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Constructive Ultrαproducts and Isomorphisms

of Recursively Saturated Ultrapowers

G. C. NELSON

Abstract Various models of a first order theory T are obtained from given
models of that theory by generalizations of the ultraproduct construction. It
is demonstrated that for a model complete theory this construction can be
carried out using as functions for the ultraproduct exactly those functions de-
fined by terms in an extension of the original language. In this way one ob-
tains countable nonstandard models of T which can be endowed with other
desirable properties such as being recursively saturated. These constructions
use only the most basic ideas of model theory and recursion theory. Two
countable elementarily equivalent models are shown to have recursive
ultrapowers which are isomorphic and recursively saturated.

0 Introduction and recursive ultraproducts The ultraproduct construction
is one of the basic constructions of model theory and its applications are numer-
ous (see Chang & Keisler [1]). It is particularly useful in that it enables one to
prove that the notion of two structures in a first order language being elemen-
tary equivalent is an algebraic property via the Keisler-Shelah Theorem, which
equates this property with that of having isomorphic ultrapowers. Another use
of this construction is to show that a given mathematical property of structures
is not a first order property by showing that there is an ultraproduct of struc-
tures with the given property which does not inherit that property.

Another application of ultraproducts and ultrapowers is the following: in or-
der to attempt to understand what all models of a given first order theory Γlook
like, we might start with some well understood subset of models of Γand con-
sider what models can be constructed from them using ultraproducts and
ultrapowers. If we had started with an initial class which contained a model
of each complete extension of Γand had infinite wisdom, then in view of the
Keisler-Shelah Theorem we would see all other models of T as an elementary
substructure of these models. If we did not have a representation of each com-
plete extension of T initially, then under suitable assumptions we still might be
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able, using ultraproducts of a relatively small class of models of T, to obtain rep-
resentatives of each complete extension of T from which we could proceed as
above and obtain all models of T. Even though this method has obvious short-
comings, such as the fact that nontrivial ultraproducts usually give us models
which have very large cardinality and in general we do not have a systematic way
to extract all elementary substructures of a given model even when it is denumer-
able, it still does work well in finding representative models of each complete ex-
tension of T in a substantial number of cases.

It is clear that the ultraproduct and ultrapower construction are important
enough in model theory to want to have a construction which yields the same first
order theories as the usual construction but which remain countable as well as
being manageable in other ways. In particular it would be desirable to have the
elements of the domains of these ultraproducts encoded by natural numbers or,
even better, given by certain terms in some first order language. This is what we
intend to do in this paper.

We assume that T is a first order theory in a countable language £ with
equality (we assume that the symbols of £ are all natural numbers). Moreover
we assume that Γis model complete in £ and observe that this always could be
accomplished by replacing it by its Morleyization (see Sacks [10]). The fact that
Γis model complete will make everything that we do much easier. It is this sim-
plification over the other approaches such as those in [1] or Keisler [5], which
require enough built-in Skolem functions, or those in Cleave [2] or Cutland [3],
which require one to deal with a hyperarithmetic hierarchy of sets in the ultra-
filter under consideration, that makes our approach easier. Of course we real-
ize that in carrying out the Morleyization for a theory such as the usual system
of natural numbers one obtains a diagram which is hyperarithmetic. Moreover
it can be shown that all universalizations of model complete theories do essen-
tially have built-in Skolem functions, which is the feature that makes our method
work. But on the other hand there are an abundance of known model complete
theories as well as ones which require fairly small language extensions to make
them into model complete theories to which our method would automatically ap-
ply. Our approach when restricted to ultrapowers is close in structure to that in
Hirschfeld [4], but not much is done in [4] on how one can obtain such classes
of functions satisfying Hirschfeld's conditions except by taking an elementary
substructure of a given model as a starting point. In general most of the ap-
proaches in the literature deal just with a more general version for ultrapowers,
whereas here we handle ultraproducts which contain as a special case ultra-
powers. Before going on we introduce a few definitions and preliminary results.

For S c co we say that the language £ is recursive in S if its set Si of relation
symbols, its set S2 of function symbols, and its set 53 of logical symbols are dis-
joint sets of natural numbers each of which is recursive in S. Moreover it is re-
quired that the functions σι (s) giving the arity of s in S/ for / = 1,2 are recursive
in S and that there is a recursive in S procedure which decides whether or not s
in S3 is a variable symbol. We are treating constant symbols of £ as 0-ary func-
tion symbols. It is easy to carry out the usual Gόdel numbering and obtain the
expected result that the syntax of £ is recursive in S.

For S ς ω w e say that the theory Γis S-decidable if its language £ is recur-
sive in S and the set of consequences of T is recursive in S. Usually 21 with or
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without subscripts will denote a model of Γand its domain 1211 = A is assumed
to be ω. We note that this assumption is made only for notational convenience
and that there are versions of each of the results here which hold for finite mod-
els 21 just as well as for denumerable models 21. The results of Section 1 hold for
all models 21 regardless of cardinality. By the oracle for 21 we mean the follow-
ing set O = U e s , r([s} X τσ*<s)(s*)) U Ues 2τ({j} X τσ 2< ί ) + 1(5*)) where r is
the usual pairing function from recursion theory.

Definition 0.1 We say 21 is recursive in S if each of its relations and functions
is recursive in S. We say that 21 is uniformly recursive in S if the oracle of 21 is
recursive in S and <£ is recursive in S.

The next result is easy to verify since any formula of <£ is provably equiva-
lent in a model complete theory Γto an existential formula.

Lemma 0.2 If21 is a recursive in S model of T, φ is any formula of £ in at
most nfree variables, andf\,... ,fn are recursive in S functions, then {i G ω: 2ί 1=
ψ[f\ (0 , Jn(i)]\ is recursive in S.

The next result is due to Ershov and appears in Peretyat'kin [7] (Theorem 1).

Lemma 0.3 If % is a uniformly recursive in S model of T and T is S-decidable,
then the satisfaction relation on 21 is recursive in S uniformly, i.e., there is a recur-
sive procedure which when presented an S-indexfor the oracle o/2l as its input
gives as its output an S-indexfor a recursive in S procedure for the satisfaction
relation on 21 which when presented a Godel number of a formula φ in n vari-
ables and an n-tuple m from ω determines whether or not 21 N φ[m].

Let 21/ for / in ω be models of T. Let O, denote the oracle of 21/ for each / in
ω and let S be a subset of ω such that U/eω r({*Ί x O{) and Γare both recursive
in S. We set R([%: i E ω}) = {/:/ maps ω into ω and/ is recursive in S]. We
let D denote an ultrafilter of the Boolean algebra of recursive in S subsets of ω.
We define the recursive in S ultraproduct of the [%; iGω] modulo the ultrafilter
D denoted by R(%)/D to be that structure one obtains by using in the defini-
tion of ultraproduct in [1] the above set of functions and ultrafilter D. In this
way one obtains a well defined structure on <£ and one needs to see that it be-
haves like an ultraproduct. This we show next by verifying that Los's property
is satisfied.

Theorem 0.4 For any formula φ of £ with n free variables and any
fu...,fn recursive in S functions, R(%)/D N φ[[f{],..., [/„]] iff {i 6 ω: 21/1=
*>[/i(0,... >/*(/)]} EZλ

Proof: First we observe that for any such φ and/s recursive in S the set on the
right of the iff is recursive in S by means of Lemma 0.3. The argument proceeds
by induction on how φ is constructed, and there is only one nontrivial step. So
suppose that φ is lyψ and that V= {/G ω:2l/1= lyψ [/i (/),...,/„(/)]} eD.We
define f o r / e V g(i) = μk[% |= φ[f{ (/),. . . ,/„(/), k]] and for / £ V define
g(i) = 0. It follows by Lemma 0.3 that g is recursive in S and now apply the in-
ductive hypothesis.
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Let 21 be as above and suppose now that it is merely recursive in S. We de-
fine the recursive in S ultrapower o/2I in a manner analogous to the above. Let
R(%) = [f: f is a function from ω into ω which is recursive in S]. Let D be any
ultrafilter on the Boolean algebra of recursive in S subsets of ω. Just as before
one obtains a structure for £ denoted by R(f&)/D. We state next the fact that Los'
property holds in this setting which can be proved in the same way as the above
theorem but now using Lemma 0.2. Apparently this construction can be attrib-
uted to Skolem as remarked in [5] or [4].

Theorem 0.5 For any formula φ of £ and recursive in S functions fx , . . . , / „ ,
Rm/D\=φ[[fι],...Λfn]] iffiieω:%\=φ[fι(i)i...,fn(i)]}eD.

As usual as in [1] one obtains.

Corollary 0.6 2 l < R (21) /D.

1 Ultraproducts using the terms of a language Let Γbe a model complete
theory in the first order language <£ with equality. Let S(T) be a universaliza-
tion of Γin some language £*, where £* is obtained from £ by adding only
new constant symbols or new function symbols to £ as described in Winkler [11].
In brief S(T) has a set of universal axioms which are obtained from a set of uni-
versal existential axioms for T. The new universal axioms in S(T) are introduced
using the new function symbols to eliminate the existential quantifiers in each
axiom of Γ, e.g., an axiom of the form Vx3y φ(x9y) is essentially replaced by
VJC φ(x,f(x)) where/ is a new function symbol introduced in £* for this pur-
pose. Clearly any model 21 of Γcan be expanded, using the axiom of choice, to
a model of S(T), and any model of S(T) has a retraction to £ which is a model
of T. Let 2t be a fixed model of S(T) (£* is intentionally left vague since we
may want to consider that £* has more function symbols in it than is necessary
to carry out the universalization of Γ, e.g., constants for each element of A may
be in £ * ) . Let S(T)* be the set of universal sentences of £* which are true in
21. We state a result which is proven in Robinson [8] (Theorem 9.1.5).

Lemma 1.1 If T* is a universal theory in a language £*, φ{xx,.. .9xn,y) is
an existential formula in £*, and T* h VJC3J φ, then there are terms τx,..., τm

in the variables x in £* such that T* h Vx(φ(x, τ\) v . . . v φ(x, rm)).

We built our new model of Γin £ from the set Z(x) of terms τ{x) of £*,
which have at most the variable x occurring in them, and the set Boolean alge-
bra of subsets of A, which has as elements exactly those subsets S of A for which
there is some formula φ(x\,..., xn) of £ and there are terms r\,..., τn in %(x)
such that S = {a G A : 21 1= φ(τu..., τn) [a]}. With each element r of Z(x)
there is an associated function from A into A, namely a •-» r%(a), and in this
way 2(AΓ) plays the role of the set of functions in this general version of the
ultrapower construction. We assume that U is a fixed ultraf ilter in the above
Boolean algebra. Now we define the ultrapower of term functions o/2l modulo
U which will be denoted by 2ί* or 2(x)/(/as follows: introduce an equivalence
relation of the r's according to their taking the same value on a set S in ί/and
specify that the set of these equivalence classes be the domain of 21*. On these
equivalence classes define for each w-ary function symbolFof £ , F%*([τχ ] , . . . ,
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[τn]) = [F(τu..., τn)]9 and for each Λ-ary relation symbol R of <£ define
R** = {([τi],..., [τΛ]) : ( f l G ^ : ( τ i ( α ) , . . . , τΛ(α)) G r ^ G ί / ) . This gives a
structure on <£, and it remains to be shown that it satisfies Los's property which
is our next result.

Theorem 1.2 For any formula φ(x\,... ,xn) of £ and any terms τ, in %(x)9

n*t<p[[τi],...Λτn]] iff[aeA:n\zφ[τι(a)9...9τn(a)]]eU.

Proof: It is routine until one reaches the step where one considers a formula φ
of the form Bzψ. It is sufficient to show that if S = {aGA:U\= izψ [τ\ (a),...,
τn(a)]} Ξ U, then there is an element τ(x) in Z(x) such that {# E 4̂ :2ί t=
Φlτ\(a)9..., τΛ(α), τ(α)]} E £/. For notational ease we assume n = 1. Since Γ
is model complete, every formula of £ is provably equivalent to an existential
formula of <£ as well as to a universal formula of <£. Let θ (x) be a universal for-
mula of £ which is provably equivalent in Γto 3zψ(x, z) and let ψ'(x,z) be a
formula of £ which is existential and is provably equivalent in Γto ψ(x, z). It
follows from the above since 21 is a model of Γthat 211= Vx(3zψ'(τι,z)-*θ(τι)).
However since this sentence of £* is universal it is an element of S(T)*. It fol-
lows since S(T)* "extends" Γthat S(T)* h Vx(0(τi) -• lzψ'(τι9z)) and hence
S(T)* \-y/x^z(θ(τι)-^\l/f(τuz)). By Lemma 1.1 there are terms τ'u...,τ'm in
£* such that S(T)* h Vjc((β(n) -+ Φ'(τuτ{)) v . . . v (θ(τλ) -+ φ'(τuτ'm))) and
since 21 is a model of S(T)* we have that the union of the sets Sf = {a E A:
<Ά}F{θ(x)-^φ/(x,z))[rι(a),τ/

i(a)] for / = 1,... ,m] equals^, and since £/is
an ultrafilter SkeU for some k = 1,..., m. It follows that {a E A : 211= ψ(x,z)
[τi(a)9τ'k(a)]}eU.

We observe that the theory S(T)* in the above proof is used only to prove
the existence of a suitable term in 2(ΛΓ) and of course plays no role in the defi-
nition of 21*. Now as in [1] we obtain as an immediate consequence the next
result.

Corollary 1.3 21 = 81*.

Now let £* contain a constant symbols a for each element a in A the do-
main of 81 where 21 is a model of S(T). Forming 21* just as above from the
terms Z(x) of £* and an ultrafilter C/as above, we now obtain the following as
in [1].

Corollary 1.4 21 < 21*.

By choosing U to be a nonprincipal ultrafilter, one is always able to obtain
a proper elementary extension of 21 in this manner when A is infinite. Next we
show how to use Theorem 1.2 to deduce Theorem 0.5. Let 21 be a model of T
where A = ω and let 21 be recursive in S. Let £* contain a function symbol/ for
each/: ω -• ω such that/ is recursive in S. We also add to £* enough functions
perhaps of several variables as names for functions on A which accomplish a uni-
versalization of a set of axioms for Γ, i.e., for each V2 axiom of TVxlyφ with
φ quantifier-free we add a function symbol Fy^ to £* for each existential vari-
able y(i) in front of φ where / = 1,... J and define its interpretation in 21 suc-
cessively to be Fy{i){n) = μk[% f= ly' φ[n,Fy{l)(n),... ,Fy{i-X)(n)9k]]9 which
by Lemma 0.2 gives us a function that is recursive in S. So now we have an ex-
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tension of 21 to 21*, a structure for £* which is a model of the universalization
S(T) of T, and with %(x) as before and D an ultrafilter of the recursive in 5 sub-
sets of ω, it is obvious that %(x)/D = R(%)/D. In this way we see that the re-
cursive ultrapower construction of Section 0 is a special case of our ultrapower
of term functions of 21 construction.

With a little more elaboration we can carry out a similar generalization of
the ultraproduct construction. Let Γin <C be model complete and S(T) be its uni-
versalization in £* as above. We assume that <£* has a constant symbol c in it,
otherwise we just add a new constant symbol c to <£* and call the result <£*. Let
21/ for i in / be models of S(T) in <£*. Let X be the set of terms of £* with no
variables, i.e., X is the set of constant terms of <£*. Let 33 be the Boolean alge-
bra of subsets of / whose elements consist of all sets S such that for some for-
mula φ(xχ,...,xn) of <£ and some terms τ\,..., τn in X S = {/: 21/1= φ[τf''y...,
τ%*]}. Let U be an ultrafilter of 93. We let S(T)* be the set of universal sen-
tences a of £* which are true in every 21/. Now we wish to define the term
ultraproduct of {21/: / G /} with respect U which we denote by 2c(2l/)/ί/or <β as
follows: for r, r' in 2 we define r = r' to mean that {/: rH/ = r/2ί/} G t/, and the
set of these equivalence classes of constant terms of £* is the domain of our
ultraproduct <β. For an w-ary function symbol F of £ we define F^([τχ]9...9

[τn]) = [F(τ\> >?•/*)]• For an Λ-ary relation symbol R of <£ we define
^ ( [ T I L . . J T J ) to hold iff {/:2l/ \rR[τu... ,τj} G £/. In this way we ob-
tain a well-defined structure <β for <£. In the same way as Theorem 1.2 was
proven, we obtain the next result.

Theorem 1.5 For any formula φ(xι,...,xn)of£ and terms τu.. .,τnin 2,

?^[[τil MaΠi a/^lr! τB])6l/.

Just as we did above for the ultrapower we can obtain the recursive in S
ultraproduct construction of Section 0 from the term ultraproduct construction.
One needs to add function symbols to <£* for each recursive in S function on ω;
one needs also to interpret c in 21/ for / in ω as /. Of course the term ultrapower
construction is a special case of the term ultraproduct construction where one
interprets the value of c in the ath copy of 21 as a.

2 Isomorphism of recursive ultrapowers Let 21 and 33 be two denumera-
ble models of the countable language £ and assume that A = B = ω and 21 Ξ 33.
We suppose that T= Th(2l) is model complete. Our next result shows that there
is an oracle set S such that by using it we obtain recursive ultrapowers of 21 and
33 which are isomorphic. This gives a countable version of the Keisler-Shelah
Theorem that any two elementary equivalent structures have isomorphic
ultrapowers.

Theorem 2.1 There exists a set SQω such that 21 and S3 are both uniformly
recursive in S and T is S-decidable. Moreover, for any such S and any nonprin-
cipal ultrafilter D of the recursive in S subsets ofω, R(%)/D = /?(33)/iλ

Proof: The existence of S is easy, since all one need do is take the joins of the
sets of numbers and functions one needs to form £, the oracle for 21, the ora-
cle for S3, and the set of Gόdel numbers of consequences of T, see Rogers [9].
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Since R(%)/D and R{^8)/D are both denumerable, let [fx],..., [ / „ ] , . . . and
[gi]> >[#«]> be listings of their distinct elements, respectively. We con-
struct the isomorphism using the usual back and forth argument as described in
[10] or [1] together with Los's property. It is sufficient to show how to extend
a given partial isomorphism with the following properties:

Inductive Hypothesis. Suppose we are given a map σ such that σ([// ]) = [g/ ]
for / = 1 , . . . , n where [/• ] belong to R(%) and the [g ] belong to i?(33). More-
over, for any formula φ of <£ with at most n free variables, [i: 21 1= φ[f[(/),
...J'n(i)]}eDiff{i:%tφ[gl(i),...9g'n(i)])eD.

Now let [/] be the first element in the above list such that [/] Φ [//] for
/ = 1,...,«. Let <pχ,..., φk,... be a recursive in S listing of all formulas of £
with at most the first n + 1 variables free in them. Next we define g in i?(93) as
follows:

g(i) = μb such that for the largest k < / + 1 V/(l <y < k-+ (21 N φj[fί(i),
. . .,/;(/),/(/)] iff 8 t * y [ s ί ( / ) , . . . ,g'n(i),b])); and

g(/) = 0 otherwise.

It follows by Lemma 0.3 that g is recursive in S. Now define f'n+γ = / and
g'n+ι = 8- Extend σ by setting σ([/ή+iD = [g'n+\]. We claim now that the induc-
tive hypothesis is now satisfied with Λ + 1 replacing n.

Let φm be any formula with at most X\,..., ΛΓW+1 as its free variables. It is
sufficient to show that if [/:2t t= φm\f\(/),... ,/A+i(/)]} G £) then {/:SB 1=
<̂ m[gί ( 0 , , g'n+\ V)]} e Λ Let θz be the formula defined for 1 < / < m by

θj = φi ΊΐR(%)/D h φdlfl],.. .,[/;+i]] and

9/=-i^- i fnot i?(a)/DI=^[[/n, . . . , [ / ; + i ] ] .

By Theorem 0.4 for 1 < / < m, ylz = {/: 21 1= ΘAΛV),... ,Λ+i(0]} G Λ Let
fl = 3xn+ι Λ ^ β / . Clearly t/ = Πy

m=iΛ £ £/* = {/: 21 Nβ[/J(/),... J'n(i)]} eD.
Thus by our original inductive hypothesis we have that U** = {i: 33 N θ [g\ (/),
. . . , g'nU)]} G Λ Now if / e 6/ Π £/** and / > m - 1, then it follows from the
definition of g above that 93 t= φm [g[ (/),. . . , g'n(i), g(/)]. Now since D is a non-
principal ultrafilter of the sets recursive in S we have {/:93 f= φm[g\(0» »
«π(0,^+i (0]} e Λ This verifies the claim.

Recall from [1] (new edition 1990) or Keisler [6] (p. 69) that a structure Wl
is recursively saturated if for any finite subset Y c= M every recursive set Ψ(x)
of formulas of <£(Γ) which is finitely satisfiable in (9ft, F) is satisfiable in
(2ft, 7). This leads to our next result.

Theorem 2.2 If%is uniformly recursive in S and T is S-decidable, then for
any nonprincipal ultrafilter D of the recursive in S subsets ofω, R(%)/D is recur-
sively saturated.

Proof: Let Y = {[/i ],...,[/„]} be a finite set of elements of R(%)/D and let
Ψ(x) be a recursive set of formulas in £(Y) which are finitely satisfiable in
(RCΆ)/D, Y). We imitate a portion of the proof of Theorem 2.1. Let φι(yu

• ,yn>x)> - - - 9 Ψmiyii - »yn>x)> be a recursive listing of all the formulas
in Ψ(x). We define g in i?(2l) as follows:
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g(i) = μb such that for the largest k < i' + 1 Vy(1 < j < k -> 21 1= φj[fι (/),
. . . , /„(/) ,&]) ; and

g(i) = 0 , otherwise.

It follows by Lemma 0.3 that g is recursive in S. Moreover we know by hypoth-
esis and Los's property that for θj = Λ/=i<?/ that Uj = {/:2l(l= 3*0/[/i(/),. . . ,
/„(*)]} € Zλ We wish to show that for any m > 1 that ί/m = {/: 21 t= φm[fι(i),
• >fnV)>gtf)]) Ξ Zλ Let / > m — 1 and suppose / E t/m then in the definition
of g k > m, and hence 21 1= ̂ m [ / i ( 0 , » Λ ( 0 » ^ ( 0 ] ; but then since £> is
nonprincipal, one has that Um E D. It then follows that [g] satisfies V(x) in
(R(<Ά)/D,Y).

We point out that the above proof shows that any recursive in S set of for-
mulas of <£(Γ) which is finitely satisfiable in R(%)/D is also satisfiable there.
In combination with Theorem 2.1 we obtain the result in our title that any two
countable elementary equivalent structures have recursive ultrapowers which are
recursively saturated and isomorphic. In closing we point out that it is possible
to extend our constructions to allow uncountable oracle sets @ = [S/: / E /} by
defining a function or set to be recursive in © if it is recursive in some finite sub-
set of @. By taking © = (P(ω) our construction becomes the same as the usual
ultraproduct and ultrapower construction which was our starting point.
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