A New Solution to a Problem of Hosoi and Ono

MICHAEL ZAKHARYASCHEV

Abstract

This paper gives a new, purely semantic proof of the following theorem: if an intermediate propositional logic L has the disjunction property then a disjunction free formula is provable in L iff it is provable in intuitionistic logic. The main idea of the proof is to use the well-known semantic criterion of the disjunction property for "simulating" finite binary trees (which characterize the disjunction free fragment of intuitionistic logic) by general frames.

Hosoi and Ono [8] raised the following problem: is it true that if a consistent extension L of intuitionistic propositional logic Int has the disjunction property (i.e., $L \vdash \varphi \vee \psi$ implies $L \vdash \varphi$ or $L \vdash \psi$) then the disjunction free fragment of L is the same as the disjunction free fragment of Int? Minari [10] and Zakharyaschev [16] and 17 independently gave positive solutions to this problem. In fact, both of them constructed special sequences of disjunctions and showed that if a disjunction free nonthesis of Int is provable in an intermediate logic L then some disjunction in the sequence is also a thesis of L while its disjuncts are not. (An anonymous referee has kindly informed me that Minari $\sqrt[11]{ }$ found another proof which uses a sequence of characteristic formulas.) Here I present a new, purely semantic solution to the problem of Hosoi and Ono, which is simpler and (I hope) more elegant. The idea of my approach is to use a semantic equivalent of the disjunction property for "simulating" finite binary trees, the class of which characterizes the disjunction free fragment of Int.

We shall use three well-known results. The first one is that an intermediate logic

$$
L=\mathbf{I n t}+\left\{\varphi_{i}: i \in I\right\}
$$

has the disjunction property if and only if its greatest normal modal "companion"

$$
\sigma L=\mathbf{G r z}+\left\{T\left(\varphi_{i}\right): i \in I\right\}
$$

has the modal disjunction property, i.e., $\sigma L \vdash \square \varphi \vee \square \psi$ implies $\sigma L \vdash \square \varphi$ or $\sigma L \vdash$ $\square \psi$. Here T is the Gödel translation prefixing \square to every subformula of a given intuitionistic formula and Grz, the Grzegorczyk logic, is obtained by adding $\square(\square)(p \rightarrow$ $\square p) \rightarrow p) \rightarrow p$ to $\mathbf{S 4}$ as a new axiom. This fact was first noted by Gudovschikov and Rybakov [7]; for a proof see Zakharyaschev [18.

I prefer to deal with modal logics rather than intermediate ones for purely technical (or, more exactly, aesthetic) reasons. Of course, this is a matter of taste, but it seems to me that semantic constructions based on the classical Boolean operations look clearer than constructions with the pseudo-Boolean ones. Anyway, it is not difficult to realize the idea of the proof below using only intuitionistic means.

The second result we need is the algebraic criterion for the disjunction property of intermediate logics which was found by Maksimova 9 . I will reformulate it for normal modal logics containing S4 in terms of descriptive general frames (for definitions consult Goldblatt 6]).

Theorem 1 (Semantic criterion for the modal disjunction property) A normal modal logic $M \supseteq \mathbf{S 4}$ has the modal disjunction property iff, for every two descriptive general frames \mathfrak{F}_{1} and \mathfrak{F}_{2} validating M, there is a rooted descriptive general frame \mathfrak{F} for M such that the disjoint union $\mathfrak{F}_{1}+\mathfrak{F}_{2}$ is (isomorphic to) a generated subframe of \mathfrak{F}.

I remind the reader that in every general frame $\mathfrak{F}=\langle W, R, P\rangle$ for $\mathbf{S} 4$ the pair $\langle W, R\rangle$ is an ordinary quasi-ordered Kripke frame and P is a non-empty collection of subsets of W, which contains \varnothing and is closed under the set-theoretic operations \cap, \cup, - and the following (closure) operation \downarrow : for every $V \subseteq W$,

$$
V \downarrow=\{a \in W: a R b \text { for some } b \in V\}
$$

A frame $\mathfrak{F}=\left\langle W, R, 2^{W}\right\rangle$, called a full or Kripke frame, is denoted by $\mathfrak{F}=\langle W, R\rangle$. Without loss of generality we will assume that every finite general frame is a Kripke one. $\mathfrak{F}=\langle W, R . P\rangle$ is called rooted if $a \uparrow=W$, for some $a \in W$, where, for $V \subseteq W$,

$$
V \uparrow=\{a \in W: b R a \text { for some } b \in V\} \text { and } a \uparrow=\{a\} \uparrow
$$

A frame $\mathfrak{F}=\langle W, R, P\rangle$ is a generated subframe of $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}, P_{1}\right\rangle$ if W is an upward closed subset of W_{1} (i.e., $W=W \uparrow$) in \mathfrak{F}_{1}, R is the restriction of R_{1} to W and $P=\left\{V \cap W: V \in P_{1}\right\}$. Finally, a frame $\mathfrak{F}_{1}+\mathfrak{F}_{2}=\langle W, R, P\rangle$ is called the disjoint union of disjoint frames $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}, P_{1}\right\rangle$ and $\mathfrak{F}_{2}=\left\langle W_{2}, R_{2}, P_{2}\right\rangle$ if $W=W_{1} \cup W_{2}$, $R=R_{1} \cup R_{2}$ and $P=\left\{V_{1} \cup V_{2}: V_{1} \in P_{1}, V_{2} \in P_{2}\right\}$. The definition of descriptiveness is not vital for us here; it can be found in Goldblatt 6].

Our third auxiliary result is actually a consequence of Zakharyaschev 19] but I can give a simple straightforward inductive proof here. To formulate this result we need the following notion of cofinal subreduction.

Definition 2 A partial (i.e., not completely defined, in general) map from W_{1} onto W is called a subreduction (as in Fine 5 or a partial p-morphism, as in Zakharyaschev [19]) of a frame $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}, P_{1}\right\rangle$ to a frame $\mathfrak{F}=\langle W, R, P\rangle$ if the following conditions are satisfied:

- $a R_{1} b$ implies $f(a) R f(b)$, for every $a, b \in \operatorname{dom} f$;
- $c R d$ implies $\forall a \in f^{-1}(c) \exists b \in f^{-1}(d) a R b$, for every $c, d \in W$;
- $f^{-1}(V) \in P_{1}$, for every $V \in P$.

We say a subreduction f of \mathfrak{F}_{1} to \mathfrak{F} is cofinal if $a \in \operatorname{dom} f \uparrow$ implies $a \in \operatorname{dom} f \downarrow$, for every $a \in W_{1}$ (i.e., if a is "seen" from the domain of f then a itself "sees" at least one point in $\operatorname{dom} f$).
Lemma 3 Let φ be an intuitionistic disjunction free formula and $\mathfrak{F}_{1} \models T(\varphi)$. Then $\mathfrak{F} \models T(\varphi)$, for every cofinal subreduct \mathfrak{F} of \mathfrak{F}_{1}.

Proof: \quad Suppose that f is a cofinal subreduction of $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}, P_{1}\right\rangle$ to $\mathfrak{F}=$ $\langle W, R, P\rangle$ and $\mathfrak{F} \not \vDash T(\varphi)$. Using the Generation Theorem of Segerberg [12], we may assume that $W_{1}=\operatorname{dom} f \uparrow$ (in any case, we can always take the subframe of \mathfrak{F}_{1} generated by $\operatorname{dom} f$ and show that it refutes $T(\varphi)$). Given a valuation \mathfrak{V} refuting $T(\varphi)$ in \mathfrak{F}, we define a valuation \mathfrak{V}_{1} in \mathfrak{F}_{1} by taking

$$
\mathfrak{V}_{1}(p, a)= \begin{cases}\mathrm{F} & \text { if } \exists b \in a \uparrow \mathfrak{V}(p, f(b))=\mathrm{F} \\ \mathrm{~T} & \text { otherwise }\end{cases}
$$

for every variable p and every $a \in W_{1} . \mathfrak{V}_{1}$ is a valuation, since

$$
\left\{a \in W_{1}: \mathfrak{V}_{1}(p, a)=\mathrm{F}\right\}=f^{-1}(\{b \in W: \mathfrak{V}(p, b)=\mathrm{F}\}) \downarrow \in P_{1}
$$

Now by induction on the construction of φ we prove that, for every $a \in W_{1}$,

$$
\mathfrak{V}_{1}(T(\varphi), a)=\mathrm{F} \text { iff } \exists b \in a \uparrow \mathfrak{V}(T(\varphi), f(b))=\mathrm{F}
$$

The induction basis for variables follows immediately from the definitions of \mathfrak{V}_{1} and subreduction. As for the constant \perp (falsehood), we use the cofinality of f and our assumption above according to which $a \in \operatorname{dom} f \uparrow$, for every $a \in W_{1}$.

Let $\varphi=\psi \rightarrow \chi$ and so $T(\varphi)=\square(T(\psi) \rightarrow T(\chi))$. Suppose $\mathfrak{V}_{1}(T(\varphi), a)=$ F. Then $\mathfrak{V}_{1}(T(\psi), b)=\mathrm{T}$ and $\mathfrak{V}_{1}(T(\chi), b)=\mathrm{F}$, for some $b \in a \uparrow$. Therefore, by the induction hypothesis, there is $c \in b \uparrow$ such that $\mathfrak{V}(T(\chi), f(c))=\mathrm{F}$. Notice also that $\mathfrak{V}(T(\psi), f(c))=\mathrm{T}$, for otherwise we have $\mathfrak{V}_{1}(T(\psi), c)=\mathrm{F}$, which implies $\mathfrak{V}_{1}(T(\psi), b)=\mathrm{F}$, since $T(\psi)$ begins with \square. Thus, $\mathfrak{V}(T(\varphi), f(c))=\mathrm{F}$ for some $c \in a \uparrow$.

Conversely, suppose $\mathfrak{V}(T(\varphi), f(b))=\mathrm{F}$, for some $b \in a \uparrow$. Then, using the definition of subreduction, we obtain $\mathfrak{V}(T(\psi), f(c))=\mathrm{T}$ and $\mathfrak{V}(T(\chi), f(c))=\mathrm{F}$, for some $c \in b \uparrow$. By the induction hypothesis, $\mathfrak{V}_{1}(T(\chi), c)=\mathrm{F}$. Besides, we have $\mathfrak{V}_{1}(T(\psi), c)=\mathrm{T}$, for otherwise there is $d \in c \uparrow$ such that $\mathfrak{V}(T(\psi), f(d))=\mathrm{F}$, which implies $\mathfrak{V}(T(\psi), f(c))=\mathrm{F}$, since $c R d$. Thus, $\mathfrak{V}_{1}(T(\psi) \rightarrow T(\chi), c)=\mathrm{F}$ and so $\mathfrak{V}_{1}(T(\varphi), a)=\mathrm{F}$.

The case of $\varphi=\psi \wedge \chi$ is considered analogously.
It follows that $\mathfrak{F}_{1} \not \models T(\varphi)$, which is a contradiction. Thus $\mathfrak{F} \models T(\varphi)$.
Remark 4 This proof does not go through for $\varphi=\psi \vee \chi$, since there may be a situation when $\mathfrak{V}_{1}(T(\varphi), a)=\mathrm{F}$ because $\mathfrak{V}\left(T(\psi), f\left(b_{1}\right)\right)=\mathrm{F}, \mathfrak{V}\left(T(\chi), f\left(b_{2}\right)\right)=$ F , for some distinct $b_{1}, b_{2} \in a \uparrow$, but $\mathfrak{V}(T(\varphi), f(b))=\mathrm{T}$, for all $b \in a \uparrow \cap \operatorname{dom} f$. As an example, the reader can analyze the Scott Axiom

$$
((\neg \neg p \rightarrow p) \rightarrow p \vee \neg p) \rightarrow \neg p \vee \neg \neg p
$$

Remark 5 It follows from Zakharyaschev 199 that an intermediate $\operatorname{logic} L$ is axiomatizable by disjunction free formulas if and only if L is characterized by a class of frames closed under taking cofinal subframes (not necessarily generated) and L is axiomatizable by purely implicative formulas if and only if L is characterized by a class of frames closed under taking subframes (cf. Fine [5]).

It is not difficult to see that, for each finite rooted partially ordered frame \mathfrak{F}, there is a finite frame \mathfrak{F}_{1} which has the form of binary tree and is cofinally subreducible to \mathfrak{F} (one can prove this by induction on the number of points in \mathfrak{F}). Thus, for each disjunction free nonthesis φ of $\mathbf{I n t}$, there is a finite binary tree \mathfrak{F} such that $\mathfrak{F} \notin T(\varphi)$. This is just another form of the well-known result of Segerberg 13 .

Now we are in a position to prove our main theorem.
Theorem 6 If an intermediate logic L has the disjunction property then the disjunction free fragments of L and $\mathbf{I n t}$ are the same.
Proof: Suppose that L has the disjunction property and φ is a disjunction free formula such that $\mathbf{I n t} \forall \varphi$. Then σL has the modal disjunction property and $\mathbf{G r z} \nvdash T(\varphi)$.

Let $\mathfrak{F}_{0}=\left\langle W_{0}, R_{0}\right\rangle$ be a finite frame for $\mathbf{G r z}$ having the form of binary tree and refuting $T(\varphi)$. Using the Criterion for the modal disjunction property, we shall construct a descriptive frame $\mathfrak{F}=\langle W, R, P\rangle$ for σL which is cofinally subreducible to \mathfrak{F}_{0}. Then, by Lemma 3, we shall have: $\mathfrak{F} \models \sigma L, \mathfrak{F} \not \models T(\varphi)$ and so $\sigma L \nvdash T(\varphi)$, which implies $L \nvdash \varphi$.

We construct \mathfrak{F} by induction on the number of points in \mathfrak{F}_{0}. The case when \mathfrak{F}_{0} consists of a single point is trivial: we can simply take $\mathfrak{F}=\mathfrak{F}_{0}$. Suppose now that a_{0} is the least point (i.e., the root) in \mathfrak{F}_{0} and $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle$ and $\mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$ are the two maximal subtrees of \mathfrak{F}_{0} which do not contain a_{0}. By the induction hypothesis, we have two descriptive general frames $\mathfrak{F}^{1}=\left\langle W^{1}, R^{1}, P^{1}\right\rangle$ and $\mathfrak{F}^{2}=\left\langle W^{2}, R^{2}, P^{2}\right\rangle$ for σL such that there are cofinal subreductions f_{1} of \mathfrak{F}^{1} to \mathfrak{F}_{1} and f_{2} of \mathfrak{F}^{2} to \mathfrak{F}_{2}. According to the criterion for the modal disjunction property, there is a rooted descriptive general frame $\mathfrak{F}=\langle W, R, P\rangle$ for σL, containing $\mathfrak{F}^{1}+\mathfrak{F}^{2}$ as its generated subframe.

To define a cofinal subreduction f of \mathfrak{F} to \mathfrak{F}_{0}, with each $a \in W_{0}$ we associate a set G_{a} which then will be mapped onto a by f. It should be clear that f will be a cofinal subreduction if the sets G_{a}, for all $a \in W_{0}$, satisfy the following conditions:
(i) $G_{a} \neq \varnothing$;
(ii) if $a, b \in W_{0}$ and not $a R_{0} b$ then $G_{b} \downarrow \cap G_{a}=\varnothing$;
(iii) if $a R_{0} b$ then $G_{a} \subseteq G_{b} \downarrow$;
(iv) $G_{a} \in P$;
(v) $W=\bigcup_{a \in W_{0}} G_{a} \downarrow$.
(The first four conditions guarantee that f will be a subreduction and the last one ensures its cofinality.)

We begin our construction of the sets G_{a} by observing that, for every $a \in W_{1} \cup$ W_{2}, there is a set $H_{a} \subseteq W$ such that

- $H_{a} \cap W^{i}=f_{i}^{-1}(a)$, for $a \in W_{i}, i=1,2$;
- $H_{a} \cap W^{i}=\varnothing$, for $a \notin W_{i}, i=1,2$;
- $H_{a} \in P$;
- $H_{a} \cap H_{b}=\varnothing$, for $a \neq b$.

Indeed, by the definitions of generated subframe and disjoint union and the fact that $f_{i}^{-1}(a) \in P^{i} \subseteq P$, for $i=1,2$, we have some sets H_{a}^{\prime} satisfying the first three conditions. To satisfy the last one, we can take, for every $a \in W_{0}$,

$$
H_{a}=H_{a}^{\prime}-\bigcup_{b \neq a} H_{b}^{\prime} .
$$

Clearly $f_{i}^{-1}(a) \subseteq H_{a}$, since $f_{i}^{-1}(a) \cap f_{j}^{-1}(b)=\varnothing$ for $a \neq b$, and $H_{a} \in P$, since \mathfrak{F}_{0} is finite.

So H_{a} is a good candidate to the role of G_{a}. However, it may contain points violating (i) -(v), and we should get rid of them.

Let us consider first only the sets H_{a} corresponding to the final points (i.e., the leaves) a in \mathfrak{F}_{0}. Removing from H_{a} those points that "see" some other set H_{b} (and so violate (ii), since not $a R_{0} b$), we obtain the set

$$
U_{a}=H_{a}-\bigcup_{b \in W_{1} \cup W_{2}, b \neq a} H_{b} \downarrow \in P,
$$

for each final a. Notice that $f_{i}^{-1}(a) \subseteq U_{a}$ if $a \in W_{i}$, since otherwise $x R^{i} y$, for some $x \in f_{i}^{-1}(a)$ and $y \in H_{b}$ with $b \neq a$; but then $y \in W^{i}$ and so $y \in f_{i}^{-1}(b)$, which leads to a contradiction between $a R_{i} b$ and a being final in \mathfrak{F}_{0}.

Next, removing from U_{a} those points x that "see" some $y \notin U_{a} \downarrow$, we obtain the set

$$
V_{a}=U_{a}-\left(-\left(U_{a} \downarrow\right)\right) \downarrow \in P,
$$

for each final a. Again we have $f_{i}^{-1}(a) \subseteq V_{a}$, for every final $a \in W_{i}$, since the subreduction f_{i} is cofinal and $\mathfrak{F}^{1}+\mathfrak{F}^{2}$ is a generated subframe of \mathfrak{F}.

Now, in order to satisfy (v), we pick some final a in \mathfrak{F}_{0} and add to V_{a} all those points that "see" no V_{c}, for all final c in \mathfrak{F}_{0}. Thus we arrive at

$$
G_{a}=V_{a} \cup-\bigcup_{c \text { is final in }} V_{c} \downarrow \in P,
$$

and we let

$$
G_{b}=V_{b} \in P,
$$

for the other final $b \neq a$. So we have:

- $f_{i}^{-1}(a) \subseteq G_{a}$, for every final $a \in W_{i}, i=1,2$;
- $G_{b} \downarrow \cap G_{a}=\varnothing$, for all the distinct final a and b;
- $W=\bigcup_{a \text { is final }} G_{a} \downarrow$.

All technical difficulties are now behind. Suppose that $a \in W_{1} \cup W_{2}$ and that we have already defined the sets G_{b} for all successors b of a. Then we let

$$
G_{a}=H_{a} \cap \bigcap_{a R_{0} b, a \neq b} G_{b} \downarrow \cap-\bigcap_{c \text { is final in }} G_{\mathfrak{F}_{0}, \neg a R_{0} c} G_{c} \downarrow \in P .
$$

Notice that $f_{i}^{-1}(a) \subseteq G_{a}$, for $a \in W_{i}$, since $a R_{i} b$ implies $f_{i}^{-1}(a) \subseteq f_{i}^{-1}(b) \downarrow$ by the definition of subreduction.

And, finally, the last step: for the root a_{0} in \mathfrak{F}_{0} we let

$$
G_{a_{0}}=\bigcap_{a_{0} R_{0} a} G_{a} \downarrow \in P .
$$

$G_{a_{0}} \neq \varnothing$, since \mathfrak{F} is a rooted frame.
It is clear that the sets G_{a} we have just constructed satisfy (i) - (v), and so the partial map f from W onto W_{0}, defined by

$$
f(x)=a \text { iff } x \in G_{a},
$$

is a cofinal subreduction of \mathfrak{F} to \mathfrak{F}_{0}.
I conclude this paper with a few remarks concerning related results.
Remark 7 Theorem 6 proved above may be regarded as a syntactical necessary condition for the disjunction property of intermediate logics. Unfortunately, there are no syntactical sufficient conditions of equal generality and simplicity. A pair of rather general sufficient conditions was proved in Chagrov and Zakharyaschev [1], [4]. These conditions are imposed on the canonical formulas of Zakharyaschev [19], using which one can axiomatize all intermediate logics. Both of them cover a continuum of intermediate logics.

Remark 8 Difficulties in finding general effective necessary and sufficient conditions for the disjunction property of intermediate and modal logics turned out to be of principle nature: Chagrov and Zakharyaschev (17) ,4] proved that there is no algorithm which is capable of deciding, given an intuitionistic or modal formula φ, whether the logic $\mathbf{I n t}+\varphi$ or $\mathbf{G r z}+\varphi$ has the disjunction property.

Remark 9 The proof above would be much easier if every intermediate logic with the disjunction property was complete with respect to Kripke frames. (However, in this case we ought to adapt our proof either to the least modal "companion" of L, viz., $\tau L=\mathbf{S} 4+\{T(\varphi): L \vdash \varphi\}$, or to L itself, since, as was shown by Shehtman [15], σL may be incomplete even though L is complete. As for τL, it was proved by Zakharyaschev [18] that it is complete and/or has the modal disjunction property iff L is complete and/or has the disjunction property.) Minari 10 mentioned the question concerning completeness of intermediate logics with the disjunction property as an open problem. Unfortunately, the difficulties we have encountered in the proof above were unavoidable: in Appendix to Chagrov and Zakharyaschev IT I gave a method for constructing an incomplete logic (calculus) with the disjunction property beginning with any incomplete intermediate logic (calculus) which can be axiomatized by negation free formulas. (Such a calculus can be found in Shehtman [14.) This method uses one of the sufficient conditions mentioned in (Remark 7) and the apparatus of the canonical formulas. In exactly the same way undecidable intermediate logics and calculi with the disjunction property can be constructed.

Remark 10 Theorem 6 has an interesting consequence concerning the complexity function $f_{L}(n)$ for a logic L, which is defined as follows:

$$
f_{L}(n)=\max _{L \nvdash \varphi, l(\varphi) \leq n} \min _{\mathfrak{F} \models L, \mathfrak{F} \nvdash \varphi}|\mathfrak{F}|
$$

where $l(\varphi)$ is the length of φ and $|\mathfrak{F}|$ the cardinality of \mathfrak{F}. Answering Kuznetsov's problem on the lower bound for $f_{\text {Int }}(n)$, in Zakharyaschev and Popov [20] I constructed a sequence of disjunction free formulas φ_{n} such that

$$
\min _{\mathfrak{F} \notin \varphi_{n}}|\mathfrak{F}| \geq 2^{n}
$$

and $l\left(\varphi_{n}\right)$ is a linear function of n. Thus, it follows from this result and Theorem 6 that, for each intermediate logic L with the disjunction property

$$
f_{L}(n) \geq 2^{c n}
$$

where c is a positive constant. This fact was first noted by Chagrov and Zakharyaschev [2].

Remark 11 For a more detailed discussion of the disjunction property of intermediate and modal propositional logics consult a review by Chagrov and Zakharyaschev [3].

Acknowledgments The work was partly supported by the Alexander von Humboldt Foundation.

REFERENCES

[1] Chagrov, A., and M. Zakharyaschev, The undecidability of the disjunction property of intermediate calculi, Preprint, Institute of Applied Mathematics, the USSR Academy of Sciences, 1989. 7.18 .19
[2] Chagrov, A., and M. Zakharyaschev, "An essay in complexity aspects of intermediate calculi," pp. 26-29 in Proceedings of The Fourth Asian Logic Conference, Tokyo, 1990. 10
[3] Chagrov, A., and M. Zakharyaschev, "The disjunction property of intermediate propositional logics," Studia Logica, vol. 50 (1991), pp. 189-216. Zbl 0739.03016 MR 93b:03040 1
[4] Chagrov, A., and M. Zakharyaschev, "The undecidability of the disjunction property of propositional logics and other related problems," Journal of Symbolic Logic, vol. 58 (1993), pp. 967-1002. Zbl 0799.03009|MR 94i:03048 Z. $\mathbf{I V}_{8}$
[5] Fine, K., "Logics containing K4. Part II," Journal of Symbolic Logic, vol. 50 (1985), pp. 619-651. Zbl 0574.03008MR 87e:03030 2.|5
[6] Goldblatt, R., "Metamathematics of modal logic," pp. 41-77 in Report on Mathematical Logic, vol. 6 (1976), and pp. 21-52 in Report on Mathematical Logic, vol. 7 (1976). Zbl 0356.02016|MR 58:27331a 1.11
[7] Gudovschikov, V., and V. Rybakov, "The disjunction property in modal logics," pp. 3536 in Proceedings of the 8th USSR Conference on Logic and Methodology of Science, Vilnius, 1982.
[8] Hosoi, T., and H. Ono, "Intermediate propositional logics (A survey)," The Journal of Tsuda College, vol. 5 (1973), pp. 67-82.MR 49:4753 1
[9] Maksimova, L., "On maximal intermediate logics with the disjunction property," Studia Logica, vol. 45 (1986), pp. 69-75. Zbl 0635.03019/MR 88e:03038 1
[10] Minari, P., "Intermediate logics with the same disjunctionless fragment as intuitionistic logic," Studia Logica, vol. 45 (1986), pp. 207-222. Zbl 0634.03021||MR 88d:03053 1, 9
[11] Minari, P., Semantical investigations on intermediate propositional logics, Bibliopolis, Napoli, 1989.
[12] Segerberg, K., An essay in classical modal logic, Philosophical Studies, Uppsala, 1971. Zbl 0311.02028 MR 49:4756 1
[13] Segerberg, K., "Proof of a conjecture of McKay," Fundamenta Mathematicae, vol. 81 (1974), pp. 267-270.Zbl 0287.02013|MR 50:1849 1
[14] Shehtman, V., "On incomplete propositional logics," Soviet Mathematics Doklady, vol. 235 (1977), pp. 542-545. Zbl 0412.03011 9
[15] Shehtman, V., "Topological models of propositional logics," Semiotic and Informatic, vol. 15 (1980), pp. 74-98. Zbl 0455.03013 9
[16] Zakharyaschev, M., "On the disjunction property of superintuitionistic logics," p. 69 in Proceedings of the 7th USSR Conference for Mathematical Logic, Novosibirsk, 1984. 1
[17] Zakharyaschev, M., "On the disjunction property of intermediate and modal logics," Matematicheskie Zametki, vol. 42 (1987), pp. 729-738. 1
[18] Zakharyaschev, M., "Modal companions of intermediate logics: syntax, semantics and preservation theorems," Matematicheskii Sbornik, vol. 180, (1989), pp. 1415-1427. Zbl 0766.03015 1,9
[19] Zakharyaschev, M., "Syntax and semantics of intermediate logics," Algebra i Logika, vol. 28 (1989), pp. 402-429. 1, 2, 5, 7
[20] Zakharyaschev, M., and S. Popov, On the complexity of countermodels for intuitionistic calculus, Preprint, Institute of Applied Mathematics, USSR Academy of Sciences, 1980. 10

Mathematisches Institut
Universität Berlin
Arnimallee 3, D-14195 Berlin
Germany
email: mishaz@math.fu-berlin.de

