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Abstract Recently there has been much interest in naive set theory in non-
standard logics. This note continues this trend by considering a set theory
with a general comprehension schema based on the paraconsistent logic LP.
We demonstrate the nontriviality of the set theory so formulated, deduce
some elementary properties of this system of sets, and also delineate some of
the problems of this approach.

It has long been a desire among certain logicians that there be a generally sat-
isfactory formalization of the naive theory of sets. Much work has gone into
finding such a formalization, and this paper is another attempt to go some way
in that direction. The paper is structured in three sections. First, I introduce the
logic and the formalization of naive set theory that we will consider. Second, I
give formal results concerning this theory—its nontriviality, its relationship to
ZF, and the existence of empty and universal sets. Finally, I critically evaluate
the theory and consider where a naive set theorist might go from here.

/ LP and naive set theory Any study of a theory must involve a choice con-
cerning the logic in which the theory is embedded. The logic of choice for this
exercise is the paraconsistent logic LP, which we introduce below.

We can define LP in various ways. It has the same semantics for connectives
and quantifiers as Kleene's 3-valued logic, except that the middle value is des-
ignated. Also, it is the '-•' free fragment of the quasi-relevant logic RM3. It is
also a simple revision of the classical predicate logic, in which a formula is al-
lowed to be evaluated as both true and false. We will officially define it in this
way.

Let £ be a first order language with Λ, - I , and V the primitive connectives
and quantifier, E a dyadic predicate symbol, and x, y, z9 X\, Xi... the variables.
Then a pair A = <£>, /> is said to be an LP-model structure if D is some nonempty
domain of objects, and for each pair a, b of elements in D, we have I(a G b) E
{{1},{0},{0,1}}. (We will define T, F, and B to be {1}, {0} and {0,1} respectively.)
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Let any function S: Var(<£) -> D from the variables of <£ to the domain be
called an evaluation of the variables. Then given some evaluation S we can as-
sign truth values to every formula in <£ by means of a function vs defined induc-
tively on the formulas as follows:

• vs(xiexj))=I(S(xi)eS(xj))
• 1 E vs(Φ ΛI/0 if and only if 1 E vs(Φ) and 1 E vs(ψ); and 0 E vs(φ Λ\p)

if and only if 0 E vs(Φ) or 0 E vs(ψ)
• 1 E vs( "•</>) if and only if 0 E vs(Φ)l and 0 E vs( ~>Φ) if and only if 1 E

• 1 E i>s((Vx)0(x)) if and only if for each d E D, 1 E vs(Φ(d)); and 0 E
^((VΛΓ)Φ(JC)) if and only if for some d e D, 0 E vs(Φ(d)).

We tacitly take each d EDto function also as a name for a constant in the lan-
guage <£, satisfying S(d) =d. This is primarily a labor-saving device, so that we
can write vs(Φ(d)) instead of vS(X\ci)(Φ(x))> and so on.

We can then define φ v φ to be -i (-ιφ Λ -ψ), φ D ψ to be -»φ v ψ, φ s ^ to
be (φ D ψ) Λ (ψ D φ) and (3Λ:)Φ to be -• (VΛr)- φ. All that remains is to give a
suitable definition of consequence, and this is done in the usual manner. For any
set Σ U [φ] of formulas of <£, we say that φ is an LP"-consequence ofΣ, writ-
ten Σ NLP Φ, if and only if there is no LP-model structure A and no evaluation
of variables S such that 1 E vs(ψ) for each i/Έ Σ and 1 ̂  ι;5(φ). In what fol-
lows, we will need various results concerning LP. The proofs of these facts are
simple and are left to the reader.

• If vs(P) = B then 1 E vs(P = Q) for any formula Q.
• P, P D Q HLP Q v (PA Ί P ) and P D Q, Q D R NLP (P D R) v ( β Λ π β ) ,

but modus ponens and transitivity for *D' both fail.
• In the same way, transitivity of '==' fails in general, but we have P = Q,

Q s Λ N L P ( p s / ? ) v ( Q Λ - . Q ) .

For further detail on LP, the interested reader is referred to Priest [4], the pa-
per in which LP was introduced.

Any candidate for a naive set theory has to have an axiom schema of com-
prehension, which states that for each predicate there is a set containing exactly
the elements that satisfy that predicate, and an axiom of extensionality, which
states that sets with the same elements are equal. For this formulation of naive
set theory, we will translate these axioms as follows. The comprehension schema
is translated as:

(ix)(vy)(γex = φ(y))

for each φ in which x is not free. And for extensionality we require that:

(v*)(γy)((v*)(z E x = z E y) D x = y).

We then let J\( be the set of all instances of the comprehension schema along with
the axiom of extensionality. JM is then what we mean by 'Naive Set Theory'.

The observant reader will notice that we have not yet defined the meaning
of 4 = ' . We set x = y —dj (Vz) (x€iz = y E z). This has been used in other non-
standard set theories (see, for example, Brady [1]). For each of these definitions,
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other choices are available. We will take up some of the issues raised by these
choices in the final section. Now is the time to see what we can do with dM.

2 Formal results First, we will demonstrate that cJ\ί is in fact an inconsistent
theory. More formally, we give the following result.

Theorem 1 In any model-structure <D, I) that models eW, there is an object
r E D such that I(r G r) = B. (And so, d\ί t=LP (3x)(x G x A X £ x) as one
would expect.)

Proof: Let S be any assignment of the variables and vs the corresponding eval-
uation. By the comprehension schema 1 G vs((lx)(Vy)(y G x = y ζέy)), and so
there is an r G D where 1 G vs((Vy)(y G r = y £ y)), and thus 1 G vs(r G r =
r£r). But it is easily checked that 1 G vs(p = ->/?) only when vs(p) = B, and
so vs(r G r) = I(r G r) = B as desired.

By its nature, it is impossible to check (in a finite time) whether or not a
model-structure satisfies every instance of the comprehension schema. Instead,
we provide a sufficient condition for a model to validate the schema that takes
o(n22n) time to check for a model of size n. To do this we need to examine
more closely the model-structures in question.

A model-structure A = <D, />, where D = {ax, a2,..., ah . . . , a3•,... } (but
D need not be denumerable) and /(#/ G αy) = eij9 can be illustrated in a diagram
as follows:

x G y ax a2 tf/

# 1 £ l l β 1 2 ••• έ ? i y •••

ai *2i *22 ••• ^ ••• T h i s is t h e sa id t o b e

: : ' *. incidence matrix of the
di en ei2 "- ei} model-structure A.

The column vector (d\, d2... >, (written here as a row to save space) where
each di G {T,B,F} is said to subsume a vector <ci, c 2 . . . > of the same height if
and only if c, c= rf, for each /. A matrix is said to cover a vector if and only if one
of its columns subsumes that vector.

Example 1

x G y a b
/B\ /T\ /F\

The matrix # B B covers ( ) and ( ) but not ( ).

b T F ^ T / W ^ B /

A column vector is said to be classical if and only if its entries are each ei-
ther T or F. These are enough definitions to enable us to state our next result.
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Theorem 2 An incidence matrix that covers every classical column (of the
appropriate size) is a model of the comprehension schema.

Proof: Let A = (D, /> be the model from such a matrix, and let S be an arbi-
trary assignment of the variables. (Hence it can be noted that vs(aE b) — eab9

the (a, b) entry in the incidence matrix.) Let φ(y) be an arbitrary formula in
which x is not free. It is enough to show that 1 E vs((3x){Vy)(y E x = Φ(y))).

Consider the column vector (vs(Φ(a)))aGD. It subsumes at least one classi-
cal column so we may select one, say (da)aeD. As this is classical, each da is ei-
ther T or F. By our assumption, there is at least one column of the matrix that
subsumes this vector, let one such be (eab)aGD. This means that the vectors
(vs(Φ(y)))aeD and (eab)aGD both 'share' a classical column and hence differ in
entries when one (at least) has the value B.

We noted before that (eab)aGD = (vs(a E b))aGD. So for each a E D,
vs(a E b) and vs(Φ(a)) differ only when one (at least) is B. This ensures that
for each a E D

1 evs(aeb = φ(a)).

Then we have 1 E vs((Vy)(y E b = Φ(y)))9 and because x is not free in φ(y)
this is enough to ensure that

levs((3χ)(^y)(yeχ^φ(y)))i

as we set out to show. As there are 2n classical columns of size n, and at most
n2 entries to check for each column, this can be done in o(n22n) time.

Example 2 The matrix:

xEy a b

a B B

b T F

gives a model of the comprehension schema. This is an immediate corollary of
Theorem 2.

One question worth asking about <Aί is whether or not it has any models. We
will show that it does (and it has many) by examining how it compares to the clas-
sical set theory ZF. In the remainder of this section we will prove that each of
the ZF axioms is a theorem of d\ί, apart from the axiom of foundation, but that
not every classical consequence of ZF is a theorem of J\ί. First we will need some
lemmas.

Lemma 3

ΛΓE y V r

V B F gives an LP model for JM.

r B T

Proof: Comprehension is assured by Theorem 2, and as the matrix for equal-
ity is
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x = y V r

~V B F~

r F B

it is easy to see that extensionality is also satisfied.

Lemma 4 M ft* (Vx)((3y)(y ex) D (ly)(y GxA~i(lz)(zGyAzGx))).
That is, Foundation is not a theorem of M.

Proof: Letthesentence(Vx)((ly)(yGx)D(3y)(yGXA-τ(lz)(zGxAzGy)))
be called T. Consider the model of cM given in the lemma above, and let 5 be an as-
signment of variables in which S(x)=r.lt is easy to verify that v s ((3y) (y G x)) =
T and also that vs((3y) (y G x A -I (3z) (z G y A Z G X))) = F. Thus under any as-
signment S" of the variables, VsCT) = F, which is enough to give us the desired
result as we have a model in which T fails.

Remark It should be noted that by this theorem we have shown the non-
triviality of cW, as we have some sentence that is not a provable consequence of
c)\ί. Whether or not -iT is an LP-consequence of dVί is an open problem at the
time of writing.

We now proceed to show that the axiom of infinity is an LP-consequence of
cM. We do this by showing that <Λί gives the existence of a universal set which must
then satisfy any statement of the axiom of infinity.

Lemma 5 d\f t=LP {3x)(Vy)(y Ex) A (lx)(Vy)(y £ x), that is M has both
empty and universal sets.

Proof: This is marginally harder to show than one might expect. The 'tradi-
tional' definition of an empty set as {x: x Φ x] will not suffice here, because for
some elements xΦxmight receive the value B, so at some points the bicondi-
tional xG 0 =χφχcan be satisfied whilexG 0 obtains the value T. A more
devious approach is needed. Assume there are no empty sets. That is, for some
model A and evaluation S, vs((3y)(Vz)(z £ y)) = F. Then the set of all empty
sets must be empty, giving us the result.

Formally this proceeds as follows: under the above assumption, note that
Vs((Vz)(z φ. b)) - F for each b G D. Comprehension assures that 1 G
vs({lx)(Vy)(y Gx= (Vz)(z φy))), and hence that there is some a GD such
that for each bGD

leυs(bea=(vz)(z£b)).

But for each bGD, vs((Vz)(z ί b)) = F, so for each b (and this fixed a) 0 G
Vs(b G a). But in terms of quantifiers, this just means that

levs((3χ)(vy)(y£χ)),

which is the desired result. So we have an empty set. An analogous argument will
ensure the existence of a universal set—its details are left to the interested reader.
(Hint: If there are no universal sets, the set of all nonuniversal sets must be uni-
versal.)
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This result is enough to ensure the truth of the axiom of infinity for the fol-
lowing reason. On one standard interpretation, the axiom goes as follows:

(1JC)(0 <ΞxΛ(vy)(yexD {y} Uyex)),

and without even inquiring as to what {y] U y might mean in JM, we can see that
this is satisfied by a universal set since the consequent of the conditional will al-
ways be true.

The other ZF axioms are pared down versions of the comprehension schema,
and extensionality is common to both set theories. In particular, we have that
Pairing, Restricted Comprehension, Union, Replacement, and Power Set are
each instances of the Comprehension schema, and so are theorems of <Aί.

Example 3 Pairingis (Vy)(\fy')(3x)(Vz)(zEx= (z=yvz=y'))9 which is sim-
ply an instance of the comprehension schema with φ set to be (z = y v z = y').

We also want to consider whether classical consequence of ZF~ is an LP-
consequence of J\ί. If so, there would be an immense recapture of classical set
theory in this nonstandard system. This is, perhaps fortunately, not the case, for
the following reason. ZF~ t=c ~" (3jt)(Vy)(y G x), that is, it is a classical con-
sequence of ZF~ that there is no universal set. This is not the case with cN, as the
following matrix gives a model:

xGy a b

~~a B T7

b B T

(Comprehension follows from Theorem 2, and Extensionality is easily
checked.) In this model, -ι (3x)(Vy)(y E x) is evaluated as F, and hence it can-
not be a theorem of JM. This is an example of how LP-consequence is strictly
weaker than the classical consequence relation. Another is with d\ί itself; every
formula is a classical consequence of <Λί, but LP is less generous in its conse-
quences.

So, we have the last of our results resolved, and we can report the follow-
ing theorem.

Theorem 6 Each axiom ofZF~ is a theorem of cN, but eN l7χp T. Further-
more, cN HLP (3x)(Vy)(y G x), which is not a classical consequence ofZF.

As a final technical result, we will show that it is a consequence of M that
there are sets x and y such that x Φ y.

Theorem 7 M HLp (3x) (3.y) (x Φ y).

Proof: Note that eN contains a Russell set, that is for each model-structure
A = (D,I) and each evaluation of the variables 5, there is some rGD such that
1 E vs((vy)(y£r = y£y)), and so, vs(r£r = r£r) = B. So, vs(^(rGr =
r E r)) = B, and this ensures that l E ^ ( - ι (Vz)(r E z Ξ r E z)), which means
that 1 Efs((3jc)^(Vz)(JcEz = xEz)) = vs((3x)(xΦx)). Thus, as the model
and evaluation were arbitrary, we have eN HLp (3x)(x Φ x), which is more than
enough for the intended result.
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3 What this might mean The choice of LP as the logic in which to embed
a naive set theory is not without justification. As we have noticed, it is easy to
work in since models are quite easy to construct. Secondly, it is perhaps the most
natural paraconsistent expansion of classical predicate logic. It leaves all things
in predicate logic as they are, except to allow that sentences could be both true
and false. In particular, in any consistent fragment of its domain, LP acts iden-
tically to the classical predicate calculus.

The results we have found are encouraging, and there is much scope for fur-
ther work on cN, but this approach is not without its problems and limitations.
This final section lists a few of these.

A possible objection to our formulation of M is that the axiom of infinity
cannot mean what we wish it to mean because the theory has finite models. This
is not a decisive objection, because the models we use are 'pathological', in the
same sense as the paraconsistent finite models of arithmetic studied by Meyer
and Mortensen (see [3]). These models are not intended to be in any sense ca-
nonical but are rather a useful construct for proving theorems. The fact that M
has finite models makes strictly finitary nontriviality proofs possible and so
should not be sneezed at. The reason the axiom of infinity still holds is that a
finite model is very 'coarse' —it identifies in its domain objects that are distin-
guished in larger models. For example, in the one-element model, the empty set
and the universal set are identified, whereas there are larger models in which they
are distinguished. The reason this identification is possible is the fact that the
logic is paraconsistent. Sets with incompatible properties can be identified in a
model with a set that has both these properties (and hence is paradoxical). This
parallels the finite models of arithmetic given by Meyer and Mortensen. For ex-
ample, they use a model with two elements, 0 and 1, which take the place of each
even and odd number respectively. The formula 0 = 0 is evaluated as both true
and false in this model, as 0 is overworked in the model, and not every even num-
ber is equal to every other even number. On the other hand, 0 = 1 is simply false,
as no even number is equal to any odd number. As this is a nontrivial model of
relevant arithmetic, we have a finitary proof of the nontriviality of relevant arith-
metic. By using similar means, we have a finitary proof of the nontriviality of
naive set theory in LP.

One real problem with this formulation is that LP is weak. As we have noted,
A, A D B \= B and A=B,B = C^A = C are among the inferences that are sac-
rificed. This raises the question of whether the axioms as stated actually mean
what we have intended them to mean. In reply to this it could be said that they
do in the case where our premises are classically valued. And as to when para-
dox is involved, one would not expect things to behave quite as naturally. As we
have seen, the rules from classical logic that are not truth preserving in LP are
truth preserving in the cases when the premises are classical. The approach would
be somewhat vindicated if some classical subsection of the 'canonical model' of
cJ\ί could be found which was something resembling a model of classical set the-
ory. (The appendix contains a result that shows that there are models which prop-
erly contain ZF models.) Then the bad behavior of cN as a whole could be
'blamed' on the inconsistent objects such as {x:x £x\.

There is a logic LPm closely related to LP which is more generous than LP
in its deductions. LPm counts as a model only the structures that are 'as consis-
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tent as possible'. (See Priest [5] for an account of LPm.) Even if naive set the-
ory in LP is to be ultimately rejected, it is an important first step toward
examining the theory in LPm.

The problems with the weakness of D as an implication spread to the defi-
nition of equality. Recall that x-y was taken to be a shorthand for (Vz)(x E
Z Ξ J E Z ) . From x = y it is classically possible to deduce φ(x) = φ(y) for any
sentence φ(z), as we have some set a such that x G a s φ(χ) and y G a Ξ φ(y).
As x E a 3E y E tf, by transitivity we have φ(x) = φ(y). This last step fails in LP,
and it has a simple counterexample. The structure

xGy a b c

~a T F B

b T F B

c T F B

gives a model for c)\ί, as can be easily shown, and a = b comes out as true. How-
ever for φ(x) equal to x E x, φ(a) is T but φ(b) is F.

The definition of equality has further strange properties, as is demonstrated
by the proof of the existence of two distinct elements (Theorem 7). Whether or
not this is a proof of the existence of two distinct objects is something worth
thinking about, along with whether anything could be 'self-distinct'. Apart from
anything else though, one thing this result can teach us is not to take sentences
in LP at their face value, for they can mean something quite different from what
they seem.

The last problem with this formulation is due to the fact that the language
lacks term-forming operators. It is often said in introductory logic texts that 'this
language is solely endowed with predicate symbols. Constants and functions can
be defined in terms of these in the following manner . . .'. This can be done in
LP in exactly the same way but with rather surprising results. As an example,
consider the set [x: x E x]. To express a statement concerning it in LP we need
to state (3y)(Vx)(x Ξ y s x E x) (which is true, at least). So to say that {x:
x Gx] E {x:x Gx}9 we need to say something like

(a) (iy)((\/x)(x G y = x G x) Ay G y).

So far so good, but if you want to inquire as to whether this is true, you get a
surprising result. (This question arose in an effort to prove that cM is incomplete.)

Note that for every model-structure A — (D,I) and every evaluation of
the variables 5, there is some element r E D such that vs(r E r) = B, namely,
the object playing the part of the Russell set. Hence, vs(r E a = r E r) = B for
any element a. This means that 0 E vs(( Vx) (x E a = x E x)) for every a and so,
0 E vs((ly)(Vx)(xey = xG x)). But by comprehension, 1 E υs((ly)(Vx)(xG
y Ξ= x G x)), so this formula must receive B on any evaluation, and in any model.
This means that (α) is always (at least) false, no matter what value the y G y part
of the expression might take. (And in fact, models can be constructed in which
it takes T, F and B.) So even if the set under consideration has properties that
are not determined by JM, the fact that the sentence used to name it is both true
and false means that the sentence describing the property must always come out
as false. This is another shortcoming of this approach.
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One method that overcomes some of these deficiencies is to introduce terms
{x: φ(x)} into the language, and replace the comprehension schema with the two-
way rule:

Comprehension Rule

ae{x:φ(x)}

Φ(x)

This approach and the previous one coincide in the classical case but diverge in
the context of LP, and this new approach perhaps comes closer to our intuitions.
On this reading {x:x ξΞx] E {x'.xGx} could be true or false (or both), inde-
pendently of the status of sentences like (a). The Comprehension Rule can be
proved to have nontrivial models by a modification of the argument in Brady
[2], but the addition of extensionality makes things more difficult. (The compre-
hension schema in the infinite-valued logic of Lukasiewicz is consistent —see
White [6]—but the addition of extensionality makes the theory trivial.) So more
work remains to be done to see what we can make of naive set theory in LP.

4 Appendix We prove a result that shows that there are d\( model-structures
such that a subdomain of the model is a model for ZF set theory. This result is
largely due to Priest.

Theorem 8 Given a classical ZF model-structure cM = (D, />, there is an JVί
model-structure cM + = <£> U {α}, /+> (where a£D), such that I+ restricted to
DisL

Proof: Let £ be the language of cM (in other words, it has a name for each
element in D) and £ + the language of cM+. We define / + on D U [a] by de-
termining that I+(a E b) = I+(b E a) = B for each beDU [a], and / + to
be equal to / on D. As the 'a9 column of the incidence matrix simply contains B's,
cM+ is a model of comprehension. Extensionality is all we need to give
us the result. We will prove a stronger result than this. We introduce a function
~~ : £+ -»£, given by φ~ = φ(a\a~)9 where a~ is a distinguished member of D
chosen for this purpose. We will show that v(φ~) c: v+(φ) for any sentence φ
of £ + , where v and υ+ are evaluations given by / and / + respectively (we drop
the subscripted assignments of the variables, as we are concerned only with sen-
tences). This result ensures that extensionality holds in cM+, since it holds in cM.
We first need to prove a lemma.

Lemma 9 For each d E D, and each sentence φ(d) in £+,if0Gv+(φ(d))
thenθev+(φ(a)).

Proof: It follows by induction on the complexity of φ(d) when put into prenex
normal form. (It is to be noted that the prenex normal form of any formula
(found in the classical manner) has exactly the same truth value as the original
formula. This is a simple induction and is left to the reader as an exercise.)

• If φ(d) = φι A . . . Λ φni where each φt is of the form b E c or b £ c for
b,c E D+. Either no </>, contains a d, in which case the result is immedi-
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ate, or one does, in which case when replaced by a the conjunct is evalu-
ated as B, and the result also follows.

• φ(d) = φι v . . . v φn and the result holds for each φh If 0 E v+(φ(d))
then 0Gv+(φi) for each /, and by hypothesis 0Gv+(φi(a\d))9 and so in
the disjunction, giving our result.

• φ(d) = (lx)(ψ(x9 d)), and the result holds for each φ(e, d) for e E D U
{a}. Note that v+((3x)(φ(x,d))) = VeeDU[a\V*(Ψ(e,d)), and the result
follows just as in the previous case.

• φ(d) = (Vx)(ψ(x, d)), and the result holds for each ψ(e, d) for e E D U
{a}. Note that v+((vx)(ψ(x,d))) = Ae^DU{a]V+(Φ(e,d)), and the result
follows as in the first case.

(Note, I have used V and Λ as operations on infinite sets of truth values—they
are (respectively) max and min on the order F < B < T, the obvious definition
of infinitary disjunction and conjunction.)

Now the proof follows relatively easily. It is also an induction but on the com-
plexity of formulas.

• φis b Ec for b,cGDU [a]. υ((bGc)~) c v+(bEc) by the definition
of/+.

• I E ϋ(-ιφ~) gives 0 E v(φ~), which ensures that 0 E v+(φ) by hypothe-
sis, and so 1 E v+(-ιφ). Similarly 0 E v(-*φ~) gives 0 E v +(~>φ).

• 1 E v((φvφ)~) gives 1 E v(φ~) or 1 E v(ψ~), and so 1 E v+(φ) or 1 E
υ+(ψ), giving 1 E v+(φvψ). Similarly if 0 E v((φvψ)~) then 0 E f(Φ")
a n d O E y ( ^ " ) , a n d s o O E y+(Φ) and 0 E f+(iA), giving 0 E v+(φvψ).

• I E f((3jc)(φ(jc)~) ensures that for some d E A 1 E v(φ(d)~) and so,
1 E v+(φ(d))9 so 1 E I ; + ( ( 3 X ) ( Φ ( Λ : ) ) . On the other hand, if 0 E
ι;((3x)(φ(x)-), we have that for all d E A 0 E t>(φ(c/Γ), so 0 E
v+(φ(d)) for each d G D by hypothesis, and so by our lemma, 0 E
y+(Φ(α)) as well. It follows that for each dE D U {#}, 0 E v+(φ(d)) and
thus, 0 E t>+((3x)(</>(*))) as desired. This completes the induction.
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