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Embedding and Coding below a 1-Generic Degree

Noam Greenberg and Antonio Montalbán

Abstract We show that the theory of D(6 g), where g is a 2-generic or a 1-

generic degree below 0′, interprets true first-order arithmetic. To this end we

show that 1-genericity is sufficient to find the parameters needed to code a set

of degrees using Slaman and Woodin’s method of coding in Turing degrees. We

also prove that any recursive lattice can be embedded below a 1-generic degree

preserving top and bottom.

1 Introduction

The complexity of the theory of degree structures (as partial orderings) has been for

a long time a focus of attention of researchers. Among the noted results we can men-

tion are that the theory of all Turing degrees Th(D) is undecidable (Lachlan [13]);

the theory of D(6 0′) is undecidable (Lerman [14]); the theory of the recursively

enumerable degrees Th(R) is undecidable (Harrington and Shelah [4]).

A particular method for proving undecidability is embedding models of arith-

metic in the degree structure with parameters. If one finds a first-order condition

on the parameters which ensures that the coded model is the standard one, then the

theory of the structure interprets first-order true arithmetic. For structures which are

interpretable in arithmetic this shows that the theory is as complicated as possible.

Such results were obtained for D(6 0′) (Shore [21], where the result is extended to

D(6 a) for many other arithmetic degrees a) and for R (Harrington and Slaman,

and also Slaman and Woodin (both unpublished); see Nies et al. [18]). Another im-

portant similar result is that Th(D) is recursively isomorphic to true second-order

arithmetic (Simpson [23]). We show in this paper that if g is 2-generic, or if it is a

1-generic degree below 0′, then this method can be employed in D(6 g) and so we

get the same result.

We code models of arithmetic below a 1-generic degree in a direct way, using

coding schemes defined in [18]. Further, this coding, together with the technique of
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comparison maps (again from [18]), shows that if the 1-generic degrees are down-

ward dense in the structure D(6 g) then the standard models can be isolated. We

then quote results of Chong and Jockusch [2] and Jockusch [6] which show that this

condition holds if g is a 1-generic degree below 0′ or if g is 2-generic. (In fact,

Haught, in [5], showed that every nonzero degree below a 1-generic degree below

0′ is 1-generic.) We note that this technique cannot be extended to all 1-generic de-

grees; both Kumabe [10] and Chong and Downey [1] show that there is a 1-generic

degree which bounds a minimal degree.

The coding tool we use is the coding introduced by Slaman and Woodin [25].

One of the questions connected with this coding is where can one find the parameters

needed for the coding, relative to the structure coded. It follows from the proof of

[25], Proposition 2.5, Slaman and Woodin show that a 2-generic suffices. Their claim

that parameters can be found below the jump of the coded structure was covered in

detail in Odifreddi and Shore [19]. In order to code models below 1-generic degrees,

we show here that a 1-generic filter suffices.

The requirement that standard models can be identified in a first-order way is

quite stringent. If we drop this requirement we get structures in which a class of

models satisfying some finite part of arithmetic T is interpreted; this class contains

the standard model. Then the theory of the structure can effectively separate the

theorems of T and their negations; for sufficiently complicated T this shows that the

structure is undecidable. Using our results concerning the coding parameters, we

show that if a bounds a 1-generic degree then Th(D(6 a)) is undecidable.

This result, though, can be deduced from earlier work. Jockusch [6] showed that

every 1-generic degree is recursively enumerable in a strictly lower degree. Rela-

tivizing, one can apply the undecidability results of Shore [21] which use techniques

related to r.e. degrees, to get the aforementioned result. We mention our proof be-

cause it is straightforward in its use of genericity and does not appeal to recursive

enumerability.

Embeddings of algebraic objects into degree structures have a close connection

with undecidability results; indeed all the early undecidability results are established

by coding some class of algebraic objects (such as linear orderings, partial orderings

and graphs) into the degree structure. A striking example is Lerman’s work, [14] and

[15], which showed that every countable upper semilattice can be embedded in D as

an initial segment; so the question about the theories of initial segments involves the

theories of such semilattices. Further, before Slaman and Woodin introduced their

coding, Lerman’s results were used in undecidability proofs by using lattices to code

models of arithmetic (Nerode and Shore [16], [17], [21]). Later, Shore [22] found a

simpler method of embedding lattices below any r.e. degree (not as initial segments

though). He applied Jockusch’s result mentioned earlier to embedding techniques

below r.e. degrees and showed that every recursive lattice can be embedded below

any 1-generic degree (the power of the technique lies in embedding nondistributive

lattices; the result for distributive lattices follows from the fact that the countable

atomless Boolean algebra is embeddable below a 1-generic degree, even preserving

0 and 1). As we did before, we give a direct proof; we are, however, able to improve

it to show that embeddings can be found which preserve 0 and 1.

We remark that Downey, Jockusch, and Stob [3] showed that every recursive lat-

tice with least and greatest element can be embedded into D(6 a) preserving 0 and

1, where a is any array nonrecursive degree. These are the degrees which bound
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pb-generic degrees; this is a notion of genericity which is intermediate between 1

and 2-genericity. Unlike the 1-generics, the array nonrecursive degrees are upward

closed. Our theorem cannot be improved in this direction; there is a degree a which

is a strong minimal cover of a 1-generic degree (Kumabe [11]). Hence, for example,

the diamond lattice cannot be embedded in D(6 a) preserving 1.

1.1 Notation Given σ, τ ∈ 2<ω, we write σ y τ for the string π of length

max{|σ |, |τ |} such that for all i < |π |

π(i) =

{

σ(i) if i < |σ |

τ (i) if |σ | 6 i < |τ |.

If σ, τ ∈ 2<ω and E ⊆ ω, we say that σ and τ are E-equivalent, and we write

σ ≡E τ , if for all x ∈ E ∩ domσ ∩ domτ, (σ (x) = τ (x)).

We assume we have a fixed recursive bijection betweenω and Vω. In particular we

identify finite sequences of natural numbers with the number coding the sequence.

For A ⊆ ω and n < ω we let the nth column of A be

A[n] = {x ∈ ω : 〈n, x〉 ∈ A}.

If F ⊆ ω and for every i ∈ F we have a set Ai ⊆ ω then we let
⊕

i∈F

Ai =
⋃

i∈F

{i} × Ai .

Thus if i ∈ F then the i th column of
⊕

i∈F Ai is again Ai .

If A ⊆ ω then we denote its Turing degree degT A by a. D is the collection of

all Turing degrees. A nonempty set of degrees J is an ideal if it is closed downward

and with respect to the join operation. For example, if a is a Turing degree then

D(6 a) = (a) = {b ∈ D : b 6 a}

is an ideal.

If ϕ(x̄) is a formula in the language of upper semilattices, then we say that ϕ is

absolute for ideals if for every ideal J and every tuple ā ∈ J,

(J,6T ) |H ϕ(ā) ⇔ (D,6T ) |H ϕ(ā).

A formula ϕ in the language of upper semilattices is bounded if all quantifiers ap-

pearing in ϕ are bounded, that is, of the form ∃x 6 t , ∀x 6 t , where t is a term not

containing x . Every bounded formula is absolute for ideals.

1.2 1-genericity We consider the notion of 1-generic filters with regard to various

forcing notions.

Definition 1.1 Let P be a partial ordering on ω (we regard P as a forcing notion).

Let C ⊂ ω. A filter G ⊂ P is C-1-generic if for every W ⊂ P which is recursively

enumerable in C , either G ∩ W 6= 0 or there is some p ∈ G such that for all q 6
P

p,

q /∈ W .

A 1-generic degree is a Turing degree which contains a filter which is 1-generic for

set Cohen forcing (2<ω, ordered by reverse inclusion).

Let P,Q be partial orderings on ω. We say that an injection i : Q → P is a

dense embedding if i preserves 6,⊥ and for every p ∈ P there is a q ∈ Q such that

i(q) 6
P

p (see Kunen [12], VII.7).

The following is a recursive analogue of a familiar theorem of set theory.
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Proposition 1.2 Let i : Q → P be a dense embedding. Let C >T i ⊕ P ⊕ Q.

1. Suppose that G ⊂ Q is 1-generic over C. Let H be the upward closure of

i“G in P. Then H ⊂ P is a C-1-generic filter, and H 6T G ⊕ C.

2. Suppose that H ⊂ P is 1-generic over C. Let G = i−1 H . Then G ⊂ Q is

C-1-generic filter, and G 6T H ⊕ C.

Proof (1) Let W ⊂ P be recursively enumerable in C . Without loss of generality,

assume that W is closed downward (i.e., open). i−1W is also recursively enumerable

in C and is open in Q. The fact that i is dense implies that the upward closure of

i“i−1W in P is W .

If G ∩ i−1W 6= 0 then H ∩ W 6= 0. Otherwise, there is some p ∈ G such that

no extension of p in Q is in i−1W ; so p ⊥
Q

r for all r ∈ i−1W . This implies that

i(p) ⊥
P

s for all s ∈ i“i−1W , so i(p) has no extension in W . It is immediate to

check that H is a filter, so H is indeed C-1-generic.

Given any p ∈ P, by genericity we can find some q ∈ G such that either

i(q) 6
P

p or i(q) ⊥
P

p, and this decides whether p ∈ H .

(2) is easier. �

It is well known that Cohen forcing is universal for all countable forcings: every

(nontrivial) countable notion of forcing embeds densely into Cohen forcing (see

[9], Proposition 10.20). Further, for each forcing P there is a dense embedding

i : P → 2<ω which is recursive in P; this is shown, for example, in Slaman and

Woodin [24]. For completeness, we show that function Cohen forcing (ω<ω, ordered

by reverse inclusion) embeds into set Cohen forcing. We will later (2.9) see another

example of this universality.

Proposition 1.3 There is a recursive, dense embedding of function Cohen forcing

into set Cohen forcing.

Proof For σ ∈ ωn , let i(σ ) = 0σ(0)10σ(1)1 · · · 10σ(n−1)1. i is dense because for

every τ ∈ 2<ω, τa1 ∈ range(i). It is clear that i preserves ⊂ and ⊥. �

Thus a degree is 1-generic if and only if it contains some G ⊂ ω<ω which is 1-

generic.

2 Slaman and Woodin Coding

Let J = {ci : i ∈ I } be an antichain of Turing degrees. (I could be either ω or some

finite set.) We want to find degrees c, g0, and g1 such that the elements of J are the

minimal solutions below c of the following inequality in x:

(g0 ∨ x) ∩ (g1 ∨ x) 6= (x). (2.1)

For each i ∈ I , let Ĉi be an element of ci and let

Ci = {α ∈ 2<ω : α ⊂ Ĉi }.

Let C =
⊕

i∈I Ci and let c = degT C . Given F ⊆ I , we let CF =
⊕

i∈F Ci .

Let P be Slaman and Woodin’s notion of forcing for their coding. The elements

of P are triples p = 〈p0, p1, Fp〉 where p0, p1 ∈ 2<ω, Fp is a finite subset of I , and

|p0| = |p1|. We call |p0| the length of p and write |p| instead of |p0|. The partial

ordering of P is defined as follows: q 6
P

p if

1. p0 ⊆ q0 and p1 ⊆ q1;
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2. Fp ⊆ Fq ; and

3. for all y = 〈i, x〉 such that i ∈ Fp , x ∈ Ci and |p| 6 y < |q|, we have that

q0(y) = q1(y). In other words, it is required that q0 and q1 are CFp r |p|-

equivalent.

Note that 〈P,6
P
,⊥

P
〉 6T C .

Given a filter G ⊆ P, let G0 =
⋃

{p0 : p ∈ G} and G1 =
⋃

{p1 : p ∈ G};

let g0 = degT G0 and g1 = degT G1 be their degrees. Recall that a filter G ⊆ P

is C-1-generic if for every set W ⊆ P which is recursively enumerable in C , either

G ∩ W 6= ∅, or there is a p ∈ G such that ∀q 6
P

p(q 6∈ W ). Observe that for every

C-1-generic G, G0,G1 ∈ 2ω and ∀k∃p ∈ G(k ∈ Fp).

Theorem 2.1 Let G be a C-1-generic filter on P, and let g0 and g1 be defined from

G as above. Then J is the collection of minimal solutions of equation (2.1) below c.

In order to prove Theorem 2.1, it is sufficient to show that the following requirements

are satisfied. Here k varies over I , 8 varies over all Turing functionals, and X varies

over all sets which are recursive in C .

1. Pk : Ck 6≡T (G0 ⊕ Ck) ∧ (G1 ⊕ Ck) (if the latter exists).

2. MX,8: If 8G0⊕X = 8G1⊕X = D are total and equal, and if D 
T X , then

for some k, Ck 6T X .

The Pk requirements ensure that the Cks are solutions to (2.1) and the MX,8 require-

ments ensure that the Cks are minimal solutions and that no other minimal solutions

exist below C .

Lemma 2.2 For every k, Pk is met. Therefore all the sets Ck satisfy equation (2.1).

This is exactly as in the proof of [25], Proposition 2.5, but for completeness, we

present the proof.

Proof Let Ek = Ck ∩ G
[k]
0 . It is immediate that Ek 6T G0 ⊕Ck . However, we also

have Ek 6T G1 ⊕ Ck . In fact

G
[k]
0 ∩ Ck =∗ G

[k]
1 ∩ Ck ,

because there is some p ∈ G such that k ∈ Fp; for all 〈k, x〉 > |p| with x ∈ Ck , we

have G
[k]
0 (x) = G

[k]
1 (x).

It remains to show that Ek 
T Ck . Consider a Turing functional8 and let

Sk,8 = {q ∈ P : ∃x ∈ Ck(q0(k, x)↓ 6= 8Ck (x)↓)}.

Since Sk,8 is C-r.e., there has to be some p ∈ G such that either p ∈ Sk,8, or

∀q 6
P

p(q 6∈ Sk,8). In the former case we have 8Ck 6= Ek . In the latter case, we

claim that 8Ck (x)↑ for all x ∈ Ck such that 〈k, x〉 > |p|; for if 8Ck (x) ↓ for some

such x then one can easily extend p to a condition in Sk,8.

Therefore, we have that for all 8, 8Ck 6= Ek , and hence Ek 
T Ck . �

Minimality Requirements Now fix X 6T C and8 such that

D = 8G0⊕X = 8G1⊕X

and such that D 
T X . We want to show that for some k, Ck 6T X . The general

idea of the proof (as done by Slaman and Woodin) is as follows. A split of a condition

p ∈ P is a pair of strings σ, τ ⊇ p0 such that 8σ⊕X and 8τ⊕X are contradictory.

Clearly no such split can be a condition in the generic, so by genericity there is some
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condition p̄ which is not extended by splits. Now, every condition has some split, as

D is not recursive. So the reason that such a split is not an extension of p̄ is that σ

and τ contain some contradictory information about x ∈ Ck for some x and k such

that k ∈ F̄ = Fp̄ . The idea is to read off information about Ck by searching for such

splits.

Now the way we go about fulfilling this strategy is the new part of the proof so

we describe it more closely. As discussed, we will find (in Lemma 2.5) F̄ and p̄ as

above such that for every split (σ, τ ) of p̄ there is some k ∈ F̄ and some γ ∈ Ck

such that σ(〈k, γ 〉) 6= τ (〈k, γ 〉). Further, we will look for “special" splits (σ, τ )

of p̄, which means that for some k ∈ F̄ and α ∈ 2<ω, if σ and τ differ on some

〈i, γ 〉 with i ∈ F̄ , then necessarily i = k and γ ⊇ α. As we are guaranteed such

a difference for some i and γ , we have γ ∈ Ck ; as Ck is the set of initial segments

of the set Ĉk , we must have α ∈ Ck . We will show that recursively in X , for some

k, one can enumerate infinitely many such special splits with α arbitrarily long, and

thus is able to enumerate infinitely many elements of Ck . As Ck is recursive in any

of its infinite subsets, this gives us a method of calculating Ck from X .

Definition 2.3 We call a condition q ∈ P contradictory if for some x ,

8q0⊕X (x)↓ 6= 8q1⊕X (x)↓.

Being contradictory is a C-r.e. condition, so, by C-1-genericity, there is some p ∈ G

such that either p is contradictory or no extension of it is contradictory. The former

case cannot hold because 8G0⊕X = 8G1⊕X , so the latter is the case.

Definition 2.4 Given p ∈ P and a set E , an E-split of p is a pair 〈σ, τ 〉 such that

1. σ ⊇ p0 and τ ⊇ p0;

2. 8σ⊕X (m)↓ 6= 8τ⊕X (m)↓ for some m.

3. |σ | = |τ |.

4. σ ≡E τ .

If 〈σ, τ 〉 is a split, we let m(σ, τ ) be the least m such that

8σ⊕X (m)↓ 6= 8τ⊕X (m)↓.

Lemma 2.5 There is a finite F ⊆ I and a condition p ∈ G which has no CF -split.

Proof Let p̄ be a condition in G which has no contradictory extensions and let

F = Fp̄ . Consider the set

S = {q 6
P

p̄ : ∃σ ∈ 2|q|(〈σ, q0〉 is a CF -split of p̄}.

Since S is C-recursive, by C-1-genericity, there is some p ∈ G such that either p is

in S or no extension of p is in S. Observe that if p 6
P

p̄ has any CF split, then we

can easily construct some extension of p in S, so it suffices to show that G ∩ S = ∅.

Suppose that p ∈ S ∩ G and let σ be a string such that 〈σ, p0〉 is a CF -split of p̄.

Let m = m(σ, p0). By our assumptions on X and 8, there is some extension q of p

such that 8q1⊕X (m) ↓. q0 ⊇ p0 and so 8q0⊕X (m) ↓= 8p0⊕X (m) ↓. Also, q is not

contradictory. To sum it up, we have

8q1⊕X (m)↓ = 8q0⊕X (m) = 8p0⊕X (m) 6= 8σ⊕X (m)↓.

Let σ̄ = σ y q0. Then 〈σ̄ , q1, F〉 is a contradictory extension of p̄ contradicting

our choice of p̄. �
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Lemma 2.6 Let E0, E1 be recursive sets. Suppose that every p ∈ G has an

(E0 ∩ E1)-split. Then either every p ∈ G has an E0-split or every p ∈ G has an

E1-split.

Proof Suppose, toward a contradiction, that there is some condition in G which has

no E0-split and some condition in G which has no E1-split. Then, by taking a lower

bound, we find some p̄ ∈ G which has neither any E0-split nor any E1-split. We can

also assume that p̄ has no contradictory extensions. Consider

S = {q 6
P

p̄ : ∃σ, τ ∈ 2|q|(σ ≡E0
q0 ≡E1

τ and 〈σ, τ 〉 is a E0 ∩ E1-split of p̄}.

Since S is C-recursive, there is some p ∈ G such that either p is in S or no extension

of p is in S. We note that every p ∈ G has an extension in S: take any p ∈ G;

without loss of generality p 6 p̄. Let 〈σ, τ 〉 be a B-split of p, and let q0 be defined

as follows:

q0(x) =











σ(x) if x ∈ E0

τ (x) if x ∈ E1

p0(x) otherwise.

This definition makes sense because σ ≡E0∩E1
τ . We have σ ≡E0

q0 and τ ≡E1
q0.

Then 〈q0, p1 y q0, Fp〉 extends p and is in S.

Thus we have some p ∈ S ∩ G. Let σ and τ witness that p ∈ S and let

m = m(σ, τ ). There is some extension q of p such that 8q0⊕X (m)↓. Let

σ̄ = σ y q0 and τ̄ = τ y q0. Then, either 〈σ̄ , q0〉 is an E0-split of p̄, or

〈τ̄ , q0〉 is an E1-split of p̄ (according to the value of 8q0⊕X (m)), contradicting the

definition of p̄. �

Lemma 2.7 Let E0, . . . , En−1 be recursive sets. Suppose that every p ∈ G has a

(E0 ∩ E1 ∩ · · · ∩ En−1)-split. Then, for some i < n, every p ∈ G has an Ei -split.

Proof The magic word is “induction”. �

Lemma 2.8 For every finite set S ⊂ ω, every p ∈ G has an S-split.

Proof If max S < |p|, then the notions of an S-split of p and of a ∅-split of p

coincide. Since we can make p ∈ G large, if the lemma fails then there is some

p ∈ G with no ∅-splits. We show that this assumption implies that D 6T X , which

contradicts our previous assumptions.

Pick some p ∈ G which has no ∅-splits. To compute D(x) recursively in X , one

looks for some σ ⊇ p0 such that 8σ⊕X (x)↓. Since p has no ∅-splits, necessarily

8σ⊕X (x) = 8G0⊕X (x) = D(x). �

Now we show that for some k, Ck 6T X . By Lemma 2.5, fix a finite F̄ and p̄ ∈ G

such that p̄ has no CF̄ -splits. Given α ∈ 2<ω and k ∈ F̄ let

Ek,α = {〈i, β〉 : i ∈ F̄ and (i 6= k ∨ β 6⊇ α)}

= (F̄ × ω)r {〈k, β〉 : β ⊇ α}.

First observe that if there is an Ek,α-split, 〈σ, τ 〉 of p̄, then α ∈ Ck . This is because,

since p̄ has no CF̄ -split, σ and τ differ on some 〈i, γ 〉 ∈ CF̄ r Ek,α , and hence i = k,

γ ⊇ α and γ ∈ Ck . Therefore α ∈ Ck . So

Y := {〈k, α〉 : there is an Ek,α-split of p̄}
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is subset of CF̄ .

Now, fix n ∈ ω, and observe that

En :=
⋂

k∈F̄ ,α∈2n

Ek,α = {〈i, β〉 : i ∈ F̄ and |β| < n}

is finite. So, by Lemma 2.8, every p ∈ G has an En-split. Then, by Lemma 2.7, for

some k ∈ F̄ and α ∈ 2n there is an Ek,α-split 〈σ, τ 〉 of p̄. Hence, Y is infinite. Then,

for some k ∈ F̄ ,

Yk := {α : 〈k, α〉 ∈ Y }

is an infinite subset of Ck . Note that Yk is r.e. in X , and therefore Ck 6T X .

2.1 Coding countable sets To find the parameters for coding countable sets, we

first need to relate genericity for P with genericity for Cohen forcing. Let Q = ω<ω

be function Cohen forcing.

Proposition 2.9 There is a dense embedding i : Q → P which is recursive in C.

Proof Let {pi} be a recursive enumeration of the elements of P. We say that a

condition p ∈ P decides G up to pn if for all i 6 n, p 6
P

pi or p ⊥
P

pi . For every

n, the collection of conditions which decide G up to pn is dense in P; we denote this

collection by 9n .

We claim that there is a process, uniformly recursive in C , which, given p ∈ P

and n < ω, enumerates an infinite maximal antichain below p, recursive in C , of

conditions which decide G up to pn. First, we find an infinite maximal antichain

below p. For each k < ω, let pk = (p
a
0 0k1, p

a
1 0k1, Fp); note that pk 6

P
p. Now

define A p by inductively deciding whether pi ∈ A p: pi 6
P

p is added to A p if it

is one of the pks, or if it is incompatible with all of the pks and with all elements

previously decided to be in A p. q 6
P

p is incompatible with all pks if and only

if min{l ≥ |p| : q0(l) 6= 0} 6= min{l ≥ |p| : q1(l) 6= 0}; this shows that A p is

recursive in C , and it is immediate that A p is an infinite, maximal antichain below

p.

For every q ∈ A p we find a maximal antichain Bq below q contained in 9n

in much the same manner; we don’t mind if Bq is finite, so we simply apply the

inductive process, restricted to elements of 9n . Note that we indeed get a maximal

antichain below q , because 9n is dense open below q . Now

Bp,n :=
⋃

q∈Ap

Bq

is an infinite, maximal antichain below p, is contained in 9n , and can be enumerated

recursively in C (uniformly in p and n), by enumerating A p and Bq for q enumerated

in A p, dovetailing of course.

We can now easily define i(σ ) by induction on σ ; i(〈〉) is the empty condition

of P. If i(σ ) is defined, then i(σa{n}) is the nth element enumerated in Bi(σ ),|σ |.

Clearly i is recursive in C , and i is an embedding of Q into P preserving ⊥. To

see that i is dense, take any pn . i“ωn is a maximal antichain in P, so for some

σ ∈ ωn , i(σ ) is compatible with pn . Since i(σ ) decides G up to pn , we must have

i(σ ) 6
P

pn . �

The following is well known.
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Proposition 2.10 Suppose that G is 1-generic over B, that A0, A1 6T B and that

n,m < ω. Then

A0 ⊕ G[n] 6T A1 ⊕ G[m]

if and only if A0 6T A1 and n = m. �

We finally show how to code countable sets. This follows [25], Proposition 2.15.

Theorem 2.11 There is a bounded formula ψ(x, ȳ) in the language of upper semi-

lattices such that whenever we have a sequence of reals 〈Ci 〉, a real C >T

⊕

i Ci ,

and some G which is 1-generic over C, then there is a tuple ā of degrees below g ∨ c

such that

x ∈ {ci : i < ω} ⇔ D |H ψ(x, ā).

Of course, ci = degT Ci , c = degT C, and g = degT G.

Proof By Theorem 2.1 and Proposition 1.2, there is a bounded formula

ϕ(x, y, z0, z1) such that for every countable antichain of degrees C = {ci } and

every G which is 1-generic over C =
⊕

Ci , there are G0,G1 6T C ⊕ G such that

C is definable by the formula ϕ(x, c, g0, g1).

Let C = {ci : i < ω}. Let Gi = (G[0])[i], and let G = {gi : i < ω}; G is an

antichain, as G[0] is 1-generic over C . Let I = {ci ∨ gi : i < ω}; I is an antichain.

Note that
⊕

Gi and
⊕

(Ci ⊕Gi ) are both recursive in C ⊕G[0]. As G[1] is 1-generic

over C ⊕ G[0], there are parameters below G ⊕ C coding I and G as above.

Now C is definable from the above parameters and c by the bounded formula

x < c & ∃(g ∈ G, z ∈ I)(z = g ∨ x) �

Porism 2.12 The function taking ci to gi is definable with the same parameters by

the formula

x ∈ C & y ∈ G & (x ∨ y) ∈ I.

We now code countable functions.

Theorem 2.13 Suppose that B = {bi : i < ω} and C = {ci : i < ω} are sets

of degrees. Let Bi ∈ bi , Ci ∈ ci , B =
⊕

Bi , and C =
⊕

Ci . Suppose that G is

1-generic over B ⊕ C. Then the function taking bi to ci is definable with parameters

found below B ⊕ C ⊕ G.

As for sets, the coding is done uniformly by a bounded formula.

Proof Let E = B ⊕ C ⊕ G. We can find parameters below e coding the sets B

and C. Again split G: let Gn =
(

G[0]
)[n]

. As G[1] is 1-generic over C ⊕ D ⊕ G[0],

we saw in Porism 2.12 that the relations {(bi , gi ) : i < ω} and {(gi , ci ) : i < ω}

are both definable with parameters below E . Now composition gives the desired

function. �

Remark 2.14 Both Theorems 2.11 and 2.13 hold if the sets of degrees are finite.
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3 Interpreting Arithmetic

To get undecidability results, we code models of arithmetic into D(6 g). Let T be a

finitely axiomatizable theory in the language of arithmetic which is hereditarily un-

decidable and ensures that every model of T has a standard part and, of course, which

holds in the standard model. We can pick T to be Robinson arithmetic, Shoenfield’s

theory N ([20], ch. 6), or PA−.

We use the terminology of [18] concerning coding schemes. In particular, we use

their scheme for coding models of arithmetic in partial orders. Rather than repeat the

definitions, we review the needed properties. We have formulas ϕdom, ϕ0, ϕS, ϕ+,

and ϕ× in the language of partial orderings. If L = (L; 6L) is a partial ordering,

then the interpretation of arithmetic in L is the structure

NL = (ϕdom(L); ϕ0(L), ϕS(L), ϕ+(L), ϕ×(L))

for the language of arithmetic. Moreover, the scheme (the defining formulas) can be

chosen such that there is a recursive partial ordering L∗ such that NL∗ is isomorphic

to the standard model of arithmetic.

This scheme can be transformed into a scheme of coding arithmetic in a degree

structure such as D(6 r) via the coding of countable sets; namely, given a tuple

of parameters ā for ψ (of Theorem 2.11) we let L ā be the set coded (defined) by

ψ(x, ā) (we saw that the parameters code the same set or relation in any local degree

structure D(6 r) which contains the parameters) and let Lā be the model (L ā; 6T ).

Having found a partial ordering we can use the scheme above to interpret arithmetic:

we let Mā = NLā . The correctness condition χ(ā) states that Mā |H T . All formu-

las involved are bounded, and so Mā (and the correctness of ā) is well defined and

doesn’t depend on the ideal in which we are working.

Proposition 3.1 Suppose that g is 1-generic. Then there are ā ∈ D(6 g) such that

Mā is isomorphic to the standard model of arithmetic. (In particular, ā satisfy the

correctness condition.)

Proof Let G ∈ g be a 1-generic set. We know if H is 1-generic and L =

({pi}i<ω,<L) is a recursive partial ordering, then there are sets {Pi }i<ω such that
⊕

n Pn 6T H and pi → Pi is an embedding of L into the degrees. Thus the recur-

sive ordering L∗ which was discussed above can be embedded below G[0] in such

a uniform way. Theorem 2.11 shows that there is some tuple ā below G[0] ⊕ G[1]

which codes (via ψ) the copy of L∗ embedded below G[0]. Then Mā
∼= NL∗ is

isomorphic to the standard model. �

This gives a direct proof of the following corollary, which, as mentioned in the in-

troduction, can be deduced from work of Shore [21] and Jockusch [6].

Corollary 3.2 Suppose that c is a degree which bounds a 1-generic degree. Then

Th(D(6 c)) is undecidable.

We now employ the technique of comparison maps from [18]. Let ϕ be the for-

mula coding binary relations. Let θ(ā0, ā1, c̄) be a correctness condition stating that

ϕ(x, y; c̄) codes an injective function h c̄ from an initial segment of M0 = Mā0
to

an initial segment of M1 = Mā1
which preserves the arithmetical structure. Let

ξ(x, y; ā0, ā1) say that there is some c̄ such that θ(ā0, ā1, c̄) holds and h c̄(x) = y.

If both tuples āi satisfy the correctness condition χ , then ξ defines a relation Rā0,ā1
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between M0 and M1, which restricted to the standard part of M0 is a partial isomor-

phism, defined on a not necessarily proper initial segment of this standard part. Note

that R depends heavily on the ideal J in which we are working, as the quantification

of c̄ is unbounded. Given a large enough ideal, Rā0,ā1
will be total on the standard

part of M0; what we need is that all finite partial isomorphisms of initial segments of

M0 to initial segments of M1 can be coded by parameters c̄ in J.

If ā0, ā1 6 b and g is 1-generic over b, then Theorem 2.13 shows that in fact c̄

can be found below b ∨ g.

Proposition 3.3 Suppose that J is an ideal and suppose that the 1-generic degrees

are downward dense in J (that is, every nonzero a ∈ J bounds a 1-generic degree).

Then there is a correctness condition χ∗ such that χ∗(J) is nonempty, and for all

ā ∈ J such that J |H χ∗(ā), Mā is isomorphic to the standard model of arithmetic.

It follows that J interprets the standard model (without parameters) and so that first-

order true arithmetic is reducible to Th(J,6T ).

Proof Let χ∗(ā) say that the correctness condition χ(ā) holds, and that there is

some nonzero b such that whenever ā′ 6 b is a tuple such that χ(ā′) holds, then

domRā,ā′ = Mā (i.e., Rā,ā′ is total).

If χ∗(ā) holds in J, let b witness this fact. Since there is a 1-generic degree below

b, there is a standard model Mā′ with ā′ 6 b. Totality of Rā,ā′ implies that Mā must

be standard.

Now we show existence. Let g ∈ J be 1-generic. Let Gi = G[i]. If ā 6 g0 codes

a standard model then χ∗(ā) holds, with witness b = g1. This is because parameters

c̄ coding the finite comparison maps from Mā to any models coded below ḡ1 can be

found in J, as g2 is 1-generic over g0 ∨ g1. �

This establishes our main theorems.

Theorem 3.4 If g < 0′ is 1-generic, then Th(D(6 g)) is recursively isomorphic to

true arithmetic.

Proof Chong and Jockusch [2] show that the 1-generic degrees are downward dense

in D(6 g) whenever g is 1-generic and below 0′. �

Theorem 3.5 If g is 2-generic, then true arithmetic is 1-reducible to Th(D(6 g)).

Proof Martin (see [6], thm. 4.1) showed that the 2-generic degrees are downward

dense in D(6 g) whenever g is 2-generic. �

Remark 3.6 We remark that this shows that the set of reals A for which

Th(D(6 a)) computes 0(ω) is comeager. We also remark that if g is arithmetic,

then Th(D(6 g)) can be interpreted in first-order true arithmetic; thus for ev-

ery arithmetic 2-generic degree g, Th(D(6 g)) is recursively isomorphic to true

arithmetic.

Remark 3.7 Th(D(6 g)) is constant for arithmetically generic g (see [15], ex. IV

2.13). In fact, the n-quantifier part of Th(D(6 g)) can be uniformly decided by

0(ω). It follows that the theory of D(6 g) for arithmetically generic degrees g is

recursively isomorphic to true arithmetic.
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We get a little more. A degree a is 1-REA if it is recursively enumerable. A degree a

is n + 1-REA if it is r.e. in some b 6 a. We remark that every n-r.e. degree is n-REA

[7].

Lemma 3.8 If a is n-REA for some n < ω, then for all b < a there is some

g ∈ (b, a) which is 1-generic over b.

Proof We show that if a is n-REA then for all b < a there is some c ∈ [b, a) such

that a is r.e. in c. The lemma follows by relativizing to b the fact that every r.e. degree

bounds a 1-generic degree (see Soare [26], ex. VI 3.9).

Let a be n-REA; let this be witnessed by 0 = a0 < a1 < a2 < · · · < an = a (i.e.,

ai+1 is r.e. in ai ). Let b < a. Let i < n be the least such that b ∨ ai+1 = a. Since

a0 = 0 < a, we have b∨ai < a. We claim that a is r.e. in b∨ai . Since a = b∨ai+1,

it is sufficient to show that b ∨ ai can enumerate ai+1. But ai+1 is r.e. in ai . �

Theorem 3.9 If c is n-REA then Th(D(6 c)) is recursively isomorphic to true

arithmetic.

Proof The correctness condition χ∗(ā) will say that χ(ā) holds, that ∨ā < c, and

that for every ā′ such that (∨ā′)∨(∨ā) < c (and such that χ(ā′) holds), Rā,ā′ is total.

If χ∗(ā) holds then there is some 1-generic g ∈ (∨ā, a) and so some standard

model Mā′ coded below g; it follows that Mā must be standard.

χ∗(D(6 c)) is not empty. Let g0 < c be some 1-generic degree, and let a < g0

code a standard model. For every b ∈ (g0, c) which bounds some ā′ which code

a model Mā′ , and for every final initial segment of Mā, there are c̄ which code the

isomorphism between this initial segment and its copy in Mā′ ; this is because there

is some g1 < c which is 1-generic over b. It follows that χ∗(ā) holds. �

We are left with a couple of questions for which we do not yet know an answer.

Question 3.10 Is there a 1-generic degree g such that Th(D(6 g)) does not inter-

pret true arithmetic? Is there one such that Th(D(6 g)) is more complicated than

true arithmetic?

Question 3.11 Suppose that a bounds a 1-generic degree. Does Th(D(6 a))

interpret true arithmetic?

4 Lattice Embeddings

In this section we show how to embed lattices into D(6 g), where g is 1-generic,

preserving 0 and 1 (we consider only lattices with 0 and 1, where 0 6= 1).

We start by defining lattice tables. Whitman [27] observed that every lattice can

be embedded in a lattice of equivalence relations. Then Jónsson showed how to con-

struct a lattice table that also satisfies (3) below in [8] (he maintained the notation

of equivalence relations). Shore, in [22], pointed out that, using Jónsson’s construc-

tion, for every recursive lattice we can get a uniformly recursive lattice table, also

satisfying (3). We modify Shore’s proof a bit to get a recursive lattice table that also

satisfies (4).

Definition 4.1 Let L be a lattice and T be a set of functions from L to ω. Given

α, β ∈ T and p ∈ L, we write α ∼p β if α(p) = β(p) (observe that ∼p is an

equivalence relation and that one can think of α(p) as a name for the equivalence

class of α.) We say that T is a lattice table for L if for all p, q, r ∈ L,
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1. p 6 q ⇐⇒ ∀α, β ∈ T (α ∼q β H⇒ α ∼p β),

2. p ∨ q = r H⇒ ∀α, β ∈ T (α ∼p β and α ∼q β H⇒ α ∼r β),

3. p∧q = r and α ∼r β H⇒ ∃γ1, γ2, γ3 ∈ T (α ∼p γ1 ∼q γ2 ∼p γ3 ∼q β),

4. ∀α β ∈ T, (α 6= β H⇒ α ∼0 β and α 6∼1 β).

The definition follows [22], Theorem 7 but adds condition (4).

We say that a lattice table T is recursive if there is some numbering of the elements

of T which makes them uniformly recursive.

Proposition 4.2 Every recursive lattice L has a recursive lattice table.

Shore ([22], Thm. 7) constructs a lattice table satisfying (1) – (3). We show how to

modify Shore’s construction to add condition (4).

Sketch of Proof One first defines a set of functions T0 = {βp,i : p ∈ L, i < 2} by

letting

βp,0(q) =

{

〈p, 0〉 if q 6= 0

0 if q = 0
βp,1(q) =

{

βp,0(q) if q 6 p

〈p, 1〉 if q � p.

Note that β1,0 = β1,1. It is easy to check that (1), (2), and (4) are satisfied for T0.

Now suppose that a set of functions Ti which satisfies (1), (2), and (4), and such that
⋃

α∈Ti
α“L is coinfinite, is given. Suppose that p, q, r ∈ L and α, β ∈ Ti are such

that p ∧ q = r and α ∼r β, and such that (3) fails in this situation. Then we enlarge

Ti to Ti+1 by adding three functions γ0, γ1, γ2 defined as follows. Let w, x , y, and z

be new numbers not in the range of any of the functions in Ti .

γ0(s) =

{

α(s) if s 6 p

w if s 66 p

γ1(s) =











γ0(s) if s 6 q

x if s 6 pands 66 q

y otherwise

γ3(s) =











β(s) if s 6 q

x if s 6 pands 66 q

z otherwise.

Then Ti+1 satisfies the induction hypothesis, and also (3) for p, q, r, α, β. (To check

(4) one has to note that neither p = 1 nor q = 1.) Also note that a recursive index

for Ti+1 can be uniformly obtained from a recursive index for Ti . By bookkeeping

we get a uniformly recursive lattice table as desired. �

Suppose that T is a lattice table for a lattice L. For p ∈ L and σ ∈ T 6ω we define

hσp ∈ ω|σ | by letting hσp(i) = (σ (i))(p) (in the language of equivalence relations, hσp

gives the sequence of ∼p-equivalence classes of the elements of σ ). If σ, τ ∈ T 6ω,

write σ ∼p τ if ∀i < min{|σ |, |τ |} (σ (i) ∼p τ (i)). Observe that if |σ | = |τ |, then

σ ∼p τ if and only if hσp = hτp .

In [22], Theorem 8, Shore constructs, given a recursive lattice table T for a lattice

L, a function g 6 0′ such that p → degT (h
g
p) is an embedding of L into D(6 0′).
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Moreover, given an r.e. degree a, he constructs g 6 a such that p → degT (h
g
p) is an

embedding of L into D(6 a). These embeddings preserve neither 0 nor 1.

Here we prove the following.

Proposition 4.3 If T is a recursive lattice table for a lattice L, and if g ∈ T ω is 1-

generic, then the map p 7→ h
g
p is a lattice embedding of L into D(6T g) preserving

0 and 1.

This last proposition implies the following theorem.

Theorem 4.4 If g is 1-generic, then every recursive lattice can be embedded in

D(6 g) preserving 0 and 1.

By 1-generic we mean a 1-generic filter for the forcing T<ω which can be identi-

fied with function Cohen forcing by the numbering of T which makes T recursive.

Lemmas 4.5 and 4.6 below follow from Shore’s proof. Lemma 4.7 is new.

Let g ∈ Tω be 1-generic. We start by proving the facts about hg which do not

need genericity.

Lemma 4.5

1. h
g

1 ≡T g.

2. h
g

0 is a constant function, and hence recursive.

3. If p 6 q then h
g
p 6T h

g
q .

4. If p ∨ q = r , then h
g
p ⊕ h

g
q ≡T h

g
r .

Proof (1) and (2) follow from 4.1(4); g(i) is the unique α ∈ T such that

α(1) = h
g

1(i). For part (3) consider p 6 q . Take i ∈ ω; we want to compute

h
g
p(i) using h

g
q . Find α ∈ T such that α(q) = h

g
q(i). Since α ∼q g(i), α ∼p g(a),

so h
g
p(i) = α(p).

For part (4), we already have from (3) that h
g
p ⊕ h

g
q 6T h

g
r . Take i ∈ ω; we

want to compute h
g
r (i) using h

g
p and h

g
q . Find α ∈ T such that α(p) = h

g
p(i) and

α(q) = h
g
q (i). Then, since α ∼p g(i) and α ∼q g(i), we have α ∼r g(i), so

h
g
r (i) = α(r). �

Now we show that hg is a poset embedding.

Lemma 4.6 If p 66 q, then h
g
p 
T h

g
q .

Proof Consider a Turing functional 8 and suppose that 8h
g
q is total. We want to

show that h
g
p 6= 8h

g
q . Let

S = {τ ∈ T<ω : ∃x (hτp(x) 6= 8
hτq (x) ↓)}.

By 1-genericity, there is a τ0 ⊂ g such that either τ0 ∈ S or ∀σ ⊇ τ0(σ 6∈ S).

The former case clearly implies that h
g
p 6= 8h

g
q . We show that the latter case is

impossible. Assume, toward a contradiction, that τ0 ⊂ g and ∀σ ⊇ τ0(σ 6∈ S). Let

α and β be such that α ∼q β but α 6∼p β. By 1-genericity there is some τ1 ⊂ g, such

that for some x ≥ |τ0|, τ1(x) = α. Since 8h
g
q is total, there is a τ2 ⊂ g extending

τ1 such that 8h
τ2
q (x)↓. Let σ be obtained from τ2 just by changing the value at x to

β. Then τ2 ∼q σ , so 8hσq (x)↓ = 8h
τ2
q (x) but hσp(x) = β(p) 6= α(p) = h

τ2
p (x). So

either σ or τ2 is in S and both extend τ , contradicting our assumption. �
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Finally we prove that hg preserves meet.

Lemma 4.7 If p ∧ q = r , then h
g
p ∧ h

g
q ≡T h

g
r .

Proof From Lemma 4.5 we have that h
g
p, h

g
q >T h

g
r . We may assume that p 6= q

and use Posner’s trick. Suppose that D = 8h
g
p = 8h

g
q . We want to show that

D 6T h
g
r . First consider

S0 = {τ : ∃x(8hτp(x)↓ 6= 8
hτq (x)↓)}.

Clearly g does not meet S0, so there is a τ0 ⊂ g such that ∀σ ⊇ τ0 (σ 6∈ S0). Now

consider

S1 = {τ ⊇ τ0 : ∃σ0, σ1, σ2, σ3 ∈ Oτ0,|τ |, ∃x ∈ ω

(8h
σ0
p (x)↓ 6= 8h

σ3
q (x) and σ0 ∼p σ1 ∼q τ ∼p σ2 ∼q σ3)},

where Oτ,n = {σ ∈ T n : σ ⊇ τ }. We claim that no τ ⊂ g is in S1. Sup-

pose τ ⊂ g is in S1 and σ0, σ1, σ2, σ3, and x witness it. Extend τ to τ̄ such

that 8h τ̄p (x)↓ = 8
h τ̄q (x)↓. For i = 0, 1, 2, 3, let σ̄i = σi y τ̄ . Either

8h
σ̄0
p (x) 6= 8

h τ̄q (x) or 8h τ̄p(x) 6= 8h
σ̄3
q (x). Suppose 8h

σ̄0
p (x) 6= 8

h τ̄q (x). Since

σ̄0 ∼p σ̄1, 8h
σ̄1
p (x)↓ = 8h

σ̄0
p (x), and since τ̄ ∼q σ̄1, 8h

σ̄1
q (x)↓ = 8

h τ̄q (x). There-

fore σ̄1 ∈ S0 and extends τ0. This contradicts the definition of τ0 and proves our

claim. So there is some τ1 ⊂ g such that ∀σ ⊇ τ1 (σ 6∈ S1).

Now we claim that for all σ ⊇ τ1 such that σ ∼r g and for all x such that

8hσp (x)↓, we have 8hσp (x) = D(x). Otherwise, find some σ ∼r g which extends

τ1 and find an x such that 8hσp (x)↓ 6= D(x) = 8h
g
q (x). Let σ3 ⊂ g be such that

8h
σ3
q (x)↓ and |σ3| ≥ σ . Let σ0 = σ y σ3. Since σ0 ∼r σ3 and both extend τ1, by

Definition 4.1.(3), there exist σ1, σ2 and τ , extending τ1, such that

σ0 ∼p σ1 ∼q τ ∼p σ2 ∼q σ3.

But then τ is an extension of τ1 in S1. This contradiction proves our second claim.

Finally we show that D 6T h
g
r . Take x ∈ ω. To compute D(x) recursively in

h
g
r look for σ ⊇ τ1 such that 8hσp (x)↓ and ∀i < |σ | (σ (i)(r) = h

g
r (y)). (Notice

that ∀i < |σ |(σ (i)(r) = h
g
r (y)) is equivalent to σ ∼r g.) Some initial segment of g

serves as such a σ , so the search will end. Then D(x) = 8
hσp (x). �
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