -chainage™ a; eM ... eMa,,
such that ag = b and a, = a},

and let
hf (M) = {ae M : Maisfinite}.

A simple adaptation of result in [I] leads to the following.

Proposition 6.1  If M = NW + AFA’ then (hf (M), €M) isisomorphic to (Vs,
€5).
Proof: If ae hf(M)then Ma € Vs andthemapthat assignsMatoa € Misclearly
asystem map which, composed with the strongly extensional quotient ¢ : Vo — Vi
yields asystem map 7 : hf (M) — V. hf (M) is strongly extensional, hence  is
injective, asit follows by Theorem 2.19 in [[1].

If a € V¢ then Viaisan apg and, since it is finite and M = NW, there exists
in M the corresponding graph g. Furthermore since M = AFA' thereexistsin M a
decoration d of g, from which we obtain an M -decoration d of Via. Thenwod:
Via— Vi isasystem map. As V; isstrongly extensional 7 o d must be the identity
map on V¢4, since the identity is a system map on V¢a and there is only one system
map on Via ([0 Thm. 2.19). In particular a = w(da). Thus = is surjective as well
asinjective, henceit isan isomorphism.

The key notion to obtain our further decidability as well as completeness resultsis
expressed by the following definition, in which the notion of R being aproper bisim-
ulation refersto the binary relation Ry rather than €.

Definition 6.2 A graph (G, Ry) issaidtobestrongly extensional on{gs, ..., gk} €
G if there is no proper weak bisimulation Ron {g, ..., gx} such that g; Rg; and g;
and g have the same Ry-predecessorsin G\ {gi, ..., g¢} forsomel <i # j <k.

Proposition 6.3 A (V)go-formula (X, ..., X¢) is 1-1-satisfiable with respect to
NW + SEiff thereexist afinitestructure G = (G, Rp), with |G| < 2k — 1 and elements
O1, ..., gk € Gsuchthat:

1. Rpisstrongly extensional over gy, ..., Ok,

2. 01,..., g satisfy yin G.
Proof: (=) Suppose M isamodel of NW + SEand g, ..., gk are elementsin M
satisfying ¥ (Xq, ..., X¢). For0 <i, j < k, welet

gi~9j IifPredom(g)\{091,..., 0} =Pred.m(gj) \ {01, ..., 0},

where Pred_v(a) = (be M : b eM a}.
Since D = | J{Predem (gi) \ {01, ..., 0k} : 0 <i < n} isadifferentiating set
for ~, i.e, if g 7 g then thereisd € D such that d eM g < d ¢ g;, by [13]



MEMBERSHIP THEORIES 315

there are elements dy, ... dy, in D such that ky < k and {dy, ...dy,} is a differen-
tiating set for ~. Letting Ry =eM l(g1,.....dr....ch,) @A G = (G, Ro) where G =
{01,..., 0k dg,...dg,}; itisobviousthat gy, ..., g satisfy v in G.

Furthermore we claim that G is strongly extensional on {gy, ..., Ok}. Assume
that Risaweak bismulationon {gy, ..., g¢} suchthat if g; Rgj, then g; and g; have
the same Ry-predecessorson G\ {gy, - . ., gk}. Since Gisfiniteand M = NW, there
isan element RM in M such that (a, b)M eM RM iff (a, b) € R, where (a, b)M is
the natural interpretation in M of the ordered pair operation, i.e., (a, b)M is M wM
awM (M wM awM b). Dueto thechoiceof dy, ..., dy, it isimmediate that RM is
also aweak bisimulation from the point of view of M. Since M = SE, RM must be
anidentity relation; i.e., if (a, b)M €M RM thena = b. Fromthat it followsthat R is

the identity relation on {gs, ..., gk} and our claim is proved.
(<) LetG={g1,...,0 d1, ..., d withky < k. Let H be the Herbrand uni-
verse over gi, ..., gk, di, ... dy,, 0,w whereQ is anew constant and €M isdefined

on H asin the proof of Proposition&.1] Let 7 be the strongly extensional quotient
of (H, e™)in (Vs, €1), namely the unique system map from (H, €M) into (V;, €1).
Since 7 isasystem map, for every a € H |w(a)| < |{b € H : b €™ a}|. Furthermore,
sincethereisno bisimulation relating two distinct hereditarily finite sets, for i, | € w,
ifi £ jthenz(i) # n(j) and |z (i)| =i. Fromthat asin the proof of Proposition[4.1]
it follows that

(x) wisl-1lon{dy,...,d¢} and
(xx) m(dj) #m(gh) forl<j<kgandl<h<k
Assumethat 7 (gn) # 7(9¢), 1 < h, £ < k. Since r is a system map, from 7 (gn) #
m(g,) it follows that there exists aweak bisimulation R on H such that g, Rg,. The

restriction of Rto {gy, ..., Ok} isaweak bismulation. That easily follows from the
following straightforward consequences of (x) and (x):

1l ifepe (01, ....0} €1 e GandegRey thener € {g1, ..., Ok}

2. ifgiRgj, 1 <i, j <k, theng; and gj havethe same predecessorsin {dy, .. ., dy}.
Since e |g = Ry, €M | isstrongly extensional over {gs, ..., gk} in G; from (2) it
followsthat R must be the identity over {ga, ..., gk}, hence gn = g,. Henceris1-1

over al of {gs1, ..., Ok d1, ..., dk}. Thesame argument used in the proof of Propo-
sition[4.1nd Proposition[5.1khen showsthat 77(gy), . . . w(g) satisfy ¥ in (Vi, €+).

As an immediate consequence of Propositions[2.3land[6.3lwe have the following.
Proposition 6.4

1. The problem of establishing whether a V¥ o-formula is satisfiable with respect
to NW + SE isdecidable.

2. NW + SE isdecidable with respect to (the derivability of universal closures of)
openformulasin =, €, &, w.

Since (V¢, 1) isamodel of NW + AFA’, the proof of Proposition[6.3has as byprod-
uct the following conservativity result.

Proposition 6.5 NW + AFA’ isa conservative extension of NW + SE with respect
to (thederivability of) universal closuresof formulasin=, €, involving only restricted
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existential quantifiers, aswell aswith respect to universal closures of open formulas
in=,¢e,a,w.

Therefore the decidability results established in Proposition[6.4lapply to NW + AFA’
aswell, with the same decision tests.

Finally, combining the proof of Proposition[6.3\with Proposition[6.5lwe have as
an immediate consequence the following compl eteness result.

Proposition 6.6 NW + AFA’ is complete with respect to existential closures of
(V¥)o,0-formulas and with respect to universal closures (equivalentely existential clo-
sures) of open formulasin =, €, @, w.

Remark 6.7 The above completeness result does not hold for the theory NW +
E+ AFA.

Let N be the closure under w of V¢ U {vq, v}, With v1 #£ v, vy, U & V;. Let
€’ be the expansion of € over N obtained by letting a €’ v, and a €’ v, for every
ae Viand vy € vy aswell asv, € vy andlet N the least expansion of €’ such that
foralla,b,cinN,beNawbandifceNathenceNawhb.

Asin the proof of Proposition[4.1lthe quotient N~ of N with respect to the min-
imal reflexive co-bisimulation on (N, eN), yieldsamodel A of NWE. Since ;¢ is
extensional on V¢, a € V; can beidentified with its equivalence class[a]. Therefore
(V¢, € ) can be seen as a substructure of .

The same argument previously given for the model M showsthat for G € N™,
if 2\ isamodel of “G isagraph,” then G has only finitely many e\ -predecessors;
tosucha G € N™ corresponds a finite graph which has adecorationd in V. Since
disfiniteand N~ = NW, in N~ thereis an element dN~ which satisfies, in N~, the
property of being a decoration of G. Furthermore there is no other element dV" in
N~ which is also a decoration of G, since otherwise dN™ and dN~ would give rise
to an element R of N™ satisfying in N~ the property of being a bisimulation relation
among two different elements of N~ (see [[J); the existence of such an R can beruled
out using the same argument given for the model M.

The elements v and v, satisfy in N the following Vg o-formula v

VX€EU(XZ Uy = XE U) AVXE Up(X# U — XE UA
Up € Up A Up € U A Up # Us.

However v is not satisfiable in V¢. Therefore the existentia closure of y is neither
provable nor refutablein NW + E + AFA. Notethatin N~, {(v1, vo)N N satisfies
the condition of being a proper weak bisimulation, so that A\ = AFA'.

Finally let us remark that, although every model of NW + SE isextensional, the
strong extensionality of a model of NW cannot be ensured by the validity of any set
of first order sentences. Infact, if T isatheory consistent with NW then, by compact-
ness, the theory

NW+TU{C =Ciya WGyl € w}U{C #Cj},

where {¢ : i € w} is aset of new constants, has a model 4. Since the relation

{(cffl, ciM) . i € w} isclearly a proper bisimulation on M, M is not strongly ex-

tensional.
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Remark 6.8 A classof formulasessentially equivalent to the ¥ o-formulas, exten-
sively dealt with in this work, was first investigated in Breban, Ferro, Omodeo, and
Schwartz [B], where it is shown that it is decidable whether any given formulain the
classis satisfiable in the “intended” model of set theory. The theory NWL obtained
by adding to the language of NW the binary function symbol | and the axiom

(L): VXYWZ(Ze Xy <> ZEXAZH#Y)

has been investigated together with some of its extensions in Omodeo, Parlamento,
and Policriti [[8], which establishes decidability as well as completeness results for
formulasin the language =, € involving only one universal (unrestricted) quantifier.
Since open formulasin =, €, @, w, | can be transformed into equisatisfiable Y o-
formulas, theresultsin this paper apply to the extended language and theoriesaswell.
Open formulas both in the origina and in the extended language can also be easily
transformed into equi satisfiabl e (with respect to extension of NWL) formulasinvolv-
ing only one universal (unrestricted) quantifier; as a consequence the analogue for
NWL and its extensions of some of the resultsin thiswork can also be inferred from
resultsin [&].
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