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Algebraic Study of Two Deductive Systems
of Relevance Logic
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Abstract In this paper two deductive systems (i.e., two consequence rela-
tions) associated with relevance logic are studied from an algebraic point of
view. One is defined by the familiar, Hilbert-style, formalizatiorRothe other

one is aweak version of it, call®lR, which appears as the semantic entailment

of the Meyer-Routley-Fine semantics, and which has already been suggested by
Wojcicki for other reasons. This weaker consequence is first defined indirectly,
usingR, but we prove that the first one turns out to be an axiomatic extension
of WR. Moreover we provid&VR with a natural Gentzen calculus (of a clas-
sical kind). It is proved that both deductive systems have the same associated
class of algebras but different classes of models on these algebras. The notion
of model used here is an abstract logic, that is, a closure operator on an abstract
algebra; the abstract logics obtained in the casé/Bfare also the models, in
anatural sense, of the given Gentzen calculus.

1 Introduction This paper intends to be a contribution to the study of the well
known systenR of Relevance Logic, and of a weaker companion system called here
WR, from a precise point of view of algebraic nature. We will follow some well-
established methods, such as those systematized in Blok and Plgpzdlakowski

[9], Woijcicki [26], [27], as well as newer methods, developed recently in full gener-
ality in Font and Jansan@af), but already in use for several years for many particular
cases (see Bloom and Browj]and Font and Verd [18H[21], and also Fon{I5]

for a survey). These not-so-well-known methods use abstract logics, that is, pairs
L = (2, C) where C is a closure operator on the universe of the alg#baa akind

of models of logics; they were introduced in Brown and SusZkeg ageneralization

of Tarski’s early use of consequence operations on the formula algebra and also of the
general theory of logical matrices (although already in 1962 Sniilgldointed out

the need for them). The objects of study in this area of Algebraic Logic are called,
somehow conventionallyeductive systems; by definition a deductive system is a
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finitary and structural closure operator on the algebra of formulas. Thus when we
want to study a givelogical systemwith these methods we have to turn it intde
ductive system by some procedure, which might not be in accordance with the orig-
inal — extra logical — motivations for introducing the logical system. This is what
happens in the case of relevance logic: by definition a deductive system satisfies the
Weakening Rule, which allows one to add hypotheses to a given derivation without
invalidating it. This property is rejected by many scholars on the grounds that it pre-
cisely destroys relevance; these ideas end up with formalizations in the Gentzen style
lacking some structural rule(s), and all our algebraic apparatus cannot be applied to
them. In this paper we shall not be concerned with such points; the reader will find
interesting readings on these and related issues $@BDand Schroeder-Heistéf].

The issue of formalizing the notion aElevant implication or entailment is
surely not trivial. One of the predominant approaches in the literature has beento find
a dass of formulas concerning it (i.e., containing some formal connective of implica-
tion) which can be shown to represent faithfully lagically true statements about
entailment. This can be done either semantically (by taking all formulas true in a
suitable class of models) or syntactically (by taking all formulas provable in a given
formal system). The famous systdnwas originally introduced (see Anderson and
Belnap [1) as the set of theorems of a Hilbert-style formal system. Then, by allow-
ing inferences from hypotheses, the same formal system defines a deductive system,
which is sometimes calleafficial deducibility (cf. for instancelﬂ, §22.2.1 or Ander-
son, Belnap and Dunf@], p. 169). This deductive system has already been studied
from an algebraic point of view on p. 48ff. d&}and Font and Rodguez[L7]; it is al-
gebraizable, inthe precise sense of the term introducedtlh4nd the corresponding
class of algebras has been identifiedlidl[ where they are calleat evant algebrasor
R-algebras (they turn out to form an intermediate class between De Morgan monoids
and De Morgan semigroups, two classes of algebraic models usually considered).

However, this is not the only possible approach to the problem of finding a de-
ductive system faithfully representing the informal notion of entailment that system
R tries to formalize. Actually, Vljcicki in [26], pp. 52—73 andqZ], pp. 163—-170 has
made some insightful observations on the issue of how to define, in general, a de-
ductive system from the set of theorems of some logical system. He has advanced
aproposal along the following line: If we are to represent the (informal) notion of
entailment by the (formal) notion of deduction, that is, by the metalogical connective
“k”, then we can adopt as a definition of such a deductive system the idea that

The formulasp, ..., ¢n € Fmentail the formulap € Fm
if and only if
the formula(p1 A ... A ¢n) — @ is a theorem of R.

Since this determines the consequences of only nonempty and finite sets of for-
mulas, Wbjcicki adds in[26] the conditions that the logic must be finitary and have no
theorems (this last condition is replaced2a][by the equivalent one that no formula
is a consequence of each of the nonempty theories of the logic).

The relation of consequence just described is implicitly present in the works on
the relational semantics devised by Routley, Meyer, Fine, and others. Indeed, these
authors have proved a completeness theorerR {see PJ, 8848, 51 for details) that
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as a consequence yields that a formula of the fgpan . .. A pn) — @ is a theorem

of R if and only if the formulase, . . ., ¢, Semantically entail the formulagp, that is,

if and only if ¢ is satisfied, for some valuation, at any point in a model structure where
all the ¢; are satisfied. The reader may notice thatdyeantic entailment relation
underlying this result coincides with jticki’s proposal.

Our main concern in this paper will be the algebraic study of the deductive sys-
tem, which we calWR, that arises in this way. Sind&R andR are closely con-
nected, this study will also furnish a context in which some further contributions to
the algebraic study dR will be made.

Section 2 contains some general definitions and results, and in particular those
concerningR and its algebraization, mainly taken froﬁ. The class oR-algebras
is introduced, and its relationship with the deductive sysieisidescribed, allowing
us to determine all thB-filters on arR-algebra. The general concepts and techniques
of Universal Algebra and Lattice Theory can be found in Balbes and Dwii§anf
Burris and Sankappanav]] and those of the Theory of Abstract Logics in Brown
and Suszkd{].

Section 3 begins with the formal definition\WR and the proof that actualR is
the axiomatic extension &% R having the Identity Lawp— pas an additional axiom
schema. Then a Completeness TheorenWt is found, with respect to the class
of matrices obtained from aR-algebras and all their lattice filters plus the empty set
(a similar one foR was obtained irf[7] by taking just those lattice filters containing
all elements of the forna — a). We show that, unlike in the case Bf we cannot
put the larger class of De Morgan semigroups in the place of the clé&satifebras
in this Completeness result. Using it we prove that\WB-filters on anR-algebra
are exactly all its lattice filters plus the empty set. We then showtRis not alge-
braizable in the sense @][ nor even protoalgebraic in the sense of Blok and Pigozzi
[4]. This section ends with the determination of all the reduced matricé4Rand
the proof that their algebraic reducts form exactly the class dRallgebras. Thus
both deductive systems share the same associated class of algebras.

Section 4 is the central one. It begins with the definition of a Gentzen calculus
GwR and of the deductive systey,r associated with it in a standard form. In
order to prove the main result th&jyr is exactlyWR (thus obtaining an intrinsic
formalization ofWR) we introduce and study the class of abstract logics which are
models of the Gentzen calculdiy g (and are moreover finitary and have no the-
orems), calling themVR-logics. Among other results, we characterize the reduced
WR-logics as the abstract logis= (2(, C) such tha®l is anR-algebra and” is the
closure system of all the lattice filters 9fplus the empty set, and prove that in this
case this closure system consists of exactly alMMi-filters on2l. As aconsequence
we obtain that th&-algebras can be characterized as the algebras where the abstract
logic determined by the closure system of all tW&-filters is reduced, and th&¥ R-
logics are the inverse images of abstract logics of this form by bilogical morphisms.
These results establish direct links between the deductive systerand the class
of WR-logics and enable us to draw some consequences using general re§ififs of [
probably the most interesting one is that on any algef suitable similarity type)
there is an isomorphism between the lattice o#dR-logics on it and the lattice of
all congruences of the algebra whose quotient iRaigebra.
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In Section 5 we make a similar study for the deductive syfRerowever, we
do not have a structural Gentzen calculus giving exdtly the standard way (Bel-
nap'sDisplay Logic, see section 62 ofJ incorporates in an essential way an addi-
tional negation with a classical behavior). Therefore the notidR-tafgic is first de-
fined indirectly, as the class of axiomatic extension¥\R-logics by the set of all
the “identity elementsa — a. We prove that eachWR-logic is in turn determined
uniquely by theR-logic it determines through this definition, and thus the lattices of
all R-logics and of alWR-logics on a given algebra are isomorphic. The main re-
sults are parallel to those of Section 4: the reduRédgics have the form. = (2, C)
where2l is anR-algebra, and’ is the closure system of the lattice filtersbfvhich
contain all elements of the forar— a, and generaR-logics are the inverse images of
these by bilogical morphisms. Using the algebraizabilitiRafe prove thaR-logics
can be characterized as the abstract logics whose closure system consists &-all the
filters that contain a given one, a fact that cannot be obtained/f®r We dose this
section with the characterizationRflogics as those finitary models Bfthat satisfy
aparametrically restricted form of the Deduction Theorem with respect to their own
set of theorems.

2 The Deductive System R and its Algebraic Models Let §m = (Fm, A, —, =)

be the absolutely free algebra of type (2,2,1) over a denumerable set of vaxiables
We will denote asR = (§m, -R) adeductive system corresponding in a natural way
to the well-known systerR of Relevance Logic. The consequence relatigg is
defined in the usual (Hilbert-style) form by means of the following list of axioms and
inference rules (seff], p. 341), where by definition

eV = —(mpA—Y)
pov = (> YA —09)
pxyY = —(p—>—Y)

foranyg, ¥ € Fm. The binary connectiveis commonly calledntensional conjunc-
tion or fusion. The axioms oR are all formulas having one of the following forms:

R1) ¢o—9

R2) (p—> )= (W—>n— (9—1n)
(R3) ¢o— ((p—=¥)—> V)

(R4) (p—= (9= 1Y) > (e— V)

(RS) (pAyY)— o

(R6) (pAY)—> ¥

R?) (=) A(@e—=>n)—> (e— (W AN)
(R8) ¢—(pVvy)

R9) v —(pVvy)

(R10) ((p—>m AW —n)— ((eV ) —n)
(R11) (pA(vm)— ((eAy) V)

(R12) (¢p— =¢) — (¥ — —p)

(R13) ——p— ¢

and the inference rules are:
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(Adjunction) ¢,y F oA Y
(Modus Ponens) ¢,p— ¥ = .

Note that from now orR or g will denote the deducibility relation from premises
obtained by this formal system; therefore we are taking these inference rules as rules
of deducibility and not just as rules of proof of theorems from theorems.

At several points in this paper we will use some theoremR gfhich we re-
produce here with the same numberingdf pp. 396—397; their proof can be found
somewhere in this book:

(R20) ¢ < ——g

(R28) (oA (W vm) < ((eAY)V(pAnN))
(R30) (p— (y—n) < (pxy)—n)
(R33) (p—>¥)— (mp V)

(R55) (pAY) — (p* V)

and we will also use the following two theoremskf

WI)  (pAlp—> V)~
(RR) ((p—= @) A —> V) —>n)—> 0.

The first one is named after Sland34], and the second one is mentioned i [
(p. 321) as a theorem @, of which R is a (nonconservative) extension. (RR) can
actually substitute the characteristic modal axi@np A Ov) — O(p A Y) Of E; as
we shall see, this theorem (or better, its algebraic version) plays an essential role in
the approach to the algebraizationRbegun in[[[7].

The first algebraic models &, introduced in Dunr[4] (see alsdT], §28.2) in
order to study the algebraic completenesRpfvere calledDe Morgan semigroups.
As a starting point we take the following alternative definition in terms of,, —,
proved polynomially equivalent to the original [07], Theorem 5 modulo the defini-
tion of the semigroup operationgiven aboveax b = —(a— —b); in the converse
process starting from, —, x, the implication is defined as— b = —(a* —b).

Definition 2.1  An algebra&l = (A, A, —, =) of type (2,2,1) is @e Morgan semi-
group when the following conditions hold:

(1) (A, A,—)is aDe Morgan lattice, whose ordering relation we denote bgnd
whose supremum operation is precisaly b = —=(—a A —=b).

(2) a— (b—>c)<b— (a—c),foranya,b,ce A

(3) a< ((a—b)Ac)— b, foranya,b,ce A

(4) a— —a < —a, foranyace A

(5) a— b<—-b— —a, foranya, b e A

Recall that a De Morgan lattice is defined like a De Morgan algebral@eet
without the condition that it must be bounded; so it need not have a smallest and a
greatest element.

Dunn notes inf], p. 361 that the variety of De Morgan semigroups is not a good
enough class of algebraic models RrIndeed, one of the distinctive featuresRof
which sets it apart from other nonclassical systems such as the intuitionistic one or
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tukasiewicz'sRp-valued system, is the fact that not every two theorems are equiv-
alent; this is so because R not all formulas¢ — (¢ — ¢) are theorems. As a
consequence, in general there is no distinguished element in De Morgan semigroups
to interpret theorems. Moreover, the Tarski-Lindenbaum algebR, @fm/fi(R),
where (g, V) € §(R) <= kR ¢ < ¥, isnot free in the class of all De Morgan
semigroups. Thus this class cannot give us the desired algebraic completeness re-
sult forR. Dunn’s solution (sedl]], pp. 361-366) consists in enlarging the language
with aleast truth value constant and adding the formulaand the formula scheme
t — (¢ — @) to the list of axioms ofR. The extended systemR; thus obtained
turns out to be a conservative extensiorRepfand its algebraic models af2e Mor-
gan monoids, that is, De Morgan semigroups with a ueit SinceR; happens to
be (strongly) complete with respect to this class of models, we can obtain as a by-
product a (strong) completeness resultRoin the following form: for any" € Fm
andany e Fm, 'R ¢ <= ex< gom(ﬁ) for any interpretatiom in any De Mor-
gan monoid with unit e such thae < wm(é) forall y € T.

In [[L7] an alternative solution is presented. First of all, it is proved that De Mor-
gan semigroups themselves provide us with a matrix semanti€sifoa rather nat-
ural way. Recall that one says that a logical matgix F) is anR-matrix (or, equiv-
alently, thatF is anR-filter on2() when for anyI" U {¢} € Fm, the relationl’ kg ¢
implies that for any interpretaticmon 2, if {1//9[(3) Yel}CF thengom(ﬁ) e F.
The class of alR-matrices will be denoted in this paper MatrR, and for any al-
gebral, the set of allR-filters on%( will be denoted by#ig%2l. Onthe other hand,
on any distributive lattic@ we will consider the following closure system associated
with the family of all lattice filters ofl:

FltA = {F C A: Fis alattice filter ofl or F = &},

and we denote by Filt the closure operator associated with this closure system. Note
the nonstandard character of this definition: actually, for dny A, if X £ @ then

Filt(X) is the lattice filter generated by, whereas Fito) = @. Thus if the lattice

has no greatest element (equivalently, if it has no least filter), shER( is the clo-

sure system generated by the family of all lattice filter@ pivhereas iRl has a great-

est element then we have explicitly added the empty set. The reason for such an un-
usual procedure will become clear at the end of Section 4, namely in Théoign

If moreoverl is a De Morgan semigroup, we distinguish the filter generated by all
elements of the forra — a by putting

EQD =Filt(la—a:aec A))

and consider the closure system ofagtluctive filters of [, namelyDed2( = {F C
A: F e Filtdl andE®R) C F}, denoting by Ded its associated closure operator; this
use of the term “deductive filter” is justified by the following result.

Theorem 2.2 ([17))
(1) For every De Morgan semigroup 4, FiRp2l = Ped.

(2) Ris(strongly) complete with respect to the class of matrices { (A, E(2)) : A is
a De Morgan semigroup}.
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The introduction inlﬁ of the setE(2l) was motivated by an observation of
Dunn to the effect that from any proof R; of a formula withoutt one can obtain
aproof of the same formula iR simply by substituting all occurrences bby the
conjunction of the formulap — p, where p ranges over all variables appearing in
the original proof. A detailed consideration of this fact and its algebraic consequences
leads to a new class of algebraic structures:

Definition 2.3 ([17]) Analgebra = (A, A, —, =), of type (2,2,1) is afR-algebra
when®l is a De Morgan semigroup such that, for agy, c € A, ((a—> A ((b—
b)) — C < ¢. The variety ofR-algebras will be denoted by .

It is shown in [L7] thatR is a proper subclass of the variety of De Morgan semi-
groups. As we have already noticed, its definition (together with all the properties
these algebras will have) shows the importance of the theord®wed have called
RR. The following facts about the varieR/will be used in the paper:

Theorem 2.4 ([17)

(1) Forany2 e Randanya,be A, a<b < a—be E®).

(2) Forany e R, Fip% = DedL.

(3) Ris(strongly) complete with respect to the class of matrices{(?l, ERD):Ae
R}.

(4) Foranygp,y e Fm, FRro— ¢ < <pm(é) < wm(a) for any interpretation
aonany® € R.

(5) Risthevariety generated bytheTarski-Lindenbaumalgebra%m/ﬁ(R), which
isthefreealgebrain R.

On the other hand, after Theorem 5.8[gf\ve know thatR is algebraizable in
the precise sense of this term established in the same paper. This means that there
is a unique quasivariety of algebras associated in a canonical forniRyvithlled its
equivalent quasivariety semantics, which bears tdR the closest relationship so far
described between a logic and a class of algebras. The determination of this class,
which in this case happens to be a variety, closes the problem of the algebraization of
R.

Theorem 25 ([I7]) TheclassR isthe equivalent variety semantics for the deduc-
tivesystemR, with defining equation pA (p— p) & p— p and equivalenceformula
p<q.

This theorem, read under the light of the general study of algebraizability of
deductive systems contained ,[teIIs us that the class of algebrBsis the al-
gebraic counterpart of R. It is easy to see that every De Morgan monoid isRn
algebra, but the converse does not hold: take for instance the totally ordered set
A = ([-1,0) U (0, 1]) N Q with the Sugihara operations (sé8,[p. 400 or 421).
Therefore, complementing the claim madédzh p. 157 that “... we know aftefT],
§28.2 that De Morgan monoids are the right algebraic structur fowhat we now
know is that they are, actuallfhe best algebraic structures fd®y, inthe same sense
asR-algebras are the best algebraic structure&for

We now recall some more notation and terminology in order to express some
consequences of this fact and for the rest of the paper. For any afijebtaé\, A, —,
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—) of type (2,2,1), Cofll denotes the set of all congruencespfand the congru-
ences in Cop 2 = {# € Con2 : /6 € R} are called theR-congruences of 2; if
2l € R then Cory 2 = Con®l becauseR is a variety. On the other hand, for any
A= (A, A, —, ) Of type (2,2,1) and any C A the congruencesompatible with
F constitute the set Cdfl, F) = {6 € Con2( :if (a,b) e 0thenae F < be F},
and thel_eibniz congruence of F or of (A, F) is Qg (F) = maxCon&, F) . Then the
mappingQ2g : F > Qg (F) restricted toF € Fig® is called theleibniz operator
on%; this operator is one of the key tools in Blok and Pigozzi's st{igyf the alge-
braizability of logics. A matrix(®(, F) is reduced when Qg (F) = A, the identity
relation onA,; the class of all reducel@-matrices will be denoted bylatr*R, andthe
class of the algebra reducts of these matrices will be denot&RigR. Then from
[B), Theorem 5.1 and Lemma 5.2, afid], Theorem 18, we obtain:

Theorem 2.6

(1) Onany algebra?l = (A, A, —, =) of type (2,2,1) the Leibniz operator Qg is
an isomorphism between the lattices Fig2l and Cong 2 , and moreover for
any F € Fig2 wehavethat Qg (F) = {(a,b) e Ax Ata<be F}.

(2) Matr'R= {(A, F):2AeRand F = E®)}.

(3) RAIgR =R.

Combining these results with TheorPlwe also have:

Corollary 2.7 R is (strongly) complete with respect to the class of matrices
{(A, F):AeRand F € Ded} .

These results close this brief overview of the relationships between the deductive
systemR and the variety of algebrd® in the context of the traditional approach to
the algebraization of logic — now greatly enhanced by Blok and Pigozzi's ideas and
achievements. In Section 5 of the paper we will find other relationships betReen
andR using abstract logics.

3 TheWeaker Deductive System WR and itsAlgebraic Models  We are now going

to define a deductive systeWiR following Wojcicki's suggestion mentioned in the
Introduction; we also mentioned there that this deductive system corresponds to the
semantic entailment associated with the relational models of Routley, Meyer, Fine
and others. In this section we will study it along the lines of the study oéntained

in [I2.

Definition 3.1  We all WR = (3m, -y R) the deductive system defined by the
condition that, forany" U {¢} € Fm, I' —\yR ¢ifand onlyifthere are, ..., ¢n €

I such that-g (p1 A ... A ¢n) = ¢ . This is the same as saying tHARR is the
deductive system determined by the following conditions:

(1) kR s finitary.

(2) WR has no theorems.

(3) Foreveryp, ¢1,...,on€ FM, {¢1, ..., on} R ¢ ifand only if g (g1 A
o AQp) = Q.

It is not difficult to show, by using some selected theorenR,dghat both ways
of definingWR are really the same, and that in this way we really obtain a finitary
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and structural closure operator §m, that is, a deductive system in the precise sense
of the term. We are going to show thMR is weaker thark, more precisely thaR
is an axiomatic extension a¥R.

Lemma3.2 Theinferencerulesof R, namely Adjunction and Modus Ponens, are
also valid rules of the deductive system WR.

Proof: Axioms R5, R6, and the instangen ¢ — ¢ A ¥ of axiom R1 tell us directly
thatWR is closed under Adjunction (in the strong sense, thdtisy/} 1\wRr ¢ A
¥). To see that it is closed under Modus Ponens (i.e.,{that — ¥} bR V) itis
enough to use theorem WI mentioned in Section 2.

Theorem 3.3 The system R is the axiomatic extension of the system WR deter-
mined by all formulas of the form ¢ — i . That is, for any ' U {¢} € Fmi it holds
that

'FRre — ru{fv—-v:vye Fm}I—WRgo.

Proof:  Suppose thal' - ¢. If ¢ € ' the conclusion is trivial. lip is an axiom
of R (or, more generally, if-g ¢) then from R3 and Modus Ponens it follows that
FRr (¢ = ¢) — ¢, which by the definition oiWR implies the conclusion. Finally, if
¢ is obtained from other formulas by Modus Ponens or Adjunction then Leffngha
establishes the inductive step. Conversely, supposEthéy — v : ¥ € Fm} H\yRr

@, thatis, thattherearg,, ..., pn e andyrq, ..., ¥, € Fmsuch thaPR (1A A

on A (Y1 —> Y1) AL A (Y — Yk)) — @; since all they; — v are axioms oR, by
Adjunction we have thapy, ..., onFR @1 A ... AOn A (Y1 = Y1) AL A (Y —
¥k), and then it follows by Modus Ponens thai, ..., ¢n FR @, Which proves that

Fl—R(p.

In particular we have thaWR < R, that is, thaf® FWR @ impliesT’ FR ®s and
that the converse implication does not hold. Fee @ this is so simply becaus¥R
has no theorems, but it does not hold even for nonemptipr as a particular case
we would havey H\yr ¢ <= ¥ FRr ¢ foranyge, v € Fm; but sincey — v is
atheorem ofR, we also have) Fr ¥ — v, and thus we would also have R
¥ — . By Definition[3.1khis would mean thatg ¥ — (¥ — ), which is known
to be false (this is the well-known Mingle Axiom, which determines the syRé&fn
a proper extension aR).

Next we see thaR gives a matrix completeness result WWR in a very natural
way, and from it we can characterize WIR-filters on the algebras iR.

Theorem 3.4 ((Completeness)) Thelogic WR is (strongly) complete with respect
to the class of matrices {(2(, F) : 2l e R and F € Filt(}.

Proof: By Definition3.1]3 we have thap FWRY <= Fro— ¥, which by The-
orenlZ.4}4 holds if and only it (@) < w2 (@) for any interpretatiomon any2 € R,

that is, if and only if for anyF € FiltA, gom(é) eF impliesw%(é) € F. By finitar-

ity and Adjunction we obtain the completeness for nonempty sets of premises. Since
WR does not have theorems, we should show that there is no formula whose inter-
pretation belongs to every lattice filter of eveRyalgebra, but this is obvious since
there areR-algebras (without greatest element) such that the intersection of all their
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lattice filters is empty; we will exhibit one such algebra, defined on the set of integers,
just before Corollarfz-6]

Corollary 3.5 If2l € R, then Fiyyyr2 = Flt.

Proof:  The preceding theorem proves thatt2l C Fi\y,g2l. Conversely, ifF €
TiWRQl then by Lemm&.2JF is closed under Adjunction, which implies tratb e
F impliesa A b € F; but it is also closed under Modus Ponens, and & F and
a < b, thatis,a= aA bthen by R5 it follows thab € F. ThereforeF € Filt, that

As we recalled in Corollarfz.7]R is strongly complete with respect to the class
of matrices{(2, F) : 2 € R andF € Ded?} and for every’l € R, Fip2l = Ded?l.
In the case oR we can substitute the class of De Morgan semigroupRfiorthese
two results (see Theordln?). However, we cannot do the same in the casé/&,
that is, in TheorerB.Zland Corollary3.5] Actually, for every De Morgan semigroup
2 and everyF C A, if (A, F) isaWR-matrix, then it follows that € Filt2( by argu-
ments similar to those used at the beginning of the proof of TheBrékessentially
concerning Adjunction); however, the converse implication does not hold, as the fol-
lowing example shows. Consider the four-element algebra whose lattice structure is
given by the Hasse diagram below, and negation and implication are also shown be-
low:

1=-0 —>‘0 a b 1

0|1 1 1 1

—a=a b=-b al0 a 0 1
b0 0 b 1

0— -1 1/0 0 0 1

This is a De Morgan semigroup which is not Rralgebra. Take= = {a, 1};
this is a lattice filter of(, but the matrix(2(, F) is not aWR-matrix because by RR
((p— p)A(@— Q) — 1 R I for any distinctp, g,r € Var, and while((a —
a)A(b—>b)) >b=1¢e Fwehaveb ¢ F.

We have already seen th&R differs fromR not only in not having theorems,
but in having different deductions from nonempty sets of hypotheses. Another inter-
esting thing to see is that there is no formula which, while not being a theordhRof
is a member of every nonempty theory. This is so for the same reason required for the
last part of the proof of Theoref4] such a formula would belong to every lattice
filter of everyR-algebra, a situation which cannot happen, as the following example
shows. Take the distributive lattice determined by the usual ordering on tAecfet

integers, define negation a&y = — n and implication as
max{—n,m} ifn<m
n—m= ) .

min{—n, m} otherwise

and this determines a structureralgebra or¥ without smallest or greatest element
and whose lattice filters are all the end segments) with z € Z; their intersection

is obviously empty. Using the terpseudoaxiomatic introduced in[R7], p. 382, we
have proved:
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Corollary 3.6 WR is not pseudoaxiomatic. Moreover, WR is also the deductive
system defined from R by Conditions (1) and (3) of Definition[B:T]and with condition

(2)) FywR isnot pseudoaxiomatic, that is, the intersection of all its nonempty the-
ories equalsits set of theorems.

instead of Condition (2).

Proof: SinceWR has no theorems, the preceding discussion show3Nifasat-

isfies (2). Conversely, we have to show thafR is defined with (2) instead of

(2) then it also satisfies (2), that is, it has no theorems. But Hythiis amounts to
showing that there is no formula belonging to every nonempty theory. Now by (1)
and (3) the nonempty theories are the same in both cases, so the same argument as
before implies that there is no such formula.

Thus we find thatWR can equally be defined by following the second approach
of [27; more precisely, we have proved th&R is the deductive system determined
by the set of all theorems & in the sense off7], §2.10.1. The fact that our logic has
no theorems puts it automatically outside the class of protoalgebraic logics introduced
in[E], and a fortiori outside the class of algebraizable logics introducgg;ithiis fact
has also been noticed {&][

Proposition 3.7  WR isnot a protoalgebraic logic and it is not algebraizable.

Proof: By the result in Czelakowski and Dziobidk{] the only protoalgebraic de-
ductive systems without theorems are the inconsistent one and the soataitst
inconsistent, whose only theories are the empty set and the whole set of formulas.
But the set of theorems & is a nonempty and proper theory WR, o this is not
inconsistent nor almost inconsistent. As a consequence it cannot be protoalgebraic.
And since every algebraizable deductive system is also protoalgebraic, it follows that
WR is not algebraizable either.

This means that if we want to determine the clistegr*WR of all reduced ma-
trices forWR, and the clasRAIgWR of their algebra reducts, we cannot rely upon
the fact that for algebraizable logics this last class equals the equivalent quasivariety
semantics (as is done @ for R), and moreover we have no a priori guarantee that
the clasRAIgWR is the class of algebras corresponding to the most natural models
for WR. We are going to determine these classes of algebras and matrices in a direct
way, and in the next section we will justify the last statement by different arguments.

Theorem 3.8 Theclass of algebra reducts of reduced matricesfor WR isthe class
of R-algebras; that is, RAIQWR = R.

Proof: SinceR is an (axiomatic) extension &R we obviously haveRAIgR <
RAIgWR, and by Theorei2.8this implies thaR € RAIgWR. Conversely, suppose
that2l € RAIgWR, that is,(2, F) € Matr*WR for someF C A. SinceR is a variety
it is enough to show th&X validates all equations true R. Let ¢, ¥ € Fmbe such
thatl=Rr ¢ ~ ¥ and take any(p, p1, ..., pn) € Fm, wherep, py, ..., pn € Var.
The properties of equality imply that alseg ¥ (¢, p1, ..., Pn) & y(¥, P1, -, Pn),
the algebraizability oR (with respect tdR and with equivalence formulp< q) im-
plies that this is equivalent teg y(¢, p1, ..., P1) <> y(¥, P1, ..., Pn), and Condi-
tion (3) in DefinitionETlimplies that this is equivalent te(¢, p1, ..., pn) 4FWR
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y(¥, P1, ..., pn). Thus, for any interpretatioa on 2l we have thatygl(gom(ﬁ),
p%l(é),..., p%l(a)) €eF «— le(le(a)’ p?l(a), el p%l(a)) e F, which means
that for anycy, ..., ch e A, ym(wm(ﬁ),cl,...,cn) eF «— )/Ql(l/fm(c':_l),cl,...,

cn) € F. But this is an equivalent characterization of the Leibniz congruence of the
matrix (2, F), see for instancéd], p. 11. Therefore we have proved tr(afz[(é),

v2 (@) € Qq((F). But (2, F) is reduced, that i3y (F) = A a, and therp® (a) =
‘g[fszl(a). We have shown thap ~ ¢ holds in%; thus,2( € R.

We finally find the classMatr*WR of reduced matrices foWR by using the
properties of the Leibniz operator on algebraRirecalled in Theorenf?_&]

Theorem 3.9 (2, F) e Matr*WR ifand only if 20 € R and F € Filt2l is such that
for every T € DedA ~ {E(R0)} there are elementsa € F and b € A ~. F such that
a<beT.

Proof: If (A, F) € Matr*"WR we have just proved that € R and by Corollar@
F e AltA. Now suppose that there is sorfiec Ded? ~. {E(2()} such that for all
ac Fandb¢ F, a< b¢ T; by TheorenR.2IT is anR-filter, and by Theorer2.6]1
this implies that(@a, b) ¢ Q¢ (T); in other words ¢ (T) is compatible withF and
thus Qg (T) < Qg (F). Since(, F) is reduced we conclude they (T) = Ax =
Qg (E(20)) and, by the isomorphism of Theordtrsl1 we obtainT = E(2) against
the assumption oii. Conversely, note that the condition énhimplies that for any
T € Ded \ A{EQD}, Qqo(T) # Qg (F); but sinceig (F) € Con2 = Cong
(becausé@l € R which is a variety), the isomorphism in TheorEnil1 implies that it
must be equal t&g (E(21)), which is the identity. Therefore, the matrix is reduced
and(2, F) e Matr*WR.

Thus, although foR andWR the classes of algebra reducts of reduced matri-
ces are the same, this is not so for the reduced matrices themselves, since by Theo-
rem2_6]2 the reduced matrices fBrare those of the forntR(, E(2()) for some2( € R.

That these classes are different is confirmed by the following example. Consider the
structure determined on the five-element ch@ina, b, —a, 1} by the negation and
implication shown at the top of the next page.

Itis easy to check that this is &ralgebra and tha (2() = {b, —a, 1}. Now take
F = {—a, 1} and check thaf(, F) € Matr*WR: onthe one hand?, F) € MatrWR
becausd- € Filt2; onthe other hand, sinc,@*iRQl =PedA ={E®), T, A} where
T = {ab—-a1l}, we know by Theorem[2d that Coml = {An,
Qo(T), Ax A}. But Qg (T) is not compatible with=, because—a—a=ae T
anda— —a=—ae T while—~a e F buta ¢ F. This shows thaQ (F) = Ag(, that
is, (A, F) € Matr*WR; and it also exhibits the elements that satisfy the condition in
Theorenf3.dfor this T.

4 A Gentzen Calculusfor WR, anditsModels The deductive systekVR has been
introduced so far with the auxiliary help of the deductive sysigraf which it is un-
doubtedly a by-product. But since we want to consider it as formally representing
acertain kind of implication or entailment, we believe it deserves a definition of its
own, a so to speattirect one. We will give it in the form of aequent calculus. For

our purposes sequent is an ordered paif”, ¢), wherel" C Fmis finiteand nonempty
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1=-0
—a —- |0 a b -a 1l
0|1 1 1 1 1
b=-b a|0 —-a —a —-a 1
a b |0 a b —-a 1
—a|0 a a —-a 1
0=—1 1]/0 O 0 0 1

() andg € Fm; we will represent it ad” I ¢ for traditional reasons. The set of all
these sequents will be denoted8sg* (Fm). All sequents appearing in this paper are
assumed to belong to this set; in dealing with sequents we use the customary abbre-
viations: ¢ for {¢} , ", ¢ for ' U {¢} and so on.

Definition 41 By Gyyr = (§m, rngR) we denote the Gentzen calculus associ-

ated with the finitary and structural closure operatt(yWR over Seq* (§m) defined
by the following axioms:

1) oo
2 o= W—=>nFEYv—(e—n)
B) (g AW—¥)—>nkny

and the following Gentzen rules (taken as rules of inference from sequents to se-
guents):

. | Nl e Loy
(Weakening) FvFo (Cut) Ty
(AF) Lo, vEn A ' THY
C,onybn | AN
v ) Lebkn vk n V) o 'y
CLeviylbkn 'Fovy ThHevy
oY
=) —
~Y e
I'ok '+
() Y ) ot
(o) — L0
Coy—=>yEy
(+1) pxYtn (2) =Y —n
oY —n pxy .

If 2 is a setof sequents then we WrEethR ' - ¢ to mean that the sequent- ¢

has a derivation in this calculus whose initial sequents are either axioms or belong to
the setg; if @ thR I' = ¢ then we say that the sequéhtt- p isderivablein Gyy/R.

Note that we have not explicitly included the rules of exchange and contraction
among the rules of the calculus because they are automatically valid since we are us-
ing setsof formulas in the sequents, not just multisets or sequences. Thus this sequent
calculussatisfies all structural rules, which is not common among the Gentzen-style
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presentations of relevance logics (se&BwfL2] and Ono[p3]); but recall that we are
interested just in defining thedeductive system WR, and as such it must satisfy the
structural rules by definition. We can associate a deductive system with this Gentzen
calculus in a natural way:

Definition 42 Syr = (3m, I—GWR) is the deductive system defined in the fol-
lowing way: foranyl' U {¢} € Fm, T '_QWR ¢ <= thereis afinitd’g C I" such
thatl'o - ¢ is a sequent derivable G\ R.

It is straightforward to check tha/r is indeed a deductive system (actually
this definition works for every Gentzen system with all structural rules, 58k [
§4.1) and thatithas no theorems. Our aimis to prove that this is another, independent,
presentation of the logi¢/R, that is, thaty,gr = WR as deductive systems. To this
end we will study the models of this sequent calculus following the notion of model of
asequent calculus introduced [, Definition 3; later on we will see that a particu-
lar class of these models is also related to the abstract study of sigst€he mathe-
matical objects we take to speak about models of a Gentzen calculus are the abstract
logics introduced in{]. An abstract logic is an ordered paik. = (2, C), where2l is
an abstract algebra with univergeand C is a closure operator ovAr(i.e., over its
power set); they can also be presented as orderedlpair®!, C), whereC is the clo-
sure system associated with the closure operator C. An ordering relation can be con-
sidered between abstract logics having the same univierse®(, C) < L' = (2, C')
if and only if for everyX € A, C(X) € C/'(X); in terms of the corresponding closure
systems this amounts to the reverse inclugio C.

Definition 4.3 Let L = (2, C) be an abstract logic of type (2,2,1), whee=
(A, A, —, ). We saythatL is a model of GWR when for any rule of the form
Titgi:iel}
'-e
(that s, if the sequerlt I ¢ has a derivation ig\yyg Whose initial sequents are ei-
ther axioms or belong t@l"; - ¢; : i € 1}), then for any interpretatioa over®l , if

ol@) e C({y2@ :y e Ti}) foralli e | thenp® (@) e C({y2 @) : v e T})).

By its own definition itis clear that the deductive syst§jjr is one of the mod-
els of Gyyr. and moreover it has two additional properties which are not inherited by
all models, namely it is finitary and has no theorems. Since these are also key prop-
erties ofWR and we want to study some abstract properties of this deductive system,
we select from arbitrary models those satisfying them:

Definition 4.4  An abstract logid. = (2, C), of type (2,2,1) will be called &/R-
logicif and only ifitis a finitary model of5yy/g such that €@) = @. Forany algebra
A= (A, A, —, ) of the same type we will denote BYR (%) the class of alWR-
logics overl.

wherel is not necessarily nonempty, if the rule is valid ¢ijyyr

Thus SR is one of thew R-logics on the formula algebfgm, and indeed we
will shortly prove thatit is the lea8% R-logic on this algebra. We first give a straight-
forward characterization M R-logics in terms of an already known kind of abstract
logic. If . = (2, C) is an abstract logic of type (2,1), whede= (A, A, —) and we
putav b= —(—-aA —b), then we ay (seelld], [19)) that it is aDe Morgan logic if
and only if it satisfies the following conditions:
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(DM1) C s finitary;

(DM2)Va,b e A, C(a, b) = C(aA b) (Conjunction);

(DM3)Va,be A, YXC A, C(X,aVvh)=C(X,a)NC(X, b) (Disjunction);
(DM4)Vae A, C(a) = C(——a);

(DM5)Va,be A, be C(a) = —ae C(—b).

This definition is shown irlI9), Proposition 1 to be equivalent to the definition used
in [18], and thus all the results found in this last paper apply to it. In terms of this
notion we can immediately prove, by direct inspection of Definlfiaijthe following
characterization:

Proposition 4.5 LetL = (2, C) be an abstract logic, where 2l = (A, A, —, ) IS
of type (2,2,1). ThenL. ¢ WR(R) if and only if IL fulfills the following conditions:

(1) Theabstract logic ({A, A, =), C) isa De Morgan logic such that C(2) = &;
(2) Va,be A, be C(a,a— b);

(8) Va,b,ce A, ce C(axb) < b— ce C(a);

(4) Ya,b,ce A, b— (a—c) e C(a— (b—0));

(5) Ya,b,ce A, ce C(((a— a) A (b— b)) - ¢).

Now we can describe precisely the les¢R-logic on several particular alge-
bras. Recall that in Section 2 we have introduced, for a latidke notationZilt2
for the closure system of all lattice filters 9f plus the empty set, and the notation
Filt for the associated closure operator.

Theorem 4.6 For any 2 € R the abstract logic (2, Filt2) is the least WR-logic
on 2.

Proof: Assume tha®l € R. We first prove that the abstract logie!(, Filt2() ful-
fills the five conditions in the preceding proposition. Since by Definifiaaknd2.3]
we know that{A, A, —) is a De Morgan lattice, then bfLf], Theorem 3 the abstract
logic ({A, A, =), FiltRl) is a De Morgan logic such tha < b <= b € Filt(a).
Moreover by its own definition Filiz) = @ , so we haved.5]1. Using the just men-
tioned equivalence, Conditiods]2, [4.5]3 and4.54 follow from properties P9, P1
and P11 recorded ifif], Propositions 4 and 2, and Condit{éril5 follows from Def-
inition[2.3] Thus (A, ZiltA) is aWR-logic over2l. Now any otheMWR-logic over
20 will in particular be a De Morgan logic (after deletion ef from the type) and
by Theorem 4 and Proposition 5 @] its closed sets will all be lattice filters @F;
since neither can have theorems we conclude({@atfilt2() will have more closed
sets, that is, it will be smaller.

Theorem 4.7  The deductive system SR isthe least WR—logic over the formula
algebra gm.

Proof: We have already commented that by its own definitiggr € WR(Fm).
Now take anyl. = (§m, C) € WR(Fm); wemust show thatyy g < L, thatis, that if

U {e} < Fmandl’ '_GWR ptheng € C(I"). ButT’ '_QWR pifandonlyifthereisa
finite and nonempty C I" such that the sequenp - ¢ is derivable inG\y . Then
astraightforward induction on the length of this derivation using the very definition
of being a model of) R proves that € C(I'g) € C(I'), that is, thatyyr < L.
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To prove the identity betweefyr andWR we will first prove some technical
properties ofVR-logics depending on the characterization of ProposHi&hSome
of them tell us about properties of the closed sef generated by the elements of the
universe having the forrm— afor a € A, this closed set is the abstract counterpart of
the lattice filterE(2() we have considered dR-algebras. Thus, for any abstract logic
L = (2, C) of type (2,2,1) it seems reasonable to defiii&) = C({fa— a:ac A}).
We then have the following facts, the last two being the most significant:

Proposition 4.8 IfL = (A, C) e WR(2) thenVa, b, ¢ € Athefollowing hold:

(1) C(a) S C(b) = C(a*xc) C C(bxc)and C(c— a) C C(c— b);

(2) C(a— b) = C(—(a*=b));

(3) C(a) CC(b) = C(cxa) C C(cxb)yandC(b— c) € C(a— ©);

(4) beC(a) <= a—be E(L);

(5) C(axb) =C(bx*a);

(6) (b—c)— (a—c) e C(a— b);

(7) a—>be C(a—> (a— b));

(8) C(a— b) =C(=b— —a);

(9) E(IL) contains all instances of all the theorems of R, that is, for any ¢ € Fm,
if =R ¢ then for any interpretationaon A, (pgl(é) e E(L); and

(10) L isamodel of WR, that is, for any I' U {¢} € Fm, if " -yr ¢ then for any

interpretationa over 2, ¢ (@) e C(Fgl(a)).

Proof: (1) Since triviallya s ¢ € C(a* c), by PropositioniZ8l3 we getc — (ax
¢) € C(a) which by assumption implies that— (a* c) € C(b), which by the same
result givesa* ¢ € C(b * ¢). Similarly, fromc— b € C(c — b) we obtainc - a e
C(c— b).

(2) By[4.5]1 we know that €b) = C(——b), and applying part (1) twice to this
equality we obtain Ga — b) = C(a— ——b) = C(——(a— ——b)) which by defi-
nition of x gives Qa — b) = C(—(ax* —b)).

(3) From Qa) € C(b) it follows by 4,511 that G—b) < C(—a), and then (1)
gives Qc — —b) € C(c — —a) which by definition of+ and5]1 again implies
C(cxa) = C(—=(c— —a)) € C(—(c— —b)) = C(c*b). Onthe other hand, from
a* —c € C(ax —c) byl4.513 we obtain~c — (a* —c¢) € C(a) € C(b) which implies
a* —c € C(b* —c), and this byZ.51 again gives-(b* —c) € C(—(a* —c)). Now
using (2) we have that® — ¢) = C(—(b* —c)) € C(—(ax* —c)) = C(a— c).

(4) Assume thab € C(a); sinc 3implies thata € C((a—> a) * a), we have
be C((a—> a) * a) which by the same reasoning gives> b € C(a— a) C E(L).
Conversely, assume that> b € E(IL); since the logic is finitary, satisfies DM2, and
C(@) = @, the definition of E(IL) means that there amg, ..., a, € A such that,
puttingc = (a1 — a;) A ... A (&y — an) we havea — b € C(c). On the other
hand, observe that i, d, € A are such thatli € C(d; — d;) then alsad; A d; has
this property, since by Conjunction we hageA do € C((dl — di) A (do —> dz))
and then by4.5]5 and (3)d; A dz € C(((dy — dp) A (dp — dp)) — (di A dp))
C((d1 A dp) — (dy A dp)); an easy induction allows us to conclude thhtA ... A
dh € C((dyA...Ady) — (di A ... Ady)) whenever; € C(d; — d;). But this is the
case ford; = a — a because big Sl andd 353 — a; € C((a — &) — (& — &)),
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so we have € C(c— ¢) and as a consequenae> b € C(c— ¢); then b@B and
the definition of« we obtainb € C((c — ¢) *x a) = C(—((c — ¢) — —a)). Finally,
using4.5]5 and4.5]1 we get thab € C(—((c— ¢) — —a)) € C(—=—a) = C(a).

(5) Fromasx b e C(axb) and usin@t.93 and (4) we obtaia — (b—> (ax b)) €
E(L) which byl 54 givesb — (a— (ax b)) € E(L); the same trick again now gives
ax*x b e C(bx a), which implies Gax b) = C(bx* a).

(6) By definition(b— ¢) — (b— ¢) € E(L), sobf4.54b— ((b—c) > c) €
E(L)andty (4) (b— c) — c € C(b); now we can use (1) to obtain— ((b—> c) —

c) € C(a— b) which byl4.5l4 again givegb — ¢) — (a— ¢) € C(a— b).

(7) Since by4.91 we have that @) = C(——a) we can use (3), (2), (5), and
the definition of« to prove the equalities: @ — b) = C(=—a— b) = C(—(——ax
=b)) = C(=(—=b* ——a)) = C(—b— —a).

(8) Froma— (a— b) € C(a— (a— b)) and (4) it follows thatla— (a—
b)) - (a— (a— b)) € E(L) and then bj4.5l4, (3) and (4) we obtain first— (a—
((a— (a— b)) > b)) € E(L) and thera — ((a— (a— b)) — b) € C(a). Now
byl4.5]2 this implies thafa— (a— b)) — b e C(a) and this bya. 5|3 and (5) finally
givesa— b e C(a— (a— b)).

(9) Itis routine checking, usird.513 and the above properties, tHagL) con-
tains all instances of axioms &. Moreover, sinceE(LL) € C, it isclosed under the
rules of Adjunction and Modus Ponens, Bybll and4.5R, and as a consequence
E(L) contains all instances of theoremshof

(10) If ' kR ¢ then by the finitarity and lack of theoremstefy, g there are
Y1, ..., ¥n € T'such that{ys, ..., yn} FyWR @ that is, by DefinitiorB.1I3, that—g

(YL A ... Ayn) = @. By (9) this implies that for any interpretati@overs, (y?[(é)
A A y,?l(é)) — (pm(ﬁ) e E(L). Now by (4) this is equivalent to saying that
o2 @ e C(y2@ A ... A y2@) and byZF1 this impliesy® (@) € C(M% (@)).

Theorem 4.9 SWR = WR.

Proof: By its own definitionWR is finitary and does not have theorems. Now we
are going to prove thatVR is a model ofG\y/R, that is, to prove that it satisfies all

the conditions in Propositida.5] First, we prove that(Fm, A, =), FHWR) is a De
Morgan logic. It obviously satisfies DM1. From Lemf@&land axioms R5 and R6

it follows thatg, ¥ 4\wRr ¢ A ¥, that is, that it satisfies DM2. Using axiom R10
and theorem R28 we see thaty Fyyr n andy, ¥ -yr nimply v, o V ¥ S\wr m

this, together with DM2 and axioms R8 and R9, implies that it satisfies DM3. Axiom
R13 and its converse, which appear jointly as R20, immediately prove that it satisfies
DM4, and R12 with Modus Ponens means that it satisfies DM5. Thus we have proved
that WR satisfied4.5]1. We have already noted that it is also closed under Modus
Ponens (LemnfaZ), that is, it satisfid€.5l2. Theorem R30 givé&hl3, theorem R23
givesl4.5)4, and from RR Conditiol.5]5 immediately follows. ThereforaVR e
WR(Fm) and by Theorefd.714yr < WR. There we have also proved thi/r €
WR(Fm) and applying Propositi 10 to it we conclude that/R < §/r- As a
consequencéVR = SyR-

Now that we have proved tha&{yr equalsWR we can regard the Gentzen cal-
culusGyy g merely as one of the presentations of the deductive sydt@&nOur aim
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is to show that in some sense it is not jase of but indeed it ighe presentation, and
we will do it by means of the notion M/R-logic; at present it is just a distinguished
kind of model of a (Gentzen-style) presentatioWdR, but we will show that itis in-
trinsically associated witiVR. More precisely, we will show that this notion equals
that offull model of WR in the sense ofl[g], see below. The proof is based upon the
so-calledBilogical Theorem[4.12] which will also establish an intrinsic relationship
betweerWWR and the clasR. We need several definitions and elementary properties
of abstract logics which we will now summarize; S€4nd [L6] for further details.
To begin with, if L. = (A, C) andLL’ = (', C') are two abstract logics of the same
similarity type, we say that € Hom(2(, ") is alogical morphismfromIL to .’ when

it is continuous in the topological sense, that is, when forlary C’, h—1(F) e C;

if moreoverh is an epimorphism and it projectively generatefrom IL” (which in
this context means that = {h=1(F) : F € C’}) then we say thah is abilogical
morphismfromIL to". As aconsequence, every bilogical morphisreatisfies that
C=h1oCohandthat C=hoCoh™% aswellasF € C «= h(F) € ¢’ and
FeC = h(h(F)) = F. Wehave:

Lemma4.10 The property of being a WR-logic is preserved under bilogical mor-
phisms, that is, if there is a bilogical morphism between two abstract logics (of suit-
able type) then one of themisa WR-logic if and only if the other oneis.

Proof: Leth be a bilogical morphism frorh = (2, C) tol’ = (2, C'); we are go-

ing to prove thai. € WR(2() if and only if " € WR(2(') by seeing that one of them
satisfies each of the conditions in Proposifibhlif and only if the other one satis-
fies it. First of all, observe thdtis also a bilogical morphism from the abstract logic
({(A, A, =), C) to the abstract logi¢(A’, A, =), C') and then Proposition 3 ofif]
implies that one of them is a De Morgan logic if and only if the other one is; more-
over, it is trivial that G@) = @ if and only if C'(@) = @, thus we see thdt satis-
fiesl.51 if and only if L’ satisfies it. To show that the same holds for the remaining
four conditions of Propositida.Sit is enough to observe that for anyb € Ait holds

b € C(a) if and only if it holdsh(b) € C'(h(a)), and take into account the fact that
any bilogical morphism is onto; a direct inspectiofidilfinishes the proof.

There are two equivalence relations naturally associated with every abstract
logic L = (2, C), introduced in[[5 and [LE]. The first one is called thErege rela-
tion, and it is the abstract counterpart of thigerderivability relation in a deductive
system:

AL) = {(ab)e Ax A:C(a)=C(b)}
= {(abe AXA:VFeC,acF < beF}|.

This relation leads us to consider the so-callagical congruences of I, or congru-
encescompatible with 1L, defined as: Cof. = {6 € Con®l : 6 C A(L)}, that is, the
congruences of the algebra that do not identify two elements unless they are inter-
derivable. Every € Conl determines guotient logicL/0 = (2(/6, C/6) by defin-

ing C/0 = {F/9 Fe C}, and then the canonical projection becomes a bilogical
morphism (and conversely every bilogical morphism is determined by some logical
congruence...). The second equivalence relation naturally associated isitihe
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so calledTarski congruence Q(L) = max ConL (it is easy to see that such a maxi-
mum always exists). An abstract lodicis calledreduced whenQ(L) = A4, that

is, when the identity is the only logical congruencd ofEvery abstract logic can be
reduced by factoring it by its Tarski congruence; in this way we obtaimettigetion

of L, which is denoted b{.* = (*, C*) wherel* = QL/Q(]L) andC* = C/Q(IL).

Note that this reduction process can be applied only once, that is, we will identify
2A** with 0%, andIL** with IL*, since they are isomorphic, becau’?é(ﬂL*) = Ap-.

On the other hand, we say that an abstract laggatisfies theongruence property
whenfz(]L) = A(LL), thatis, whem (IL) € Con%(. A deductive system is calles!f-
extensional in [27] when as an abstract logic it has the congruence property, that is,
when the interderivability relation is a congruence of the formula algebra. We thus
have:

Lemma4.ll IfL e WR() then A(L) = (L), that is, all the WR-logics sat-
isfy the property of congruence; in particular the deductive system WR is self-
extensional.

Proof: LetL = (2, C) € WR(). By[A.5ll the abstract logi¢(A, A, =), C) is a

De Morgan logic, and byl[g], Theorem 3 we know that the Frege relation (denoted
in that paper by(C)) A(LL) is a congruence with respecttd —. Onthe other hand,
from the second parts of Propositiagl1 and4.813 it follows thatA (L) is a congru-
ence with respect te>, thereforeA (IL.) € Con%l. This implies thatA () € ConL,
and since in general(LL) € A(L) and (L) = maxCorn(L), we have A(L) =
Q(L).

Theorem 4.12 (Bilogical Theorem) Let I = (2, C) be an abstract logic of type
(2,2,1). Then the following conditions are equivalent:

(1) L € WR(RLD);

(2) A* e Rand C* = AltA*; and

(3) Thereisabilogical morphismfromIL to alogic Lg = (2, Co) where g € R
and Co = Filtp.

Proof: (1= 2): SinceRis a variety we will prove thal* € R by showing that any
equation true irR is also true irR(*: By TheoreniZ.42/4 we have thap ~ v is true

in Rif and only if -r ¢ < ¥ and by the definition o¥WR this in turn is equivalent
to ¢ 4R ¥ Nowif . € WR(2I) then by Proposition 4.8.10 is a model for

WR which implies that(gogl(a) wm(a)) e A(L) for any mterpretatlom over2. By
LemmaZ_1A (L) = (L), which implies tha’tp (7'[ od) = w (7 0 @), Wherenr
is the canonical projection frof onto2*; sincer is onto we conclude that ~
holds in2* and as a consequence tht € R. Finally from [18], Theorem 3 we
obtain thatC* = AltA*. (2 = 3) is trivial since the canonical projection frogh
onto2* is a bilogical morphism frori to L*. (3 = 1) follows from Theorenft.6]

and Lemm&.1d

One of the consequences of this theorem is a characterization of théotdiss
all R-algebras in terms of the class of redud®®&-logics and conversely; this is con-
tained in the following result, which can be regarded as a kind of abstract version of
Theoreni2.9 in it we denote byWR*(2() the class of all reducedV/R-logics.
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Corollary 4.13 If L = (2, C) isany abstract logic of type (2,2,1), then L € WR* ()
ifand only if 2 € Rand C = Filt.

Proof: If L = (A, C) € WR*() then by TheoreriL. 12 = 2* ¢ R andC =
C* = FltYA* = FiltA. Conversely, ifdl € R then by TheorenfL8l(A, FltA)
WR(2) and then we can apply LemriiaLIlwhich tells us that2((2l, Filt2)) =
A((, Filt2)), but this is the identity in every lattice, thus indeed, FiltA) €
WR*(21).

Now we are prepared to prove that the clas@/dt-logics is intrinsically associ-
ated with the deductive systeaWiR in the sense ofi[6], and at the same time we will
prove a similar thing for the clad® of R-algebras: in the class ofS-algebras
AlgSis introduced for every deductive systefrand several results confirm that this
is always a class of algebras naturally associated §vith our caséAlgWR = {Ql :

the abstract logi¢2, Fiyyr2) is reduced. On the other hand, we can associate a
class of algebras with every Gentzen calculus by using the notion of model and the
notion of reduced abstractlogic; in our case, we say that an al@ebréA, A, —, —)
oftype (2,2,1) is a5y r-algebrawhen?l is the algebra reduct of a reduced model of
GWR, thatis, when there is an abstract lobie= (2(, C) over2l such that. is a model

of GWR andﬁ(IL) = Aa; We denote byAlg Gyy/R the class of alig\y r-algebras.
Finally in [[LE] another class of abstract logics is associated with every deductive sys-
tem §, the class ofull models of S; in our case, for ever§l of type (2,2,1) the class

of full models of WR is the classFModyy g2 = {L = (A, C) : C* = Fiyyr2*}.

We then have:

Theorem 414  AlgGyyr = AlgWR =R and WR(®) = FModyyg2.

Proof: In Theoreni3.8lwe have proved thaRAlgWR = R. In [16], Proposition
3.14 it is proved that for any deductive systegin RAIgS C Alg.S and that these
classes of algebras generate the same variety; since in this case the smaller one is al-
ready a variety, they have to be equal dgWR = RAIgWR = R. If 2 € R then by
CorollaryiZ 13}, 7ilt2) € WR*(2), in particular this is a reduced model 6{y .
thusl € AlgG\yr- Conversely, ifdl € AlgGyyr then there is some closure opera-
tor C over2 such that®, C) is a reduced model dfyy/r. Itis easy to see that then
the closure operatd€ defined overl by: C(2) = @, C(X) = J{C(F) : F € X
andF finite} is also a reduced model @\NR’ and it is finitary; according to Def-
inition [Z-4]it follows that (A, C) € WR*(2), which again by Corollar{Z.13im-
plies that’l € R. Thus we have proved th#llgG\yr = AIgWR = R. Now let

L € WR(2(); by Theorentt. 12wve know thaiC* = Ailt2* and thal* € R, butin this
case Corollarfa.Skells us thatAlt2l* = Fiyyg2*, and by definition all this implies
thatl. € FModyy g2 Conversely, ifl. ¢ FMod\ygr2 thenitis easy to see, from the
very definitions, tha®l* € AlgWR, that is, as we have proved, th#t € R, and we
also obtainC* = Fiyyr2* = Filt2(*; but then by Theorekd. 12(A*, C*) € WR(QL),
and this property is preserved under bilogical morphisms by Lefdd so also
L= (2, C) € WR(). Thus exactlyWR () = FModyy g2

Having identified the classes of algebras and of abstract logics associated with
WR following the general scheme developedif][for any deductive system, we can
obtain several consequences of some of the general results of this paper; let us record
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here that from the results of this section it follows that the deductive syé{&ns
strongly self-extensional (all its full models have the congruence property), that the
Gentzen calculugy/ R is strongly adequate for it (the full models ofWR are ex-
actly the finitary models oy r Without theorems), and that this propeutyiquely
determines Gyy g With respect to the deductive syst®R (see more details ifip]).

Corollary 4.15

(1) For any algebra 2 of type (2,2,1), the ordered set (WR (1), <) isa complete
|lattice isomorphic to the lattice (Cong (), <), and the isomorphismis given
by the mapping corresponding to the Tarski congruence: L — ﬁ(IL).

(2) Thealgebraic category of R-algebras (that is, the one with R-algebras as ob-
jects and homomor phisms as arrows) is isomor phic to the category whose ob-
jects are the reduced WR-logics and whose arrows are all the logical mor-
phisms between them.

(3) Thesecond category of (2) isa full reflective subcategory of the category of all
WR-logics with all logical morphisms.

Proof: (1) is a particular case of Theorems 2.28 and 2.286f, fwhich are com-
pletely general. (2) is a particular case of Theorem 2.33 of the same paper, which is
also general. Finally (3) is a particular case of Theorem 2.42 of the same paper, which
holds for strongly self-extensional deductive systems.

These results reinforce our claim that the class&salgebras and alVR-logics
are intrinsically associated with the deductive sysWiR.

5 The R-logics In this section we are going to associate a class of abstract logics
with the deductive systeiR in a natural way. However, we do not have a Gentzen
calculus which defineR in a similar way as we had in the preceding sectiorVfar,

and thus we cannot start with its models. Instead we take the abstract counterpart of
Theoren3.3] which tells us that the theories Bfare the theories dVR containing

the formulas of the formp — ¢, that is, the theories R containing the theory
generated by these formulas, which we have designatde{WR). The procedure
uses the notion of axiomatic extension: For any abstract [bgie (2, C) and any

X C Atheaxiomatic extension of L by X is the abstract logi&.X = (2, C*) where

C* is the closure operator corresponding to the closure syStém (T € C: X C T}.
Wethen put:

Definition 5.1  LetlL = (2, C) be an abstract logic of type (2,2,1). We say that
is anR-logic when there is a closure operatord@er A such that the abstract logic
L' = (2, C') is aWR-logic andL is the axiomatic extension df’ by E(L"). For
every algebr&l we will denote byR (2() the set of alR-logics defined ove®!.

We shall see at once that the lodi¢ is unique, whenever it exists, so that the
definition makes full sense. Initially the connection of thBskgics with the deduc-
tive systenR is rather indirect; the object of this last section is to prove that they are
the abstract logics naturally associated vigthy the procedure ofig], and to such
end we will prove the correspondiiijlogical Theorem.

The following result establishes the uniqueness of the assodéRetbgic used
in DefinitionE_1] and thus eliminates any ambiguity in it. Actually it says more: it
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says that the relationship between &yogic and its associatéd/ R-logic is the ab-
stract version of the procedure we used to define the deductive sygRstarting
from the deductive systeR. As aconsequence we find a bijective correspondence
betweenWR () andR ().

Theorem5.2 If L = (2, C)isanR-logicand ' = (2, C') isany WR-logic sat-
isfying the conditions of Definition[5.1] then for any X € Ait holds that

C'(X)={ae A:3ay,...,ap € X with (a1 A... Aay) > ae C(@)}

and as a consequence this I’ is uniquely deter mined.

Proof: By definitionIL’ satisfies @) = @, which implies that the above condi-
tion is fulfilled for X = @. Suppose thalX # &. Since also by definitiofi.” is fini-
tary and satisfies DM2a € C'(X) if and only if there are, ..., a, € X with a
C'(ai, A...A, a,) which by Propositioil.84 is equivalenttga; A ... Aap) — ac
E(L). ButC(@) = CEL) (z) = C'(E(L))) = E(L), which establishes the desired
characterization of Cand therefore uniquely determinks

Corollary 5.3  For every algebra 2( the ordered sets (WR(2(), <) and (R(21), <)
are isomorphic.

Proof: Consider the mappings+— LE®™ which goes fromiWR () to R(2), and

L — I, which goes fromR(2() to WR(2(). It has already been established that
they are well-defined. The first one is order-preserving by the definition of axiomatic
extension, and the second one is also so by ThefrémDefinition EIlsays that
(L)EL) = L. Finally, if L € WR(2) we see thafLE®) =L : ae (CE®)'(X)

if and only if there areay, ..., a, € X such thata; A ... Aa,) - ae CEM(2) =

E(L) and by PropositioB_8l4 this is equivalenttac C(ay A ... Aay) =C(ay, .. .,

an) C C(X). Therefore these two mappings are monotone, bijective and inverse to
one another, that is, they are the required order-isomorphisms.

Among the consequences of this order-isomorphism we have:
Proposition 54 R = minR(Fm), and for every2A e R, (2, Ded2() = minR(2A).

Proof: To prove thaR = minR(Fm) it is enough to use TheoreBs3| . 7land4.9]
(here the auxiliaryVR-logic R’ is preciselyWR !). If 2 € R then by TheorefdGlve
know that(2, FiltA) = minWR(2); on the other hand by definitioB((2, #ilt2))

— E(Q), thus Dedl = ( Flt2l)E@L AlLA)  From CorollaryB.3]t follows that (A,
Ded) = minR ().

LetL = (2, C) e R(2) and letl.’ be its associated/R-logic. Then by the def-
initions we havez ¢ C while & = C' (@) € C’; as a ®nsequence we always have
L # I”. However, we might suspect that this is the only difference between the two
logics. Presenting this in a different way, we may ask under what conditions for ev-
eryac A, C(a) = C/(a). This would amount to the coincidence betwégmnd the
greatest pseudoaxiomatic logic containefLjiwvhich is obtained by just adding to
C; note that in Section 3 we asked (and answered in the negative) a similar question
between the deductive systel¥RR andR. It happens that in the general case the an-
swer is related to the notion of classical logic. Followilid p. 44, we say that an
abstract logid. = (2, C), of type (2,1) withl = (A, v, =), is classical when:
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(1) Cis finitary;
(2)vVXU{a, b} C A, C(X,aVvhb)=C(X,a)NC(X,b) (Disjunction);
(B)VXU{a} C A, ae C(X) < C(X, —~a) = A (Reductio ad Absurdum).

We then have:

Theorem55 LetL = (2, C) € R() be an R-logic, and let " = (A, C’) €
WR(2() be the unique WR-logic associated with IL. Theniit holdsthat C' = C U {&}
if and only if the logic ({(A, v, ), C) is a classical logic. Moreover in this case
Cla—b)=C(—avb)andC(axb)=C(aAb).

Proof: (=) By assumption we have that for eveXyC A, if X # & then C(X) =
C(X). If ae E(L') we have Ga) = C(a) = C'(a, E(L)) = C'(E(L)) = E(L),

and therefore foralh, be E(IL"), C'(a) =C/(b) = E(I’) and thuga, b) e A(L) =
S~2(IL/), that is,a* = b* and thusE(2(*) has only one element. Note that by Theo-
remlZ122* € R. Then it is easy to see that this singleton is the maximum of the
guotient set. On the other hand, by R53 we have that foraaayA, —a* v a* €
E(R(*). As aconsequence, the algebfa*, v, —) is a Boolean algebra. By The-
oreml.12](C")* = FltA* which comprises all lattice filters &1* plus the empty
set; since(C)* = C* U {@}, C* must be the family of all lattice filters ail*, that

is, ((A*,v,—), C*) is a Boolean logic, and this implies that, v, =), C) is a
classical logic (sedq], p. 44 and Theorem 3, for instance). Finally, to prove that
C(a— b) = C(—aV b) we can use the properties stated in Proposii@hbecause

by assumption C and’@gree on nonempty sets: siré is a Boolean algebra and
E@®*) = {1}, for anya, b € A we have thab* < a* — a*, soa— a € C(b) and

a € C(ax b); from this and R55 it follows that @ A b) = C(a, b) = C(a* b) and
C(a— b) = C(—=(a* —b)) = C(—~(ar —b)) = C(-aV b).

(<) If ((A, v, =), C)is classical, again byg], Theorem 3 we know there is a bi-
logical morphismh from ((A, v, =), C) onto a Boolean logi¢8B, #ilt°B) where
Filt°B is the family of all lattice filters of3; by adding to it we obtainilt8B, but

for all nonemptyX < B, Filt°(X) = Filt(X), so Filt(h(a— b)) = h(C(a— b)) =
h(C(—aV —b)) = Filt (h(=a v b)) = Filt (=h(a) v h(b)). Thereforeh(a— b) =
—=h(a) v h(b) and thush is also a bilogical morphism frof®(, C U {&}) onto the ab-
stract logic which results froris, FiltB) after changings by its (A, —, —)-reduct,
where— is material implication; it is easy to see that the resulting abstract logic is a
WR-logic, so Lemm&L10kells us that2A, C U {@}) € WR(2) and by Theorerk.2l
this implies thatC U {@} = C'.

Now before proving the bilogical theorem fBr(2() we see that the property of
being anR-logic is preserved under bilogical morphisms.

Lemmab.6 Lethbeabilogical morphismfromlL, = (21, C1) ontolL, = (A5, Cy).
ThenLL; isan R-logic if and only if L, isan R-logic.

Proof:  Assumingthal, € R(2(;) we prove thal., € R(2l,). Sincel} € WR (1),
Lemma&4 Tdimplies thath is a bilogical morphism froniL; onto the abstract logic
L' = (A, C') € WR(2), where C = ho C; o h™t andE(L’) = h(E(Lj})); then
using thath is a bilogical morphism froni.; ontolL, and thatl; € R(%(;), we ob-
tain that for anyX € Ay, Cy(X) = h(Ci(h~%(X)) = h(C;(h~(X), E(L}))) =
(ho Cloh 1) (X, h(E(L))) = C'(X, E(L)). SinceL’ is aWR-logic it follows from
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Definition[5.1lthatL, € R(25). A similar process shows thab € R(2,) implies
]Ll € R(Q{l)

Theorem 5.7 (Bilogical Theorem) If I = (2, C) is an abstract logic of type
(2,2,1) then the following conditions are equivalent:

(1) L e R2A);

(2) A* e Rand C* = DedA*; and

(3) Thereisabhilogical morphismbetweenI. and an abstractlogic (2o, Co), where
Ao € R and Cq = Dedy.

Proof: (1 = 2): We begin by proving that2(L) = Q(L'). By Lemmal11]
QL) = A(L)) € Con%, and since(a,b) € A(L') & C/(a) = C'(b) =
C(a) =
C'(a, E(L")) = C'(b, E(L")) = C(b) it follows that Q(L') € ConL; now using
PropositiorZ.8l4 we have(a,b) € Q(L') «= C'(a) = C'(b) & a<be
E(L") = C(@) and by , Theorem IX.6, this implies theﬁNZ(]L/) = SNZ(]L). Thus
we can writel* = 2/Q (L) = 2/Q(L"), and by TheoredIZRl* € R and(C')* =
Filt2*. Finally, sinceE(L')/Q(L) = E((L")*) = E(A*), we haveC* = {F/ﬁ(IL) .
FeC)={F/QI):FecC withEL)CF}={Fe filta*: E@*) C F} =
Ded2l*. (2= 3): Justtakely = 2*, and the projection will be the required bilogical
morphism. (3 = 1): Just apply Propositidi.4and Lemmd5.6]

In the course of the above proof we have seen th&-fogic and its associated
WR-logic have the same associated Tarski congruence; we will later make use of this
fact. In LemmdZ 1Tlwe proved thatWR-logics have the congruence property, so we
suspect that in generB-logics do not have it. To confirm this it is enough to show
that this is the case for the simplé&tiogic, namely the deductive systdRitself. In
[16] a deductive system is callegiasi-Fregean when all its axiomatic extensions, as
abstract logics, have the congruence property.

Proposition 5.8 The deductive system R is not self-extensional, and the deductive
system WR is not quasi-Fregean.

Proof: Assume thaR is self-extensional. Then for ay ¢ € Fmwe would have
thaty FR ¥ = ¢ — ¢ R ¢ — ¥ and conversely by modus poneps-R v <=

¢ — ¢ FR @ — V. Thus, taking DefinitiorB.1B into account, we would obtain
PFRV <= FR¢— ¥ <= ¢FwR ¥, and this equivalence is not true as we
showed after Theore[&.3] This shows thaR cannot be self-extensional. Since it is
an axiomatic extension a¥R, as hown in Theoreni3.3 it follows thatWR cannot
be quasi-Fregean.

It is interesting, for theoretical reasons concerning the general approach con-
tained in [LG], to notice thatWR is an example of a non-protoalgebraic and strongly
selfextensional deductive system which is not quasi-Fregean.

Now the bilogical theorem gives a characterization of the cRig®l) of the
reducedR-logics over a given algebrfd = (A, A, —, —) of type (2,2,1), by means
of the class oR-algebras, in a form completely parallel to that of the cas@/&-
logics stated in Corollary 3.13.
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Corollary 5.9 LetL = (2, C) beanabstractlogic of type(2,2,1). ThenL € R* ()
ifand only if A € R and C = Ded¥l.

Proof: If L = (A, C) € R*(Q) then by TheorenE. 712 = A* ¢ R and C =

C* = DedA* = Ded2l. Conversely, if2l € R then by Propositiols.4lwe have that

(2, Ded?) € R(A) and it is reduced, because, as remarked after the proof of Theo-
remB_7) and using Lemmla_11] ((2(, Ded2l)) = Q((, FAltA)) = A((2A, FltA)) =

An.

Now we can incorporate the general notions introducef@hij asimilar way
as we did in the last part of Section 4, the difference is that here we do not use any
Gentzen calculus associated with the deductive syR@morder to characterize the
class of abstract logics we obtain. In the cas®pthe class of algebras associated
with it is AIgR = {2 : (A, Fir®) is reduced and for every algebré of suitable
type, the class of abstract logics otrassociated withR, called its full models, is
FModg2 = {L = (A, C) : C* = Fig2*}. In [L6] it is shown that these notions
are intrinsically associated witR in a natural form. Therefore the following result
is important:

Theorem 5.10  AlgR = R and for every 2 of type (2,2,1), FModg2 = R(2).

Proof: In [[IE], Proposition 3.2 it is proved that for any protoalgebraic deductive
systemS, RAIlgS = Alg.sS; we already know thaR is algebraizable, hence it is also
protoalgebraic, and we proved in TheorgrlhatRAIgR = R, thereforeAlgR = R

as well. On the other hand, from the definitions of full models @ind of S-algebra

it follows in general thaf. € FMod 2l if and only if 2A* € AlgS andC* = Fi A",
Therefore, after having proved thalgR = R, our Theorem&.7land2Z]2 establish
the equalityffModRQl = R(®A) for every algebr&l of suitable type.

At this point several general results can be applied to the classeskf
algebras and dR-logics:

Corollary 5.11  For any algebra 2 = (A, A, —, =) of type (2,2,1) the following
hold:

(1) The mapping F — (2, (Fip2A) F) is an isomorphism between the lattices
Fig and FModg2. Therefore, the R-logics are the abstract logics whose
associated closure system consists of all R-filters containing a given R-filter.

(2) Theset (R(21), <) isacompletelatticeisomorphicto thelattice (Cong (A), <
); the isomorphism is given by the Tarski operator Q on R(2A), and the first
element of R(21) isthe abstract logic (A, Fip®A).

(3) Thealgebraic category determined by the class of R-algebras (that is, the cat-
egory whose objects are R-al gebras and whose arrows are homomor phisms) is
isomor phic to the category whose objects are the reduced R-logics and whose
arrows are all the logical morphisms between them.

(4) Thecategory whose objects are the reduced R-logicsand whose arrows arethe
logical epimorphisms between themis a full reflective subcategory of the cate-
gory whose objects are all R-logics and whose arrows are the logical epimor-
phisms between them; the reflector is the functor associated with the process
of reduction I — IL*.
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Proof: (1) comes from Corollary 3.10 dfif], which uses in an essential way the
fact thatR is algebraizable. (2) comes from Theorems 2.28 and 2.29 of the same pa-
per, or, alternatively, from our Corollaris191 and5.3 together with the observa-

tion that pairs of associatdg-logics andW R-logics have the same Tarski congru-
ence. (3) comes from Theorem 2.33[@f]. Finally (4) comes from Theorem 2.34

of the same paper.

Notice that in (4) we had to restrict the arrows to be epimorphisms; this restric-
tion was not necessary in the cas&wR (Corollaryl4.158) becaus&VR is strongly
selfextensional, which is certainly not the casérof

As a last application of Theore7] we will give an intrinsic characterization
of the abstract logics iR (2() which makes no reference to the logic$HR (), and
which in some sense is analogous to Theorem BpfThis characterization uses a
kind of generalized deduction theorem of the following form: Let (2, C) be an
abstractlogic, and 1€ C A; we say thatl satisfies theleduction theorem parametri-
callyrestrictedto T (PRDT forT) when there is a ternary polynomig(x, y, z) such
thatforanyXuU{a, b} € A, be C(X,a) < thereissome < T with pgl(a, b, c)
€ C(X). Then we first have:

Theorem 5.12 Every R-logic satisfiesthe PRDT for C(@), with p(x, Yy, 2) = (XA
Z) — Y.

Proof: If L = (2, C) e R(A) andb € C(X,a) = C'(XU E(L"), a) then, by Propo-
sition 511 we know that there is somee C'(X) and somee € E(IL) such that

b e C(x,ea); actually X = x; A ... A Xy for somex; € X, and the same foe,
but E(IL) is a closed set of Cand thus it is closed under Conjunction. Putting
c = (X— X) A (e — e) then as a consequence of Proposilia@ll, (aAc) — b e
C’((a/\ c)— X,(anc)—e,(anc)— a). On the other hand, by the selection of
¢, x— x e C'(aA c) and then by PropositioB553 and4_8l5, (aA ¢) — x € C'(X);

by similar processes one can prove tteat c) — e € C'(e), and then it follows that
(anc)—>beC'(x, e (anc)—a) C C(x E(L)) =C(x) € C(X).Finally the con-
verse implication contained in the PRDT is a direct consequence of Prop&sHian

Then it results that this Deduction Theorem characterizeRtlagics among
the finitary abstract logics whose closed setsRuféters (that is, among the finitary
models ofR, see Propositiof.8]10):

Theorem 5.13 Let . = (2, C) be an abstract logic of type (2,2,1) with 2 =
(A, A,—,—). ThenL € R(), that is, L € FModr4, if and only if the following
conditions hold:

(1) Cisfinitary;
(2) C € FiRp¥; and
(3) L satisfiesthe PRDT for C(2) with p(X, Yy, 2) = (XA 2) —> V.

Proof: If L = (2, C) € R(2l), then Condition (1) is automatically satisfied, and
Condition (2) follows from Theoref. 10 since the abstract logics ifidodg 2 al-
ways satisfy it; finally Condition (3) is proved in Theor&niZ2l

To prove the converse it will be enough to see that Conditions (1), (2) and (3)
imply that2* € R and C* = Ded2*, and then use Theorella7] First of all ob-
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serve that by (2)2, C(@)) € MatrR and that the algebraizability & implies that
the reIationQQL(C(Q)) is analytical, therefore by7], Theorem IX.6, we have that
Qy((C(@)) = Q(L). Now letp ~ ¥ be any equation valid iR. Again by the al-
gebraizability ofR with respect taR with equivalence formulag < q (see Section
2) it follows that-R ¢ <> v, therefore for any interpretaticover2( we have that
o2 (@) < Yy (@) e C(@), which is equivalent tay™ @), ¥ (@) € Qy(C(2)),
that is, to(¢2 @), ¥ @) € Q(L), and this means tha @) = v (@). This
proves that the equatiop ~ ¢ holds in2* , which means tha®l* € R. Onthe
other hand,C* € Fig2* by (2), and by Theoref@.4] Fig2* = DedA*; thus it
only remains to prove thabed2* € C*. Let F € Ded* and putG = =~ ![F] where
712 — A* is the canonical projection. We ha@ Q(L) = F, and it will be enough
to prove thatG € C. Leta e C(G); since (2) implies that C has the property of
Conjunction DM2, then by (1) and (2) there ag ..., ay € G such that, putting
b=a; A... Aay, it holds thata € C(b); but now by (3) there is somee C(2)
such that(b A ¢) — a € C(2); therefore,(an (b A c)) < (bAc) € C(@) and
soa* A (b* Ac*) = (aA (bA©)/QL) = (bA©)/QL) = b* A c*, that s, in
2A* € R we haveb* A ¢* < a*. SinceF € Ded?*, b* € F; now alsoc* € F. Us-
ing thatc € C(2) and miscellaneous properties Rffilters one easily proves that
(c—c¢) < (cA (c— c)) € C(@); thereforec* — ¢* < c* andc* € E(A*) C F. As
amnsequenc&* € F, whichimpliesa € G. Thus we have proved thded* = C*,
which finishes the proof.

This Parametrically Restricted Deduction Theorem can be relatedparthime-
terized local deduction theorems studied in Czelakowski and Dziobidk(, [[L1] (see
also []); notice thatR is one of the few examples of deductive systems which really
need parameters in their deduction theorems. In turn, these results can be related to
those in Meyer[f2], where he studies the following implication:

P>y = oAty

in the conservative extensidty of R (see Section 2); in his Lemma 2 he proves that
this connective satisfies the ordinary Deduction Theorem. Taking out the constant
leads us to a parametric restriction, either in the form of Czelakowski or in the form
we have used above.
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