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Algebraic Study of Two Deductive Systems
of Relevance Logic

JOSEP MARIA FONT and GONZALO RODŔIGUEZ

Abstract In this paper two deductive systems (i.e., two consequence rela-
tions) associated with relevance logic are studied from an algebraic point of
view. One is defined by the familiar, Hilbert-style, formalization ofR; the other
one is a weak version of it, calledWR, which appears as the semantic entailment
of the Meyer-Routley-Fine semantics, and which has already been suggested by
Wójcicki for other reasons. This weaker consequence is first defined indirectly,
usingR, but we prove that the first one turns out to be an axiomatic extension
of WR. Moreover we provideWR with a natural Gentzen calculus (of a clas-
sical kind). It is proved that both deductive systems have the same associated
class of algebras but different classes of models on these algebras. The notion
of model used here is an abstract logic, that is, a closure operator on an abstract
algebra; the abstract logics obtained in the case ofWR are also the models, in
anatural sense, of the given Gentzen calculus.

1 Introduction This paper intends to be a contribution to the study of the well
known systemR of Relevance Logic, and of a weaker companion system called here
WR, from a precise point of view of algebraic nature. We will follow some well-
established methods, such as those systematized in Blok and Pigozzi [5], Czelakowski
[9], Wójcicki [26], [27], as well as newer methods, developed recently in full gener-
ality in Font and Jansana [16], but already in use for several years for many particular
cases (see Bloom and Brown [6] and Font and Verd́u [18]–[21], and also Font [15]
for a survey). These not-so-well-known methods use abstract logics, that is, pairs
L = 〈A,C〉 where C is a closure operator on the universe of the algebraA, as akind
of models of logics; they were introduced in Brown and Suszko [7] as ageneralization
of Tarski’s early use of consequence operations on the formula algebra and also of the
general theory of logical matrices (although already in 1962 Smiley [25] pointed out
the need for them). The objects of study in this area of Algebraic Logic are called,
somehow conventionally,deductive systems; by definition a deductive system is a
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finitary and structural closure operator on the algebra of formulas. Thus when we
want to study a givenlogical system with these methods we have to turn it into ade-
ductive system by some procedure, which might not be in accordance with the orig-
inal — extra logical — motivations for introducing the logical system. This is what
happens in the case of relevance logic: by definition a deductive system satisfies the
Weakening Rule, which allows one to add hypotheses to a given derivation without
invalidating it. This property is rejected by many scholars on the grounds that it pre-
cisely destroys relevance; these ideas end up with formalizations in the Gentzen style
lacking some structural rule(s), and all our algebraic apparatus cannot be applied to
them. In this paper we shall not be concerned with such points; the reader will find
interesting readings on these and related issues in Došen and Schroeder-Heister [13].

The issue of formalizing the notion ofrelevant implication or entailment is
surely not trivial. One of the predominant approaches in the literature has been to find
a class of formulas concerning it (i.e., containing some formal connective of implica-
tion) which can be shown to represent faithfully alllogically true statements about
entailment. This can be done either semantically (by taking all formulas true in a
suitable class of models) or syntactically (by taking all formulas provable in a given
formal system). The famous systemR was originally introduced (see Anderson and
Belnap [1]) as the set of theorems of a Hilbert-style formal system. Then, by allow-
ing inferences from hypotheses, the same formal system defines a deductive system,
which is sometimes calledofficial deducibility (cf. for instance [1], §22.2.1 or Ander-
son, Belnap and Dunn [2], p. 169). This deductive system has already been studied
from an algebraic point of view on p. 48ff. of [5] and Font and Rodrı́guez [17]; it is al-
gebraizable, in the precise sense of the term introduced in [5], and the corresponding
class of algebras has been identified in [17], where they are calledrelevant algebras or
R-algebras (they turn out to form an intermediate class between De Morgan monoids
and De Morgan semigroups, two classes of algebraic models usually considered).

However, this is not the only possible approach to the problem of finding a de-
ductive system faithfully representing the informal notion of entailment that system
R tries to formalize. Actually, Ẃojcicki in [26], pp. 52–73 and [27], pp. 163–170 has
made some insightful observations on the issue of how to define, in general, a de-
ductive system from the set of theorems of some logical system. He has advanced
a proposal along the following line: If we are to represent the (informal) notion of
entailment by the (formal) notion of deduction, that is, by the metalogical connective
“�”, then we can adopt as a definition of such a deductive system the idea that

The formulasϕ1, . . . , ϕn ∈ Fm entail the formulaϕ ∈ Fm

if and only if

the formula(ϕ1 ∧ . . . ∧ ϕn) → ϕ is a theorem of R.

Since this determines the consequences of only nonempty and finite sets of for-
mulas, Ẃojcicki adds in [26] the conditions that the logic must be finitary and have no
theorems (this last condition is replaced in [27] by the equivalent one that no formula
is a consequence of each of the nonempty theories of the logic).

The relation of consequence just described is implicitly present in the works on
the relational semantics devised by Routley, Meyer, Fine, and others. Indeed, these
authors have proved a completeness theorem forR (see [2], §§48, 51 for details) that
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as a consequence yields that a formula of the form(ϕ1 ∧ . . . ∧ ϕn) → ϕ is a theorem
of R if and only if the formulasϕ1, . . . , ϕn semantically entail the formulaϕ, that is,
if and only ifϕ is satisfied, for some valuation, at any point in a model structure where
all theϕi are satisfied. The reader may notice that thesemantic entailment relation
underlying this result coincides with Ẃojcicki’s proposal.

Our main concern in this paper will be the algebraic study of the deductive sys-
tem, which we callWR, that arises in this way. SinceWR andR are closely con-
nected, this study will also furnish a context in which some further contributions to
the algebraic study ofR will be made.

Section 2 contains some general definitions and results, and in particular those
concerningR and its algebraization, mainly taken from [17]. The class ofR-algebras
is introduced, and its relationship with the deductive systemR is described, allowing
us to determine all theR-filters on anR-algebra. The general concepts and techniques
of Universal Algebra and Lattice Theory can be found in Balbes and Dwinger [3] and
Burris and Sankappanavar [8], and those of the Theory of Abstract Logics in Brown
and Suszko [7].

Section 3 begins with the formal definition ofWR and the proof that actuallyR is
the axiomatic extension ofWR having the Identity Lawp → p as an additional axiom
schema. Then a Completeness Theorem forWR is found, with respect to the class
of matrices obtained from allR-algebras and all their lattice filters plus the empty set
(a similar one forR was obtained in [17] by taking just those lattice filters containing
all elements of the forma → a). We show that, unlike in the case ofR, we cannot
put the larger class of De Morgan semigroups in the place of the class ofR-algebras
in this Completeness result. Using it we prove that theWR-filters on anR-algebra
are exactly all its lattice filters plus the empty set. We then show thatWR is not alge-
braizable in the sense of [5], nor even protoalgebraic in the sense of Blok and Pigozzi
[4]. This section ends with the determination of all the reduced matrices forWR and
the proof that their algebraic reducts form exactly the class of allR-algebras. Thus
both deductive systems share the same associated class of algebras.

Section 4 is the central one. It begins with the definition of a Gentzen calculus
GWR and of the deductive systemSWR associated with it in a standard form. In
order to prove the main result thatSWR is exactlyWR (thus obtaining an intrinsic
formalization ofWR) we introduce and study the class of abstract logics which are
models of the Gentzen calculusGWR (and are moreover finitary and have no the-
orems), calling themWR-logics. Among other results, we characterize the reduced
WR-logics as the abstract logicsL = 〈A,C 〉 such thatA is anR-algebra andC is the
closure system of all the lattice filters ofA plus the empty set, and prove that in this
case this closure system consists of exactly all theWR-filters onA. As aconsequence
we obtain that theR-algebras can be characterized as the algebras where the abstract
logic determined by the closure system of all theWR-filters is reduced, and thatWR-
logics are the inverse images of abstract logics of this form by bilogical morphisms.
These results establish direct links between the deductive systemWR and the class
of WR-logics and enable us to draw some consequences using general results of [16];
probably the most interesting one is that on any algebraA (of suitable similarity type)
there is an isomorphism between the lattice of allWR-logics on it and the lattice of
all congruences of the algebra whose quotient is anR-algebra.
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In Section 5 we make a similar study for the deductive systemR. However, we
do not have a structural Gentzen calculus giving exactlyR in the standard way (Bel-
nap’sDisplay Logic, see section 62 of [2] incorporates in an essential way an addi-
tional negation with a classical behavior). Therefore the notion ofR-logic is first de-
fined indirectly, as the class of axiomatic extensions ofWR-logics by the set of all
the “identity elements”a → a. We prove that eachWR-logic is in turn determined
uniquely by theR-logic it determines through this definition, and thus the lattices of
all R-logics and of allWR-logics on a given algebra are isomorphic. The main re-
sults are parallel to those of Section 4: the reducedR-logics have the formL = 〈A,C 〉
whereA is anR-algebra, andC is the closure system of the lattice filters ofA which
contain all elements of the forma → a, and generalR-logics are the inverse images of
these by bilogical morphisms. Using the algebraizability ofR we prove thatR-logics
can be characterized as the abstract logics whose closure system consists of all theR-
filters that contain a given one, a fact that cannot be obtained forWR. We close this
section with the characterization ofR-logics as those finitary models ofR that satisfy
aparametrically restricted form of the Deduction Theorem with respect to their own
set of theorems.

2 The Deductive System R and its Algebraic Models Let Fm = 〈Fm,∧,→,¬〉
be the absolutely free algebra of type (2,2,1) over a denumerable set of variablesVar.
Wewill denote asR = 〈Fm,�R〉 adeductive system corresponding in a natural way
to the well-known systemR of Relevance Logic. The consequence relation�R is
defined in the usual (Hilbert-style) form by means of the following list of axioms and
inference rules (see [1], p. 341), where by definition

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)

ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ)

ϕ ∗ ψ = ¬(ϕ → ¬ψ)

for anyϕ,ψ ∈ Fm. The binary connective∗ is commonly calledintensional conjunc-
tion or fusion. The axioms ofR are all formulas having one of the following forms:

(R1) ϕ → ϕ

(R2) (ϕ → ψ) → (
(ψ → η) → (ϕ → η)

)
(R3) ϕ → (

(ϕ → ψ) → ψ
)

(R4)
(
ϕ → (ϕ → ψ)

) → (ϕ → ψ)

(R5) (ϕ ∧ ψ) → ϕ

(R6) (ϕ ∧ ψ) → ψ

(R7)
(
(ϕ → ψ) ∧ (ϕ → η)

) → (
ϕ → (ψ ∧ η)

)
(R8) ϕ → (ϕ ∨ ψ)

(R9) ψ → (ϕ ∨ ψ)

(R10)
(
(ϕ → η) ∧ (ψ → η)

) → (
(ϕ ∨ ψ) → η

)
(R11)

(
ϕ ∧ (ψ ∨ η)

) → (
(ϕ ∧ ψ) ∨ η

)
(R12) (ϕ → ¬ψ) → (ψ → ¬ϕ)

(R13) ¬¬ϕ → ϕ

and the inference rules are:
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(Adjunction) ϕ ,ψ � ϕ ∧ ψ

(Modus Ponens) ϕ , ϕ → ψ � ψ.

Note that from now onR or �R will denote the deducibility relation from premises
obtained by this formal system; therefore we are taking these inference rules as rules
of deducibility and not just as rules of proof of theorems from theorems.

At several points in this paper we will use some theorems ofR which we re-
produce here with the same numbering of [1], pp. 396–397; their proof can be found
somewhere in this book:

(R20) ϕ ↔ ¬¬ϕ

(R28) (ϕ ∧ (ψ ∨ η)) ↔ ((ϕ ∧ ψ) ∨ (ϕ ∧ η))

(R30) (ϕ → (ψ → η)) ↔ ((ϕ ∗ ψ) → η)

(R53) (ϕ → ψ) → (¬ϕ ∨ ψ)

(R55) (ϕ ∧ ψ) → (ϕ ∗ ψ)

and we will also use the following two theorems ofR:

(WI) (ϕ ∧ (ϕ → ψ)) → ψ

(RR) (((ϕ → ϕ) ∧ (ψ → ψ)) → η) → η.

The first one is named after Slaney [24], and the second one is mentioned in [1]
(p. 321) as a theorem ofE, of which R is a (nonconservative) extension. (RR) can
actually substitute the characteristic modal axiom(�ϕ ∧ �ψ) → �(ϕ ∧ ψ) of E; as
we shall see, this theorem (or better, its algebraic version) plays an essential role in
the approach to the algebraization ofR begun in [17].

The first algebraic models ofR, introduced in Dunn [14] (see also [1], §28.2) in
order to study the algebraic completeness ofR, were calledDe Morgan semigroups.
As a starting point we take the following alternative definition in terms of∧,¬,→,
proved polynomially equivalent to the original in [17], Theorem 5 modulo the defini-
tion of the semigroup operation∗ given above:a ∗ b = ¬(a → ¬b); in the converse
process starting from∧,¬,∗, the implication is defined asa → b = ¬(a ∗ ¬b).

Definition 2.1 An algebraA = 〈A,∧,→,¬〉 of type (2,2,1) is aDe Morgan semi-
group when the following conditions hold:

(1) 〈A,∧,¬〉 is a De Morgan lattice, whose ordering relation we denote by≤, and
whose supremum operation is preciselya ∨ b = ¬(¬a ∧ ¬b).

(2) a → (b → c) ≤ b → (a → c), for anya, b, c ∈ A.

(3) a ≤ (
(a → b) ∧ c

) → b, for anya, b, c ∈ A.

(4) a → ¬a ≤ ¬a, for anya ∈ A.

(5) a → b ≤ ¬b → ¬a, for anya, b ∈ A.

Recall that a De Morgan lattice is defined like a De Morgan algebra (see [3]) but
without the condition that it must be bounded; so it need not have a smallest and a
greatest element.

Dunn notes in [1], p. 361 that the variety of De Morgan semigroups is not a good
enough class of algebraic models forR. Indeed, one of the distinctive features ofR,
which sets it apart from other nonclassical systems such as the intuitionistic one or
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Łukasiewicz’sℵ0-valued system, is the fact that not every two theorems are equiv-
alent; this is so because inR not all formulasϕ → (ψ → ϕ) are theorems. As a
consequence, in general there is no distinguished element in De Morgan semigroups
to interpret theorems. Moreover, the Tarski-Lindenbaum algebra ofR, Fm/�̃(R),
where〈ϕ,ψ〉 ∈ �̃(R) ⇐⇒ �R ϕ ↔ ψ, is not free in the class of all De Morgan
semigroups. Thus this class cannot give us the desired algebraic completeness re-
sult for R. Dunn’s solution (see [1], pp. 361–366) consists in enlarging the language
with a least truth value constantt and adding the formulat and the formula scheme
t → (ϕ → ϕ) to the list of axioms ofR. The extended systemRt thus obtained
turns out to be a conservative extension ofR, and its algebraic models areDe Mor-
gan monoids, that is, De Morgan semigroups with a unite. SinceRt happens to
be (strongly) complete with respect to this class of models, we can obtain as a by-
product a (strong) completeness result forR in the following form: for any� ⊆ Fm
and anyϕ ∈ Fm , � �R ϕ ⇐⇒ e ≤ ϕA(a) for any interpretationa in any De Mor-

gan monoidA with unit e such thate ≤ ψA(a) for all ψ ∈ �.
In [17] an alternative solution is presented. First of all, it is proved that De Mor-

gan semigroups themselves provide us with a matrix semantics forR in a rather nat-
ural way. Recall that one says that a logical matrix〈A, F〉 is anR-matrix (or, equiv-
alently, thatF is anR-filter onA) when for any� ∪ {ϕ} ⊆ Fm, the relation� �R ϕ

implies that for any interpretationa onA, if {ψA(a) : ψ ∈ �} ⊆ F thenϕA(a) ∈ F.
The class of allR-matrices will be denoted in this paper byMatrR, and for any al-
gebraA, the set of allR-filters onA will be denoted byF iRA. On the other hand,
on any distributive latticeA we will consider the following closure system associated
with the family of all lattice filters ofA:

FıltA = {F ⊆ A : F is a lattice filter ofA or F = ∅},

and we denote by Filt the closure operator associated with this closure system. Note
the nonstandard character of this definition: actually, for anyX ⊆ A, if X �= ∅ then
Filt(X) is the lattice filter generated byX, whereas Filt(∅) = ∅. Thus if the lattice
has no greatest element (equivalently, if it has no least filter), thenFıltA is the clo-
sure system generated by the family of all lattice filters ofA, whereas ifA has a great-
est element then we have explicitly added the empty set. The reason for such an un-
usual procedure will become clear at the end of Section 4, namely in Theorem4.14.
If moreoverA is a De Morgan semigroup, we distinguish the filter generated by all
elements of the forma → a by putting

E(A) = Filt({a → a : a ∈ A})

and consider the closure system of alldeductive filters of A, namelyDedA = {F ⊆
A : F ∈ FıltA andE(A) ⊆ F}, denoting by Ded its associated closure operator; this
use of the term “deductive filter” is justified by the following result.

Theorem 2.2 ([17])

(1) For every De Morgan semigroup A , F iRA = DedA.
(2) R is (strongly) complete with respect to the class of matrices

{〈A, E(A)〉 : A is
a De Morgan semigroup

}
.
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The introduction in [17] of the setE(A) was motivated by an observation of
Dunn to the effect that from any proof inRt of a formula withoutt one can obtain
a proof of the same formula inR simply by substituting all occurrences oft by the
conjunction of the formulasp → p, wherep ranges over all variables appearing in
the original proof. A detailed consideration of this fact and its algebraic consequences
leads to a new class of algebraic structures:

Definition 2.3 ([17]) An algebraA = 〈A,∧,→,¬〉, of type (2,2,1) is anR-algebra
whenA is a De Morgan semigroup such that, for anya, b, c ∈ A ,

(
(a → a) ∧ (b →

b)
) → c ≤ c. The variety ofR-algebras will be denoted byR .

It is shown in [17] thatR is a proper subclass of the variety of De Morgan semi-
groups. As we have already noticed, its definition (together with all the properties
these algebras will have) shows the importance of the theorem ofR we have called
RR. The following facts about the varietyR will be used in the paper:

Theorem 2.4 ([17])

(1) For any A ∈ R and any a, b ∈ A , a ≤ b ⇐⇒ a → b ∈ E(A).
(2) For any A ∈ R , F iRA = DedA.
(3) R is (strongly) complete with respect to the class of matrices

{〈A, E(A)〉 : A ∈
R

}
.

(4) For any ϕ,ψ ∈ Fm , �R ϕ → ψ ⇐⇒ ϕA(a) ≤ ψA(a) for any interpretation
a on any A ∈ R.

(5) R is the variety generated by the Tarski-Lindenbaum algebra Fm/�̃(R), which
is the free algebra in R.

On the other hand, after Theorem 5.8 of [5] weknow thatR is algebraizable in
the precise sense of this term established in the same paper. This means that there
is a unique quasivariety of algebras associated in a canonical form withR, called its
equivalent quasivariety semantics, which bears toR the closest relationship so far
described between a logic and a class of algebras. The determination of this class,
which in this case happens to be a variety, closes the problem of the algebraization of
R.

Theorem 2.5 ([17]) The class R is the equivalent variety semantics for the deduc-
tive system R, with defining equation p ∧ (p → p) ≈ p → p and equivalence formula
p ↔ q.

This theorem, read under the light of the general study of algebraizability of
deductive systems contained in [5], tells us that the class of algebrasR is the al-
gebraic counterpart of R. It is easy to see that every De Morgan monoid is anR-
algebra, but the converse does not hold: take for instance the totally ordered set
A = (

[−1,0) ∪ (0,1]
) ∩ Q with the Sugihara operations (see [1], p. 400 or 421).

Therefore, complementing the claim made in [2], p. 157 that “... we know after [1],
§28.2 that De Morgan monoids are the right algebraic structure forR,” what we now
know is that they are, actually,the best algebraic structures forRt, in the same sense
asR-algebras are the best algebraic structures forR.

We now recall some more notation and terminology in order to express some
consequences of this fact and for the rest of the paper. For any algebraA = 〈A,∧,→,
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¬〉 of type (2,2,1), ConA denotes the set of all congruences ofA; and the congru-
ences in ConR A = {θ ∈ ConA : A/θ ∈ R} are called theR-congruences of A; if
A ∈ R then ConR A = ConA becauseR is a variety. On the other hand, for any
A = 〈A,∧,→,¬〉 of type (2,2,1) and anyF ⊆ A the congruencescompatible with
F constitute the set Con〈A, F〉 = {θ ∈ ConA : if 〈a, b〉 ∈ θ thena ∈ F ⇐⇒ b ∈ F},
and theLeibniz congruence of F or of 〈A, F〉 is�A(F) = maxCon〈A, F〉 . Then the
mapping�A : F �→ �A(F) restricted toF ∈ F iRA is called theLeibniz operator
onA; this operator is one of the key tools in Blok and Pigozzi’s study [5] of the alge-
braizability of logics. A matrix〈A, F〉 is reduced when�A(F) = �A, the identity
relation onA; the class of all reducedR-matrices will be denoted byMatr∗R, andthe
class of the algebra reducts of these matrices will be denoted byRAlgR. Then from
[5], Theorem 5.1 and Lemma 5.2, and [17], Theorem 18, we obtain:

Theorem 2.6

(1) On any algebra A = 〈A,∧,→,¬〉 of type (2,2,1) the Leibniz operator �A is
an isomorphism between the lattices F iRA and ConR A , and moreover for
any F ∈ F iRA we have that �A(F) = {〈a, b〉 ∈ A × A : a ↔ b ∈ F

}
.

(2) Matr∗R = {〈A, F〉 : A ∈ R and F = E(A)
}
.

(3) RAlgR = R.

Combining these results with Theorem2.2we also have:

Corollary 2.7 R is (strongly) complete with respect to the class of matrices
{〈A, F〉 : A ∈ R and F ∈ DedA} .

These results close this brief overview of the relationships between the deductive
systemR and the variety of algebrasR in the context of the traditional approach to
the algebraization of logic — now greatly enhanced by Blok and Pigozzi’s ideas and
achievements. In Section 5 of the paper we will find other relationships betweenR
andR using abstract logics.

3 The Weaker Deductive System WR and its Algebraic Models Weare now going
to define a deductive systemWR following Wójcicki’s suggestion mentioned in the
Introduction; we also mentioned there that this deductive system corresponds to the
semantic entailment associated with the relational models of Routley, Meyer, Fine
and others. In this section we will study it along the lines of the study ofR contained
in [17].

Definition 3.1 We call WR = 〈Fm,�WR〉 the deductive system defined by the
condition that, for any�∪ {ϕ} ⊆ Fm , � �WR ϕ if and only if there areϕ1, . . . , ϕn ∈
� such that�R (ϕ1 ∧ . . . ∧ ϕn) → ϕ . This is the same as saying thatWR is the
deductive system determined by the following conditions:

(1) �WR is finitary.
(2) WR has no theorems.
(3) For everyϕ, ϕ1, . . . , ϕn ∈ Fm, {ϕ1, . . . , ϕn} �WR ϕ if and only if �R (ϕ1 ∧

. . . ∧ ϕn) → ϕ .

It is not difficult to show, by using some selected theorems ofR, that both ways
of definingWR are really the same, and that in this way we really obtain a finitary
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and structural closure operator onFm, that is, a deductive system in the precise sense
of the term. We are going to show thatWR is weaker thanR, more precisely thatR
is an axiomatic extension ofWR.

Lemma 3.2 The inference rules of R, namely Adjunction and Modus Ponens, are
also valid rules of the deductive system WR.

Proof: Axioms R5, R6, and the instanceϕ∧ψ→ϕ∧ψ of axiom R1 tell us directly
thatWR is closed under Adjunction (in the strong sense, that is,{ϕ ,ψ} ��WR ϕ ∧
ψ). To see that it is closed under Modus Ponens (i.e., that{ϕ, ϕ → ψ} �WR ψ) it is
enough to use theorem WI mentioned in Section 2.

Theorem 3.3 The system R is the axiomatic extension of the system WR deter-
mined by all formulas of the form ψ → ψ . That is, for any � ∪ {ϕ} ⊆ Fm it holds
that

� �R ϕ ⇐⇒ � ∪ {ψ → ψ : ψ ∈ Fm} �WR ϕ .

Proof: Suppose that� �R ϕ. If ϕ ∈ � the conclusion is trivial. Ifϕ is an axiom
of R (or, more generally, if�R ϕ) then from R3 and Modus Ponens it follows that
�R (ϕ → ϕ) → ϕ, which by the definition ofWR implies the conclusion. Finally, if
ϕ is obtained from other formulas by Modus Ponens or Adjunction then Lemma3.2
establishes the inductive step. Conversely, suppose that�∪{ψ→ψ : ψ ∈ Fm} �WR
ϕ, that is, that there areϕ1, . . . , ϕn ∈ � andψ1, . . . , ψk ∈ Fm such that�R (ϕ1 ∧ . . .∧
ϕn ∧ (ψ1 → ψ1) ∧ . . . ∧ (ψk → ψk)) → ϕ; since all theψi → ψi are axioms ofR, by
Adjunction we have thatϕ1, . . . , ϕn �R ϕ1 ∧ . . . ∧ ϕn ∧ (ψ1 → ψ1) ∧ . . . ∧ (ψk →
ψk), and then it follows by Modus Ponens thatϕ1, . . . , ϕn �R ϕ, which proves that
� �R ϕ.

In particular we have thatWR � R, that is, that� �WR ϕ implies� �R ϕ, and
that the converse implication does not hold. For� = ∅ this is so simply becauseWR
has no theorems, but it does not hold even for nonempty�: for as a particular case
we would haveψ �WR ϕ ⇐⇒ ψ �R ϕ for anyϕ,ψ ∈ Fm; but sinceψ → ψ is
a theorem ofR, we also haveψ �R ψ → ψ, and thus we would also haveψ �WR
ψ → ψ. By Definition3.1this would mean that�R ψ → (ψ → ψ), which is known
to be false (this is the well-known Mingle Axiom, which determines the systemRM,
a proper extension ofR).

Next we see thatR gives a matrix completeness result forWR in a very natural
way, and from it we can characterize allWR-filters on the algebras inR.

Theorem 3.4 ((Completeness)) The logic WR is (strongly) complete with respect
to the class of matrices {〈A, F〉 : A ∈ R and F ∈ FıltA}.
Proof: By Definition3.1.3 we have thatϕ �WR ψ ⇐⇒ �R ϕ→ψ, which by The-

orem2.4.4 holds if and only ifϕA(a) ≤ ψA(a) for any interpretationa on anyA ∈ R,
that is, if and only if for anyF ∈ FıltA , ϕA(a) ∈ F impliesψA(a) ∈ F. By finitar-
ity and Adjunction we obtain the completeness for nonempty sets of premises. Since
WR does not have theorems, we should show that there is no formula whose inter-
pretation belongs to every lattice filter of everyR-algebra, but this is obvious since
there areR-algebras (without greatest element) such that the intersection of all their
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lattice filters is empty; we will exhibit one such algebra, defined on the set of integers,
just before Corollary3.6.

Corollary 3.5 If A ∈ R, then F iWRA = FıltA.

Proof: The preceding theorem proves thatFıltA ⊆ F iWRA. Conversely, ifF ∈
F iWRA then by Lemma3.2 F is closed under Adjunction, which implies thata, b ∈
F implies a ∧ b ∈ F; but it is also closed under Modus Ponens, and ifa ∈ F and
a ≤ b, that is,a = a ∧ b then by R5 it follows thatb ∈ F. ThereforeF ∈ FıltA, that
is, FıltA = F iWRA.

As we recalled in Corollary2.7, R is strongly complete with respect to the class
of matrices{〈A, F〉 : A ∈ R andF ∈ DedA} and for everyA ∈ R, F iRA = DedA.
In the case ofR we can substitute the class of De Morgan semigroups forR in these
two results (see Theorem2.2). However, we cannot do the same in the case ofWR,
that is, in Theorem3.4and Corollary3.5. Actually, for every De Morgan semigroup
A and everyF ⊆ A, if 〈A, F〉 is aWR-matrix, then it follows thatF ∈ FıltA by argu-
ments similar to those used at the beginning of the proof of Theorem3.4(essentially
concerning Adjunction); however, the converse implication does not hold, as the fol-
lowing example shows. Consider the four-element algebra whose lattice structure is
given by the Hasse diagram below, and negation and implication are also shown be-
low:

��
��

0 = ¬1

��
��

b = ¬b

�

�
��

1 = ¬0

�

�
��

¬a = a

→ 0 a b 1
0 1 1 1 1
a 0 a 0 1
b 0 0 b 1
1 0 0 0 1

This is a De Morgan semigroup which is not anR-algebra. TakeF = {a,1};
this is a lattice filter ofA, but the matrix〈A, F〉 is not aWR-matrix because by RR
((p → p) ∧ (q → q)) → r �WR r for any distinctp, q, r ∈ Var, and while((a →
a) ∧ (b → b)) → b = 1 ∈ F we haveb /∈ F.

Wehave already seen thatWR differs fromR not only in not having theorems,
but in having different deductions from nonempty sets of hypotheses. Another inter-
esting thing to see is that there is no formula which, while not being a theorem ofWR,
is a member of every nonempty theory. This is so for the same reason required for the
last part of the proof of Theorem3.4: such a formula would belong to every lattice
filter of everyR-algebra, a situation which cannot happen, as the following example
shows. Take the distributive lattice determined by the usual ordering on the setZ of
integers, define negation as¬n = − n and implication as

n → m =
{

max{−n , m} if n ≤ m
min{−n , m} otherwise

and this determines a structure ofR-algebra onZ without smallest or greatest element
and whose lattice filters are all the end segments [z,→) with z ∈ Z; their intersection
is obviously empty. Using the termpseudoaxiomatic introduced in [27], p. 382, we
have proved:
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Corollary 3.6 WR is not pseudoaxiomatic. Moreover, WR is also the deductive
system defined from R by Conditions (1) and (3) of Definition 3.1 and with condition

(2′) �WR is not pseudoaxiomatic, that is, the intersection of all its nonempty the-
ories equals its set of theorems.

instead of Condition (2).

Proof: SinceWR has no theorems, the preceding discussion shows thatWR sat-
isfies (2′). Conversely, we have to show that ifWR is defined with (2′) instead of
(2) then it also satisfies (2), that is, it has no theorems. But by (2′) this amounts to
showing that there is no formula belonging to every nonempty theory. Now by (1)
and (3) the nonempty theories are the same in both cases, so the same argument as
before implies that there is no such formula.

Thus we find thatWR can equally be defined by following the second approach
of [27]; more precisely, we have proved thatWR is the deductive system determined
by the set of all theorems ofR in the sense of [27], §2.10.1. The fact that our logic has
no theorems puts it automatically outside the class of protoalgebraic logics introduced
in [4], and a fortiori outside the class of algebraizable logics introduced in [5]; this fact
has also been noticed in [9].

Proposition 3.7 WR is not a protoalgebraic logic and it is not algebraizable.

Proof: By the result in Czelakowski and Dziobiak [10] the only protoalgebraic de-
ductive systems without theorems are the inconsistent one and the so-calledalmost
inconsistent, whose only theories are the empty set and the whole set of formulas.
But the set of theorems ofR is a nonempty and proper theory ofWR, so this is not
inconsistent nor almost inconsistent. As a consequence it cannot be protoalgebraic.
And since every algebraizable deductive system is also protoalgebraic, it follows that
WR is not algebraizable either.

This means that if we want to determine the classMatr∗WR of all reduced ma-
trices forWR, and the classRAlgWR of their algebra reducts, we cannot rely upon
the fact that for algebraizable logics this last class equals the equivalent quasivariety
semantics (as is done in [17] for R), and moreover we have no a priori guarantee that
the classRAlgWR is the class of algebras corresponding to the most natural models
for WR. Weare going to determine these classes of algebras and matrices in a direct
way, and in the next section we will justify the last statement by different arguments.

Theorem 3.8 The class of algebra reducts of reduced matrices for WR is the class
of R-algebras; that is, RAlgWR = R.

Proof: SinceR is an (axiomatic) extension ofWR we obviously haveRAlgR ⊆
RAlgWR, and by Theorem2.6this implies thatR ⊆ RAlgWR. Conversely, suppose
thatA ∈ RAlgWR, that is,〈A, F〉 ∈ Matr∗WR for someF ⊆ A. SinceR is a variety
it is enough to show thatA validates all equations true inR. Let ϕ,ψ ∈ Fm be such
that |=R ϕ ≈ ψ and take anyγ(p, p1, . . . , pn) ∈ Fm, where p, p1, . . . , pn ∈ Var.
The properties of equality imply that also|=R γ(ϕ, p1, . . . , pn) ≈ γ(ψ, p1, . . . , pn),
the algebraizability ofR (with respect toR and with equivalence formulap ↔ q) im-
plies that this is equivalent to�R γ(ϕ, p1, . . . , p1) ↔ γ(ψ, p1, . . . , pn), and Condi-
tion (3) in Definition3.1 implies that this is equivalent toγ(ϕ, p1, . . . , pn) ��WR
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γ(ψ, p1, . . . , pn). Thus, for any interpretationa on A we have thatγA
(
ϕA(a),

pA
1 (a), . . . , pA

n (a)
) ∈ F ⇐⇒ γA

(
ψA(a), pA

1 (a), . . . , pA
n (a)

) ∈ F, which means

that for anyc1, . . . , cn ∈ A , γA
(
ϕA(a), c1, . . . , cn

) ∈ F ⇐⇒ γA
(
ψA(a), c1, . . . ,

cn
) ∈ F. But this is an equivalent characterization of the Leibniz congruence of the

matrix 〈A, F〉, see for instance [5], p. 11. Therefore we have proved that〈ϕA(a),

ψA(a)〉 ∈ �A(F). But 〈A, F〉 is reduced, that is,�A(F) = �A, and thenϕA(a) =
ψA(a). Wehave shown thatϕ ≈ ψ holds inA; thus,A ∈ R.

We finally find the classMatr∗WR of reduced matrices forWR by using the
properties of the Leibniz operator on algebras inR recalled in Theorem2.6:

Theorem 3.9 〈A, F〉 ∈ Matr∗WR if and only if A ∈ R and F ∈ FıltA is such that
for every T ∈ DedA � {E(A)} there are elements a ∈ F and b ∈ A � F such that
a ↔ b ∈ T.

Proof: If 〈A, F〉 ∈ Matr∗WR we have just proved thatA ∈ R and by Corollary3.5
F ∈ FıltA. Now suppose that there is someT ∈ DedA � {E(A)} such that for all
a ∈ F andb /∈ F , a ↔ b /∈ T ; by Theorem2.2T is anR-filter, and by Theorem2.6.1
this implies that〈a, b〉 /∈ �A(T ); in other words,�A(T ) is compatible withF and
thus�A(T ) ⊆ �A(F). Since〈A, F〉 is reduced we conclude that�A(T ) = �A =
�A(E(A)) and, by the isomorphism of Theorem2.6.1 we obtainT = E(A) against
the assumption onT . Conversely, note that the condition onF implies that for any
T ∈ DedA � {E(A)} , �A(T ) �= �A(F); but since�A(F) ∈ ConA = ConR A

(becauseA ∈ R which is a variety), the isomorphism in Theorem2.6.1 implies that it
must be equal to�A(E(A)), which is the identity. Therefore, the matrix is reduced
and〈A, F〉 ∈ Matr∗WR.

Thus, although forR andWR the classes of algebra reducts of reduced matri-
ces are the same, this is not so for the reduced matrices themselves, since by Theo-
rem2.6.2 the reduced matrices forR are those of the form〈A, E(A)〉 for someA ∈ R.
That these classes are different is confirmed by the following example. Consider the
structure determined on the five-element chain{0, a , b ,¬a ,1} by the negation and
implication shown at the top of the next page.

It is easy to check that this is anR-algebra and thatE(A) = {b,¬a,1}. Now take
F = {¬a,1} and check that〈A, F〉 ∈ Matr∗WR: on the one hand〈A, F〉 ∈ MatrWR
becauseF ∈ FıltA; on the other hand, sinceF iRA = DedA = {E(A) , T , A} where
T = {a, b,¬a,1}, we know by Theorem 2.6 that ConA = {

�A,

�A(T ) , A × A
}
. But �A(T ) is not compatible withF, because¬a → a = a ∈ T

anda → ¬a = ¬a ∈ T while¬a ∈ F buta /∈ F. This shows that�A(F) = �A, that
is, 〈A, F〉 ∈ Matr∗WR; and it also exhibits the elements that satisfy the condition in
Theorem3.9for this T .

4 A Gentzen Calculus for WR, and its Models The deductive systemWR has been
introduced so far with the auxiliary help of the deductive systemR, of which it is un-
doubtedly a by-product. But since we want to consider it as formally representing
a certain kind of implication or entailment, we believe it deserves a definition of its
own, a so to speakdirect one. We will give it in the form of asequent calculus. For
our purposes asequent is an ordered pair〈�, ϕ〉, where� ⊆ Fm is finiteand nonempty
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� 0 = ¬1

� a

� b = ¬b

� ¬a

� 1 = ¬0

→ 0 a b ¬a 1
0 1 1 1 1 1
a 0 ¬a ¬a ¬a 1
b 0 a b ¬a 1

¬a 0 a a ¬a 1
1 0 0 0 0 1

(!) andϕ ∈ Fm; we will represent it as� � ϕ for traditional reasons. The set of all
these sequents will be denoted bySeq∗(Fm). All sequents appearing in this paper are
assumed to belong to this set; in dealing with sequents we use the customary abbre-
viations:ϕ for {ϕ} , �, ϕ for � ∪ {ϕ} and so on.

Definition 4.1 By GWR = 〈Fm , |∼GWR
〉 we denote the Gentzen calculus associ-

ated with the finitary and structural closure operator|∼GWR
overSeq∗(Fm) defined

by the following axioms:

(1) ϕ � ϕ

(2) ϕ → (ψ → η) � ψ → (ϕ → η)

(3)
(
(ϕ → ϕ) ∧ (ψ → ψ)

) → η � η

and the following Gentzen rules (taken as rules of inference from sequents to se-
quents):

(Weakening)
� � ϕ

�,ψ � ϕ
(Cut)

� � ϕ �, ϕ � ψ

� � ψ

(∧ �)
�, ϕ,ψ � η

�, ϕ ∧ ψ � η
(� ∧)

� � ϕ � � ψ

� � ϕ ∧ ψ

(∨ �)
�, ϕ � η �,ψ � η

�, ϕ ∨ ψ � η
(� ∨)

� � ϕ

� � ϕ ∨ ψ

� � ψ

� � ϕ ∨ ψ

(¬)
ϕ � ψ

¬ψ � ¬ϕ

(¬¬ �)
�, ϕ � ψ

�,¬¬ϕ � ψ
(� ¬¬)

� � ϕ

� � ¬¬ϕ

(→ �)
� � ϕ

�, ϕ → ψ � ψ

(∗1)
ϕ ∗ ψ � η

ϕ � ψ → η
(∗2)

ϕ � ψ → η

ϕ ∗ ψ � η.

If 	 is a set of sequents then we write	 |∼GWR
� � ϕ to mean that the sequent� � ϕ

has a derivation in this calculus whose initial sequents are either axioms or belong to
the set	; if ∅ |∼GWR

� � ϕ then we say that the sequent� � ϕ isderivable in GWR.

Note that we have not explicitly included the rules of exchange and contraction
among the rules of the calculus because they are automatically valid since we are us-
ing sets of formulas in the sequents, not just multisets or sequences. Thus this sequent
calculussatisfies all structural rules, which is not common among the Gentzen-style
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presentations of relevance logics (see Došen [12] and Ono [23]); but recall that we are
interested just in defining thedeductive system WR, and as such it must satisfy the
structural rules by definition. We can associate a deductive system with this Gentzen
calculus in a natural way:

Definition 4.2 SWR = 〈Fm ,�GWR
〉 is the deductive system defined in the fol-

lowing way: for any� ∪ {ϕ} ⊆ Fm , � �GWR
ϕ ⇐⇒ there is a finite�0 ⊆ � such

that�0 � ϕ is a sequent derivable inGWR.

It is straightforward to check thatSWR is indeed a deductive system (actually
this definition works for every Gentzen system with all structural rules, see [16],
§4.1) and that it has no theorems. Our aim is to prove that this is another, independent,
presentation of the logicWR, that is, thatSWR = WR as deductive systems. To this
end we will study the models of this sequent calculus following the notion of model of
asequent calculus introduced in [15], Definition 3; later on we will see that a particu-
lar class of these models is also related to the abstract study of systemR. The mathe-
matical objects we take to speak about models of a Gentzen calculus are the abstract
logics introduced in [7]. An abstract logic is an ordered pairL = 〈A,C〉, whereA is
an abstract algebra with universeA and C is a closure operator overA (i.e., over its
power set); they can also be presented as ordered pairsL = 〈A,C 〉, whereC is the clo-
sure system associated with the closure operator C. An ordering relation can be con-
sidered between abstract logics having the same universe:L = 〈A,C〉 ≤ L′ = 〈A,C′〉
if and only if for everyX ⊆ A , C(X) ⊆ C′(X); in terms of the corresponding closure
systems this amounts to the reverse inclusionC ′ ⊆ C .

Definition 4.3 Let L = 〈A,C〉 be an abstract logic of type (2,2,1), whereA =
〈A,∧,→,¬〉. We saythat L is a model of GWR when for any rule of the form
{�i � ϕi : i ∈ I}

� � ϕ
where I is not necessarily nonempty, if the rule is valid inGWR

(that is, if the sequent� � ϕ has a derivation inGWR whose initial sequents are ei-
ther axioms or belong to{�i � ϕi : i ∈ I}), then for any interpretationa overA , if
ϕA

i (a) ∈ C
({ψA(a) : ψ ∈ �i}

)
for all i ∈ I thenϕA(a) ∈ C

({ψA(a) : ψ ∈ �}).
By its own definition it is clear that the deductive systemSWR is one of the mod-

els ofGWR, and moreover it has two additional properties which are not inherited by
all models, namely it is finitary and has no theorems. Since these are also key prop-
erties ofWR and we want to study some abstract properties of this deductive system,
we select from arbitrary models those satisfying them:

Definition 4.4 An abstract logicL = 〈A,C〉, of type (2,2,1) will be called aWR-
logic if and only if it is a finitary model ofGWR such that C(∅) = ∅. For any algebra
A = 〈A,∧,→,¬〉 of the same type we will denote byWR(A) the class of allWR-
logics overA.

ThusSWR is one of theWR-logics on the formula algebraFm, and indeed we
will shortly prove that it is the leastWR-logic on this algebra. We first give a straight-
forward characterization ofWR-logics in terms of an already known kind of abstract
logic. If L = 〈A,C〉 is an abstract logic of type (2,1), whereA = 〈A,∧,¬〉 and we
put a ∨ b = ¬(¬a ∧ ¬b), then we say (see [18], [19]) that it is aDe Morgan logic if
and only if it satisfies the following conditions:
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(DM1) C is finitary;
(DM2) ∀a, b ∈ A , C(a, b) = C(a ∧ b) (Conjunction);
(DM3) ∀a, b ∈ A , ∀X ⊆ A , C(X, a ∨ b) = C(X, a)∩ C(X, b) (Disjunction);
(DM4) ∀a ∈ A , C(a) = C(¬¬a);
(DM5) ∀a, b ∈ A , b ∈ C(a) =⇒ ¬a ∈ C(¬b).

This definition is shown in [19], Proposition 1 to be equivalent to the definition used
in [18], and thus all the results found in this last paper apply to it. In terms of this
notion we can immediately prove, by direct inspection of Definition4.1, the following
characterization:

Proposition 4.5 Let L = 〈A,C〉 be an abstract logic, where A = 〈A,∧,→,¬〉 is
of type (2,2,1). Then L ∈ WR(A) if and only if L fulfills the following conditions:

(1) The abstract logic 〈〈A,∧,¬〉,C〉 is a De Morgan logic such that C(∅) = ∅;
(2) ∀a, b ∈ A , b ∈ C(a, a → b);
(3) ∀a, b, c ∈ A , c ∈ C(a ∗ b) ⇐⇒ b → c ∈ C(a);
(4) ∀a, b, c ∈ A , b → (a → c) ∈ C(a → (

b → c)
)
;

(5) ∀a, b, c ∈ A , c ∈ C
(
((a → a) ∧ (b → b)) → c

)
.

Now we can describe precisely the leastWR-logic on several particular alge-
bras. Recall that in Section 2 we have introduced, for a latticeA, the notationFıltA
for the closure system of all lattice filters ofA plus the empty set, and the notation
Filt for the associated closure operator.

Theorem 4.6 For any A ∈ R the abstract logic 〈A, FıltA〉 is the least WR-logic
on A.

Proof: Assume thatA ∈ R. We first prove that the abstract logic〈A, FıltA〉 ful-
fills the five conditions in the preceding proposition. Since by Definitions2.1and2.3
we know that〈A,∧,¬〉 is a De Morgan lattice, then by [18], Theorem 3 the abstract
logic 〈〈A,∧,¬〉, FıltA〉 is a De Morgan logic such thata ≤ b ⇐⇒ b ∈ Filt(a).
Moreover by its own definition Filt(∅) = ∅ , so wehave4.5.1. Using the just men-
tioned equivalence, Conditions4.5.2, 4.5.3 and4.5.4 follow from properties P9, P1
and P11 recorded in [17], Propositions 4 and 2, and Condition4.5.5 follows from Def-
inition 2.3. Thus〈A, FıltA〉 is aWR-logic overA. Now any otherWR-logic over
A will in particular be a De Morgan logic (after deletion of→ from the type) and
by Theorem 4 and Proposition 5 of [18] its closed sets will all be lattice filters ofA;
since neither can have theorems we conclude that〈A, FıltA〉 will have more closed
sets, that is, it will be smaller.

Theorem 4.7 The deductive system SWR is the least WR−logic over the formula
algebra Fm.

Proof: We have already commented that by its own definitionSWR ∈ WR(Fm).
Now take anyL = 〈Fm,C〉 ∈ WR(Fm); wemust show thatSWR ≤ L, that is, that if
�∪{ϕ} ⊆ Fm and� �GWR

ϕ thenϕ ∈ C(�). But� �GWR
ϕ if and only if there is a

finite and nonempty�0 ⊆ � such that the sequent�0 � ϕ is derivable inGWR. Then
a straightforward induction on the length of this derivation using the very definition
of being a model ofGWR proves thatϕ ∈ C(�0) ⊆ C(�), that is, thatSWR ≤ L.
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To prove the identity betweenSWR andWR we will first prove some technical
properties ofWR-logics depending on the characterization of Proposition4.5. Some
of them tell us about properties of the closed set ofC generated by the elements of the
universe having the forma → a for a ∈ A; this closed set is the abstract counterpart of
the lattice filterE(A) we have considered onR-algebras. Thus, for any abstract logic
L = 〈A,C〉 of type (2,2,1) it seems reasonable to defineE(L) = C

({a → a : a ∈ A}).
We then have the following facts, the last two being the most significant:

Proposition 4.8 If L = 〈A,C〉 ∈ WR(A) then ∀a, b, c ∈ A the following hold:

(1) C(a) ⊆ C(b) =⇒ C(a ∗ c) ⊆ C(b ∗ c) and C(c → a) ⊆ C(c → b);
(2) C(a → b) = C

(¬(a ∗ ¬b)
)
;

(3) C(a) ⊆ C(b) =⇒ C(c ∗ a) ⊆ C(c ∗ b) and C(b → c) ⊆ C(a → c);
(4) b ∈ C(a) ⇐⇒ a → b ∈ E(L);
(5) C(a ∗ b) = C(b ∗ a);
(6) (b → c) → (a → c) ∈ C(a → b);
(7) a → b ∈ C

(
a → (a → b)

)
;

(8) C(a → b) = C(¬b → ¬a);
(9) E(L) contains all instances of all the theorems of R, that is, for any ϕ ∈ Fm,

if �R ϕ then for any interpretation a on A , ϕA(a) ∈ E(L); and
(10) L is a model of WR, that is, for any � ∪ {ϕ} ⊆ Fm, if � �WR ϕ then for any

interpretation a over A , ϕA(a) ∈ C
(
�A(a)

)
.

Proof: (1) Since triviallya ∗ c ∈ C(a ∗ c), by Proposition4.5.3 we getc → (a ∗
c) ∈ C(a) which by assumption implies thatc → (a ∗ c) ∈ C(b), which by the same
result givesa ∗ c ∈ C(b ∗ c). Similarly, fromc → b ∈ C(c → b) we obtainc → a ∈
C(c → b).

(2) By 4.5.1 we know that C(b) = C(¬¬b), and applying part (1) twice to this
equality we obtain C(a → b) = C(a → ¬¬b) = C

(¬¬(a → ¬¬b)
)

which by defi-
nition of ∗ gives C(a → b) = C

(¬(a ∗ ¬b)
)
.

(3) From C(a) ⊆ C(b) it follows by 4.5.1 that C(¬b) ⊆ C(¬a), and then (1)
gives C(c → ¬b) ⊆ C(c → ¬a) which by definition of∗ and4.5.1 again implies
C(c ∗ a) = C

(¬(c → ¬a)
) ⊆ C

(¬(c → ¬b)
) = C(c ∗ b). On the other hand, from

a ∗ ¬c ∈ C(a ∗ ¬c) by 4.5.3 we obtain¬c → (a ∗ ¬c) ∈ C(a) ⊆ C(b) which implies
a ∗ ¬c ∈ C(b ∗ ¬c), and this by4.5.1 again gives¬(b ∗ ¬c) ∈ C

(¬(a ∗ ¬c)
)
. Now

using (2) we have that C(b → c) = C
(¬(b ∗ ¬c)

) ⊆ C
(¬(a ∗ ¬c)

) = C(a → c).
(4) Assume thatb ∈ C(a); since4.5.3 implies thata ∈ C

(
(a → a) ∗ a

)
, we have

b ∈ C
(
(a → a) ∗ a

)
which by the same reasoning givesa → b ∈ C(a → a) ⊆ E(L).

Conversely, assume thata → b ∈ E(L); since the logic is finitary, satisfies DM2, and
C(∅) = ∅, the definition ofE(L) means that there area1, . . . , an ∈ A such that,
putting c = (a1 → a1) ∧ . . . ∧ (an → an) we havea → b ∈ C(c). On the other
hand, observe that ifd1, d2 ∈ A are such thatdi ∈ C(di → di) then alsod1 ∧ d2 has
this property, since by Conjunction we haved1 ∧ d2 ∈ C

(
(d1 → d1) ∧ (d2 → d2)

)
and then by4.5.5 and (3)d1 ∧ d2 ∈ C

(
((d1 → d1) ∧ (d2 → d2)) → (d1 ∧ d2)

) ⊆
C

(
(d1 ∧ d2) → (d1 ∧ d2)

)
; an easy induction allows us to conclude thatd1 ∧ . . . ∧

dn ∈ C
(
(d1 ∧ . . . ∧ dn) → (d1 ∧ . . . ∧ dn)

)
wheneverdi ∈ C(di → di). But this is the

case fordi = ai → ai because by4.5.1 and4.5.5ai → ai ∈ C
(
(ai → ai)→ (ai → ai)

)
,
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so we havec ∈ C(c → c) and as a consequencea → b ∈ C(c → c); then by4.5.3 and
the definition of∗ we obtainb ∈ C

(
(c → c) ∗ a

) = C
(¬((c → c) → ¬a)

)
. Finally,

using4.5.5 and4.5.1 we get thatb ∈ C
(¬((c → c) → ¬a)

) ⊆ C(¬¬a) = C(a).
(5) Froma ∗ b ∈ C(a ∗ b) and using4.5.3 and (4) we obtaina → (

b → (a ∗ b)
) ∈

E(L) which by4.5.4 givesb → (
a → (a ∗ b)

) ∈ E(L); the same trick again now gives
a ∗ b ∈ C(b ∗ a), which implies C(a ∗ b) = C(b ∗ a).

(6) By definition(b → c)→ (b → c) ∈ E(L), so by4.5.4b → (
(b → c)→ c

) ∈
E(L) and by (4) (b → c)→ c ∈ C(b); now we can use (1) to obtaina → (

(b → c)→
c
) ∈ C(a → b) which by4.5.4 again gives(b → c) → (a → c) ∈ C(a → b).

(7) Since by4.5.1 we have that C(a) = C(¬¬a) we can use (3), (2), (5), and
the definition of∗ to prove the equalities: C(a → b) = C(¬¬a → b) = C

(¬(¬¬a ∗
¬b)

) = C
(¬(¬b ∗ ¬¬a)

) = C(¬b → ¬a).
(8) Froma → (a → b) ∈ C

(
a → (a → b)

)
and (4) it follows that

(
a → (a →

b)
)→ (

a → (a → b)
) ∈ E(L) and then by4.5.4, (3) and (4) we obtain firsta → (

a →
((a → (a → b)) → b)

) ∈ E(L) and thena → (
(a → (a → b)) → b

) ∈ C(a). Now
by 4.5.2 this implies that

(
a → (a → b)

) → b ∈ C(a) and this by4.5.3 and (5) finally
givesa → b ∈ C

(
a → (a → b)

)
.

(9) It is routine checking, using4.5.3 and the above properties, thatE(L) con-
tains all instances of axioms ofR. Moreover, sinceE(L) ∈ C , it is closed under the
rules of Adjunction and Modus Ponens, by4.5.1 and4.5.2, and as a consequence
E(L) contains all instances of theorems ofR.

(10) If � �WR ϕ then by the finitarity and lack of theorems of�WR there are
γ1, . . . , γn ∈ � such that{γ1, . . . , γn} �WR ϕ, that is, by Definition3.1.3, that�R(
γ1 ∧ . . . ∧ γn) → ϕ. By (9) this implies that for any interpretationa overA,

(
γA

1 (a)

∧ . . . ∧ γA
n (a)

) → ϕA(a) ∈ E(L). Now by (4) this is equivalent to saying that

ϕA(a) ∈ C
(
γA

1 (a) ∧ . . . ∧ γA
n (a)

)
and by4.5.1 this impliesϕA(a) ∈ C

(
�A(a)

)
.

Theorem 4.9 SWR = WR.

Proof: By its own definitionWR is finitary and does not have theorems. Now we
are going to prove thatWR is a model ofGWR, that is, to prove that it satisfies all
the conditions in Proposition4.5. First, we prove that〈〈Fm,∧,¬〉,�WR〉 is a De
Morgan logic. It obviously satisfies DM1. From Lemma3.2and axioms R5 and R6
it follows thatϕ,ψ ��WR ϕ ∧ ψ, that is, that it satisfies DM2. Using axiom R10
and theorem R28 we see thatγ, ϕ �WR η andγ,ψ �WR η imply γ, ϕ ∨ ψ �WR η;
this, together with DM2 and axioms R8 and R9, implies that it satisfies DM3. Axiom
R13 and its converse, which appear jointly as R20, immediately prove that it satisfies
DM4, and R12 with Modus Ponens means that it satisfies DM5. Thus we have proved
that WR satisfies4.5.1. We have already noted that it is also closed under Modus
Ponens (Lemma3.2), that is, it satisfies4.5.2. Theorem R30 gives4.5.3, theorem R23
gives4.5.4, and from RR Condition4.5.5 immediately follows. Therefore,WR ∈
WR(Fm) and by Theorem4.7SWR ≤ WR. There we have also proved thatSWR ∈
WR(Fm) and applying Proposition4.8.10 to it we conclude thatWR ≤ SWR. As a
consequence,WR = SWR.

Now that we have proved thatSWR equalsWR we can regard the Gentzen cal-
culusGWR merely as one of the presentations of the deductive systemWR. Our aim



386 J. M. FONT and G. RODŔIGUEZ

is to show that in some sense it is not justone of but indeed it isthe presentation, and
we will do it by means of the notion ofWR-logic; at present it is just a distinguished
kind of model of a (Gentzen-style) presentation ofWR, but we will show that it is in-
trinsically associated withWR. More precisely, we will show that this notion equals
that offull model of WR in the sense of [16], see below. The proof is based upon the
so-calledBilogical Theorem 4.12, which will also establish an intrinsic relationship
betweenWR and the classR. Weneed several definitions and elementary properties
of abstract logics which we will now summarize; see [7] and [16] for further details.
To begin with, if L = 〈A,C〉 andL′ = 〈A′,C′〉 are two abstract logics of the same
similarity type, we say thath ∈ Hom(A,A′) is alogical morphism from L to L′ when
it is continuous in the topological sense, that is, when for anyF ∈ C ′ , h−1(F) ∈ C ;
if moreoverh is an epimorphism and it projectively generatesL from L′ (which in
this context means thatC = {

h−1(F) : F ∈ C ′}) then we say thath is a bilogical
morphism from L to L′. As aconsequence, every bilogical morphismh satisfies that
C = h−1 ◦ C′ ◦ h and that C′ = h ◦ C ◦ h−1, as well asF ∈ C ⇐⇒ h(F) ∈ C ′ and
F ∈ C =⇒ h−1

(
h(F)

) = F. Wehave:

Lemma 4.10 The property of being a WR-logic is preserved under bilogical mor-
phisms, that is, if there is a bilogical morphism between two abstract logics (of suit-
able type) then one of them is a WR-logic if and only if the other one is.

Proof: Let h be a bilogical morphism fromL = 〈A,C〉 to L′ = 〈A′,C′〉; weare go-
ing to prove thatL ∈ WR(A) if and only if L′ ∈ WR(A′) by seeing that one of them
satisfies each of the conditions in Proposition4.5 if and only if the other one satis-
fies it. First of all, observe thath is also a bilogical morphism from the abstract logic
〈〈A,∧,¬〉,C〉 to the abstract logic〈〈A′,∧,¬〉,C′ 〉 and then Proposition 3 of [18]
implies that one of them is a De Morgan logic if and only if the other one is; more-
over, it is trivial that C(∅) = ∅ if and only if C′(∅) = ∅, thus we see thatL satis-
fies4.5.1 if and only ifL′ satisfies it. To show that the same holds for the remaining
four conditions of Proposition4.5it is enough to observe that for anya, b ∈ A it holds
b ∈ C(a) if and only if it holdsh(b) ∈ C′(h(a)

)
, and take into account the fact that

any bilogical morphism is onto; a direct inspection of4.5finishes the proof.

There are two equivalence relations naturally associated with every abstract
logic L = 〈A,C〉, introduced in [15] and [16]. The first one is called theFrege rela-
tion, and it is the abstract counterpart of theinterderivability relation in a deductive
system:


(L) = {〈a, b〉 ∈ A × A : C(a) = C(b)
}

= {〈a, b〉 ∈ A × A : ∀ F ∈ C , a ∈ F ⇐⇒ b ∈ F
}
.

This relation leads us to consider the so-calledlogical congruences of L, or congru-
encescompatible with L, defined as: ConL = {θ ∈ ConA : θ ⊆ 
(L)

}
, that is, the

congruences of the algebra that do not identify two elements unless they are inter-
derivable. Everyθ ∈ ConL determines aquotient logic L/θ = 〈A/θ,C/θ〉 by defin-
ing C /θ = {

F/θ : F ∈ C
}
, and then the canonical projection becomes a bilogical

morphism (and conversely every bilogical morphism is determined by some logical
congruence...). The second equivalence relation naturally associated withL is the
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so calledTarski congruence �̃(L) = maxConL (it is easy to see that such a maxi-
mum always exists). An abstract logicL is calledreduced when�̃(L) = �A, that
is, when the identity is the only logical congruence ofL. Every abstract logic can be
reduced by factoring it by its Tarski congruence; in this way we obtain thereduction
of L, which is denoted byL∗ = 〈A∗,C∗〉 whereA

∗ = A/�̃(L) andC ∗ = C /�̃(L).
Note that this reduction process can be applied only once, that is, we will identify
A

∗∗ with A
∗, andL∗∗ with L∗, since they are isomorphic, because�̃(L∗) = �A∗ .

On the other hand, we say that an abstract logicL satisfies thecongruence property
when�̃(L) = 
(L), that is, when
(L) ∈ ConA. A deductive system is calledself-
extensional in [27] when as an abstract logic it has the congruence property, that is,
when the interderivability relation is a congruence of the formula algebra. We thus
have:

Lemma 4.11 If L ∈ WR(A) then 
(L) = �̃(L), that is, all the WR-logics sat-
isfy the property of congruence; in particular the deductive system WR is self-
extensional.

Proof: Let L = 〈A,C〉 ∈ WR(A). By 4.5.1 the abstract logic〈〈A,∧,¬〉,C〉 is a
De Morgan logic, and by [18], Theorem 3 we know that the Frege relation (denoted
in that paper byθ(C)) 
(L) is a congruence with respect to∧ i ¬. On the other hand,
from the second parts of Proposition4.8.1 and4.8.3 it follows that
(L) is a congru-
ence with respect to→, therefore
(L) ∈ ConA. This implies that
(L) ∈ ConL,
and since in general̃�(L) ⊆ 
(L) and �̃(L) = maxCon(L), we have
(L) =
�̃(L).

Theorem 4.12 (Bilogical Theorem) Let L = 〈A,C 〉 be an abstract logic of type
(2,2,1). Then the following conditions are equivalent:

(1) L ∈ WR(A);
(2) A

∗ ∈ R and C ∗ = FıltA∗; and
(3) There is a bilogical morphism from L to a logic L0 = 〈A0,C 0〉 where A0 ∈ R

and C 0 = FıltA0.

Proof: (1 ⇒ 2): SinceR is a variety we will prove thatA∗ ∈ R by showing that any
equation true inR is also true inA∗: By Theorem2.4.4 we have thatϕ ≈ ψ is true
in R if and only if �R ϕ ↔ ψ and by the definition ofWR this in turn is equivalent
to ϕ ��WR ψ. Now if L ∈ WR(A) then by Proposition 4.8.10L is a model for

WR which implies that〈ϕA(a), ψA(a)〉 ∈ 
(L) for any interpretationa overA. By

Lemma4.11
(L) = �̃(L), which implies thatϕA
∗
(π ◦ a) = ψA

∗
(π ◦ a), whereπ

is the canonical projection fromA ontoA
∗; sinceπ is onto we conclude thatϕ ≈ ψ

holds inA
∗ and as a consequence thatA

∗ ∈ R. Finally from [18], Theorem 3 we
obtain thatC ∗ = FıltA∗. (2 ⇒ 3) is trivial since the canonical projection fromA
ontoA

∗ is a bilogical morphism fromL to L∗. (3 ⇒ 1) follows from Theorem4.6
and Lemma4.10.

One of the consequences of this theorem is a characterization of the classR of
all R-algebras in terms of the class of reducedWR-logics and conversely; this is con-
tained in the following result, which can be regarded as a kind of abstract version of
Theorem3.9; in it we denote byWR∗(A) the class of all reducedWR-logics.
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Corollary 4.13 If L = 〈A,C 〉 is any abstract logic of type (2,2,1), then L ∈ WR∗(A)

if and only if A ∈ R and C = FıltA.

Proof: If L = 〈A,C 〉 ∈ WR∗(A) then by Theorem4.12A = A
∗ ∈ R andC =

C ∗ = FıltA∗ = FıltA. Conversely, ifA ∈ R then by Theorem4.6 〈A, FıltA〉 ∈
WR(A) and then we can apply Lemma4.11 which tells us that̃�

(〈A, FıltA〉) =



(〈A, FıltA〉), but this is the identity in every lattice, thus indeed〈A, FıltA〉 ∈
WR∗(A).

Now we are prepared to prove that the class ofWR-logics is intrinsically associ-
ated with the deductive systemWR in the sense of [16], and at the same time we will
prove a similar thing for the classR of R-algebras: in [16] the class ofS-algebras
AlgS is introduced for every deductive systemS, and several results confirm that this
is always a class of algebras naturally associated withS. In our caseAlgWR = {

A :
the abstract logic〈A, F iWRA〉 is reduced

}
. On the other hand, we can associate a

class of algebras with every Gentzen calculus by using the notion of model and the
notion of reduced abstract logic; in our case, we say that an algebraA = 〈A,∧,→,¬〉
of type (2,2,1) is aGWR-algebra whenA is the algebra reduct of a reduced model of
GWR, that is, when there is an abstract logicL = 〈A,C〉 overA such thatL is a model
of GWR and�̃(L) = �A; we denote byAlgGWR the class of allGWR-algebras.
Finally in [16] another class of abstract logics is associated with every deductive sys-
temS, the class offull models of S; in our case, for everyA of type (2,2,1) the class
of full models of WR is the classFModWRA = {

L = 〈A,C 〉 : C ∗ = F iWRA
∗}.

We then have:

Theorem 4.14 AlgGWR = AlgWR = R and WR(A) = FModWRA.

Proof: In Theorem3.8 we have proved thatRAlgWR = R. In [16], Proposition
3.14 it is proved that for any deductive systemS , RAlgS ⊆ AlgS and that these
classes of algebras generate the same variety; since in this case the smaller one is al-
ready a variety, they have to be equal, soAlgWR = RAlgWR = R. If A ∈ R then by
Corollary4.13〈A, FıltA〉 ∈ WR∗(A), in particular this is a reduced model ofGWR,
thusA ∈ AlgGWR. Conversely, ifA ∈ AlgGWR then there is some closure opera-
tor C overA such that〈A,C〉 is a reduced model ofGWR. It is easy to see that then
the closure operatorC defined overA by: C(∅) = ∅ , C(X) = ⋃{C(F) : F ⊆ X
and F finite} is also a reduced model ofGWR, and it is finitary; according to Def-
inition 4.4 it follows that 〈A,C〉 ∈ WR∗(A), which again by Corollary4.13 im-
plies thatA ∈ R. Thus we have proved thatAlgGWR = AlgWR = R. Now let
L ∈ WR(A); by Theorem4.12we know thatC ∗ = FıltA∗ and thatA∗ ∈ R, but in this
case Corollary3.5tells us thatFıltA∗ = F iWRA

∗, and by definition all this implies
thatL ∈ FModWRA. Conversely, ifL ∈ FModWRA then it is easy to see, from the
very definitions, thatA∗ ∈ AlgWR, that is, as we have proved, thatA

∗ ∈ R, and we
also obtainC ∗ = F iWRA

∗ = FıltA∗; but then by Theorem4.12〈A∗,C ∗〉 ∈ WR(A),
and this property is preserved under bilogical morphisms by Lemma4.10, so also
L = 〈A,C 〉 ∈ WR(A). Thus exactlyWR(A) = FModWRA.

Having identified the classes of algebras and of abstract logics associated with
WR following the general scheme developed in [16] for any deductive system, we can
obtain several consequences of some of the general results of this paper; let us record
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here that from the results of this section it follows that the deductive systemWR is
strongly self-extensional (all its full models have the congruence property), that the
Gentzen calculusGWR is strongly adequate for it (the full models ofWR are ex-
actly the finitary models ofGWR without theorems), and that this propertyuniquely
determines GWR with respect to the deductive systemWR (see more details in [16]).

Corollary 4.15

(1) For any algebra A of type (2,2,1), the ordered set 〈WR(A),≤〉 is a complete
lattice isomorphic to the lattice 〈ConR(A),⊆〉, and the isomorphism is given

by the mapping corresponding to the Tarski congruence: L �→ �̃(L).
(2) The algebraic category of R-algebras (that is, the one with R-algebras as ob-

jects and homomorphisms as arrows) is isomorphic to the category whose ob-
jects are the reduced WR-logics and whose arrows are all the logical mor-
phisms between them.

(3) The second category of (2) is a full reflective subcategory of the category of all
WR-logics with all logical morphisms.

Proof: (1) is a particular case of Theorems 2.28 and 2.29 of [16], which are com-
pletely general. (2) is a particular case of Theorem 2.33 of the same paper, which is
also general. Finally (3) is a particular case of Theorem 2.42 of the same paper, which
holds for strongly self-extensional deductive systems.

These results reinforce our claim that the classes ofR-algebras and ofWR-logics
are intrinsically associated with the deductive systemWR.

5 The R-logics In this section we are going to associate a class of abstract logics
with the deductive systemR in a natural way. However, we do not have a Gentzen
calculus which definesR in a similar way as we had in the preceding section forWR,
and thus we cannot start with its models. Instead we take the abstract counterpart of
Theorem3.3, which tells us that the theories ofR are the theories ofWR containing
the formulas of the formϕ → ϕ, that is, the theories ofWR containing the theory
generated by these formulas, which we have designated byE(WR). The procedure
uses the notion of axiomatic extension: For any abstract logicL = 〈A,C〉 and any
X ⊆ A theaxiomatic extension of L by X is the abstract logicLX = 〈A,CX〉 where
CX is the closure operator corresponding to the closure systemC X = {T ∈ C : X ⊆ T}.
We then put:

Definition 5.1 Let L = 〈A,C〉 be an abstract logic of type (2,2,1). We say thatL
is anR-logic when there is a closure operator C′ over A such that the abstract logic
L′ = 〈A,C′〉 is a WR-logic andL is the axiomatic extension ofL′ by E(L′). For
every algebraA we will denote byR(A) the set of allR-logics defined overA.

We shall see at once that the logicL′ is unique, whenever it exists, so that the
definition makes full sense. Initially the connection of theseR-logics with the deduc-
tive systemR is rather indirect; the object of this last section is to prove that they are
the abstract logics naturally associated withR by the procedure of [16], and to such
end we will prove the correspondingBilogical Theorem.

The following result establishes the uniqueness of the associatedWR-logic used
in Definition 5.1, and thus eliminates any ambiguity in it. Actually it says more: it
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says that the relationship between anyR-logic and its associatedWR-logic is the ab-
stract version of the procedure we used to define the deductive systemWR starting
from the deductive systemR. As aconsequence we find a bijective correspondence
betweenWR(A) andR(A).

Theorem 5.2 If L = 〈A,C〉 is an R-logic and L′ = 〈A,C′〉 is any WR-logic sat-
isfying the conditions of Definition 5.1, then for any X ⊆ A it holds that

C′(X) = {
a ∈ A : ∃a1, . . . , an ∈ X with (a1 ∧ . . . ∧ an) → a ∈ C(∅)

}
and as a consequence this L′ is uniquely determined.

Proof: By definitionL′ satisfies C′(∅) = ∅, which implies that the above condi-
tion is fulfilled for X = ∅. Suppose thatX �= ∅. Since also by definitionL′ is fini-
tary and satisfies DM2,a ∈ C′(X) if and only if there area1, . . . , an ∈ X with a ∈
C′(a1,∧ . . .∧, an) which by Proposition4.8.4 is equivalent to(a1 ∧ . . . ∧ an) → a ∈
E(L′). But C(∅) = C′E(L′)(∅) = C′(E(L′)) = E(L′), which establishes the desired
characterization of C′ and therefore uniquely determinesL′.

Corollary 5.3 For every algebra A the ordered sets 〈WR(A),≤〉 and 〈R(A),≤〉
are isomorphic.

Proof: Consider the mappingsL �→ LE(L), which goes fromWR(A) to R(A), and
L �→ L′, which goes fromR(A) to WR(A). It has already been established that
they are well-defined. The first one is order-preserving by the definition of axiomatic
extension, and the second one is also so by Theorem5.2. Definition 5.1 says that
(L′)E(L′) = L. Finally, if L ∈ WR(A) we see that

(
LE(L)

)′ = L : a ∈ (
CE(L)

)′
(X)

if and only if there area1, . . . , an ∈ X such that(a1 ∧ . . . ∧ an) → a ∈ CE(L)(∅) =
E(L) and by Proposition4.8.4 this is equivalent toa ∈ C(a1 ∧ . . . ∧ an) = C(a1, . . . ,

an) ⊆ C(X). Therefore these two mappings are monotone, bijective and inverse to
one another, that is, they are the required order-isomorphisms.

Among the consequences of this order-isomorphism we have:

Proposition 5.4 R = minR(Fm), and for every A ∈ R , 〈A,DedA〉 = minR(A).

Proof: To prove thatR = minR(Fm) it is enough to use Theorems3.3, 4.7and4.9
(here the auxiliaryWR-logicR′ is preciselyWR !). If A ∈ R then by Theorem4.6we
know that〈A, FıltA〉 = minWR(A); on the other hand by definitionE

(〈A, FıltA〉)
= E(A), thusDedA = (FıltA)E(〈A,FıltA〉). From Corollary5.3 it follows that〈A,

DedA〉 = minR(A).

Let L = 〈A,C〉 ∈ R(A) and letL′ be its associatedWR-logic. Then by the def-
initions we have∅ /∈ C while ∅ = C′(∅) ∈ C ′; as a consequence we always have
L �= L′. However, we might suspect that this is the only difference between the two
logics. Presenting this in a different way, we may ask under what conditions for ev-
erya ∈ A , C(a) = C′(a). This would amount to the coincidence betweenL′ and the
greatest pseudoaxiomatic logic contained inL, which is obtained by just adding∅ to
C ; note that in Section 3 we asked (and answered in the negative) a similar question
between the deductive systemsWR andR. It happens that in the general case the an-
swer is related to the notion of classical logic. Following [6], p. 44, we say that an
abstract logicL = 〈A,C〉, of type (2,1) withA = 〈A,∨,¬〉, is classical when:
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(1) C is finitary;
(2) ∀X ∪ {a, b} ⊆ A , C(X, a ∨ b) = C(X, a) ∩ C(X, b) (Disjunction);
(3) ∀X ∪ {a} ⊆ A , a ∈ C(X) ⇐⇒ C(X,¬a) = A (Reductio ad Absurdum).

We then have:

Theorem 5.5 Let L = 〈A,C 〉 ∈ R(A) be an R-logic, and let L′ = 〈A,C ′〉 ∈
WR(A) be the unique WR-logic associated with L. Then it holds that C ′ = C ∪ {∅}
if and only if the logic 〈〈A,∨,¬〉,C 〉 is a classical logic. Moreover in this case
C(a → b) = C(¬a ∨ b) and C(a ∗ b) = C(a ∧ b).

Proof: (⇒) By assumption we have that for everyX ⊆ A, if X �= ∅ then C′(X) =
C(X). If a ∈ E(L′) we have C′(a) = C(a) = C′(a, E(L′)

) = C′(E(L′)
) = E(L′),

and therefore for alla, b ∈ E(L′) , C′(a) = C′(b) = E(L′) and thus〈a, b〉 ∈ 
(L′) =
�̃(L′), that is,a∗ = b∗ and thusE(A∗) has only one element. Note that by Theo-
rem 4.12A

∗ ∈ R. Then it is easy to see that this singleton is the maximum of the
quotient set. On the other hand, by R53 we have that for anya ∈ A , ¬a∗ ∨ a∗ ∈
E(A∗). As aconsequence, the algebra〈A∗,∨,¬〉 is a Boolean algebra. By The-
orem4.12 (C ′)∗ = FıltA∗ which comprises all lattice filters ofA∗ plus the empty
set; since(C ′)∗ = C ∗ ∪ {∅}, C ∗ must be the family of all lattice filters ofA∗, that
is, 〈〈A∗,∨,¬〉, C ∗〉 is a Boolean logic, and this implies that〈〈A,∨,¬〉, C 〉 is a
classical logic (see [6], p. 44 and Theorem 3, for instance). Finally, to prove that
C(a → b) = C(¬a ∨ b) we can use the properties stated in Proposition4.8, because
by assumption C and C′ agree on nonempty sets: sinceA

∗ is a Boolean algebra and
E(A∗) = {1}, for any a, b ∈ A we have thatb∗ ≤ a∗ → a∗, soa → a ∈ C(b) and
a ∈ C(a ∗ b); from this and R55 it follows that C(a ∧ b) = C(a, b) = C(a ∗ b) and
C(a → b) = C

(¬(a ∗ ¬b)
) = C

(¬(a ∧ ¬b)
) = C(¬a ∨ b).

(⇐) If 〈〈A,∨,¬〉, C 〉 is classical, again by [6], Theorem 3 we know there is a bi-
logical morphismh from 〈〈A,∨,¬〉,C〉 onto a Boolean logic〈B, Fılto

B〉 where
Fılto

B is the family of all lattice filters ofB; by adding∅ to it we obtainFıltB, but
for all nonemptyX ⊆ B , Filto(X) = Filt(X), so Filt

(
h(a → b)

) = h
(
C(a → b)

) =
h
(
C(¬a ∨ ¬b)

) = Filt
(
h(¬a ∨ b)

) = Filt
(¬h(a) ∨ h(b)

)
. Thereforeh(a → b) =

¬h(a) ∨ h(b) and thush is also a bilogical morphism from〈A,C ∪ {∅}〉 onto the ab-
stract logic which results from〈B, FıltB〉 after changingB by its〈∧,→,¬〉-reduct,
where→ is material implication; it is easy to see that the resulting abstract logic is a
WR-logic, so Lemma4.10tells us that〈A,C ∪ {∅}〉 ∈ WR(A) and by Theorem5.2
this implies thatC ∪ {∅} = C ′.

Now before proving the bilogical theorem forR(A) we see that the property of
being anR-logic is preserved under bilogical morphisms.

Lemma 5.6 Let h be a bilogical morphism from L1 = 〈A1,C1〉 onto L2 = 〈A2,C2〉.
Then L1 is an R-logic if and only if L2 is an R-logic.

Proof: Assuming thatL1 ∈ R(A1) we prove thatL2 ∈ R(A2). SinceL′
1 ∈ WR(A1),

Lemma4.10implies thath is a bilogical morphism fromL′
1 onto the abstract logic

L′ = 〈A2,C′〉 ∈ WR(A2), where C′ = h ◦ C′
1 ◦ h−1 and E

(
L′) = h

(
E(L′

1)
); then

using thath is a bilogical morphism fromL1 ontoL2 and thatL1 ∈ R(A1), we ob-
tain that for anyX ⊆ A2 , C2(X) = h

(
C1(h−1(X)

) = h
(
C′

1(h−1(X), E(L′
1))

) =(
h ◦ C′

1 ◦ h−1
)(

X, h(E(L′
1)

) = C′(X, E(L′)
)
. SinceL′ is aWR-logic it follows from
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Definition 5.1 thatL2 ∈ R(A2). A similar process shows thatL2 ∈ R(A2) implies
L1 ∈ R(A1).

Theorem 5.7 (Bilogical Theorem) If L = 〈A,C〉 is an abstract logic of type
(2,2,1) then the following conditions are equivalent:

(1) L ∈ R(A);

(2) A
∗ ∈ R and C ∗ = DedA

∗; and

(3) There is a bilogical morphism between L and an abstract logic 〈A0,C 0〉, where
A0 ∈ R and C 0 = DedA0.

Proof: (1 ⇒ 2): We begin by proving that̃�(L) = �̃(L′). By Lemma4.11
�̃(L′) = 
(L′) ∈ ConA, and since〈a, b〉 ∈ 
(L′) ⇐⇒ C′(a) = C′(b) =⇒
C(a) =
C′(a, E(L′)

) = C′(b, E(L′)
) = C(b) it follows that �̃(L′) ∈ ConL; now using

Proposition4.8.4 we have〈a, b〉 ∈ �̃(L′) ⇐⇒ C′(a) = C′(b) ⇐⇒ a ↔ b ∈
E(L′) = C(∅) and by [7], Theorem IX.6, this implies that̃�(L′) = �̃(L). Thus
we can writeA∗ = A/�̃(L) = A/�̃(L′), and by Theorem4.12A

∗ ∈ R and(C ′)∗ =
FıltA∗. Finally, sinceE(L′)/�̃(L) = E

(
(L′)∗

) = E(A∗), we haveC ∗ = {
F/�̃(L) :

F ∈ C
} = {

F/�̃(L′) : F ∈ C ′ with E(L′) ⊆ F
} = {

F ∈ FıltA∗ : E(A∗) ⊆ F
} =

DedA
∗. (2 ⇒ 3): Just takeA0 = A

∗, and the projection will be the required bilogical
morphism. (3 ⇒ 1): Just apply Proposition5.4and Lemma5.6.

In the course of the above proof we have seen that anR-logic and its associated
WR-logic have the same associated Tarski congruence; we will later make use of this
fact. In Lemma4.11we proved thatWR-logics have the congruence property, so we
suspect that in generalR-logics do not have it. To confirm this it is enough to show
that this is the case for the simplestR-logic, namely the deductive systemR itself. In
[16] a deductive system is calledquasi-Fregean when all its axiomatic extensions, as
abstract logics, have the congruence property.

Proposition 5.8 The deductive system R is not self-extensional, and the deductive
system WR is not quasi-Fregean.

Proof: Assume thatR is self-extensional. Then for anyϕ,ψ ∈ Fm we would have
thatϕ �R ψ ⇒ ϕ → ϕ �R ϕ → ψ and conversely by modus ponensϕ �R ψ ⇐⇒
ϕ → ϕ �R ϕ → ψ. Thus, taking Definition3.1.3 into account, we would obtain
ϕ �R ψ ⇐⇒ �R ϕ → ψ ⇐⇒ ϕ �WR ψ, and this equivalence is not true as we
showed after Theorem3.3. This shows thatR cannot be self-extensional. Since it is
an axiomatic extension ofWR, as shown in Theorem3.3, it follows thatWR cannot
be quasi-Fregean.

It is interesting, for theoretical reasons concerning the general approach con-
tained in [16], to notice thatWR is an example of a non-protoalgebraic and strongly
selfextensional deductive system which is not quasi-Fregean.

Now the bilogical theorem gives a characterization of the classR∗(A) of the
reducedR-logics over a given algebraA = 〈A,∧,→,¬〉 of type (2,2,1), by means
of the class ofR-algebras, in a form completely parallel to that of the case ofWR-
logics stated in Corollary 3.13.
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Corollary 5.9 Let L = 〈A,C 〉 be an abstract logic of type (2,2,1). Then L ∈ R∗(A)

if and only if A ∈ R and C = DedA.

Proof: If L = 〈A,C 〉 ∈ R∗(A) then by Theorem5.7 A = A
∗ ∈ R and C =

C ∗ = DedA
∗ = DedA. Conversely, ifA ∈ R then by Proposition5.4 we have that

〈A,DedA〉 ∈ R(A) and it is reduced, because, as remarked after the proof of Theo-
rem5.7, and using Lemma4.11, �̃

(〈A,DedA〉) = �̃(〈A, FıltA〉) = 

(〈A, FıltA〉) =

�A.

Now we can incorporate the general notions introduced in [16] in asimilar way
as we did in the last part of Section 4; the difference is that here we do not use any
Gentzen calculus associated with the deductive systemR in order to characterize the
class of abstract logics we obtain. In the case ofR, the class of algebras associated
with it is AlgR = {A : 〈A, F iRA〉 is reduced} and for every algebraA of suitable
type, the class of abstract logics overA associated withR, called its full models, is
FModRA = {

L = 〈A,C 〉 : C ∗ = F iRA
∗}. In [16] i t is shown that these notions

are intrinsically associated withR in a natural form. Therefore the following result
is important:

Theorem 5.10 AlgR = R and for every A of type (2,2,1), FModRA = R(A).

Proof: In [16], Proposition 3.2 it is proved that for any protoalgebraic deductive
systemS , RAlgS = AlgS; we already know thatR is algebraizable, hence it is also
protoalgebraic, and we proved in Theorem2.6thatRAlgR = R, thereforeAlgR = R
as well. On the other hand, from the definitions of full models ofS and ofS-algebra
it follows in general thatL ∈ FModSA if and only if A

∗ ∈ AlgS andC ∗ = F iSA
∗.

Therefore, after having proved thatAlgR = R, our Theorems5.7and2.4.2 establish
the equalityFModRA = R(A) for every algebraA of suitable type.

At this point several general results of [16] can be applied to the classes ofR-
algebras and ofR-logics:

Corollary 5.11 For any algebra A = 〈A,∧,→,¬〉 of type (2,2,1) the following
hold:

(1) The mapping F �−→ 〈A, (F iRA)F〉 is an isomorphism between the lattices
F iRA and FModRA. Therefore, the R-logics are the abstract logics whose
associated closure system consists of all R-filters containing a given R-filter.

(2) The set 〈R(A),≤〉 is a complete lattice isomorphic to the lattice 〈ConR(A),⊆
〉; the isomorphism is given by the Tarski operator �̃ on R(A), and the first
element of R(A) is the abstract logic 〈A, F iRA〉.

(3) The algebraic category determined by the class of R-algebras (that is, the cat-
egory whose objects are R-algebras and whose arrows are homomorphisms) is
isomorphic to the category whose objects are the reduced R-logics and whose
arrows are all the logical morphisms between them.

(4) The category whose objects are the reduced R-logics and whose arrows are the
logical epimorphisms between them is a full reflective subcategory of the cate-
gory whose objects are all R-logics and whose arrows are the logical epimor-
phisms between them; the reflector is the functor associated with the process
of reduction L �→ L∗.
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Proof: (1) comes from Corollary 3.10 of [16], which uses in an essential way the
fact thatR is algebraizable. (2) comes from Theorems 2.28 and 2.29 of the same pa-
per, or, alternatively, from our Corollaries4.15.1 and5.3, together with the observa-
tion that pairs of associatedR-logics andWR-logics have the same Tarski congru-
ence. (3) comes from Theorem 2.33 of [16]. Finally (4) comes from Theorem 2.34
of the same paper.

Notice that in (4) we had to restrict the arrows to be epimorphisms; this restric-
tion was not necessary in the case ofWR (Corollary4.15.3) becauseWR is strongly
selfextensional, which is certainly not the case ofR.

As a last application of Theorem5.7, we will give an intrinsic characterization
of the abstract logics inR(A) which makes no reference to the logics inWR(A), and
which in some sense is analogous to Theorem 2 of [6]. This characterization uses a
kind of generalized deduction theorem of the following form: LetL = 〈A,C〉 be an
abstract logic, and letT ⊆ A; we say thatL satisfies thededuction theorem parametri-
cally restricted to T (PRDT forT) when there is a ternary polynomialp(x, y, z) such
that for anyX ∪ {a, b} ⊆ A , b ∈ C(X, a) ⇐⇒ there is somec ∈ T with pA(a, b, c)

∈ C(X). Then we first have:

Theorem 5.12 Every R-logic satisfies the PRDT for C(∅), with p(x, y, z) = (x ∧
z) → y.

Proof: If L = 〈A,C〉 ∈ R(A) andb ∈ C(X, a) = C′(X ∪ E(L′), a
)

then, by Propo-
sition 4.5.1 we know that there is somex ∈ C′(X) and somee ∈ E(L′) such that
b ∈ C′(x, e, a); actually x = x1 ∧ . . . ∧ xn for somexi ∈ X, and the same fore,
but E(L′) is a closed set of C′ and thus it is closed under Conjunction. Putting
c = (x → x) ∧ (e → e) then as a consequence of Proposition4.8.1, (a ∧ c) → b ∈
C′((a ∧ c) → x , (a ∧ c) → e , (a ∧ c) → a

)
. On the other hand, by the selection of

c , x → x ∈ C′(a ∧ c) and then by Propositions4.5.3 and4.8.5, (a ∧ c) → x ∈ C′(x);
by similar processes one can prove that(a ∧ c) → e ∈ C′(e), and then it follows that
(a ∧ c)→ b ∈ C′(x, e, (a ∧ c)→ a

) ⊆ C′(x, E(L′)
) = C(x) ⊆ C(X). Finally the con-

verse implication contained in the PRDT is a direct consequence of Proposition4.5.2.

Then it results that this Deduction Theorem characterizes theR-logics among
the finitary abstract logics whose closed sets areR-filters (that is, among the finitary
models ofR, see Proposition4.8.10):

Theorem 5.13 Let L = 〈A,C〉 be an abstract logic of type (2,2,1) with A =
〈A,∧,→,¬〉. Then L ∈ R(A), that is, L ∈ FModRA, if and only if the following
conditions hold:

(1) C is finitary;

(2) C ⊆ F iRA; and

(3) L satisfies the PRDT for C(∅) with p(x, y, z) = (x ∧ z) → y.

Proof: If L = 〈A,C〉 ∈ R(A), then Condition (1) is automatically satisfied, and
Condition (2) follows from Theorem5.10, since the abstract logics inFModRA al-
ways satisfy it; finally Condition (3) is proved in Theorem5.12.

To prove the converse it will be enough to see that Conditions (1), (2) and (3)
imply that A∗ ∈ R andC ∗ = DedA

∗, and then use Theorem5.7. First of all ob-
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serve that by (2)〈A,C(∅)〉 ∈ MatrR and that the algebraizability ofR implies that
the relation�A(C(∅)) is analytical, therefore by [7], Theorem IX.6, we have that
�A

(
C(∅)

) = �̃(L). Now let ϕ ≈ ψ be any equation valid inR. Again by the al-
gebraizability ofR with respect toR with equivalence formulap ↔ q (see Section
2) it follows that�R ϕ ↔ ψ, therefore for any interpretationa overA we have that

ϕA(a) ↔ ψA(a) ∈ C(∅), which is equivalent to〈ϕA(a), ψA(a)〉 ∈ �A(C(∅)),

that is, to〈ϕA(a), ψA(a)〉 ∈ �̃(L), and this means thatϕA
∗
(a) = ψA

∗
(a). This

proves that the equationϕ ≈ ψ holds inA
∗ , which means thatA∗ ∈ R. On the

other hand,C ∗ ⊆ F iRA
∗ by (2), and by Theorem2.4, F iRA

∗ = DedA
∗; thus it

only remains to prove thatDedA
∗ ⊆ C ∗. Let F ∈ DedA

∗ and putG = π−1[ F] where
π : A → A

∗ is the canonical projection. We haveG/�̃(L) = F, and it will be enough
to prove thatG ∈ C . Let a ∈ C(G); since (2) implies that C has the property of
Conjunction DM2, then by (1) and (2) there area1, . . . , an ∈ G such that, putting
b = a1 ∧ . . . ∧ an, it holds thata ∈ C(b); but now by (3) there is somec ∈ C(∅)

such that(b ∧ c) → a ∈ C(∅); therefore,
(
a ∧ (b ∧ c)

) ↔ (b ∧ c) ∈ C(∅) and
so a∗ ∧ (b∗ ∧ c∗) = (

a ∧ (b ∧ c)
)
/�̃(L) = (b ∧ c)/�̃(L) = b∗ ∧ c∗, that is, in

A
∗ ∈ R we haveb∗ ∧ c∗ ≤ a∗. SinceF ∈ DedA

∗, b∗ ∈ F; now alsoc∗ ∈ F. Us-
ing thatc ∈ C(∅) and miscellaneous properties ofR-filters one easily proves that
(c → c) ↔ (

c ∧ (c → c)
) ∈ C(∅); thereforec∗ → c∗ ≤ c∗ andc∗ ∈ E(A∗) ⊆ F. As

a consequence,a∗ ∈ F, which impliesa ∈ G. Thus we have proved thatDedA
∗ = C ∗,

which finishes the proof.

This Parametrically Restricted Deduction Theorem can be related to theparame-
terized local deduction theorems studied in Czelakowski and Dziobiak [10], [11] (see
also [9]); notice thatR is one of the few examples of deductive systems which really
need parameters in their deduction theorems. In turn, these results can be related to
those in Meyer [22], where he studies the following implication:

ϕ →i ψ = ϕ ∧ t → ψ

in the conservative extensionRt of R (see Section 2); in his Lemma 2 he proves that
this connective satisfies the ordinary Deduction Theorem. Taking out the constantt
leads us to a parametric restriction, either in the form of Czelakowski or in the form
we have used above.
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