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Decidability and Completeness for
Open Formulas of Membership Theories

DORELLA BELLÈ and FRANCO PARLAMENTO

Abstract We establish the decidability, with respect to open formulas in the
first order language with equality =, the membership relation ∈, the constant ∅

for the empty set, and a binary operation wwhich, applied to any two sets x and
y, yields the results of adding y as an element to x, of the theory NW having
the obvious axioms for ∅ and w. Furthermore we establish the completeness
with respect to purely universal sentences of the theory NW + E + R, obtained
from NW by adding the Extensionality Axiom E and the Regularity Axiom R,
and of the theory NW + AFA′ obtained by adding to NW (a slight variant of)
the Antifoundation Axiom AFA.

1 Introduction Investigations into the decision problem for “small axiomatic frag-
ments of set theory,” to use Tarski’s wording in [15], date back, at least, to Tarski and
Szmielew [14] (see also the ensuing Collins and Halpern [4]), which stated the inter-
pretability of Robinson’s Arithmetic Q into the theory having the axioms (N) ∀x(x �∈
∅) and (W) ∀x∀y∀z(x ∈ w(y, z) ↔ x ∈ y ∨ x = z) as well as the Extensionality Ax-
iom (E) ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) to be henceforth denoted with NWE.
Quite recently that interpretability result has been extended also to the theory NW
having (N) and (W) as axioms (see Montagna and Mancini [7]). Althought such re-
sults imply the essential undecidability of the theories NWE and NW, they are of little
help to assess precisely to which class of sentences, classified according to the quan-
tificational prefix, the undecidability of NW and NWE applies to. The obvious re-
duction, through the deduction theorem, to the decision problem for pure logic alone,
extensively investigated in Dreben and Goldfarb [5] and Lewis [6], also does not yield
any useful information in that respect.

Significant undecidability results for the above problem can be drawn from Par-
lamento and Policriti [12], which establishes the undecidability of the satisfiability in
ω-models of ZF of formulas involving only restricted universal quantifiers in the lan-
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guage =,∈ with the addition of the unary predicate “x is a pair of distinct sets,” since
such a predicate is easily definable by using w and restricted universal quantifiers.

The present work provides a further contribution of a positive kind on the same
problem, as it shows that, the derivability of universal closures of open formulas in
=,∈,∅, w with respect to NW is decidable. Actually such a decidability result holds
also for many extensions of NW. In fact it holds for the result NW + E1 + E2 of
adding to NW the following two equational consequences E1 and E2 of the Exten-
sionality Axiom: (E1) x w y w z = x w z w y and (E2) x w y w y = x w y. Further-
more it holds for all the extensions of NWE + R, namely the theory obtained from
NWE by adding the Regularity Axiom (R) ∀x(x �= ∅ → ∃y ∈ x∀z ∈ y(z �∈ x)), and
for all the extensions of the theory NW + AFA′ obtained by adding to NW a slight
variant of the Antifoundation Axiom AFA discussed in Aczel [1], since we will show
that both NWE + R and NW + AFA′ are complete with respect to universal closures
of open formulas in the language =,∈,∅, w.

We will prove the above results by exploiting the eliminability of the operator
∅ and w through the use of restricted universal quantifications in the language =,∈,
which effectively correlates to every open formula an equisatisfiable ∀0,0-formula,
namely a prenex formula in the language =,∈ involving only restricted universal
quantification without occurrences of nesting of quantified variables, like the one
which occurs in ∀x ∈ y ∀z ∈ x. In fact we show that the satisfiability of ∀0,0-formulas
with respect to NW as well as the extensions of NW mentioned above is decid-
able, and furthermore that both NWER and NW + AFA′ are complete with respect
to existential closures of ∀0,0-formulas. We stress that the decision methods devel-
oped in this work are extremely inefficient, as they rely on a blind exhaustive search
for a finite structure satisfying suitable conditions, as well as on a further reduction
to the case in which different variables are required to be interpreted with distinct
“nonempty sets.” Althought we are not interested in this paper with efficiency issues,
we should mention that more efficient decision procedures, which deal directly with
the language =,∈,∅, w, can be devised (cf. Bellé and Parlamento [2]).

2 Reduction to ∀0,0-formulas Following Parlamento and Policriti [9],[11] we give
the following definition.

Definition 2.1 ϕ is a (∀)0-formula iff it is equivalent to a conjunction ϕ1 ∧ . . .∧ϕm

such that, ∀i, 1 ≤ i ≤ m,

ϕi = (∀xi
1 ∈ yi

1) . . . (∀xi
ji ∈ yi

ji )(�
i
1 ∨ . . . ∨ �i

hi
),

where yi
k �= xi

k ∀k, 1 ≤ k ≤ ji and �i
k, for 1 ≤ k ≤ hi, is a literal of the form a ∈ b, a �∈

b, a = b or a �= b with a and b variables. If no yi
j is also a xi

k we say that ϕ is a (∀)0,0-
formula.

The requirement yi
k �= xi

k ∀k, 1 ≤ k ≤ ji rules out quantifications of the form ∀x ∈
x, which cannot be regarded as restricted quantifications; it also implies that a ∀0-
formula has at least one free variable. Open formulas in the language with the func-
tional symbols ∅ and w can be translated into equisatisfiable, with respect to exten-
sions of NW, ∀0,0-formulas.
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Proposition 2.2 Every open formula ψ in =,∈,∅, w can be effectively trans-
formed into a ∀0,0-formula ψ0 such that, for every extension T of NW, ψ is satisfiable
with respect to T iff ψ0 is satisfiable with respect to T.

Proof: Given an open formula ψ, let Tψ be the closure under subterms of the set
of terms that occur in ψ. Let Vψ = {v0, v1, . . . , vq}, where q = |Tψ| if ∅ �∈ Tψ and
q = |Tψ| − 1 if ∅ ∈ Tψ, a set of variables which do not occur in ψ; y a variable which
does not occur in ψ or in Vψ, and Tψ = {(t1, t2) : t1 w t2 ∈ Tψ}. Let : Tψ → Vψ be
a bijection such that ∅ = v0 if ∅ ∈ Tψ.

It is straightforward to check that for every extension T of NW, ψ is satisfiable
with respect to T iff the following formula is satisfiable with respect to T :

ψ0 = ∀y[(y ∈ v0 → y �= y) ∧
∧

(t1,t2)∈Tψ

(y ∈ w(t1, t2) ↔ (y ∈ t1 ∨ y = t2) ∧
∧

(t1,t2),(k1,k2)∈Tψ

((t1 = k1 ∧ t2 = k2) → w(t1, t2) = w(k1, k2)) ∧ ψ,

where ψ is obtained from ψ by replacing every term t occurring in ψ with the vari-
able t. (Note that conjuncts of the third kind in ψ0 are needed; for example, if they
were omitted, the unsatisfiable formula x = x1 ∧ z = x1 ∧ x1 w x �= x1 w z would be
translated into a satisfiable formula).

Furthermore, since every formula ψ(x1, . . . , xn) with n free variables is logically
equivalent to a disjunction of formulas of the form

y1 �= y2 ∧ . . . ∧ yk−1 �= yk ∧ ϕ,

where y1, . . . , yk are taken from the free varibles in ψ and ϕ is obtained from ψ by
identifying some of them; we may restrict our attention to the satisfiability problem
which requires that a formula be satisfied with distinct elements interpreting distinct
variables, a problem which we will call 1-1-satisfiability problem.

Proposition 2.3 For extensions of the theory NW, the satisfiability problem for
open formulas in =,∈,∅, w is reducible to the 1-1 satisfiability problem for ∀0,0-
formulas.

In view of the previous proposition, the rest of the paper will deal almost entirely with
the decision problem for 1-1-satisfiability of ∀0,0-formulas. Actually our first positive
result applies, thanks to the lack of the Extensionality Axiom in NW, to the full class
∀0.

3 NW

Proposition 3.1 If ψ(x1, . . . , xk) is a (∀)0-formula, then ψ(x1, . . . , xk) is 1-1-
satisfiable with respect to NW iff there exists a finite structure G = ({g1, . . . , gk}, R0)

such that g1, . . . , gk satisfy ψ(x1, . . . , xk) in G.

Proof: (⇐) Given G fulfilling the stated conditions, we extend R0 to a binary rela-
tion R on the Herbrand Universe H over g1, . . . , gk, 0, w where 0 is a new constant.
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The elements of H have the form ghwt1 . . . wtl, 0 ≤ h ≤ k, l ∈ ω, where g0 ≡ 0.
For r and ghwt1 . . . wtl in H we let

R(r, ghwt1 . . . wtl ) iff R0(r, gh) or r ≡ ti for some 1 ≤ i ≤ l.

It is straightforward to check that H provides a (normal) model of NW with ∅ inter-
preted as 0, ∈ interpreted as R, and w having the canonical interpretation wH .

Furthermore R(r, gh) entails R0(r, gh); in particular if R(r, gh) holds, then r
must be among g1, . . . , gk. Since the R-predecessors of g1, . . . , gk are the same as
the R0-predecessors of g1, . . . , gk, it is immediate that g1, . . . , gk satisfy ψ in H .

(⇒) If M = (M,∈M,∅
M, wM ) is a model of NW and g1, . . . , gk ∈ M 1-1-

satisfy ψ(x1, . . . , xk), then letting G = {g1, . . . gk} and R0 =∈M|G, it is obvious that
ψ is satisfied by g1, . . . gk in G = (G, R0).

As an immediate consequence of Propositions 2.3 and 3.1 we have the following.

Proposition 3.2

1. The problem of establishing whether a ∀0-formula is satisfiable with respect to
NW is decidable.

2. NW is decidable with respect to (the derivability of universal closures of) open
formulas in =,∈,∅, w .

The decidability results given in the previous proposition apply also to the theory
NW + E1 + E2, with the same decision test derived from Proposition 3.1 since we
have the following.

Proposition 3.3 NW + E1 + E2 is a conservative extension of NW with respect to
(the derivability of) universal closures of formulas in =,∈, involving only restricted
existential quantifiers, as well as with respect to universal closures of open formulas
in =,∈,∅, w.

Proof: It suffices to show that if a ∀0-formula ψ is satisfiable with respect to NW
then it is satisfiable with respect to NW + E1 + E2 as well.

If a ∀0-formula ψ(x1, . . . , xk) is satisfied in a model of NW then, because of
Proposition 3.1, it is satisfied in the Herbrand model H = (H, 0, R, wH ) defined in
the ⇐ part of the proof of Proposition 3.1. Such a model can be refined by using
as domain, instead of the full Herbrand Universe H, only the set of canonical terms,
namely the values of the function Canon defined as follows, on the ground of a total
order < of the terms in H:

Canon(gi) = gi for 0 ≤ i ≤ k

Canon(gh w r1 w . . . w rl ) = gh w Canon(ri1 ) w . . . w Canon(rin ),

where Canon{r1, . . . , rl} = Canon{ri1 , . . . , rin} and, for 1 ≤ j < k ≤ n, Canon(ri j ) <

Canon(rik ).
Letting H ′ = {Canon(t) : t ∈ H} and for r, s ∈ H ′, r wH ′

s = Canon(r w s),
since

Canon(Canon(t1) w Canon(t2)) = Canon(t1 w t2),

it is easy to verify that when ∅ is interpreted as 0, ∈ as R |H ′ , and w as wH ′
,

H ′ provides a model M ′ of NW in which g1, . . . , gk satisfy the given ∀0-formula
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ψ(x1, . . . xk). Furthermore it is obvious that M ′ is also a model of the two equations
E1 and E2.

4 NW + Extensionality Axiom When the Extensionality Axiom E is added to NW
the situation changes considerably. For one thing, we have that NWE is not a conser-
vative extension of NW already with respect to universal closures of open formulas
involving only = and w. For example the following formula,

(x w d = y w d ∧ y w d = z w d) → x = y ∨ x = z ∨ y = z,

is derivable in NWE but its negation can be seen to be satisfiable with respect to NW.
Furthermore, when dealing with the satisfiability of ∀0-formulas with respect to

NWE, there cannot be any decision test as the one provided by Proposition 3.1. In fact
from results in Parlamento and Policriti [10] it follows that the following ∀0-formula
ϕ(x1, x2),

x1 �= x2 ∧ x1 �∈ x2 ∧ x2 �∈ x1∧
∀x ∈ x1∀y ∈ x(y ∈ x2) ∧ ∀x ∈ x2∀y ∈ x(y ∈ x1)∧

∀xy ∈ x1∀zw ∈ x2(x ∈ z ∧ z ∈ y ∧ y ∈ w → x ∈ w)∧
∀x ∈ x1∀y ∈ x2(x ∈ y ∨ y ∈ x),

is not satisfiable in a finite structure (G, R) by any pair of elements a, b of G, if R has
to be extensional on every pair of elements of G containing either a or b; in particular
ϕ(x1, x2) is not satisfiable in any finite structure that can be extended into a model of
NWE without introducing new ∈-predecessors to its members. As a matter of fact
no decision method to check the satisfiability of ∀0-formulas with respect to NWE is
presently known, and this decision problem might very well be unsolvable (see [11]).
Definitely, for the time being, when dealing with satisfiability with respect to NWE
we have to restrict our attention to ∀0,0-formulas, as we will do in the rest of this paper.

Proposition 4.1 If ψ(x1, . . . , xk) is a (∀)0,0-formula then ψ(x1, . . . , xk) is 1-1-
satisfiable with respect to NW + E iff there exist a finite structure G = (G, R0), with
|G| ≤ 2k − 1, and elements g1, . . . , gk ∈ G such that:

1. R0 is extensional over g1, . . . , gk, i.e., for i �= j,gi and g j have different set of
R0-predecessors in G,

2. g1, . . . , gk satisfy ψ in G.

Proof: (⇒) Let M = (M,∈M,∅
M, wM ) be a model of NWE and suppose that

g1, . . . , gk ∈ M satisfy ψ(x1, . . . xk). Since M |= E, ∈M is extensional on g1, . . . , gk,
i.e., for 1 ≤ i �= j ≤ k there is di ∈ M such that

di ∈M ei iff di �∈M e j. (1)

From the results in Parlamento, Policriti and Rao [13], it follows that there are
d1, . . . , dkd

∈ M, with kd < k, such that {d1, . . . , dkd
} acts as a differentiating set for

{g1, . . . , gk}, namely, for every 1 ≤ i �= j ≤ k, a di satisfying Equation (1) can be
found in {d1, . . . , dkd

}. Letting G = {g1, . . . , gk, d1, . . . , dkd
} and R0 =∈M |G it is

immediate that G = (G, R0) fulfills Conditions (1) and (2).
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(⇐) Assume we are given a finite structure G = (G, R0) and g1, . . . , gk in G
satisfying the Conditions (1) and (2) and let G = {g1, . . . , gk, d1, . . . , dkd

} with kd <

k. Let H be the Herbrand Universe over g1, . . . , gk, d1, . . . , dkd
, 0, w, where 0 is a

new constant. Among the elements of H are the “numerals” n, where 0 is the given
new constant and n + 1 is inductively defined as n w n. Let

∈′= R0 ∪ {( j, di) : 1 ≤ i ≤ kd, 2n + 1 + i ≤ j ≤ 3n + 2 + i}
and ∈H be the closure over H of ∈′ with respect to the axiom W, namely let ∈H be
the least binary relation over H such that:

• ∈′⊆∈H ,
• b ∈H a w b,
• if c ∈H a then c ∈H a w b.

Let ∼ be the minimal reflexive co-bisimulation over (H,∈H ), namely the least binary
reflexive relation on H such that,

∀x ∈H a∃y ∈H b(x ∼ y) ∧ ∀y ∈H b∃x ∈H a(x ∼ y) → a ∼ b.

∼ is an equivalence relation (see [1]). For a ∈ H we let [a] be the ∼-equivalence
class containing a. If we let

1. H∼ = H/∼ = {[a] : a ∈ H},
2. ∅

∼ = [0],
3. [a] ∈∼ [b] iff there are a′, b′ ∈ H such that a ∼ a′, b ∼ b′ and a′ ∈H b′,
4. [a] w∼ [b] = [a w b],

it is easy to verify that H ∼ = (H∼,∅
∼,∈∼, w∼) is a model of NWE. The canoni-

cal projection π : H → H∼ is a system map from (H,∈H ) into (H∼,∈∼), namely
π(a) = {π(b) : b ∈H a}H∼

.

By induction it is easy to show that π is 1-1 on N = {0, 1, . . .}, and further-
more that π(i) has exactly i distinct elements. Since ∈H coincides with R0 over
{g1, . . . gk, d1, . . . , dkd

}, g1, . . . gk have at most n ∈H-predecessors. Therefore, since
π is a system map π(g1), . . . , π(gk) have at most n ∈∼-predecessors. For 1 ≤ i≤kd,
π(di) has at least n + 1 ∈∼-predecessors, namely π(2n + 1 + i),. . . ,π(3n + 2 + i).
Therefore we have that

π(d j) �= π(gi) for 1 ≤ j ≤ kd and 1 ≤ i ≤ k. (2)

Furthermore, since π(3n + 2 + j) is an ∈∼-predecessor of π(d j) but it is not an ∈∼-
predecessor of π(di), we have that

π(di) �= π(d j) for 1 ≤ i �= j ≤ kd . (3)

Since ∼ is the minimal reflexive co-bisimulation on (H,∈H ) and ∈H on {g1, . . . , gk,

d1, . . . , dkd
} is extensional over g1, . . . , gk, from Equations (2) and (3) it follows that

π is 1-1 over all of {g1, . . . , gk, d1, . . . , dkd
}.

Since π is a system map, from the 1-1-ness of π, it follows that π is actually an
isomorphism between ({g1, . . . , gk, d1, . . . , dkd

}, R0) and (H∼,∈∼) and furthermore
that

π(gi) = {π(e) : e ∈ G ∧ R0(e, gi)}H∼
. (4)
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It follows that π(g1), . . . , π(gk) satisfy in H ∼ the formula ψ(x1, . . . xk). For, sup-
pose the following conjunct ψi of ψ,

∀xi
1 ∈ yi

1 . . .∀xi
j ∈ yi

j (�i
1 ∨ . . . ∨ �i

hi
),

is not satisfied by π(g1), . . . , π(gk) in H ∼. Let also f1, . . . , f j be ∈∼-elements in
π(g1), . . . , π(gk) for which ¬�i

1 ∧ . . .¬�i
hi

holds. Because of Equation (4) there are
elements e1, . . . e j in G such that f1 = π(e1), . . . , f j = π(e j). Since π is an isomor-
phism between G and H ∼, e1, . . . e j satisfy ¬�i

1 ∧ . . .¬�i
hi

in G; therefore e1, . . . e j

witness the fact that g1, . . . , gk fail to satisfy ψi in G, against the assumption that
g1, . . . , gk satisfy ψ in G.

As an immediate consequence of Propositions 2.3 and 4.1 we have the following.

Proposition 4.2

1. The problem of establishing whether a ∀0,0-formula is satisfiable with respect
to NWE is decidable.

2. NWE is decidable with respect to (the derivability of universal closures of)
open formulas in =,∈,∅, w .

5 NWE + Regularity Axiom When the Regularity Axiom is added to NWE, com-
pleteness in addition to decidability is achieved. In fact we have the following propo-
sition.

Proposition 5.1

1. A (∀)0,0-formula ψ(x1, . . . , xk) is 1-1-satisfiable with respect to NW + E + R
iff there exist a finite structure G = (G, R0) with |G| ≤ 2k − 1 and elements
g1, . . . , gk ∈ G such that:

(a) R0 is extensional over g1, . . . , gk,

(b) R0 is well founded,

(c) g1, . . . , gk satisfy ψ in G.

2. NW + E + R is complete with respect to the existential closure of (∀)0,0-
formulas and of open formulas in =,∈,∅, w.

Proof: The proof of the ⇒ part of (1) is essentially the same as for the ⇒ part of
Proposition 4.1. The ⇐ part of (1) follows from the following fact.

If ψ is satisfied in G = ({g1, . . . , gk, d1, . . . , dkd
}, R0) by g1, . . . , gk, and R0 is

well founded as well as extensional on g1, . . . , gk, then ψ is satisfied in (HF,

∈), HF being the collection of the ordinary hereditarily finite sets.

Let n = k + kd. Since R0 is well founded on G = {g1, . . . , gk, d1, . . . , dkd
}, we can

define by induction on R0 a map ∗ : G → HF by letting

g∗
i = {e∗ : R0egi}

d∗
i = {e∗ : R0edi} ∪ {{i, n − 1}}.

Since rank({i, n − 1}) = n, it is immediate that rank(d∗
i ) > n for 1 ≤ i ≤ kd. Further-

more, if in the R0-transitive closure of g j there is no element in {d1, . . . , dkd
}, then
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rank(g∗
j ) < k ≤ n; if, on the other hand, the R0-transitive closure of g j contains some

element in {d1, . . . , dkd
}, then rank(g∗

j ) > n. Thus, for every e ∈ G, rank(e∗) �= n,
and so e∗ �= {i, n − 1} for all 1 ≤ i ≤ kd.

From that it follows very easily that ∗ is a 1-1 map and in turn that

for all e1, e2 ∈ G, e1 R0e2 iff e∗
1 ∈ e∗

2. (5)

We claim that ψ is satisfied by g∗
1, . . . , g∗

k in HF. Assume by way of contradiction
that ψ is not satisfied by g∗

1, . . . , g∗
k in HF, and let ψi be a conjunct,

∀xi
1 ∈ yi

1 . . .∀xi
j ∈ yi

j (�i
1 ∨ . . . ∨ �i

hi
),

which is not satisfied by g∗
1, . . . , g∗

k . Let f1, . . . , f j be elements in g∗
1, . . . , g∗

k for
which ¬�i

1 ∧ . . . ∧ ¬�i
hi

hold. Due to the definition of ∗ on {g0, . . . , gk}, f1, . . . , f j

are actually values of ∗ itself, say f1 = e∗
1, . . . , f j = e∗

j . Because of Equation (5),
e1, . . . , e j would provide a counterexample to the assumed satisfiability of ψ by
g0, . . . , gk.

(2) If ψ is satisfied with respect to NW + E + R, combining the ⇐ and ⇒ part of
(1) we have that ψ is satisfied in (HF,∈). Since (HF,∈) is isomorphically embedded
as an ∈-initial part into every model of NW, it follows that ψ is satisfiable in every
model of NW + E + R; therefore the existential closure of ψ is derivable from NW +
E + R.

As an immediate consequence of Propositions 2.3 and 5.1 we have the following.

Proposition 5.2

1. The problem of establishing whether a ∀0,0-formula is satisfiable with respect
to NWE + R is decidable; actually NWE + R is complete with respect to ∀0,0-
formulas.

2. NWE + R is decidable with respect to (the derivability of universal closures
of) open formulas in =,∈,∅, w; actually NWE + R is complete with respect
to universal closures (equivalently existential closures) of open formulas in =,

∈,∅, w.

Remark 5.3 It is clear from the proof that in Proposition 5.1 the Regularity Axiom
R can be weakened to the schema:

Rs: ¬∃x1 . . . xn(x1 ∈ x2 ∧ . . . ∧ xn−1 ∈ xn ∧ xn ∈ x1),

which is derivable in NW from R. The example we have provided to show that
NWE is not a conservative extension of NW + E1 + E2 actually establishes also that
NWE + R is not a conservative extension of NW + E1 + E2 + R for universal closures
of formulas in = and w alone. Thus the completeness result in Proposition 5.1.2 does
not hold any more if NWE + R or NWE + Rs are weakened to NW + E1 + E2 + R
or NW + E1 + E2 + Rs.

For each n, in NW it is possible to introduce via an explicit definition the n-tuple op-
erator {x1, . . . , xn}n = ∅ w x1 w . . . w xn, and derive the following schema:

T : x ∈ {x1, . . . , xn}n ↔ x = x1 ∨ . . . ∨ x = xn.

NW + E1 + E2 implies all the formulas in the following schema:
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ET : {x1, . . . , xk}k = {y1, . . . , yn}n,

where y1, . . . , yn lists without repetitions all the variables in the sequence x1, . . . , xk.
Letting NT be the theory in the language containing ∅ and for each n the n-ary func-
tional symbol {. . .}n whose axioms are N and all the formulas in the schema T ; it can
be shown that NT + ET + Rs is complete with respect to existential closure of open
formulas in its own language.

NT + ET + Rs appears to be a minimal theory which, on one hand, ensures the
existence of the hereditarily finite sets and, on the other hand, enjoys the completeness
property established in Proposition 5.1.2 (cf. also Ville [16]).

6 NW + Antifoundation Axiom Let us recall from [1] that the anti-foundation ax-
iom AFA states that every graph (G, R) has a unique decoration, namely a function
f whose domain is G and such that ∀a ∈ G, f (a) = { f (b) : bRa}. The uniqueness
of the decoration whose existence is stated in AFA entails a strong form of extension-
ality that can be analyzed using the notion of bisimulation, which in [1] is defined as
follows. A binary relation R is a bisimulation if

aRb ⇒ ∀x ∈ a∃y ∈ b(xRy) ∧ ∀y ∈ b∃x ∈ a(xRy).

The uniqueness condition stated in AFA is equivalent (in ZF) to the nonexistence of
bisimulations different from the identity (proper bisimulations).

The Axiom of Regularity together with the Axiom of Extensionality readily en-
tails the nonexistence of bisimulations relating different sets. In particular no such
bisimulations can exist on HF. On the other hand, in ZF minus the Axiom of Reg-
ularity, the axiom of Extensionality immediately follows from the nonexistence of
proper bisimulations. However that it is not the case in NW as it is shown by the
following model.

Let M be the closure under w of HF ∪ {υ1, υ2}, where υ1, υ2 are distinct objects
not belonging to HF; let ∈′ be the expansion of ∈ over M obtained by letting e ∈′ υ1

and e ∈′ υ2 for all e ∈ HF ∪ {υ1, υ2}; let ∈M be the least expansion of ∈′ such that
for all a, b, c in M, b ∈M a w b; and if c ∈M a then c ∈M a w b.

Furthermore, let ∅
M be ∅ ∈ HF, and

wM (a, b) =
{

a ∪ {b} if a, b ∈ HF
a w b otherwise.

M = (M,∈M,∅
M, wM ) is a model of NW.

υ1 and υ2 as well as all those elements of M which are obtained by start-
ing with υ1 or υ2 and applying wM have all the elements in HF among their ∈M-
predecessors. Furthermore they are the only elements of M which have infinitely
many ∈M-predecessors. Since υ1 and υ2 have the same ∈M-predecessors and they
are distinct, the Axiom of Extensionality fails in M . Nevertheless

M |= ∀ab ¬∃R (R is a bisimulation ∧ (a, b) ∈ R ∧ a �= b)

For, suppose a, b, R ∈ M are such that M |= (R is a bisimulation ∧ (a, b) ∈ R ∧
a �= b). If a, b ∈ HF then from R we could easily obtain a bisimulation on (HF,∈)
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relating a and b; but, as we noticed, no such bisimulation on HF can exist. On the
other hand if, for example, a ∈ M \ HF then either υ1 or υ2, say υ1, is in the ∈M-
transitive closure of a. To every ∈M-predecessor of υ1 has to correspond an M-
ordered pair (x, y)M such that (x, y)M ∈M R, and to different ∈M-predecessors of υ1

correspond different M-ordered pairs ∈M-related to R. Since υ1 has infinitely many
∈M-predecessors, every element in HF is ∈M-related to R, in particular there are ele-
ments ∈M-related to R which are not M-ordered pairs, so the assumption that M |= R
is a bisimulation is contradicted.

A simple change in the notion of bisimulation suffices to give to AFA a form
which in one hand is equivalent to the previous one with respect to ZF minus the Reg-
ularity Axiom (ZF−), and on the other hand is appropriate when working with NW.
In fact it yields to NW enough strength to derive the Extensionality Axiom and to
share with ZF− + AFA the completeness property to be proved in the following. We
say that a binary relation R is a weak bisimulation if

aRb ⇒ ∀x ∈ a(x ∈ b ∨ ∃y ∈ b(xRy)) ∧ ∀y ∈ b(y ∈ a ∨ ∃x ∈ a(xRy)).

Furthermore R is proper if it contains at least one pair (a, b) with a �= b. Note that
in ZF, due to the existence of transitive closures, this new version of the definition of
bisimulation is equivalent to the old one.

We formulate the strong extensionality axiom SE as follows

(SE) there are no proper weak bisimulations,

and AFA′ as the conjuntion of SE and

(AFA1) every graph has at least one decoration.

Note that in NW, SE entails E; in fact if a and b are different and have the same pre-
decessors then {(a, b)}, which exists in NW, is a proper weak bisimulation.

The role previously played by the structure HF of the hereditary finite sets is
played in the present context by the structure V f of the hereditary finite hyperset,
which we will define following the construction of a model for ZF− + AFA described
in [1].

Let us recall from [1] that an accessible pointed graph (apg) is a graph with a dis-
tinguished node, called its point, from which any (other) node can be reached through
a finite path. Let V0 f be the class of all the finite apgs. For a, b ∈ V0 f let a ∈0 f b hold
iff a is a subgraph of b generated by one of the predecessor in b of the point of b. If
for a, b ∈ V0 f we let a ∼V f 0 b mean that there is a bisimulation R on V0 f such that
(a, b) ∈ R, then ∼V f 0 is an equivalence relation.

We let V f be the quotient of V0 f with respect to ∼V f 0 and ∈ f be the relation
induced over V f by ∈0 f . (V f ,∈ f ) is strongly extensional in the sense that no proper
bisimulation with respect to ∈ f exists on V f , and it is called the strongly extensional
quotient of V f . (V f ,∈ f ) is a model of NW; actually it is a model of ZF deprived of
the Foundation and Infinity axioms.

For every finite graph G = (G, R0) there is a unique system map from G into
V f , namely a function πG : G → V f such that

aR0b ⇒ πG(a) ∈ f πG(b)

c ∈ f πG(b) ⇒ ∃a ∈ G aR0b ∧ c = πG(a).
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πG is a strongly extensional quotient of G in the sense that πG induces on G an equiv-
alence relation which is the maximum bisimulation on G. (V f ,∈ f ) is isomorphically
embedded, as an ∈-initial part, into every model of NW + AFA′.

If M = (M,∈M,∅
M, wM ) is a model of NW, for a ∈ M we let Ma denote the

∈M-transitive closure of a, i.e.,

Ma = {b ∈ M : there is a finite ∈M -chain a0 ∈M a1 ∈M . . . ∈M an,

such that a0 = b and an = a},
and let

h f (M ) = {a ∈ M : Ma is finite }.
A simple adaptation of result in [1] leads to the following.

Proposition 6.1 If M |= NW + AFA′ then (h f (M ),∈M ) is isomorphic to (V f ,

∈ f ).

Proof: If a ∈ h f (M ) then Ma ∈ V0 f and the map that assigns Ma to a ∈ M is clearly
a system map which, composed with the strongly extensional quotient π f : V0 f → V f

yields a system map π : h f (M ) → V f . h f (M ) is strongly extensional, hence π is
injective, as it follows by Theorem 2.19 in [1].

If a ∈ V f then V f a is an apg and, since it is finite and M |= NW, there exists
in M the corresponding graph g. Furthermore since M |= AFA′ there exists in M a
decoration dM of g, from which we obtain an M -decoration d of V f a. Then π ◦ d :
V f a → V f is a system map. As V f is strongly extensional π ◦ d must be the identity
map on V f a, since the identity is a system map on V f a and there is only one system
map on V f a ([1] Thm. 2.19). In particular a = π(da). Thus π is surjective as well
as injective, hence it is an isomorphism.

The key notion to obtain our further decidability as well as completeness results is
expressed by the following definition, in which the notion of R being a proper bisim-
ulation refers to the binary relation R0 rather than ∈.

Definition 6.2 A graph (G, R0) is said to be strongly extensional on {g1, . . . , gk} ⊆
G if there is no proper weak bisimulation R on {g1, . . . , gk} such that gi Rg j and gi

and g j have the same R0-predecessors in G \ {g1, . . . , gk} for some 1 ≤ i �= j ≤ k.

Proposition 6.3 A (∀)0,0-formula ψ(x1, . . . , xk) is 1-1-satisfiable with respect to
NW+SE iff there exist a finite structure G = (G, R0), with |G| ≤ 2k −1 and elements
g1, . . . , gk ∈ G such that:

1. R0 is strongly extensional over g1, . . . , gk,
2. g1, . . . , gk satisfy ψ in G.

Proof: (⇒) Suppose M is a model of NW + SE and g1, . . . , gk are elements in M
satisfying ψ(x1, . . . , xk). For 0 ≤ i, j ≤ k, we let

gi ∼ g j if Pred∈M (gi) \ {g1, . . . , gk} = Pred∈M (g j) \ {g1, . . . , gk},
where Pred∈M (a) = {b ∈ M : b ∈M a}.

Since D = ⋃{Pred∈M (gi) \ {g1, . . . , gk} : 0 ≤ i ≤ n} is a differentiating set
for ∼, i.e., if gi �∼ g j then there is d ∈ D such that d ∈M gi ↔ d �∈M g j, by [13]



MEMBERSHIP THEORIES 315

there are elements d1, . . . dkd
in D such that kd < k and {d1, . . . dkd

} is a differen-
tiating set for ∼. Letting R0 =∈M |{g1,...,gk,d1,...dkd

} and G = (G, R0) where G =
{g1, . . . , gk, d1, . . . dkd

}; it is obvious that g1, . . . , gk satisfy ψ in G.
Furthermore we claim that G is strongly extensional on {g1, . . . , gk}. Assume

that R is a weak bisimulation on {g1, . . . , gk} such that if gi Rg j, then gi and g j have
the same R0-predecessors on G \ {g1, . . . , gk}. Since G is finite and M |= NW, there
is an element RM in M such that (a, b)M ∈M RM iff (a, b) ∈ R, where (a, b)M is
the natural interpretation in M of the ordered pair operation, i.e., (a, b)M is ∅

M wM

a wM (∅M wM a wM b). Due to the choice of d1, . . . , dkd
it is immediate that RM is

also a weak bisimulation from the point of view of M . Since M |= SE, RM must be
an identity relation; i.e., if (a, b)M ∈M RM then a = b. From that it follows that R is
the identity relation on {g1, . . . , gk} and our claim is proved.

(⇐) Let G = {g1, . . . , gk, d1, . . . , dk} with kd < k. Let H be the Herbrand uni-
verse over g1, . . . , gk, d1, . . . dkd

, 0, w where 0 is a new constant and ∈H is defined
on H as in the proof of Proposition 4.1. Let π be the strongly extensional quotient
of (H,∈H ) in (V f ,∈ f ), namely the unique system map from (H,∈H ) into (V f ,∈ f ).
Since π is a system map, for every a ∈ H |π(a)| ≤ |{b ∈ H : b ∈H a}|. Furthermore,
since there is no bisimulation relating two distinct hereditarily finite sets, for i, j ∈ ω,
if i �= j then π(i) �= π( j) and |π(i)| = i. From that as in the proof of Proposition 4.1,
it follows that

(∗) π is 1-1 on {d1, . . . , dk} and

(∗∗) π(d j) �= π(gh) for 1 ≤ j ≤ kd and 1 ≤ h ≤ k.

Assume that π(gh) �= π(g�), 1 ≤ h, � ≤ k. Since π is a system map, from π(gh) �=
π(g�) it follows that there exists a weak bisimulation R on H such that gh Rg�. The
restriction of R to {g1, . . . , gk} is a weak bisimulation. That easily follows from the
following straightforward consequences of (∗) and (∗∗):

1. if e0 ∈ {g1, . . . , gk}, e1 ∈ G and e0 Re1 then e1 ∈ {g1, . . . , gk};
2. if gi Rg j, 1 ≤ i, j ≤ k, then gi and g j have the same predecessors in {d1, . . . , dk}.

Since ∈H |G = R0, ∈H |G is strongly extensional over {g1, . . . , gk} in G; from (2) it
follows that R must be the identity over {g1, . . . , gk}, hence gh = g�. Hence π is 1-1
over all of {g1, . . . , gk, d1, . . . , dk}. The same argument used in the proof of Propo-
sition 4.1 and Proposition 5.1 then shows that π(g1), . . . π(gk) satisfy ψ in (V f ,∈ f ).

As an immediate consequence of Propositions 2.3 and 6.3 we have the following.

Proposition 6.4

1. The problem of establishing whether a ∀0,0-formula is satisfiable with respect
to NW + SE is decidable.

2. NW + SE is decidable with respect to (the derivability of universal closures of)
open formulas in =,∈,∅, w.

Since (V f ,∈ f ) is a model of NW + AFA′, the proof of Proposition 6.3 has as byprod-
uct the following conservativity result.

Proposition 6.5 NW + AFA′ is a conservative extension of NW + SE with respect
to (the derivability of) universal closures of formulas in =,∈, involving only restricted
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existential quantifiers, as well as with respect to universal closures of open formulas
in =,∈,∅, w.

Therefore the decidability results established in Proposition 6.4 apply to NW + AFA′

as well, with the same decision tests.
Finally, combining the proof of Proposition 6.3 with Proposition 6.5 we have as

an immediate consequence the following completeness result.

Proposition 6.6 NW + AFA′ is complete with respect to existential closures of
(∀)0,0-formulas and with respect to universal closures (equivalentely existential clo-
sures) of open formulas in =,∈,∅, w.

Remark 6.7 The above completeness result does not hold for the theory NW +
E + AFA.

Let N be the closure under w of V f ∪ {υ1, υ2}, with υ1 �= υ2, υ1, υ2 �∈ V f . Let
∈′ be the expansion of ∈ f over N obtained by letting a ∈′ υ1 and a ∈′ υ2 for every
a ∈ V f and υ1 ∈′ υ2 as well as υ2 ∈′ υ1 and let ∈N the least expansion of ∈′ such that
for all a, b, c in N, b ∈N a w b and if c ∈N a then c ∈N a w b.

As in the proof of Proposition 4.1 the quotient N∼ of N with respect to the min-
imal reflexive co-bisimulation on (N,∈N ), yields a model N of NWE. Since ∈ f is
extensional on V f , a ∈ V f can be identified with its equivalence class [a]. Therefore
(V f ,∈ f ) can be seen as a substructure of N .

The same argument previously given for the model M shows that for G ∈ N∼,
if N is a model of “G is a graph,” then G has only finitely many ∈N∼

-predecessors;
to such a G ∈ N∼ corresponds a finite graph which has a decoration d in V f . Since
d is finite and N∼ |= NW, in N∼ there is an element dN∼

which satisfies, in N∼, the
property of being a decoration of G. Furthermore there is no other element d̂N∼

in
N∼ which is also a decoration of G, since otherwise dN∼

and d̂N∼
would give rise

to an element R of N∼ satisfying in N∼ the property of being a bisimulation relation
among two different elements of N∼(see [1]); the existence of such an R can be ruled
out using the same argument given for the model M .

The elements υ1 and υ2 satisfy in N∼ the following ∀0,0-formula ψ:

∀x ∈ u1(x �= u2 → x ∈ u2) ∧ ∀x ∈ u2(x �= u1 → x ∈ u1)∧
u1 ∈ u2 ∧ u2 ∈ u1 ∧ u1 �= u2.

However ψ is not satisfiable in V f . Therefore the existential closure of ψ is neither
provable nor refutable in NW + E + AFA. Note that in N∼, {(υ1, υ2)

N∼}N∼
satisfies

the condition of being a proper weak bisimulation, so that N �|= AFA′.
Finally let us remark that, although every model of NW + SE is extensional, the

strong extensionality of a model of NW cannot be ensured by the validity of any set
of first order sentences. In fact, if T is a theory consistent with NW then, by compact-
ness, the theory

NW + T ∪ {ci = ci+1 w ci+1 : i ∈ ω} ∪ {ci �= c j},
where {ci : i ∈ ω} is a set of new constants, has a model M . Since the relation
{(cM

i+1, cM
i ) : i ∈ ω} is clearly a proper bisimulation on M , M is not strongly ex-

tensional.
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Remark 6.8 A class of formulas essentially equivalent to the ∀0,0-formulas, exten-
sively dealt with in this work, was first investigated in Breban, Ferro, Omodeo, and
Schwartz [3], where it is shown that it is decidable whether any given formula in the
class is satisfiable in the “intended” model of set theory. The theory NWL obtained
by adding to the language of NW the binary function symbol l and the axiom

(L): ∀x∀y∀z(z ∈ xly ↔ z ∈ x ∧ z �= y)

has been investigated together with some of its extensions in Omodeo, Parlamento,
and Policriti [8], which establishes decidability as well as completeness results for
formulas in the language =,∈ involving only one universal (unrestricted) quantifier.
Since open formulas in =,∈,∅, w, l can be transformed into equisatisfiable ∀0,0-
formulas, the results in this paper apply to the extended language and theories as well.
Open formulas both in the original and in the extended language can also be easily
transformed into equisatisfiable (with respect to extension of NWL) formulas involv-
ing only one universal (unrestricted) quantifier; as a consequence the analogue for
NWL and its extensions of some of the results in this work can also be inferred from
results in [8].
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