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Uniformization Problems and the Cofinality
of the Infinite Symmetric Group

JAMES D. SHARP and SIMON THOMAS

Abstract Assuming Martin’s Axiom, we compute the value of the cofinality
of the symmetric group on the natural numbers. We also show that Martin’s
Axiom does not decide the value of the covering number of a related Mycielski
ideal.

1 Introduction Suppose thaG is a group that is not finitely generated. Th@&n
can be expressed as the union of a chain of proper subgroups. The cofin&ity of
written c(G), is defined to be the least cardinalsuch thatG can be expressed as
the union of a chain of proper subgroups. K is an infinite cardinal, the®ym(x)
denotes the group of all permutations of thexset{« | « < «}. The following result
was proved in Macpherson and Neumélg [

Theorem 1.1  If x isaninfinite cardinal, then c(Sym(x)) > «.

This raises the question of computing the exact valug 8fym(«)). In this pa-
per, we shall study the possibilities for the valueBym(w)). Of course, this ques-
tion is only interesting if the Continuum Hypothesis is false.

Upon learning of Theorem 1.1, Mekler and Thomas independently pointed out
the following easy observation.

Theorem 1.2 Suppose that M E «® = x > w;. Let P = Fn(k, 2) be the partial
order of finite functions from « to 2. Then M? £ c(Sym(w)) = w1 < 2° = «.

Proof: Working insideM, expressc = a<leXa as the union of an increasing chain
such that| X, 1\ X,| = « for eacha < w1. From now on, we shall work inside
M[G] = MF. Let G, = GN FNn(X,, 2) and letS, = {7 € Sym(w) | = € M[Gg]}.

Then eacl, is a proper subgroup af®ym(w) = Y S The result follows easily.

a<w

Clearly the above idea admits many variations. A second source of models of
set theory withc(Sym(w)) < 2¢ is provided by short scales.
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Definition 1.3 If f:w — wandg: o — o, then we definef <*g iff there exists
Ny € w such thatf (n) < g(n) for all n > ng.

Definition 1.4 If Aisaregular cardinal, thed={f, : v« > w | a < A} isair-scale
if:
(i) f,is a strictly increasing function for each< 1;
(i) fo<*fgwhenevew < B < A;
(iii) for eachg: w — w, there existsx < A such thag<* f,.

Theorem 1.5 If a A-scale exists, then c(Sym(w)) < A.

Proof: Let{f,|a < A} be ai-scale. By passing to a suitable subsequence if nec-
essary, we can suppose thato f,<* f .1 foralla < A. Let L be the set of all limit
ordinalss such thatt < A. If § € L, define

S = {7 € Sym(w) | There exists < § such thatr, 71 <* f,}.

Then eacls; is a proper subgroup arfym(w) = 5L€JL55-

One of the main theorems in this paper is that it is also consistent that
c(Sym(w)) = 2® > w1. In order to explain our approach to this result, it will be
helpful to sketch the proof of Theorem 1.1. First we need to introduce some nota-
tion. If G < Sym(2) andI’ € Q, thenGry and Gr, denote respectively the set-
wise and pointwise stabilizers @fin G. If A is a (possibly finite) cardinal, then
[Q]* ={' € Q| |T'| = A}. The proof of Theorem 1.1 relies on the following result.

Lemmal6 [B] Let G < Sym(x). Supposethat thereexists X € [«]* suchthat Gix;
induces Sym(X) on X. Then thereexists m € Sym(x) such that (G, =) = Sym(k).

Proof Proof of Theorem 1.1: Suppose thaBym(x) = Y G, for somex < k. Ex-

a<A
pressc = 7, X, as the disjoint union of sets such thax,, e [«]* for eacha < 1.
Lemma 1.6 implies that for each< 1, there existsr, € Sym(X,) suchthag [ X, #
n, forall g € G,. Definer € Sym(x) by | X, = 7, for eacha < 1. Thenn ¢ G,
for all « < A, which is a contradiction.

We would like to adapt this argument so as to reach the stronger conclusion that
c(Sym(w)) = 2. Suppose then th&ym(w) = U G, forsomex < 2. By Lemma

a<A
1.6, there exists a functionwith domain w]® x A such thatr (X, @) € Sym(X) and
gl X#n(X ) forall ge G,. Toreach a contradiction, it is enough to find an

elementr € Sym(w) such that the set
{a < A | There existX € [w]? suchthatr | X = 7(X, «)}

is cofinal inA. In order that such an elementmight exist, it is necessary to exer-

cise some care in the choice of the elemertX, «). For example, if eaclr (X, «)
consists of an infinite cycle which acts transitively ¥nthen it is obvious that no
suchs exists. However, it is possible to choose eaclX, «) so that it contains no
infinite cycles. If we do this, there seems no obvious reason why such an element
should not exist. Of course, we cannot hope to prove the existence of such an element
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in ZFC; and the main challenge is to discover which extra set-theoretic hypotheses
will suffice to produce such an element.

In order to gain insight into this problem, we shall also consider a purely com-
binatorial version.

Definition 1.7  The Mycielski idealB, on P(w) consists of the subse¥ C P(w)
such that for evenA e [w]®, P(A) #{BN A| B e X}.

Arguing as in the proof of Theorem 1.1, it is easily seen #dt ac-ideal. The
covering number oB,, writtencov(B,), is defined to be the least cardimasuch that
P(w) = agkxa, where eaclX, € B,. The value ofcov(B,) is intimately connected
with the following set-theoretic hypothesis.

The Uniformization Principle (U;) Suppose that : [w]® x A — P(w) satisfies
(A, a) € P(A) for all (A, @) € domn. Then there existS € P(w) such that the
set

{a < A | There existsA € [w]® such thatSN A= (A, a)}

is cofinal inA.
Proposition 1.8 cov(B,) = min{A | U, isfalse}.
Proof: Suppose thatov(B,) = A. ExpressP(w) = Y X, as an increasing union,

a<h
where eachX, € B,. Letn : [w]® x A — P(w) be a function such that(A, ) €
P(A) andSN A+# (A, ) forall Se X,. Thenrn is a counterexample td,. Con-

versely, suppose thatis a counterexample 1d; . DefineR: [w]® — A by
R(S) = supa < A | There existA € [w]” such thatSN A= 7 (A, a)}.

Let X, = {S| R(S) < a}. Then @chX, € B, forall « < » andP(w) = Y, X,.

In the statement of the following resuRF A is the Proper Forcing Axiom. (An
extremely clear account of this axiom can be found in Baumgar@jgr [

Theorem 1.9 (PFA) cov(B,) = 2¢.

Proof: Suppose that the result is false. By Velicko €], PFA implies that 2 =
w». Hence we can expre®®(w) = agwlxa, where eachX, € B,. Let P denote the
Prikry-Silver notion of forcing. Thus each conditigne P is a function with values
0 and 1, defined on a co-infinite subsetwf It is well known thatP is proper. If
Se P(w), theny denotes the characteristic function®fForeacha < w1, let D,

consist of the conditionp € P which satisfy:
(1) there existA € [ dom p]® such thatp | A# xs | Aforall Se X,.

Clearly eachD, is dense inP. By PFA, there exists a filteG < P such that
GND, # @ foralla < w;. Letg= UG, and letS € P(w) satisfy xs = g. Then
S¢ X, forall @ < w1, which is a contradiction.

With a fairly substantial amount of effort, it is possible to modify the proof of
Theorem 1.9 so as to obtain the conclusion thB®A also implies that(Sym(w)) =
2“. This raises the question of whether these results can be proved from the strictly
weaker hypothesis oMA + —CH (Martin’s Axiom plus the negation of the
Continuum Hypothesis.) The answer is somewhat surprising.
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Theorem 1.10 ((MA)) c(Sym(w)) = 2°.

Theorem 1.11  [B] MA+ —CH + cov(B,) = w; is consistent with ZFC.

Theorem 1.10 will be proved in Section 2. A slight strengthening of Theorem
1.11 will be proved in Section 4. Given the obvious similiarity between the two prob-
lems, itis initially puzzling whyM A+ —=CH should settle one of them while leaving
the other undecided. We shall explain why this happens, by pointing out an important
difference between the two problems.

Definition 1.12 Let A € [w]® and let{a, | N < w} be the increasing enumeration
of A.

(i) If 7 € Sym(w), thenz® € Sym(A) is defined byr*(an) = a,n, for eachn <
w

(i) If f:w— 2thenf”: A— 2is defined byfA(a,) = f(n) for eachn < w.

Suppose once again thiam(w) = aLjAGa forsomer < 2¢. LetQ2 € [w]® be co-
infinite, and for eaclr < A chooser,, € Sym(w) suchthag | Q # 7S forallg € G,.
If A e [w]®is also co-infinite, then there exigtss Sym(w) such that[ A] = Q and
¢ | Ais order-preserving. Thus there exigts< A such thatforalf <a < A, g

A+ n/ for all g € G,. We conclude that the following holds:

Corollary 1.13 Thereexistsa set {r, | « < A} € Sym(w) and a function = with
domain [w]® x A such that:

(i) m(A, @) € Sym(A) andg | A# (A, ) forall g e Gy;
(i) for each co-infiniteA e [w]®, there existg(A) < A such thatr(A, a) = 72
forall B(A) < a < A.

A major difference in our problems is the uniformity given by Corollary 1.13 (ii).
We can confirm that this is an essential point as follows. Consider the following set-
theoretic hypothesis.

The Weak Uniformization Principle (wU,) Suppose that : [w]? x A — P(w)
satisfiest (A, o) € P(A) for all (A, @) € domz. Suppose further that there exists
{fy o — 2] a < A} such that for each co-infinitd € [w]®, there existB(A) < A
such thaty;(aq) | A= f2 for all B(A) < a < 1. Then there exist$ € P(w) such
that the set

{a < A | There existsA € [w]® such thatSN A= 7 (A, )}

is cofinal inA.
Theorem 1.14 ((MA)) For all » < 2%, wU, holds.

This theorem will be proved in Section 2. It is perhaps interesting to mention
that we make use of permutation groups in the proof of Theorem 1.14. In fact, the
same idea forms the heart of the proofs of both Theorem 1.10 and Theorem 1.14.

Some readers may feel that the uniformity conditiomwld;, is not the most nat-
ural one.

The Symmetric Uniformization Principle (sU;) Suppose that : [w]® x A —
P(w) satisfiest(A, a) € P(A) forall (A, a) € domzx. Suppose further that for each
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A, B € [w]“, there exists a bijectiori : A — B such thatf[7(A, «)] = 7(B, @) for
all @ < A. Then there exist§ € P(w) such that the set

{a < A | There existsA € [w]® such thatSN A= 7 (A, o)}

is cofinal inA.
Theorem 1.15 MA+—CH + —sU,,, isconsistent with ZFC.

This theorem will be proved in Section 4. The proof of Theorem 1.15 is quite
similar to that of Theorem 2.3 of Cichg Roskanowski, Steprans and, Y#erz 3].

(Our proof was found independently. We learned3jfdfter completing an earlier
version of this paper.) However, there are some differences in our approach. The
point of the proof is to gradually adjoin a difficult uniformization problem. This cor-
responds to a universal statement, and hence there is the possibility that later stages
of our forcing construction might destroy our earlier work. To avoid this difficulty, in
Section 3 we find an existential reformulation of the problem by considering difficult
uniformization problems in models &fF A. Finally the proof in Section 4 has been
written in the form of anw,-Baire forcing over a model oPFA. This allows us to

avoid some of the notational complexities of an iterated forcing construction, and to
present the combinatorial heart of the proof in an uncluttered fashion. It also allows
us to point out an easy but striking-like” argument which is useful in this kind of
problem.

Our notation mainly follows that of Kunel. Thus if P is a notion of forcing
andp, g € P, thenq < p means that] is a strengthening op. If M is the ground
model, then we often denote the generic extensioNbyf we do not wish to specify
a particular generic filteG C P. If we want to emphasize that the ternis to be
interpreted in the modél, then we writet"; for examplew) or Sym" (w). We shall
refer to the following internal forcing axioms.

FA.(P) If Dis afamily of dense subsets Bfwith |D| < «,
then there exists a filtea C P
such thatG N D # @ for everyD € D.

FA(P) FA./(P)forall«x < 2%,

M A, FA.(P) forall c.c.c.P.

MA MA, forall « < 2%.

PFA FA,, () for all properP.

If A={a |i < A} is a set with the given enumeration, thel'T will sometimes be
identified with the set ofi-tuples(a;,, ..., &,) withi; < --- <in. If AandB are sets,
thenAB={f | f : A— BJ.

2 The Cofinality of the Infinite Symmetric Group  In this section, we will prove
the following result.

Theorem 2.1 (MA,) c(Sym(w)) > «.
Corollary 22 Let M E GCH, and suppose that A < 6 are regular uncountable

cardinalsin M. Then there exists a c.c.c. poset P such that M¥ E ¢(Sym(w)) = A <
0 =2%,
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Proof: Let My, @ < A, be an iterated finite support c.c.c. construction such that
Mog=MandM, F MA+2?=09forall0 < o < A. ThenM; E MA, forall « < A.

HenceM, F c(Sym(w)) > A. Since SymM:(w) = o}jk SymMe (w), it follows that
M;. E c(Sym(w)) = X.

Definition 2.3 Letg € “w be a strictly increasing function.
(@) Pyg= nl:[w&/m(l:n), whereFy = g(0) andF, = g(n)\g(n—1) forall n > 1.
(b) Definegp, 91 € “w by go(n) = g(2n) andg;(n) = g(2n+1). ThenQq =
{Pgo» Py )-
Lemma24 (ZFC) Supposethat g e®wisstrictlyincreasing andthat = € Sym(w)
satisfies:
forall n < w, if £ € g(n) then(¢), 7~1(¢) € g(n+ 1).
Then € Qq.
Proof: Letly= go(0) = g(0)
In=0go(M\Go(n—1) =g(@2n\g(2n—-2) n=1.

Jo=01(0) =9(1)
Ih=01(M\g1(n—1) =g@n+1\g(2n—-1) n=>1.

Weshall construct by induction am< w asequence of finite permutatiopg € ¢ C
.-+ C ¢p C --- satisfying the following conditions:

(@) ¢o=2;

(b) ¢ny1 € iI;L Sym(J)  for n=0;

(©) 7o pnsa [ go(m € Ll sym(iy)  for n>o0.
Suppose inductively that we have construatgdor somen > 0. If n =0, let
\Jn_]_ == @
Clam25 ForalfelaNd 1, mopn®) € Ip.

Proof: Wecan suppose that> 0. Letl € InN Jy_1. Thengp(€) € Jh_1 =9g(@2n—
D\g(2n — 3). By (2.4), 7 o ¢n(£) € g(2n) = go(n). Sincero gy [ go(n —1) €
ol Sym(l;) and? ¢ go(n— 1), we must have that o ¢n(£) € go(N)\go(n— 1) =
n-
Thus we need only ensure that, 1 [ Jy € Sym(Jy) satisfies:
forall £ € 1,NJy, mopni1(€) € Ip.

Define®,, € Sym(w) by

On(€) = ¢n(f), €edomen

Lety = 7o ®n. Theny[[Y 1] = Y I;. DefineA={¢ e I | ¥(¢) ¢ 15} and

i<n

B={l ecw\lh| ¥®) € ly}. Clearly|A| = |B|,sayA={a |1 <i<t}andB =
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{bj|1<i=<t}. Also, by Claim2.5y () =n(¢)forall£ € AUB. Letbe B. Then
m(b) € I, and (2.4) implies thab € J,. ThusB C Jy\ I,. Define

o1l dn= [ (aibi) € Sym(3y).

1<i<t

Then it is easily checked that, 1 satisfies our requirements.
Finally letp = ngwgon. Theng € nl:[wS}/m(Jn) androg e nl:[w Sym(lp).

The proof of the following result is essentially just the well-known argument that
M A, implies that the dominating numbéris greater tham.

Lemma 2.6 (MA,)) Supposethat ¥ C “w andthat |¥| < «. Thenthereexistsa
strictly increasing g € “w satisfying:

for all f € ¥ thereexistsm < w suchthatfor all m<n < o,

if £ € g(n)then f(£) e g(n+1).

Proof: LetP # be the set of all pairép, F) such that:

(a) there exists < w such thatp : n — w is strictly increasing;
(b) Fel[F]=".
We orderPP ¢ by setting(p1, F1) < (po Fo) if and only if:

(€) p12 poandF; 2 Fy;
(d) foralln e dompi\dompgandf e Fy, if £ € pp(n— 1) then f(£) € pi(n).

ClearlyP ris c.c.c. Foreachi € ¥, thesetD; ={(p, F) | f € F}isdenseiP. It
is also easy to see that for eath< w, the setE, = {(p, F) | mC dom p} is dense
inP¢. So the result follows by a simple application bf A,.

From now on, we suppose thatSym(w)) = A < «* and thatSym(w) = YUa.

i<

Definition 2.7 Let H < Sym(w) and< € [w]®.

(a) H(L) is the subgroup oBym(2) induced o2 by H;g;.
(b) H® = {h® | h e H}. (See Definition 1.12.)

Lemma28((MA,)) Thereexistsastrictlyincreasing g € “w such that
Pg £ Gi(®) for every co-infinite 2 € [»]“ and every i < 1.

Proof: Suppose not. Then for every strictly increasing “w and every co-infinite
Q e [w]®, there would exist ah < A such thatPé2 < Gi(Q).

To see this leg € “w be strictly increasing and 1€ € [w]® be co-infinite. By
assumption, there would exist a co-infinfeé € [w]* and ani < A such thatPff/ <
Gi (22"). Thenthere would exist@ae Sym(w) suchthat |  was an order-preserving
bijection betweer2 and2’. We could suppose that € G; and this would imply that
P{ < Gi(Q).

Now fix a co-infinite2 € [w]®. For each < A, chooser; € Sym(w) such that
7t ¢ Gi(Q). LetT = (7 | i < ). Applying Lemma 2.6 td", we obtain a strictly
increasing € “w such that:

for all w € " there existsn < w such that for alm < n < w,
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if £ € g(n) thenz(£), 771(¢) € g(n+ 1).

For each < w, defineg; € “w by gi(n) = g(n+t). By Lemma 2.4, for eaclh ¢ T’
there existd < w such thatr € Qg,. The first paragraph implies that for eack o
there exist$ < A such thathI < Gi(2). By Theorem 1.1¢f (A) > w. Hence there
existsi < A such thatQ§ < Gi() for all t < . But thenz® € Gi(2), which is a
contradiction.

The above argument actually yields the following slightly stronger result.

Lemma29((MA,)) Thereexistsastrictlyincreasingg e “wandasubgroupI” <
Py such that

(@ I =2,

(b) T2 £ Gi(Q) for every co-infinite Q@ € [w]® and everyi < A.

Fix such a functiorg € “w and such a subgroup = (oj | i < 1) < Py. Let
T C [w] = be a complete binary tree, with orderirg which satisfies the following
conditions:
(i) The elements of are pairwise disjoint andT = w.
(i) If a, be T anda < b, then maxa) < min(b).
(i) If ae Levn(T), thenMlevel of T, thenais a set ofy(n) — g(n— 1) consecutive
natural numbers.

(If n=0, then we setg(n-1) =0.)
If nis a branch ofT, thenn(n) = nN Levy(T).
Definition 2.10 A permutation® € Sym(w) is level preserving iff for eachn < w
anda € Levy(T), ®[a] € Leva(T) and® [ ais order-preserving.

Definition 211  Let B = {n; | i < A} be a set of branches df. ThenLP(B) is
the group of all level-preserving permutatichssuch that there exists a permutation
@ € Sym(A) such that:

foralli < A, there existsn < w such that
®[ni(N)] = nyaiy(n) forall m<n < .

Yg . LP(B) — Sym(i) denotes the associated homorphism suchyhatb) = ¢.
Lemma2.12 (MA,)) Thereexistsaset B= {nj|i < A} of branchesof T and a
permutation IT € Sym(w) such that the following conditions hold:

(i) The homomorphism g : LP(B) — Sym()) issurjective.
(ii) Foreachi < A,let Unj =B, = {bi(Z | £ < w}. Thenfor eachi < A, thereexists
t < wsuch that TI(b}) = o (b)) for all t < ¢ < w.

Before proving Lemma 2.12, we shall first show how to complete the proof of
Theorem 2.1.

Proof Proof of Theorem2.1: By Theorem 1.1, there exisis< A such that

Vg | GiNLP(B) — Sym(i)
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is surjective. We may also suppose tihe G; and thatG; contains the countable
subgroup Finw) of all finite permutations. Lej < A be arbitrary. Then there exists
®j € G NLP(B) andm < w such thatd®[no(n)] = nj(n) forallm<n < . Let
Mj=®;oMo @) € Gi. Then there exists <  such thatT;(b9) = o (b) for
allt < ¢ < w. Adjusting IT; by an element of Fi@w) if necessary, it follows that
ojBO € Gi(Bp). But then"® < G;(Byp), which is a contradiction.

We return to the proof of Lemma 2.12. The following result was proved in Sec-
tion 3 of Shelah and Thomds][ (For the rest of this sectiond]" will be identified
with the set oin-tuples(ni,, ..., ni,) such thai; < --- <'in.)

Lemma2.13((MA,)) LetB={n |i < A} bea set of branches of T. Suppose
that there exists a set of functions {d,, | dn : [B]" — } which satisfies the following
condition: If (t1,..., ), (01,...,60n) € [B]"and dn(t1, ..., Tn) = dn (01, ..., 6n),
then there exists k < w such that:

@ ti(k—1) =6k—-Dforl<i=<n;

() k=D #rjk=Dforl<i<j<n;

(c) iftj £ 6, thenti(k) #6;(k)for 1 <i <n.
Then ¢ : LP(B) — Sym()) issurjective.

Now we letPy = [1,,_,, Sym(Fy).

Lemma?214 ((MA,) Theeexistsaset B = {ni | i < A} of branches of T,
equipped with a set of functions {d, | d, : [B]" — o} satisfying the conditions of
Lemma 2.13 and a function H : B — w satisfying
ifi, j <xandn>maxH(), H(nj)}, then ni(n) = n;(n) implies
Proof: Let P be the partial ordering consisting of elements of the fogom=
(f, h, {d, | n < w)) satisfying the following conditions:
(1) There existX € [A]=® andm € w such that

(@) dom(f) =X xm;
(b) h: X - w;
(€) dy: [X]" - w.
(In particular,d, = @ if | X| < n.)
(2) For (a,n) € domf, f,(n) = f(a,n) € Levy(T) and f, is a branch of
WY Levn(T).
(3) If «, B € X are distinct, therf, # fg.
(4) If o, p € X and maxh(«), h(B)} < n < m, then f,(n) = fg(n) implies that
oq | Fn=0p | Fn.
(6) If {@1,....an), (B1,....Bn) € [X]" anddn(a1,...,an) = dn(B1,.... Bn),
then there existk € msuch that:
@ fuk=1) = fg(k=1forl<i=<n;
(b) fo(k=1) # fo;(k—=Dforl<i<j<n
(€) If aj # Bi, thenfy, (k) # fg (k) forl<i<n.
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The ordering or is the obvious one. A straightforwars-system argument shows
thatP is c.c.c., and the result follows by an easy applicatioMd4,.

Proof Proof of Lemma 2.12: If B = {n; | i < A} is the set of branches given by
Lemma 2.14, then the homorphisfg : LP(B) — Sym(L) is surjective. Hence it
is enough to find an elemeidi € Sym(w) which satisfies the second condition of
Lemma 2.12.

Leti < A andn < w;andletF,={a |1<r <|FR|}andni(n) ={b|l<r <
|Fnl} be the increasing enumerations. Defing € Sym(ni(n)) by 6i n(by) = by iff
oi(a) = as. Now definell € Sym(w) as follows. Let € w. If there exists < A and
n < wsuch thaH (n;) < nand? € n;j(n), thenI1(£) = 6i n(£). OtherwiseI1(¢) = ¢.

It is easily seen thdl satisfies our requirements.

Theorem 2.15 ((MA,)) For all A <«, wU, holds.

Proof: As the proof is very similar to that of Theorem 2.1, we shall just sketch the
main points of the argument. Clearly we can restrict our attention to the casemghen
regular and uncountable. Suppose thafw]” x A — P(w) satisfies the hypotheses
of wU, with respecttdq fi |i < A} € “2. LetT = (w, <) be a complete binary tree
with the property thah < b impliesa < b. Then® € Sym(w) is level-preserving iff

[ONS [1 Sym(Levn(T)). If Bis abranch ofl, thenB(n) denotes the unique element

nN<w

of BN Levy(T).
Arguing as above, there exists a $&t {B; | i < A} of branches oT satisfying
the following conditions:

(@) the homomorphisnfg : LP(B) — Sym()) is surjective;
(b) there exists a subsBk [w]® such that wheneveér< A there existsn < w such
that xs(Bi(n)) = 5 (Bi(n)) foralm<n < .

There existp € Sym(x) andX € [A]* such thatix(s, ) | Bi = f 5, foralli e X.

Let ® € LP(B) satisfyy5(®) = ¢, and letT = &[S Then for each € X, there
existsm; < w such thaty(Bj(n)) = f(pEzii)(Bi(n)) forall mj < n < w. There exists

Y € [X]*, m < wand{B(¢) | £ < m} such that:

(1) m=m forallieY;

(2) Bi(¢) =B) forallieYandl¢<m;

(3) 12, (B(0) = ff(ij)(B(E)) foralli, j € Y and¢ < m.
Adjusting the finite seT N {B(¢) | £ < m} if necessary, we can suppose that B; =
m(Bj, ¢(i)) foralli € Y. This completes the proof abU,,.

3 Difficult Uniformization Problems

Definition 3.1  {{(A., By) | @ < 6} is auniformization problemif A, C B, C w for
eacha < 0. If Se P(w), thenl(S) ={x < 0| SN B, = A,} is called thesolution
setof S

The following result will be useful in Section 4.

Theorem 3.2 ((MA+ SOCA)) [f0 <2?and {{Ay, By) | @ < 8} isauniformiza-
tion problem, then the following are equivalent.
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(1) For every Se P(w), 1(S) iscountable.
(2) Thereexistsafunctiond : & — w suchthat if o« < 8 < 6 satisfy d(«) = d(B),
thenAaﬂBﬁ;«éAﬁﬂBa.

Here SOCA is the following set-theoretic hypothesis, which was introduced in
Abraham, Rubin and Shelaf][

The Semiopen Coloring Axiom If X is an uncountable set of reals and]{=
Ko U K7 is a partition withKqy open in the product topology, thex contains an
uncountable subset such that ¥]? < K; for somei € {0,1}. (Y is said to be
i-homogeneous.)

In [[]} it was shown thaM A + SOCA + 2¢ =  is consistent wittZ FC for any
regulark > w1. And in [8], Todorcevic proved thaBOCA is a consequence GfFA.

We now begin the proof of Theorem 3.2. Lét< 2* and letU = {{Ay, By) |
a < 6} be a uniformization problem.

Lemma3.3((ZFC)) Clause(2) of Theorem 3.2 implies Clause (1).
Proof: LetSe P(w). If o, B € I(S) are distinct, then

A, N Blg =SNB,N Bﬂ = Aﬂ N B, and SOd(a) * d(,B)
Thus|I (9| < w.

Lemma3.4((MA+ SOCA)) Clause (1) of Theorem 3.2 implies Clause (2).
Proof: We shall require the following claim:

Claim 3.5 Supposethat X € U isanuncountable subset. Defineapartition[ X]? =
Ko Ky by {(Aa, Ba), (Ag, Bg)} € Ko iff A, N Bg # AgN B,. Then there exists an
uncountable 0-homogeneous subset Y C X.

Proof: Clearly Kg is open in [X]2. Thus if the claim fails, then there exists an un-
countable 1-homogeneous subgeC X. Let| = {a < 6| (As, By) € Z} and let
S= ., A.. Weclaim thatSn B, = A, forall « € I, which is a contradiction. Clearly

A. C SN B,. Forthe converse, suppose that SN B,. Then there existg € | such
thatn € AgN B, = A, N Bg, and son € A,.

Let D consist of all finite functiord : & —  such that ifa, B are distinct ele-
ments ofdom d with d(«) = d(8), thenA, N Bg # AgN B,. By MA, itisenough
to show thatD is c.c.c. Suppose thadtl | i < w1} is an antichain. By a\-system
argument and a counting argument, we can assume that the following hold:

(@) There exists an integérsuch thadom d; = {a‘l, e, ozie} and a functionf :
{1,...,£} - wsuchthat;(e) = f(k) foralli < w;and 1<k <¢.

(b) The setgdom d;j form a A-system with rootR, and the elements oR lie in
corresponding positions in each increasing enumeratjoa - - - < o,

(c) There exists an integersuch thatif 1< j <k < £ and f(j) = f(k), then

Aaij N B“ik nn=# A"‘ik N Baij nn

foralli < wy. Furthermore, for each such pair, there are fixed sulssets n
suchthatA,; N B, Nn=sandA, NB, Nn=tforalli < w;.
J J
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Applying Claim 3.5 toXy = {(Aaik, Baik) | i < w1} wherek is the least integer
such thataL € dom d;\ R, there exists an uncountable C w; such that ifi, | are
distinct elements of4, then Aaik N Baj + Aaj N Baik. Continuing in this manner, we

k k

obtain an uncountableC w; such that ifi, j are distinct elements dfanda}( #+ oqj(,
then Ay N Bai # Aai N B, . But thend; U dj € D, which is a contradiction.

We end this section by showing that Theorem 3.2 cannot be proved Kidin
alone. We shall make use of the following result, which was pointed out to us by the
referee.

Theorem 3.6 (MA+ —CH)) Suppose that there exists an uncountable set X of
reals and a partition [ X]? = Ko U Ky such that:

(i) Kpand Ky are both open; and
(if) X contains no uncountable homogeneous subsets.

Then there exists a uniformization problem {{ A, By) | @ < w1} such that:

(a) for every Se P(w), I (S) iscountable; and
(b) for every functiond : w1 — w, thereexist o < 8 < w; such that d(a) = d(B)
and A, N Bﬁz Aﬂﬂ Bg.
Proof: Wecan suppose thaf is a subset af2 of cardinalityw,; sayX = {r, | @ <
w1}. For eacht € <“2, letU; = {r € 2| t C r} be the corresponding basic open
subset of°2. By passing to a suitable subset if necessary, we can suppose that the
following condition holds.

(7) fa <wp, te<®2andr, € Uy,
then there exist uncountably magysuch thatg € Us.

For eachy < w;,let B, = {t € =®2|t Cr,}. Then{B, | @ < w1} is an almost
disjoint family of subsets of“2. LetP = Han(BO,, 2) be the finite support prod-

uct. For eachp € P, supt(p) will denote the support op. If p € P, then we shall
write p = (Po)a<w,, Wherep, € Fn(By, 2). Let Q consist of all conditiong € P

which satisfy the following property.

If «, B € supt(p) are distinct, therB, N Bg € dom p,N dom pg;

andp, [ B, N Bg = pg [ B, N Bgiff {ry,rg} e Ko.
Then it is easily checked thél is c.c.c. Using (7), we see that for eagh< w1, the
setD, = {p € Q| There existyy < § < w1 such thats € supt(p)} is dense inQ.

Also notice that ifp € Q, @ € supt(p) andt € B,, then there existq < p such that
t e domq,. Applying M A, let G be a suitably generic filter of. Let

| ={a < w1 | There existp € G such thatx € supt(p)}
and for eachy € I, let
A, = {t e by | There existp € G such thatp, (t) = 1}.

Then|l| = w1; and ifa, B € | are distinct, themA, N Bg = Ag N By iff {ry,rg} €
Ko. It follows easily that the uniformization problefgA,, B,) | « € |} satisfies our
requirements.
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Thus to prove that Theorem 3.2 cannot be proved fid#y itisenough to show
that MA + —=CH + —wSOCA is consistent, whereSOCA is the following weak
version of SOCA.

WSOCA If X is an uncountable set of reals arX]} = Ko LI K; is a partition with
both Ko andK; open in the product topology, theficontains an uncountable homo-
geneous subset.

Itis easily seen thab SOCA implies thatif f € R x R is an uncountable func-
tion, then there exists an uncountable monotonic funagigh f (for example, see
Theorem 1.2 of [1]). Abraham and Shelah have proved that it is consistent with
M A+ —CH that there exists an uncountaldlec R x R which does not include any
uncountable monotonic function (see Section 8 of [1]). Hence Theorem 3.2 is not a
consequence dfl A.

4 The Symmetric Uniformization Principle In this section, we shall prove Theo-
rem 1.15. Following the example of Velickovic {B][and [11], we shall accomplish
this by forcing with anw,-Baire posef) over a model ofPF A. Recall thatQ is said
to be w,-Baire if the intersection of each family af; dense open subsets @fis
dense. In this casé) does not adjoin any new;-sequences. HenceVW £ PFA,
thenV2 E MA + 22 = w,.

Theorem 4.1 Supposethat V E PFA. Then there exists an w,-Baire poset Q such
that V@  —sU,,,.

For the rest of this section, we shall assuRIEA. Let H(w;) be the set of all
sets which are hereditarily of cardinality less than Let H(w;) = a<Uw2Mo, be a
smooth strictly increasing chain of transitive elementary submodels sudivihiat
w1 for all @ < wo. (This chain is only introduced for the very crudest bookkeeping
purposes.) LeE € P(w) be the set of all even numbers, and{lEf, | « < w1} be an

independent family of subsets &f

Definition 4.2 The poseR consists of all functiong satisfying the following con-
ditions.

(a) There exist&x < w, such thatdom p = ([w]® N My) x w1, and p(X, y) €
P(X) for all (X, y) € dom p.

(b) For eaclSe P(w), there exist only countably man, y) € dom p such that
SN X = p(X, y).

(c) ForeachX € [w]” N M,, there exists a bijectiog : E — Xsuch thag[E,] =
p(X,y) forall y < w;.

R almost serves our requirements. However, in the course of our argument, we
shall need to show that a certain functigiis an element oR. Conditions (a) and
(c) will be clear. By Theorem 3.2, Condition (b) is equivalent to the existence of a
functiond : domqg — w such thatif(X, y), (Y, §) € domqare distinctand (X, y) =
d(y, 8),thenXnNq(Y, §) # YNq(X, y). Weshall show thad exists by proving that
the partial ordeD of finite approximations to such a function is c.c.c. The next two
definitions are designed to prevent the growth of uncountable antichdihs in

Definition 4.3 Let p € R. A dangerous sequence for p of width £ € » consists of
a set{(Al, Bl)1<t<¢ | N < w} satisfying the following conditions:
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(@) If (AL, Bh) = (A3, By, then(t,n) = (s m).

(b) Foreach =t < ¢ andn < w, there existg X, y) € domp such thatB}] =X
and Al = p(X, y).

(c) For eachn < m < o, there exists k t < ¢ such thatA!, N Bt, = AL, N B,

Definition 4.4  The pose(Q consists of all functiong € R such that the following
further condition is satisfied:

Suppose thadom p = ([w]” N M) x w1, § < @ and thatd = {(A},, BY)1<t<¢ |
n < w} € My is a dangerous sequence forSuppose further tha U {(C!, D)1t}
is a dangerous sequence fosuch that D)1 1, ¢ M;. Then there exists a nonempty
P C{1,..., ¢} and a sequence of finite séf')p such that for alh < o, either:

(1) there exists$ € {1, ..., £}\ P such thatA!, n D' = BY, N C'; or
(2) there exist$ € P such thatB}, N D' C F!.

ClearlyQ is o-closed and hence proper. Our intention is that we will eventually
begin to deal with each dangerous sequence. But suppose ¢h&@ with domp =
([w]® N M) x w1 and thatd is a dangerous sequence farThen for each < wo,
there exists a subsequendg C ® such thaibg ¢ Mg.

In particular, this is true whejB\«| = w1, and so there still appears to be plenty
of scope for the slow growth of an uncountable dangerous sequence. An amusing
argument, which perhaps deserves to be calteslEmpty Box, will eliminate this
unpleasant possibility.

Theorem 4.1 is an immediate consequence of the following two results.
Lemma4.5 For eacha < woy, theset

Dy ={peQ|domp= ([w]” N Mp) x w for somea < < wy}
isdensein Q.

Lemma4.6 Qisw,-Baire.

Proof Proof of Lemma 4.5:  Suppose thap € Q and thatdomp = ([w]” N M,) x
w1 for somey < a. Let F = ([w]” N M)\ ([w]” N M,). For eachB € ¥, let
PPB be the set of all finite injective functions: E — B, ordered by reverse inclu-

sion. LetP = BQPB be the finite support product. For eagh= (qB)g.+ € P, let
S(9) = {B| qB # @)}. LetC consist of all conditiongq, d) which satisfy the follow-
ing conditions:

(1) q= (qB>Be? eP.

(2) There exists a finite subsktC w; such thad : S(g) x X — w.

(3) WheneveKA, i), (B, j) e domd are distinct elements witth( A, i) = d(B, ),
then there exista € rang”n rang® such that

@t e Eiff (@®)71(n) ¢ E;.

It is routine to check thaf is c.c.c. For eack € P(w) N M, and each B, i) €
T x w1, let D?B’i) consist of thoséq, d) e C such that there existse ranq® with

(@®)(n) € Ei iff n¢ C. Clearly eachD(; ;, is dense irC.
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Now let ® = {(A!, Bl)1<t<¢ | N < w} € M, be a dangerous sequence for
Suppose that:

(i) PC{1,...,¢}isanonempty subset;
(i) foreacht e {1,...,£}\P, (C!, DY = (p(X, y), X) for some(X, y) € domp;
(i) (DY, i) € F x wy fort e P are distinct;
(iv) theredoes not exist a sequenceF!)ip of finite sets such that for all < o,
either:

(@) there exists € {1, ..., £}\P such thatAl, N D' = B}, N C!; or
(b) there exist$ € P such thatB}, N D' € F!.

Let D(®, P,...) consist of thoséq, d) € C such that there exists < w satis-
fying:
(@) AAND'#£ B ,NC'forallte {1,...,£}\P;

. t
(B) for all t € P, there existsry € rang® N B!

such that(@®)~1(my) € E;, iff m ¢ AL

It is easily checked that each(®, P, ... ) is dense irC.

By PFA, there exists a filteG C C which intersects each of the, dense sets
mentioned above. Define a function

pC pt: ([w]” N M) x w1 — P(w)

by specifying for eachB,i) € ¥ x w; thatn € p* (B, i) iff there exists(qg, d)
G andm € E; such thaig®(m) = n. Also define a functiorD : F x w; — o by
D(B, i) = siff there exists(qg, d) € G such thad(B, i) = s. Using Lemma 3.3, we
see thaip™ € R. Suppose that < o and thatd = {(A!, Bl)1<t<¢ | N < ®} € Msisa
dangerous sequence fpt. If (B, i) € F x w1, then the dense sets of the fome’i)
ensure thap' (B, i) ¢ M,. Henced is already a dangerous sequencefoSuppose
that® U {(C', D')11,} is a dangerous sequence for such that D'); <, ¢ M;. If
(DY1<t<¢ € M,, then (4.4) must hold sincp € Q. Onthe other hand, ifD")1<1<, ¢
M, then the dense sets of the fofi{®, P, ...) ensure that (4.4) holds. Thps € Q.

Proof Proof of Lemma 4.6:  Suppose thaD¢, £ < w1, are dense open subsets®f
and thatp € Q. Wemust findg < p such thaig € 5201 D;. Until further notice, we
shall work withinVQ. Let G be a generic filter of) such thatv? = V[G], and let
g = UG. Theng: [0]” x w1 — P(w); and for everyw < oy, go = g [ ([0]” N

My) x w1 € Q. LetD consist of all finite functionsl : [w]® x w; — w such that if
(S i), (T, j) edomdaredistinctandl(S, i) = d(T, j),theng(S,i))NT #g(T, j)N

S

Clam4.7 Disc.c.c. inVQ.

Proof: Suppose not. Then, arguing as in the proof of Lemma 3.4, we see that there
exists a sequendeA),, B.)1-t<¢ | @ < w1} for somel < w satisfying the following
conditions.

(@ If (A, B!) = (AZ, BZ), then(t, o) = (s, B).
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(b) Foreach Xkt < ¢anda < ws, there existg X, y) € [@]® x w; such thaB!, =
XandAl = g(X, y).
(c) Foreachr < 8 < wy, there exists k t < ¢ such thatA}, N B, = Ay N B,

We suppose that the sequence has been chosen sbighainimal.

Suppose that there exists< a);’ and an uncountableC w; such thaB!, € Ms
forall 1<t <¢anda € |I. By Theorem 3.2 applied tgs € Q, there exists a function
A € V such that:

Q) A: ([w]”NMs) x w1 — w;
(2) if (X,1), (Y, j) e dom A are distinct and\ (X, i) = A(Y, j), then

gs(X, 1) NY £ gs(Y, j)N X

DefineA* : | — ‘o by A*(a) = (A(BL, ¥}))1<t<¢ Where AL, = gs(Bl, ). Then
there exists an uncountablleC | such thatA* (o) = A*(B) forall «, 8 € J. But
then if o, g € J are distinct, we have thak, N B, # A, N B, forall 1<t <¢,
which is a contradiction.

Thusifs < a)}’ then there exist only countably maay< w; such thaB!, € M;
forall 1 <t < ¢. SinceQ is propercf (a)g) > w. Hence we can suppose that for all
y < w1, there exist$ < wy such thaf(AL, BL)1<t<¢ | @ < y} € Msand(B! )11 ¢
Ms. Applying Definition 4.4, for eaclw < y < w; there exists a nonempty subset
P, € {1,..., ¢} and a sequence of finite seéiéf,)te p, such that for alB < y either

(1) there exist$ € {1, ..., £}\ P, such tha\‘Af3 NB, = st NA; or
(2) there exists € P, such thatBy N B), C F.

We can suppose that there is a fixed Beind a fixed sequenc¢€&!)icp such that, =

P and(F))icp, = (F')tep for all w < y < w1. We @n also suppose that there exist
integersy, € w\F'fort € Psuchthan; € B}, forallw < y < 1. Butthis means that
whenevemw < B < y < w1, then there existse {1, ..., ¢}\ P such thatAtﬂ N Bg, =

B}; N Al. This contradicts the minimality of.

In particular,Q = D is proper. For the remainder of the proof, we shall work
insideV. For eachy < wy, leth, : w1 — ([w]® N M) X w; be a bijection. For each
£, v < wy let D, consist of those conditiong, d) € Q « D which satisfy:

(1) g€ Dg;
(2) if ag is the least ordinal such that| ([w]” N My,) x w1 € D¢, thenh,, (v) €
domd.

ClearlyDy, is dense i) x D. By PF A, there exists afiltefp, @) € H € Q * D such
thatH N D, # @ forall £ v < wy. For eactt < w1, there existgq, @) € H such
thatq: € D andq’ ¢ D; forall g: < g € Q. Letq = Uz_,,0:. We can suppose
that p C g. Thenq satisfies all of our requirements, except possibly Condition 4.2
(b). DefineA : domq — w by

A(X, y) = niff there exists(qe, d) € H such thatd(X, y) = n.

Using Lemma 3.3A witnesses the fact thgtsatisfies Condition 4.2(b). Thuss Q.
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5 Concluding Remarks In the previous sections, we have shown that ¢8y) =
2” is independent oM A 4+ —CH. Itis straightforward to eliminate the use BF A
from both directions of this result.

Theorem 5.1 Let M E GCH, and supposethat « > w1 isaregular cardinal in M.

(a) Thereexistsac.c.c. poset Q suchthat M2 E MA+ 2% = x4+ cov (B,) = 2°.
(b) Thereexistsac.c.c. poset R suchthat MR E MA+ 2% =k + cov (B) = ws.

Proof Sketch Proof:

(a) Let S, IP denote Sacks forcing and Prikry-Silver forcing respectively. In [9],
Velickovic constructed a c.c.c. pos@t such thatM? £ MA+ 22 = k + FA(S).
Velickovic pointed out in the Introduction of [9] that it is routine to modify his con-
struction so as to obtain a c.c.c. po§esuch thatM? E MA + 22 = « + FA(P).
Arguing as in the proof of Theorem 1.9, we see tjaatisfies our requirements.

(b) We perform an iterated finite support c.c.c. construchino < «, with Mg = M.
The odd stages of the construction are devoted to ensurind/fhiatM A + 2 = .
At even stages®= 28 + 2, we use the c.c.c. posgtfrom the proof of Lemma 4.5
to adjoinl'[zﬁ+2 C([w]?N (M2g2\M2g)) x w1 — P(w).

At limit stagesa of uncountable cofinality, we use the po&efrom the proof of

Lemma 4.6 to adjoir : ﬁgadom M52 — . An easy modification of the proof of

Claim 4.7 shows thdD is c.c.c. Finallyll = ﬁgkl‘lzmz is a counterexample ®&J,,,
and henceM, F cov (B) = w;.

Putting together Theorem 1.10 and Theorem 1.11, we see that

cov (By) < c(Sym(w)) is consistent withiz FC.

Theorem 5.2  ¢c(Sym(w)) < cov (B,) isconsistent with ZFC.

Proof: Let M E CH. Then there exists an;-scaleS= {f, | « < w1} € M. LetP
be the countable support iteration of lengthwhich adjoins a sequence®$ Prikry-
Silver reals iteratively. Thenitis easily seen tMit = cov (B,) = w,. By Shelah [6]
V 4.3,Sremains amq-scale inM*. Thus Theorem 1.5 implies thetSym(w)) = w1.
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