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Partial Up and Down Logic

JAN O. M. JASPARS

Abstract  This paper presents logics for reasoning about extension and
reduction of partial information states. This enterprise amounts to nonpersist-
ent variations of certain constructive logics, in particular the so-called logic of
constructible falsity of Nelson. We provide simple semantics, sequential cal-
culi, completeness and decidability proofs.

1 Introduction Themost simplelogical meansfor knowledge representationisthe
semantic concept of partial truth-assignment. Propositionswith adefinite truth-value
reflect the knowledge of a chosen agent. Propositions which are mapped to 1 are the
things that the agent knows to be true, while propositions which have value 0 cover
theinformation that the agent knows to be false. Propositions whose truth-values are
left underspecified denote the agent’s ignorance.

In this paper we develop dynamic extensions over these simple static represen-
tations, that isformalismswhich provide logical meansfor reasoning about changing
partial information states. We will follow van Benthem and de Rijke's style of dy-
namic modal logic (see van Benthem [[4] and de Rijke [20]), where such formalisms
are defined on the basis of total information states. We will focus on two kinds of
changes: enrichment and reduction. These kinds of manipulations of states can eas-
ily be defined using a structural extension order < which evolves naturally from the
definition of partiality. Given the static meaning [¢]] of aproposition ¢ , i.e., the par-
tia states which support this proposition, the dynamic meaning [[¢]]qy is induced by
the extension order:

{(st)|s<t&te[e]}.

It represents arelational description of what happensto a state s when it is extended
with theinformation ¢. In an analogous way we specify the negative dynamic mean-
ing [¢]l dy of ¢, that is, the ways a situation s can shrink when the information ¢ has
been removed from it:

{(st)|t<s&td[e]}.
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These two dynamic denotations are the basic relations for dynamic modal reason-
ing over extension and reduction. Such explicit dynamics will be accommodated by
operators [¢]y, and [¢]q for making universal statements over extensions and reduc-
tions, respectively. Their dual existential counterparts will be called (@), and (¢)q.
A proposition of the form [¢], ¥ says that extending the current state with the infor-
mation that ¢ necessarily leads to a state which supports v, while (¢)4 ¥ means that
it ispossibleto retract ¢ from the current state in such away that - holds afterwards.

(Note that these extension and reduction relations are only a small fragment of
therelational wealth which has been employedin [4]. Van Benthem uses further rela-
tional constructions to interpret more complex dynamic operations, which facilitates
definition of minimal variations of the extension and reduction relations. A negative
side effect of the richness of van Benthem’s system is its undecidability, see [20] and

deRijke[21].)

2 Dynamic, constructive, and nonmonotonic logic  The above-mentioned sim-
ple dynamic setting originates from Kripke's semantic analysis of intuitionistic logic
[14]. Intuitionistic logic can be seen as a dynamic logic of possessing mathematical
proofs, and because this kind of information is taken to be persistent, that is proofs
cannot beforgotten or retracted, only the extension relation isused for interpreting in-
tensional connectiveslikeimplication and negation. Inadynamic modal setting intu-
itionisticimplication ¢ — v can be described as[¢]y ¥, while intuitionistic negation
of ¢ boilsdownto [¢], L, where L isthe absurd or unprovable proposition.

The latter interpretation of negative information has led to discussion among
constructivists, and also inspired different constructivistic axiomatizations of mathe-
matical reasoning. One of these alternatives has been proposed in Nelson [I7] (for a
thorough essay on different treatments of negative information in constructive logic
see Wansing [[31]). Nelson’slogic of constructible falsity treats negative information
in the same fashion as positive information by taking refutation as a second mathe-
matical construction. Proofs determine constructible truth, while refutations register
constructible falsity. Thislogic reinstalls classical laws like the double negation and
de Morgan equivalences in constructive logic, without accepting the principle of the
excluded middle. Nelson’'s logic is of particular importance here, because it com-
pletely describes the persistent ‘upward’ part of the logics of this paper. Technically
speaking, the logics we consider naturally arise from extending the expressivity of
Nelson’slogic over its Kripke semantics, which is principally the dynamics over par-
tial states which has been described above. Kripke semantics for Nelson’slogic can
befoundin Thomason [[26]. (Nelson’slogic has also been propagated outside thefield
of mathematical logic, a paper which demonstrates its use in default logic and logic
programming is Pearce [18].)

In Gabbay [[8] a nonpersistent extension of intuitionistic logic has been intro-
duced by means of adding existential expressivity over the extension relation. The
reason is to capture the consistency-operator M of the original default logic of Re-
iter [[19] in an explicit fashion. The statement My means that the current state can be
extended with the information ¢. It can be defined in the dynamic modal setting by
(TYup, Where T isthe trivia proposition which is always true (proved). In Turner
[28] thisidea has been incorporated in the setting of partial logic. Thekind of Kripke
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models for Nelson's logic and the up-and-down logics of this paper are also used
there.

These nonpersistent variations can be seen as subsystems of the ‘upward’ parts
of the up-and-down logics of this paper. We will stick to classical definitions of se-
manti ¢ consequence and validity, and subsequently our systemswill behave perfectly
monotonic, transitive, commutative, etc. More unorthodox nonmonotonic entailment
relations can be defined within the language of our up-and-down logics. For example,
an obvious nonmonotonic candidate isthe following:  followsfrom the assumption
sequence ¢, . . ., ¢n if extending an arbitrary state consecutively with ¢ through ¢n,
always leads to a state which verifies . In other words, [¢1]y ... [¢n]u ¥ holds al-
ways. Nonmonotonicity immediately pops up, because (T), ¢ follows from itself,
while it does not follow from the extended sequence (T)y ¢, [¢]u L. Commutativity
alsofailsinan obviousway: 1 followsfrom [¢]y L, (T )y ¢, whileit does not follow
necessarily from (T)y o, [¢]u L.

In Section 3 we give a brief presentation of the semantics of partial logic and
corresponding sequential axiomatizations. In Section 4 wefollow the same procedure
for their dynamic modal extensions. Finally, in Section 5 we prove compl eteness and
decidability for the sequential systems of the first two sections.

3 Partial Logic Inthissection we shortly present asimple setting of partial propo-
sitional logics. Aspartial logics are most often inspired by semantic motivations, we
wish to start with some of their basic modeltheoretic concepts.

3.1 Partial valuations

Definition 3.1 A partial valuation V is a partial function which assigns truth-
valuesto agiven set of propositional variables IP. In order to distinguish partial func-
tionsfrom total functionswe replacethe normal functiona arrow — by ~-+. Inshort,
V : IP~> {0, 1}. Thecollection of al partial valuationsis denoted by 3. The domain
of V e P, Dom(V), istheset of all propositional variableswhich obtain atruth-value
by V:

Dom(V) :={pelIP|V(p)=21orV(p) =0}.

Here partial valuations forbid the possibility for a proposition to be true and false at
the same time. A technical remova of this ‘excluded fourth value' boils down to
redefining partial valuations V as relations between propositiona variables IP and
truth-values: V C IP x {0, 1}. Such liberalism has been defended for epistemic pur-
poses by Belnap in his [Iﬂ In Jaspars [Im the reader finds some arguments against
this position. A technical advantage of going four-valued is that the classical sym-
metry between negative and positive information in partial logic gets restored, see
for example Wagner [[30].

If Dom(V) = IP then V issaid to be total. V' is said to be an extension of V
whenever V/ and V agree on all the propositional variablesin the domain of V. We
write V C V' if thisrelation holds:

def
VEV &5 vpeDom(V): V(p) = V(p).
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This last relation is of particular interest. V C V' says that V' contains at least as
much information as V. Given thisinformation order we are able to develop the kind
of dynamics which has been mentioned in the Introduction.

3.2 Languageswith staticdenotation Therearemany different partial logics. Loss
of two-valuednesscreatesal ot of freedom, and subsequently |eadsto dispute and con-
fusion. Eventhebasic choicesof theinterpretation of ordinary static connectiveshave
led to divergent opinions. Many conflicting choices, however, are due merely to the
underlying motivations of different applications of partial logic. This flexibility has
led to many different partial logics.

The basic static language £ which wewill useisdefined below. The reason why
we have chosen £ as our basic static partial equipment will be motivated on seman-
tical grounds later on in this subsection.

Definition 3.2  Let IP be anonempty enumerable set of propositional variables or
atoms. The language £ isthe smallest superset of IP such that

o, e L= (—p),(eAry)e Land L € L.

These connectives are called negation, conjunction, and falsum respectively.

We will avoid superfluous use of parentheses, and take binary connectives to
dominate over unary connectives. For example —¢ A 1 means ((—¢) A ) and not
(= (¢ A ). Furthermore, we will also use convenient abbreviations, like T := =L
(verum), ¢ v ¢ := —(—¢ A ) (digunction). The letters p, g, r, possibly with ad-
ditional sub- or superscripts, are used as atoms. Greek lower case |etters are used to
denote arbitrary formulas, while Greek capitals denote sets of formulas. Throughout
the text we will also use sets of formulas in the scope of connectives and operators.
Such expressions should be read in the most straightforward distributive manner. For
example, -I'={—g |peTandp AT ={pAy |y €T}

ForagivenV € 3 themembersof £ obtain truth-valuesaccording thefollowing
inductive scheme:

Table 1

VEp& V() =1 (pelP) Ve p&s V(p)=0 (pelP)
VL VoL

VE-9& Ve Ve —-p&ViEe
VEeAYy & VEe&VEY | VideAay o VeporVHy

Clearly, there are other interpretations of negation and conjunction which are
feasible as well. The choices which have been made in Table 1 are called strong or
exclusive negation for — and strong Kleene conjunction for A. The weak Kleene con-
junction A gives the same results whenever both conjuncts have a determined truth-
value, and is undefined whenever one of the conjunctsis undefined. This entails the
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same truth conditions, but strengthens the falsity of conjunctions. Thisweak Kleene
conjunction can be defined in terms of L:

PAY = (@AY A=(QA=) A= (Y A=Y)).

Thelanguage £ has no complete expressive power over partial valuations. This
means that there are other truth-value functional connectives which cannot be ex-
pressed in terms of £ in the way the weak Kleene conjunction above has been de-
fined. A simple example is weak negation ~, which expresses that its argument is
not true. Even when this connective is added to the language some expressive power
is gtill lacking. Complete expressivity is reached when the O-ary connective ® has
been added as well, which isthe proposition which is always undefined. The follow-
ing table adds the truth-values for these additional connectives.

Table 2

VE~ o VFEe | V4~ ViEY
VIE® VA®

A proof of thisfull expressivity of L&~ can befound in Langholm [15]. Invan
Benthem [[3] the reader finds a functional completeness proof for £~ with respect
to the class of closed and persistence preserving connectives. Closedness refers to
truth-value determination for the connected proposition whenever its connected parts
have al determined truth-values. Persistence preservation of aconnective meansthat
persistence of its parts is preserved. A functional completeness proof for £L® with
respect to persistence preservation is due to Blamey [E]. In Thijsse [24] the reader
finds an extensive survey on definability in partial logic with additional results for
other languages.

The connectives in Table 2 have been distinguished from those in Table 1 on
purpose. Their separation embodies the difference between partial and three-valued
logics. Inour view, three-valued logics are logics with three, equally qualified truth-
values, while partial logic treats undefinedness as pure non-truth-valuedness. This
distinction of determinate truth-values and undefinedness entails two crucial const-
raintsfor ‘real’ partial logics. First, whenever al the parts of some proposition have
obtained a truth-value, then the proposition ought to get a truth-value as well, and
second, if a proposition contains undefined parts then it may only get a truth-value
whenever at least one part has atruth-value. Adherence to these dogmas of partiality
leads to abandonment of connectives like ~, by the latter constraint, and ®, by the
former requirement. Technically, these two claims boil down to closed persistence
preservation. By van Benthem'’s functional completeness result for £ (see [3]), the
partiality constraints precisely give us our linguistic means for partial propositional
logic. We will not commit ourselves strictly to these principles of partiality, but in-
stead, keep ‘nonpartial’ connectives separated.

Definition 3.3  The static ‘B-denotation [¢]]: of a proposition ¢ € L is given by
the set of partial valuationswhich support ¢, i.e., {V € B | V = ¢}. We say that a set
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of formulas A C L isaP-valid consequence of I' C L whenever al V € 3 which
verify all members of I" verify at least one of the formulasin A.1 We write:

Mg A & [ﬂ[[w]]m} < [U[[w]]m]

pel’ YeA
When an argument in the consequence relation is left blank, then this argument
is taken to be the empty set.

Below we will use analogous definitions for other classes of models and lan-
guages. A simple replacement of 3 and L is enough to get the right definitions on
the right place.

Observation 3.4  Significant classical validitieswhich are‘B-invalid are contrapo-
sition and the principle of the excluded middle:

FeEpA # “AEg - —TkEg-A % DEgA
g —e, ¢.

The contraposition of the excluded middle, the ex falso principle, isa3-validity:
—@, ¢ =g, Which also immediately provides a counterexample for contraposition.
The structural reason behind this phenomenon is the following nonduality: [l N
[—¢llp = 9, while[[¢]lz U [—¢]lp # 9B ingeneral. Many other classical principles
are inherited by partial logic, e.g., de Morgan principles, double negation, and the
distribution principle for conjunction and disjunction.

3.3 Sequential axiomatizations of partial logics  Inthissubsection we give ashort
presentation of a Gentzen-style sequential axiomatization of B-validity. There are
two main reasons to choose this style of deduction. First of al, sequential systems
turn out to be very practical when it comes to metatheory of partial logics, and sec-
ondly, they show the logical difference with classical systemsvery clearly.

Definition 3.5  In general, we define our sequential format as follows:

Fnpi b Anpa

D

I and A are sets of formulasfor all i € {1, ..., n+ 1}. The symbol - denotes
the derivation relation between these sets of formulas. ' - A is called a sequent, I'
is the assumption set of this sequent and A its conclusion set. The fraction notation
in (1) must be interpreted as a conditional. The sequents ' = A; withi < n arethe
conditions of therulein (1), and ', 1 = Ap 1 iSthe consequence of thisrule. If n =
0 then the set of conditions is empty. In this case the rule is said to be axiomatic.
Because the arguments of the derivation relation are sets, the notationsI", g and I", I/
refertoI' U {p} and " U T, respectively. Again, empty arguments of sequents refer
to the empty set.

A sequential systemSisaset of such sequential rules. If Lsistheunderlyinglan-
guage, and I', A C Ls, thenwe say that T" s A isan S-sequent, or A is S-derivable
from I, whenever I' = A can be established after a finite number of applications of
therulesin S. WewriteI' =g AifI'sAand A FgT.
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The arguments of sequents have been chosen to be sets on purpose. It reduces
the amount of structural rules. Thefollowing table presentsthe structural ruleswhich
are left.

Table3 STRUCTURAL RULES
''EA If TNA#@  START
rEATCr L MON
I'-A
T, AT, pF A
-
T T E A A cu
'EA ACA R-MON
A/

Theleft- and right-hand introduction of connectives are defined in two manners.
It may be introduced straight away, the TRUE-introductions, and under the scope of
a single negation, the FALSE-rules. This entails four possible introduction rules for
every connective. The table below presents the TRUE- and FAL SE-rules separately.?

Table 4 TRUE

' LEA L-TRUE L
I'Fe A L-TRUE
I'—pkFA

Lo, A
_ L-TRUE A
ToAyFA

Tho ATy, A

NN R-TRUE A
FALSE
FoFA
ICARE S M At L-FALSE A
O,LI,=(pAY) = A A
'-1,A R-FALSE L
'@, A
TF-—¢. A RePALSE ™
'E =g, =y, A
R-FALSE
TE=(pAy), A SEA

The set of rulesin Tables 3 and 4 isthe system P. The only difference with clas-
sical propositional logic is the absence of:
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T,ok A

—— R-TRUE—.
Tk =g, A v

Thisrule, in combination with L-TRUE —, establishes contraposition for classi-
cal propositional logic. Thisaso meansthat all FAL SE-rules are superfluousin clas-
sical logic. They are merely meant as local repairs of the absence of contraposition
in partial logics.

Observation 3.6 If I' -p A thenthereexistsfiniteI’, A’ C Lsuchthat I’ Fp A’.
This can be proved easily by an induction on the length of P-derivations and the
finite nature of P-derivability. All considered systemsin this paper share thisfinite-
ness property. We will make use of it without explicit reference.

Thefollowing table presents rules for axiomatization of 3-validity over the cor-
responding L-extensions.

Table 5 RULES FOR ® AND ~
ek A L-TRUE ®
IL-®FA L-FALSE ®

''~¢pkFA

Lok A L-FALSE ~
N—=~¢FA
'E~g@, A

Fe A R-FALSE ~
'E=~¢, A

The systemswhich contain the ®-rules and/or the ~-rulesfor the languages L®,
L~ and L&~ are called P®, P~ and P®~, respectively. The same policy will be
maintained for the system ud in the next section.

Theorem 3.7 ThesystemP issound and completefor $3-validity over thelanguage
L.ForalT,AC L: TFp A <= I =y A. Thesameresultshold for the extended
static derivation systems with weak negation and/or .

Soundness results are omitted here. They can all be proved by astraightforward
induction on the length of derivations. The completeness results are postponed to
Section 5 where appropriate metatheoretical equipment will be introduced.

4 Dynamic extensions of partial logic The extension relation over partial valua-
tionshasbeen givenin Definition[3.1] If V C V' then V' assignsthe sametruth-val ues
as 'V doesto all the atoms which appear in the domain of V, but it may have alarger
domain than V. Interpreting partial valuations as information states, the extension
relation saysthat V' contains at least as much ‘hard’ or factual information as V.
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4.1 Information models In this section we will develop dynamic modal logics
over theextension relation C. For this purpose we extend the basi ¢ language(s) of the
previous section with up- and down-operators:. [¢]u, (©)u, [¢]d, (@)g. If L issome
language for partial logic which is closed under the connectivesthat it employs, then

Gd will be used to denote the indicated dynamic extension, i.e., the smallest super-
set of £ whichisclosed under the £’-connectives and the above-mentioned dynamic
operators.

The interpretation of the up- and down-operators is analogous to the standard
necessity and possibility operators in ordinary modal logic over the relations [[¢]lqy
and [¢]] dy which we have briefly introduced in the preamble of this paper. Possible
world models which establish acomplete interpretation of this modal framework are
so-called information models.

Definition 4.1  Aninformation model isatriple M = (W, <, V), such that Wisa
nonempty set of worlds, or information states, < isapreorder over W, whichiscalled
the information relation of M, and V is a monotonic global valuation function, i.e.,
V: W — PBissuchthat for al w,v e Wif w < vthenadso V(w) C V(v). The
class of all information models is denoted by 9t.

The up-down extension £,,4 of £ obtainsan obvioustruth-conditional semantics
by combining the static semantics of £ with an interpretation of the up- and down-
operators over the information relation.

Table6 LetM = (W, <,V)eNandw e W:

MwEpe Vw)(p=1 MwHps Vw)(p =0

The L-connectives obtain truth-values according to the decomposition as in
Table 1. The additional connectivesfor the static extensionsin the preceding section
follow the same decomposition asin Table 2.

M,w'=[¢’]uw¢>vvzw : MaU'=90:>M’U|=W
M,we[gluveIv>w : MovEe& Movs ¢

M,wkEl¢lsgv e Vo<w @ Moo= MuEY
M,w[plgveTv<sw : MolFEe& Moy

Here is a simple information model M. The proposition letters are the atoms
which are locally verified. The minus symbol refersto local falsification.
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p? q’ =T . p’ q
Figure 1 )
[ D, —r
4

\ o,
[
3

[

Definition 4.2  Thefollowing sets stipulate different interpretation setsfor agiven
proposition ¢.

el = (M, w) | M, w = ¢}

[elIM = {winM | M, w = ¢}
[[(p]]g';"w:{uianwSU& M, U= ¢}
Tel ™~ = {uinM |u<wé& M, u = ¢}

The first set represents the global static meaning of ¢, while the second repre-
sents the local—with respect to M € 91—static meaning of ¢. The two last sets de-
note context sensitive interpretations of ¢. The first of them is the contextual—with
respect to the information state w in M—meaning of ¢, that is, the extensions of w
which verify ¢. The second set is the negative contextual meaning of ¢ with respect
to w in M. These contextual interpretations entail the local dynamic relational inter-
pretations by abstracting over the contextual information states:

[[(p]]‘)Mt:é;) = {<w, U> | ue [[gp]]f)/';/lvw%(*)}

We define (¢)y and (¢)4 by means of the strong negation: —[¢],— and =[¢]q—,
respectively. Thisyields an ordinary polymaodal O<-format over the local dynamic
relations above.

Every state of information hasitsfactual static information specified by means of
alocal partial valuation, and the information relation specifies a structural extension
relation between the states. Thisinformation relation isasubrelation of the extension
relation over thelocal partial valuations, and not identical toit. Information statesalso
contain information in the way they can be extended. Additional dynamic informa-
tion constrainsthe set of possiblelocal partia valuations as extensions. The example
model in Figure 1illustrates clearly the context sensitivity of dynamic interpretation.
For example, M, 3 = [ plug wWhile M, 1 t~ [p]uq, till, their local valuations are the
same (empty). Speaking in dynamic terms, p has the same meaning asqin 3. This
is certainly not the case in context 1.
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Animportant aspect of formulasistheir preservation behavior with respect to the
information order. Formulas that are persistent are the ones which are maintained in
upward direction of the information relation. Antipersistent information is informa-
tion which will never be lost when going downwards. Examples of persistent formu-
las are provided by the complete static language £, and formulas of the form [¢], ¥
and (¢)q . Examples of antipersistent formulas are formulas of the form [¢]4 ¥ and

(.

Definition 4.3 A formulag ispersistent if for all M € 91t with information relation
<andw,vinM: MwEe& w<v = M, vk ¢. Aformulag isantipersistent
if foral M e 9twithinformationrelation<andw,vin M: Mw E & v<w =
M, v E ¢.

4.2 Application of information models  Information models have been employed
in different fields of pure and applied logic. With respect to the former category these
models closely resemble the kind of Kripke structures which are used as models for
Heyting'sintuitionistic logic, see Kripke [@ and Fitting [l They differ fromthein-
formation models of the previous subsection only in the global valuation function. In
this casethe valuation function istaken to be amap from the statesto subsets of atoms
whichismonotonic over theinformation order. Falsity doesnot have anintuitionistic
status. Nelson [17] extended intuitionistic logic with a constructive notion of falsity.
Information models provide a precise semanticsfor thislogic of constructible falsity,
see Gurevich [[9]. In fact, thislogic is a subsystem of the up and down formalism of
the previous section. The language consists of £ with an additional implication — .
The truth of ¢ — v coincides with [¢], ¢ asin intuitionistic logic, while its falsity
has an extensional denotation: ¢ A —.

In thefield of nonmonotonic logic information models have been used by Turner
[28]. Turner defines an ordinary 0O<> modal logic over the information relation on the
basis of an extension of £ with these standard modal operators. O is the same as
[Tlug and C¢ isdually defined: —O—g.

A dlight variation of information models has been employed by Veltman [29] as
so-called data semantics for model theoretic analysis of natural language condition-
als. The models which are used there are the same as the information models above
with an additional refinability constraint. This constraint saysthat every information
state can be extended with the truth of aproposition ¢ or itsfalsity. For amodel M =
(W, =<, V):

Vse WVpdte W:s<tand (M,t=¢por M,t= ¢).

Veltman's conditionals ¢ ~+ 4 obtain the same meaning of [¢], v both for truth
and falsity.

4.3 Axiomatizations for partial up and down logics The following Tables 7 and
8 present a sequential axiomatization of the partial up and down logics which have
been defined in the previous subsection. The system, which is obtained by putting P
and the rules of the two next tables together, is called ud. To begin with we need to
register many so-called persistence rules and some variations.
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Table7 PERSISTENCE RULES
'-p, A pelP
PERS IP
F l_ [(p]u ps A
'-—=p,A pelP
PERS —IP
'+ [Qo]u_‘pa A
F l_ [w]u Xa A
PERS UP
I'Elelulvlux, A
D= (Y)ax, A
PERS DOWN
' lelu(¥)ax, A
F’ 1//>UX l_ A

C-PERS UP
Co(ou(Vhux A

{
{9)
T [YlaxtA
()

C-PERS DOWN
Co(oulv]ax = A

CF (Y A

FFlglaWu A TPERSUP
IH[ylax, A

= [(p]d[w]d)(, A A-PERS DOWN
I Ylux - A

T @yl a CATFERSUP
I (Phax - A

F, ((p)d (W)d)( EA C-A-PERS DOWN

Thefirst two rules record the persistence of literals. This meansthat literals are
preserved when we extend information states. This captures the monaotonicity of the
global valuation functions over information models. The second pair of rules takes
care of persistence for formulas of theform [¢], v and (¢)q . Thethird pair of rules
arecontrapositional formulationsof these persistencerules. They need to beinstalled,
because ud lacks contraposition just like P. Thetwo last pairs arrange the antipersis-
tence for formulas of the form (), ¥ and [¢]q ¥ in the same manner.

The following table presents the introduction rules for the dynamic modal oper-
ators:

Table 8 UP AND DOWN RULES
Fre. ATy A L-TRUE UP
F? F/7 [‘p]uw |_ A? A/

T, o, =y F=A
325 4 L-FALSE UP

[eluT, —[olu¥ F —[g]luA
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oA T,y A
LT, [play = A, A

T, = - g, —A
[elal, —[glay F —[gla A

L-TRUE DOWN

L-FALSE DOWN

Lok, —A
[oluT = [pluy —[gluA
To, AT =y, A
[T = =[pluy, A, A

I'Foe, ¢, —A
[elaT = [gla v, —[ela A
ToF A TV =y, A
O, —=[g]lqy, A, A

R-TRUE UP

R-FALSE UP

R-TRUE DOWN

R-FALSE DOWN

These rules ook pretty entangled, but removing the I and As make them look
far more familiar. If wetakeI" = A = & in the TRUE UP-rules, modus ponens and
awesak version of the deduction rule (implication introduction) appear. Removing
the I" and Asfrom the other rules give different permutational completions of these
well-known rules:

Example 1

MoDI PONENTES (M.P.)

[olu, o Fud ¥ [@la¥ Fud @, ¥
o, ¥ ud (@ Yhu (¥, @

DEDUCTION RULES

oy =rFulelu?y Fue ¥=>Fwlelday
O,V Ew= (@u¥bud Yhue= (@d¥Fud

The deduction rules are only valid with an empty assumption set. In general we
donothaveTl, ¢ Fyg ¥ = T Fyq [¢]u . Thisonly holds when al membersof T are
all persistent in adeductive way, i.e., in terms of ud. If A isalso ud-antipersistent,
weevenhave: T', ¢ Fyg ¥, A = T Fyq [o]u, A.

Definition 44 Let I' € L,q. The ud-persistent part p 4I" of I is the set {¢ €
I' | ¢ Fug [Tlue}; the ud-antipersistent part ap,q of I' is {¢p € T |
¢ Fud [L]ae}. In other words, for ud-persistent formulas we can derive by means
of the ud-rulesthat they are preserved in upward direction. For ud-antipersistent we
can derive that they are preserved downwards.
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Example2 STRENGTHENED DEDUCTION RULES

Foral I" € p,qLud: A € apqLud:
Coobw ¥, A= T leluy, A TLo, ¥ A= T, (@)uy Fug A

Note that A and I have mutually exchanged their sequential position in the last
two rules. For getting a complete deduction rule for the down-operators an anti-
persistent assumption set and a persistent conclusion set are required. Some other
important classes of ud-sequents are given in the following example.

Example 3

SIMPLIFICATION OF (¢)y AND [¢]qg

(@ =ud (V)up =ud (Thu(@AY)
[¢ld ¥ =uwd [V]de =ud [L]a (@ vV ¥)

DUALITY PRINCIPLES

(MulLlag Fud @ o Fud [Tlu{L)ae
(LalTluetFuwe @Fuw [Lla(Tue

MODALITY REDUCTIONS (M.R.)

[Tluleluy =w (L)alelu ¥ =ua [¢]luy
[LIa (@) =ud (Tul@du¥ =wd (P)u ¥
[Llalela ¥ =ud (Thulela ¥ =uwa [¢la ¥
[Tlu(@)d ¥ =ud (L)d (@)a ¥ =ua (@) ¥

The duality principlesillustrate the converseinterpretation of the up- and down-
operators, which are known from temporal logic. Briefly, the modality reductions
rephrase the persistence and antipersistence.

Theorem 4.5 The system ud is sound and complete for 91-validity over the lan-

guage Lyg: forallT', A C Liyg: THyg A < T En A. Theseresultsalso hold for
the extended up and down systems ud®, ud™ and ud®-™.

Proof: Soundness of the ud-system is omitted. The completeness is postponed to
the next section.
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5 Completeness and decidability In this section the completeness proof for ud is
presented. We follow the Henkin procedure on the basis of so-called saturated sets.
This concept is a generalization of maximally consistent sets which are used for this
purpose in standard modal logic, see Hughes and Cresswell [[10]. A maximally con-
sistent set isaconsistent set which cannot be extended without losing its consistency.
A decidability proof of ud can be obtained by means of afairly simplefiltration tech-
nique.

5.1 Saturated sets

Definition 5.1  Let Sbeacertain sequential derivation system, and let Ls beitslan-
guage. Sisconsistentiff @t/ @. A set of formulasT” C Lgissaidto be S-consistent,
whenever I" /s @. A set of formulasT” C Lgis said to be S-saturated whenever for
al A C Ls:

'sA= ANT # 2.

The collection of all S-saturated sets will be denoted by Gats in the sequel of
thetext. A C Lgisan S-saturator of aset I' € Lgwhenever for al A C Lg:

TFsA= ANA#D.

Wewill call T an S-saturant of A. We abbreviate thisrelation between I" and A
by I' dg A.

Thefollowing proposition shows that if negation may be shifted according to L-
and R-TRUE — saturation and maximal consistency most often coincide.

Proposition 5.2  For every system Swhich containsthe START, theL-MON ruleand
the L- and R-TRUE — all S-saturated sets are maximally S-consistent.

Proof: Let S be a system which contains the above-mentioned rules. Both (1)
@, ks, and (2) Fs @, —p. Let T, A € Gatswith T C A, which says that there
existsp € Lgsuchthat (3) o ¢ "'and (4) ¢ € A. From I" € Gatsg, (2) and (3), we
have —¢ € T', and so, —¢ € A. This conclusion, in combination with (4) and (1),
yields A s @, which contradicts A € Gats.

This proposition provesthat for classical propositional logic thetwo notionsare
equal. In partial logic they are obviously different. Maximal consistency implies sat-
uration, but not the other way around.

The notion of saturated sets hasbeen introduced in thefield of intuitionisticlogic
by Aczel [[[] and Thomason [25].2 In these papers saturated sets are defined by three
independent properties which we obtain by substitution of 0, 1 and 2 for the cardinal-
ity of A inthe definition of saturation above. Such definitions work perfectly when
the underlying language contains a disjunction which captures the multiplicity of the
right-hand arguments of the sequents.

Observation 5.3 Let Sbeasequentia derivation system with language Ls which
containsadigunction v suchthatforal I', A C Lsand g, ¥ € Ls: T'Fso, ¥, A <
C'Fse Vv, A. A setof formulasis S-saturated iff
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Ty o,
Fp=gel,

Fpvy=geloryerl.

The first two properties immediately follow from the definition of saturation.
The first has been defined as consistency. Sets which obey the second property are
called theories. The last property is often called saturation, but we have chosen this
name for the sequential definition, which captures al the three properties and which
also appliesto longer conclusion arguments of sequents. Thisisvery useful when we
deal with a disjunction-free language.

The definition of a saturator is particularly important for proving completeness
for partial intensional logicslike ud. We will prove that for every system which con-
tains the structural rules of P therelation I < A is the same as the existence of an
S-saturated set between I and A. Therelevance of thisresult isthat saturators entail
an upper bound for searching saturated sets, which is often required in proving com-
pletenessin the Henkin tradition for partial intensional logics. Usually one looks for
‘states’ which contain certain information but which may not be too specified. Many
completeness results for partial modal logics can easily be obtained by proving satu-
ration relations of this kind, see Jaspars [[13].

Lemmab5.4 Let Sbea sequential derivation system which containsthe CUT rule.
IfT" <g A and I" g A for afinite set A C Lg, then there exists § € A such that
U {8} <gA.

Proof: LetI’ <s A and T Fs A with A finite, and suppose that I U {5} #As A for
al § € A. Thismeansthat for all § € A there exists X5 C Lg such that

I6FsgXs and XsNA=3.

Let ¥ = (Jscp Xs5. R-MON yields T, § s X for all § € A. Applying cuT to
thislast S-sequent and the assumption I" s A yieldsT" s A — §, 3. Repetition of
cuT-application for all s completely eliminates A from the last S-sequent. In short,
' s X. BecauseI” <g A weconclude X N A # @. Thiscontradictsthat X5 NA = @
foral s e A.

Thislemmashowsthat saturants can be extended in such away that they remain
saturants of the same saturator. 1nfact, asaturant can always be saturated in thisway.
The following lemma which formulates this result is called the Bounded Saturation
Lemma.

Lemmab.5 SupposeSisa sequential derivation system containing the structural
rules START, L-MON, R-MON and cuT. If A € Lgisan S-saturator of I C Lg, then
A contains an S-saturated set I'* such that I' C T'™*,

Proof: LetT" <g A andlet {¢}ien beanenumeration of A. We definethefollowing
sequence of subsets of Lg
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I'g:=r"

FhU{en} if ThU{gn} Is A

r =
ntl Iy otherwise.

Furthermore we take I'* C Ls to be the limit of this sequence:

= U .

nelN

[ C I'™* C A isimmediately clear from the definition of I'* above. Another direct
consequence of the construction aboveisT, <s A forall n € IN. What isleft to show
isT™ € Gats.

Suppose I'™ g A. We need to prove I' N A # &. The assumption set can be
reduced to a finite sequence y1, ..., ym in I'* such that y1, ..., ym Fs A (see Ob-
servation[3.6). Because every member of I'* is a member of some I'j, this means
that there exists T'y such that {y1, ..., ym} € I'k. ThisimpliesT'yx s A by L-MON.
SinceT'y <Js A, weasohave AN A # @. Because A C Lg has been picked arbitrar-
ily as an S-conclusion set of I'* we have I'* <Ig A. This conclusion, combined with
Lemmal.4] guarantees the existence of aformulas € A such that

I* U {8} <s A.

This result also ensures that 'y U {8} <Is A for al n € IN. Obviously, § € A,
which means that there exists| € IN such that ¢; = 6. BecauseI') U {¢} <s A, we
know that § € T'|, 1 by theinductive definition of the sequence {I"n}ne . We conclude
S eT* andsoT"™ N A # @&. Thisestablishes the desired result: T* € Gats.

Observation 5.6  Infact thislemmaisequivalent (giventhe P-structural rules) with
the so-called Saturation Lemmaor generalized Lindenbaum Lemma. Thisresult says
that if I' /s A then thereexistsa ¥ € GatgsuchthatI' € ¥ and A N ¥ = @.% Note
that whenever S containstherule L-MON then T <s A <= T s Ls\ A. S0, if S
contains the structural rules of P and ud, then the Bounded Saturation Lemmaisthe
same as the Saturation Lemma by means of this equivalence.

The equivalence of the normal Saturation Lemmawith the bounded version may
give the impression that Lemmals5lis superfluous here. Technically speaking it is,
but its upper bound formulation has made completeness proofs for partial modal 1og-
icsfar moretransparent.5 Assaid earlier, dueto the bounded formulation, many com-
pleteness proofs of partial modal systems come down to the establishment of one or
more saturation equations.

Moreover, the proof of Lemmals.5lis a generalization of the standard proof of
Lindenbaum’s Lemma, which says that every consistent set has amaximally consis-
tent extension. This result would immediately follow when A = Lgischoseninthe
proof of Lemmal[5.5] Many proofs of the ordinary Saturation Lemma have a some-
what deviant nature (e.g., Troelstra and van Dalen [27).

Note that the proof of Lemmal5.5]and the formulation are linguistically inde-
pendent. Due to our sequential setting and the general definition of saturation, it can
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be used for many logics with poor expressivity, and does not rely on the presence of
certain connectives like the disunction.

6 The completeness of partial logics  The completeness proofs of P and its exten-
sionsisfairly easy. Take Gatp, and associate to every X € Satp apartial vauation
function Vyx, which is defined by its content:

(1 iffpes
Vz(p) = { 0 iff-pex.

This definition together with the individual derivation rules ensurethat Vs = ¢
iff o € X foral ¥ € Gatp and ¢ € L (1). This can be proved by a straightforward
induction, and can be extended for the extended systemsin the same fashion. If " H/p
A then there exists ® € Gatp suchthat I' € ® and A N ® = &. According to (1)
above, thismeans that Vo = ¢ and Vg =  forall ¢ € T'and i € A, and therefore,

T b A,

7 Thecompletenessof ud  The canonical model for the system ud, which we need
to run the Henkin procedure, is given by the following definition:

Definition 7.1  The ud-canonical model is the triple Myg = (Satyq, <ud, Vud)
whereforal I', A € Gatygand p € IP:

I ud A <= pyl’ € A & apygA C T, and

1 iffper
VlJd(r)(p):{omfser

Recall that pygI' ={p € T' | ¢ Fua [Tlup} andapgA ={p € A 9 ua [L]ag)
(see Definition 4.4).

Observation 7.2 Weleaveit to the reader to show that Mq € M, i.e., Vg ismono-
tonic over «q and < q isapreorder.

We give the so-called Truth Lemma of ud first. Thislemma almost establishes
the desired result.

Lemma73 My, I'EespelandMy, ' oo —pel forall e Saty,
¢ € Lyg-

Proof: By induction on the construction of £ y-formulas. We skip the basic step
and the proofs of the static connectives. For the dynamic modal operators there are
four caseswhich are nearly immediately obtainable from the definition of « 4. These
four “easy” cases are:

() [eluy el = My, T = [olud,
(i) My, T [eluv = —[eluy €T,
(i) [elgv eT = My, I’ E[¢la ¥,
(iv) Myg, ' [ela¥ = —[glav €T
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We will demonstrate the first and the last step. The two others are left to the
reader.

[pluv €T = ([¢]u¥ Fud [T]ule]u ¥y, Example 3: m.R.)
VA>T [¢eluy € A = (o, [¢lu¥ Fud ¥, Example 1. m.p)
VA>T :pe A= e A = (induction hypothesis)
VA>u Il Mg, AFEp= My, A=y = My, I'E= [Qﬂ]ul/f-

—[plav ¢T = (=l¢la¥ Fud [Tlu—[¢la ¥, Example 3: M.R.)
VA Kud T i =[glay € A = (¢ Fud ~lela ¥, —¢, Example 1: m.P)
VAL l:pdgd A= -y & A = (induction hypothesis)

VALl " MgEo= My A Y = My, I' A [g]la .

The completing converse results of these four “easy” cases are consequences
of the following sequential statements, in combination with the Bounded Saturation
Lemma (LemmaB.5). In these saturation equations I" U {g} and I \ {¢} are abbre-
viated by T 4+ ¢ and I — ¢ respectively. Furthermore, the non-ud-persistent part,
Lyg \ PugLug @nd the non-ud-antipersistent part, Lyg \ ap,qLug Of L,q are abbrevi-
ated by NP and NAP, respectively.

V) [pluy ¢T = Pyl +¢ Jua TUNAP— ¢
M)  —leluy el = pul'+e+—-9¥ g TUNAP
(i)  [glav ¢l = apl S lUNP—@—
(viii) —[glay e’ = apl'+-¥ QualUNP—¢

These saturation relations may seem complicated statements. The following
simple derivations explain why they lead to immediate success. For the sake of
brevity we only prove that the claims (v) and (viii) give us the desired results: (V)
= Mua, I' ¥ [¢]u ¥ and (viii) = My, T' 5 [¢]q ¥

(V) = 3JAeGatyy:pgl CSACTUNAP& e A& Y LA
= I'<uw A& My, A& Myg, A =
S MUd7Fbé[(p]Uw'

The first step consists of the application of the Bounded Saturation Lemma to
(V). I' «yq A followsfrom the consequence and the simpl e observation that ap 4 (I' U
NAP) = ap 4" C I', and therefore ap qA < I'. Thelast step is due to application of
the induction hypothesis.

(viii) = 3JAeBatyg:ap CACTUNP& A&~y e A
= A<LWlN& My, A& Mg, A ¢

The first step is an application of the Bounded Saturation Lemma again. The
resultimplies A < q I because p (' UnP) = p 4" € T',and sop qA C I'. Again,
the last step follows from the induction hypothesis.

The proofs of (Vi) = Myq, I' 5 [¢]u v and (Vii) = Myq, I ¥ [¢]lg v areleft to
thereader. What isleft to show isthe validity of the claims (v) —(viii). We only prove
thefirst and the last claim. The other two can be reproduced through mere analogy.

Claim (v): Suppose[¢]uy ¢ T.
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Let ¥ € Lg suchthat p 4T, ¢ Fug X. We need to prove that:
@ ZTNTUNAP— ) #£ .

If £ N (NAP— W) # &, then we are done. So, suppose . N (NAP — V) = &,
whichisthesameas ¥ C ap, 4 Luq + ¥. In other words, all non-v-elements of
¥ areud-antipersistent, i.e., ap, 4 (X — ¥) = X — ¢. Thisyieldsthefollowing
minimal derivation:

(1) pwl.¢FwZ—v.¥ R-MON

2 TruX-—vleluy Example 2, p qI" € I" & L-MON.
BecauseI" € Gatq, the last ud-sequent above, and the assumption [¢]y v & T
entaill (X — ) NT # &, and thereforealso X N (I'UNAP — ¢) # @& (d).

Claim (viii): Suppose —[¢]q ¢ € T.
Let ¥ C Lyg withapyI' + =~y Fyg . We need to prove that:
(b) TNTUNP— @) # 2.

If XN (NP— @) # @, then weimmediately have our desired result. So, let X C
PudLud + ¢. Thismeansthat p 4(X — ¢) = X — ¢. The following derivation
settles this complementary case:

1) apl,~¥vFuWX—¢,¢ R-MON

2 T, —[elagvFwX—¢ Example 2, ap 4" € I', L-MON &
PuX—@)=X—¢

B ThHWX—¢ —[¢lay eT.

BecauseI" € Satyg, weconclude X N (I" — ¢) # @, which also establishes (b).

These derivations settle (v) and (viii).

With this result we have almost completed the completeness proof for ud. Sup-
pose that I" H4,q A. According to the Saturation Lemmal5.6] there exists ¥ € Satyg
suchthat I' € ¥ and A N ¥ = @. According to the Truth Lemma above, thisyields
My, Z Eg@and My, = = ¢ foral ¢ e 'and v € A. Because Myq € 1, thisshows
that ' peo A.

Completeness for the systems ud®, ud™ and ud®:™ can be proved in precisely
the same manner. The induction steps for the additional connectives in the corre-
sponding Truth Lemmas are straightforward.

7.1 Decidability Decidability for finite ud-sequents can be established by afinite
variation of the equipment of the previous sections.

Definition 7.4 Let ® C Ls. An S-®-saturated set isaset I' € @ such that for all
AC®. THsA = I'N A # @. Thecollection of S-d-saturated setsisabbreviated
by Gatd. A iscaled aS-®-saturator of T C @ iff T A = ANA # @ foral
A C . Thisrelation is abbreviated by I' <2 A.

Lemma75 Let® A C Lsandl' C @. If I <€ A thenthereexists T* € Sat&
suchthat " € I'™ C A.
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Proof: This proof runs completely in the same fashion as that of Lemmal5.5] An
appropriate reformulation of Lemmal5:4lis needed. Furthermore, the sequence ¢j in
the proof of Lemmal5.5]should be taken from A N @ (note that I’ <@ A = I <@
AN ®).

In order to prove the decidabity of ud we construct a finite counter model for
a given finite non-ud-sequent: IT /g4 E. Let T be the set of subformulas of IT U
E and their negations. Clearly, X is afinite set. Next consider the model Mlij =
(Gatly <z, VE) with <X, and VZ, defined in the same way as <q and Vg but
then restricted to Gat,. This construction yields a restricted version of the Truth
Lemma for udwith respect to M2

MT'Ep < pel’ & M,'H¢p < —¢peT.

for all T1- and E-subformulas ¢ and " € Gatf,:d. This result can be proved just like
Lemmal73] Because M} isfinite and of fixed size, thisimmediately establishes the
desired decidability results.

Theorem 7.6 ud isdecidable for finite sequents.

This technique also appliesto the systems ud®, ud™ and ud®-~. No further fil-
tration techniques have to be used there.

Thegivenfiltration technique yields exponential time upper boundsfor deciding
MN-validity for finite subsets of £,4. However, by making use of established complex-
ity results and known embedding results, a much more refined result can be given.
Statman [23] shows that validity for intuitionistic propositional logic is PSPACE-
complete. Thisresult immediately settles PSPACE-hardness for ud-validity, because
intuitionistic propositional logicisafragment of ud. Furthermore, by the polynomial
time translation of ud into temporal $4 given in [[13]], and the PSPACE-compl eteness
result for thislogic of Spaan [22], we obtain PSPACE-completeness for ud.

8 Conclusionsandreflections  Information models have been employed asKripke
structures to define dynamic modal logics for reasoning about extension and reduc-
tion of partial states. The bounded version of the Saturation Lemma has been particu-
larly helpful in establishing a completeness and decidability result for the underlying
calculusud.

Of course, our main technical concern has been to guide the congregation of par-
tial and dynamic modal logic. With respect to the dynamic modal logics of van Ben-
them and de Rijke, the relational part of our formalism is restricted. The inevitable
consequence of this poverty is that minimal extensions and reductions do not appear
in our formalism. Such minimal dynamic denotations can semantically be specified
in the following manner:

[elgrs, = Ustelelfgls<u&ucleli&u<t=t<u
[elyey” = st ellellyg luss&ugely &t<u=u<t).

A future research challenge is to devel op adequate sequential calculi for an ex-
tension of the up and down calculus of this paper with additional modal operators
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over the relations above. Keeping the undecidability of van Benthem and de Rijke's
formalism in mind, one should be aware of the possible technical dangers of such an
enterprise.
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NOTES

1. Thereissome freedom here. The so-called double barreled consequence definition has
also been used, e.g., Muskens|[16]. Thisrefersto astricter notion of validity: “all mod-
els of T verify at least one of A and all models which falsify all formulasin A falsify
at least one element of I'.” This notion of validity is propagated mainly because it struc-
turally behaves better than our single barreled definition. The underlying reason is that
it restores contraposition. In the reader finds a classification of different sorts of
definitions of valid consequence for partial logics.

2. InFenstad [[6] aslightly more elegant way of dealing with these four different places of
introduction has been proposed. The authorsintroduce quadrantswhich are four-placed
variants of sequents. Therearetwo additional stacks, RIGHT and LEFT, for keeping false
formulas separate. This presentsastructurally elegant fashion of deduction. Becauseits
styleissomewhat unusual and the notation unpractical, we kept to an ordinary sequential
style.

3. Intuitionistic logic only has a restricted version of R-TRUE —. It may be applied only
with an empty conclusion set: ', ¢ - @ = I" = —¢. Thisrestricted version keeps sat-
uration and maximal consistency apart as well.

4. Most often thisresult isformulated for singleton As, see Aczel [1]. The sequential vari-
ant can be found in [24].

5. Finding completeness proofs for partial modal logic with incomplete static expressivity
hasturned out to be pretty troublesome, see [24]. Normal form techniquesalso used long
proofs, see Jaspars [[L2].
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