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Real Reduced Models for

Relevant Logics without Wl

STEVE GIAMBRONE

Abstract Slaney has provided reduced models (ones in which there is but
one "real" world) for a number of relevant logics via certain kinds of frames,
as opposed to the conventional Routley-Meyer model structures. This paper
does three things: it corrects Slaney's paper, extends his results in a differ-
ent direction, and draws a moral from the errors it corrects.

The corrections to Slaney's paper are very minor, the errors having been
more in the nature of "slips" than of outright mistakes. The semantic struc-
tures of Slaney's paper are criticized for not being "semantical enough". It
is then shown that Slaney's basic results can be used to provide reduced
models for most of the same logics (the system E being a notable exception)
using the Routley-Meyer model structures which do not suffer from this de-
fect. The basic slip in the original paper was not to close the worlds of the
canonical models of some of the systems under all of the primitive rules of
inference of that system. The paper ends with a brief discussion of the phil-
osophical significance of insisting that theories (worlds) be closed under cer-
tain rules of inference as well as under provable implication. That discussion
insists upon the importance of a distinction between primitive/derivable rules
of inference and merely admissible rules along the lines of Anderson and
Belnap.

/ Introduction Slaney [8] discusses the motivationally important matter of
reduced modeling for relevant logics, duly notes that many important weaker rel-
evant logics have not been provided with reduced modeling, and goes on to of-
fer such for them in terms of frames, as opposed to the conventional model
structures of Routley and Meyer [5],[6] for instance. In addition to their moti-
vational importance, reduced models are technically and practically important
for the practicing logician. They are simpler and hence easier to use. However
we find [8] lacking in some very important respects.

In the first place, there are some minor (i.e., easily fixed) technical inaccu-
racies in the paper. Some of the claims made therein are false as stated, and some
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of the proffered proofs are unsound. So in what follows we will revise the claims
of [8] as necessary and at least indicate how the incorrect proofs can be made
right. (It is very unlikely that the author of [8] was actually mistaken on any of
these points. The errors corrected herein were surely just "slips".)

But our discontent with [8] runs deeper: the models of [8] are not in general
really models —in a very clear sense, they are not semantical enough! As the
reader will see when we get around to introducing the technical definitions, for
a given logic L an L-frame is defined in terms of the crucial syntactic notions of
'theorem of L' and 'primitive rule of L\ Now there may be those who are not
purists in these matters and whose sensibilities are not offended by such wanton
self-indulgence. We ourselves are very open-minded on this point and would not
care to judge them to be moral reprobates. However, it is our duty to warn them
that they will pay for their sins immediately in this case. For this illicit conjoining
of syntax and semantics begets here a degenerate offspring: frames so defined
are useless for many of the tasks to which logicians are wont to appoint them,
e.g., proving that a given formula (neither already known to be a theorem nor
known to be a nontheorem of L) is valid or invalid as the case may be.1

It is not seriously being suggested that the results of [8] are unworthy. The
extension of metavaluation techniques given there is particularly admirable. But
such upright works should be put at the service of holier tasks. So in addition
to correcting [8], we will extend it. In particular, we prove that the basic results
of [8] can be used to show that almost all of the logics treated there are charac-
terized by real reduced models, i.e., ones based on the traditional Routley-Meyer
relational model structures. So without further ado, the technical details.

2 Syntactic and semantic preliminaries The systems to be considered can
be fitted with Hilbert-style axiomatizations from the following list of axioms and
rules (the side notation designates the corresponding semantic postulate as listed
further below):

(Al) A->A pi
(A2) A&B^A
(A3) A&B-+B
(A4) (A -* B) & (A -> C) -* .A -* B & C p2.i
(A5) A^AvB
(A6) B-+AvB
(A7) (A^C)&(B-+C)-+.AvB-+C p2.i
(A8) A&(BvC)-+(A&B)vC
(A9) ^A-*A p4
(A10) A^-^B-».B-*-yA p7
(All) A-+B-+ .C-+A-+ .C->£ pό.i
(A12) A-+B->.B-+C->.A-+C pό.ii
(A13) (A-+B) & (B^C)-+.A->C p9
(A14) A->.A->A pl2
(A15) A^.B-+A pl3
(A16) (A-+BvC)& (A&B^O^.A^C ?
(A17) A-+ .A->B-+B plO
(A18) (A-+ .B-+C)-+ .£-• .A-+C pll
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(A19) (A -> B) & A -> B p8
(Rl) K4 -• £, K4 =* KB pi (viz., R000)
(R2) \-A, \~B =* \-A & B
(R3) \-A->B9 hC->£>=> VB-^C-+.A-*D p2.i (and pi)
(R4) YA -> ^B => KB -> -ϋ4 p4
(R5) h4=>b8-»,4 pl4
(R6) K4=>h4-•£-•£ p5.

Some of the better known systems to be dealt with here include:

B (Al) through (A9) + (Rl) through (R4)
DW B + (A10)
TW DW + (A11) + (A12)
DJ DW + (A13)
TJ TW + (A13)
EW TW + (R6)
RW TW + (A17) or TW + (A18)
R RW + (A19)
BCK RW + (A15) or RW + (R5)
RM R + (A14).

An Ml logic is any system axiomatizable as B plus zero or more of (A10) through
(A16) with or without (R5). An M2 logic is one axiomatizable as B plus (R6) plus
any of (A10), (All), (A12), (A14), (A15), (A17), (A18), (R5). Where L is a logic
containing B, an L-theory Γis a set of sentences in the language of L closed un-
der adjunction (R2) and provable L-implication. For L-theories a and b, ab =
{C: B -> C is in a for some Bin b}. It is regular iff it contains L. It is consis-
tent iff it is not the case that some wff and its negation are both elements of it;
prime iff it contains at least one disjunct of any disjunction in it; ordinary iff
regular and closed under (Rl), (R3), and (R4); normal iff ordinary, prime, and
consistent; and A-consistent iff it does not contain A. We add that it is really reg-
ular iff regular and closed under the primitive rules of L, and really normal iff
really regular, prime and consistent.

& frame is a structure (K, P, O, R, *> where K is a set, P is a subset of K, O
a member of P, R a ternary relation on K, and * a unary operation on K, such
that for all members a, b, c, d of K:

(Dl) a < b =df Rxab for some x in P
(D2) R2abcd =df Rabx and Rxcd for some x in K
(D3) R2a(bc)d =df Rbcx and Raxd for some x in K

(pi) a < a (pi)
(p2) vx E P, if (i) R2xabc or (ii) R2x(ab)c (p2),(p6)

or (iii) R2a(xb)c then Rabc (p7)2

(p3) α** = a (p3)
(p4) If tf< 6 then ή* < α*. (p4)

The notation of [6] (chapter 4) for each postulate, where such exists, is given to
its right.

With SL the set of sentential letters, an/-model is a pair (F9υ), where F is
a frame and υ is a function from SLxKinto {T,F) such that for all/7 in SL and
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all a, b in K, (v(p, a) - T and # < £ ) = • v(p, b) = T. As usual, each model de-
termines an interpretation I satisfying:

\p l(p, a) = v(p, a) for all p in SL;
I-. l(A,a) = Tiff I(A9 a*) = F;
I& 1{A &B,a)=Ύ iff 1(A, a) = l(B, a) = T;
Iv l(A vB,a)=Ύ iff either I(A, a) = Tor l(B, a) = T;
I-> l(A ->B,a)=T iff for all b, c in AT, if 1(A, b) = T and Rabc then

I(Λ,c) = T.

4̂ is verified by <F, ι>> iff l(A9 O) = Ύ. A holds strongly in an/-model just in
case it is true at every member of P in that model. With L a logic as before, an
L-frame is a frame F such that in every /-model of F: (i) every theorem of L
holds strongly; and (ii) every primitive rule of L preserves strong holding. A
frame is reduced iff P = {O}.

A B model structure (a B m.s.) is just a frame as defined above. Then where
L is an extension of B via one or more of the above axioms or rules, an L m.s.
is a B m.s. satisfying the further appropriate postulate(s) from those given be-
low. (Which postulate(s) are appropriate is indicated along with the axioms and
rules above.) Also notice that we know of no appropriate postulate for (A16).

(p5) For some x in P, Raxa (drl)
(p6) If R2abcd, then (i) R2a(bc)d (q4)

and (iϊ)R2b(ac)d (q3)
(p7) If Rαbc, then Rαc*b* (s4)
(p8) Rααα (ql)
(p9) If Rαbc, then R2α(αb)c (q2)
(plO) If Rαbc, then Rbαc (q6)
(pll) If R2αbcd, then Λ2έκ*tf (q7)
(pl2) If Zta£?c, then α < c or b < c (ql8)
(pl3) If Rαbc, then α < c (ql 1)
(pl4) For all x in P, if Rxbc, then x < c.

A model structure is reduced iff P = (O). A valuation and its associated inter-
pretation are defined as above. An L-model is an L m.s. with an interpretation.
True in a model is defined in the usual way.

3 Real reduced models With all of these technical details in place, we pro-
ceed to criticize, correct, and expand [8] as promised. Unless otherwise indicated,
page numbers below refer to [8]. Since we have no real modeling condition for
(A 16), all claims about L m.s. and real models thereon are to be understood to
exclude logics having it as an axiom.

Observation 1 (p. 398) is false for any L which has (R5) or (R6) as a primi-
tive rule but does not contain (A 15) or (A 17), respectively, as a theorem. (EW
is conspicuous among these.) In such a case, Γneed not and will not in general
be closed under all the primitive rules, and hence <PΓ,{Γ), T9RT,*T) will fail
the second condition of the definition of an L frame. So we repair and expand
the claim as follows:
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Observation Γ Let The a prime, really regular L-theory. (Pτ, {T], Γ, Rτ,*τ)
is an L-frame and (for L not containing (A16)) an L m.s., where Pτ = [all
prime T theories], Rτabc iffab^c,a*τ={A: -ιA is not in a}.

Proof: As in [8], see chapter 4 of [6] for most of the logics. Since (R5) and its
corresponding postulate pl4 are not considered there, we add the following.
(Note that for such systems, L- and Γ-theories must be nonempty. Again, see
[6].) It will suffice to show that if b < c, then TQc. But Γis a subset of a, for
any a in Pτ, as we now show. Assume A is in Γ. Choose B in c. Since Γis re-
ally regular, B -+A is in Γ. Whence by the definition of an L-theory, A is in Γ.

Observation 2 (p. 398) is now correct as stated:

Observation 2 There is an interpretation I on <PΓ, {Γ), Γ, Rτ,*τy such that
1(A, a) = T for all wffA and all a in Pτ.

Observation 3 (p. 399) is true as stated, though its proof was unsound since
Observation 1 was false. But it and Observation 4 (p. 399) are irrelevant in any
event. Observation 5 (p. 400) is also true as stated but is less than what is needed
when L has (R5) or (R6) without the corresponding theorem. The reason for
this is that a really regular ^-consistent L-theory rather than a merely ordinary
^-consistent L-theory is required once Lemmas 5 and 6 are corrected to 5' and
6' below, as they must be. So we beef up Observation 5 to:

Observation 5' For any A, a nontheorem ofL, there is an A-consistent, really
regular L-theory.

Proof: More or less as before. Simply redefine immediate consequence in L (p.
399) as: The conclusion of an instance of a primitive rule of L is an immediate
consequence of the premises of that instance. Then a derivation of formula B
from set X in logic L is a finite sequence of formulas, the last of which is B and
each of which is either a theorem of L, a member of X, or an immediate con-
sequence of one or more earlier members of the sequence. Then with Γ defined
as on p. 399, it is straightforward to show that it is an ̂ -consistent, really reg-
ular L-theory.

Lemmas 5 and 6 (pp. 402 and 405) are true as stated, but again are not up
to their task when L has (R5) or (R6) as a primitive rule but lacks the correspond-
ing theorem. Though [8] claims to show that m{Γ (m2T) (these are defined by
Slaney's extension of metavaluations in [7]) is closed under the appropriate rule
in those cases, the proof is unsound. For there is no guarantee that C-> B is in
T (B -+ C -* C is in Γ) as required, even though B is in miT (m2T) and hence
an element of T itself. Again we beef them up to:

Lemma 5' Where L is an Ml logic and Tis a really regular L-theory mxT
is a really normal ΊL-theory.

Lemma 6' Where L is an M2 logic and T is a really regular L-theory, m2T
is a really normal L-theory.

Proofs: The original proofs now work. For good measure we show mxTclosed
under (R5) when appropriate. Assume B is in mx T. By Lemma 1, B is in T;
hence so is C-> B, since Γis really regular and thus closed under (R5) in this case.
Using classical reasoning, we see that if C is in mxT9 then B is, by truth of con-
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sequent. And by Lemma 2 and the initial assumption, B is in mx * T. So again
by truth of consequent, if C is in m{T, so is B.

Of course the normalization theorems (pp. 404-405) must also be
strengthened.

Ml Real Normalization Theorem Let L be any Ml logic and let Abe a non-
theorem o/L. Then there is a really normal, Λ-consistent h-theory.

Proof: Observation 5', Lemma 1 (p. 402) and Lemma 5'.

M2 Real Normalization Theorem Let L be any M2 logic and let A be a non-
theorem o/L. Then there is a really normal A-consistent L-theory.

Proof: Observation 5', Lemma 1 (p. 402) and Lemma 6'.

Reduced models (and frames) are finally in hand.

Ml Reduced Model Theorem Every Ml logic formulated without (A 16) is
characterized by its reduced relational models. Further, all Ml logics are charac-
terized by their reduced frames.

Proof: Observation Γ, Observation 2 and the Ml Real Normalization Theorem.

M2 Reduced Model Theorem Every M2 logic is characterized by its reduced
relational models and by its reduced frames.

Proof: Observation Γ, Observation 2, and the M2 Real Normalization Theorem.

4 Conclusion and philosophical remarks A few comments are in order be-
fore closing. The reader will note that the results of [8] really do hold more or
less as stated, and that the new results are completely in line with the original
ones. In particular, the real worlds of our "real" models are large in that appro-
priate if somewhat obscure sense of [8]: there really are "models looking like re-
ality, in which there are many truths beyond what is given by Pure reason".

And our use of really regular theories deserves remark. Formally, of course,
they are just what was required. But is there also some underlying philosophi-
cal point to be seen? Anderson and Belnap [1] insist that there is an important
distinction to be made between primitive/derivable rules of inference and those
that are merely admissible. (Belnap [2] refers to them as object and meta rules.)
The former mark valid inference just as well as a true implication, if I take their
point aright. But the latter are simply facts about a particular set of statements,
namely the supposed truths of logic. Given that Ά entails B9 is supposed to mean
'there is a valid deduction (inference) of B from A', the insistence of [1] and [2]
that a system of entailment should have theorems "corresponding" in some ap-
propriate way to every derivable rule seems reasonable.

[6] takes issue with this criterion (pp. 256-257) and seems to doubt that there
is a viable and/or worthwhile distinction to be made. However, it is worth not-
ing that the theory of L-theories originally set forth in [5] and used in [6] makes
a de facto distinction between two different kinds of rules. This distinction seems
to agree with Belnap's, at least in spirit, though the authors do not even note it
much less afford it any philosophical weight. As far as the motivational story
of [5] goes, there is no requirement that an L-theory contain all of the theorems
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of L (i.e., be regular), only that it be closed under L-implication: the physicist
need not assert the truths of logic, but she must reason properly. It is Logic's job
to govern our reasoning, not to tell us what is true. Accordingly, only the "log-
ical" worlds (members of P) are required to be regular. But in [5], and for the
stronger logics in general, all theories are in fact required to be closed under
the real (derivable) rules. (Note the insistence, by definition no less, that all
L-theories be closed under adjunction (R2).) And only some theories, if any, will
be closed under the admissible rules of L. Note particularly that even the logi-
cal worlds need not be and are not in general closed under those rules.

This is as one would have expected if (i) the distinction between derivable and
merely admissible rules is genuine and (ii) the semantics is to give us some sort
of interpretation of the syntactic formalism. But the situation is much less clear
for the weaker systems dealt with here. For not all L-theories must be closed un-
der the primitive rules of L, not even under modus ponens (Rl). Does this in-
dicate that these rules are merely admissible from the point of view of L, and
hence that the systems in question are poorly formulated? Maybe so. But notice
that in the reduced models the logical world must be really regular and hence
closed under at least the primitive rules. Does this indicate that there is some in-
termediate kind of rule? We think not.

We suggest (at least tentatively) that this apparent confusion is simply the
fault of the systems themselves. They are not good candidates for a system of
genuine entailment. (R5) and (R6) are not valid rules of inference, and no logic
worth its salt will claim that they are. A full discussion of (R3) would be long
and complicated, and hence is best left to another time. Suffice it to say here that
we think that conjunctive transitivity (A13) is a truth about entailment. With re-
spect to (R4), we think that it should be dropped, though we are still of two
minds over adding its theorem form (A 10). And as far as modus ponens (Rl)
goes, the solution is simple. Although we have and will continue to advocate con-
tractionless relevant logics, i.e., ones lacking (A -> .A -• B) -• .A -• B (W)), con-
junctive modus ponens (WI, i.e., A19) is also a truth about entailment, and any
adequate logic will say so.3 So the lack of respect for the distinction reflects a
basic fault of (at least some of) the contractionless systems.

Finally, after all of our somewhat disparaging remarks about frames, it is
only fair to emphasize that they go beyond the relational model structures that
we favor here. As noted above, (A16) escapes our semantic net so far. Further,
even though EW behaves well for reduced relational modeling, E does not— so
far as anyone knows. But, as [8] notes (p. 399), E is characterized by reduced
models defined in terms of frames. We confess to not being particularly fond of
E and think it a rather odd system. From this point of view, the fact that its real
models are messy is neither surprising nor displeasing. Still, it was originally pre-
sented as the centerpiece of relevant logics, so it is Idealogically, if not Philosoph-
ically, Good that it should answer to reduced models of some sort.4

NOTES

1. Of course the models of [8] really are models in the straightforward and useful sense
of formal models that we all employ. Moreover, the reduced models of [8] are iden-
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tical to the reduced models of the relational semantics given below. But the point still
holds against relying on syntactic notions in defining semantic structures —and would
continue to hold even if the whole class of L-frames should turn out to be identical
to the class of L model structures when L is not E.

2. As [6] notes, this postulate is stronger than required for completeness. But as noted
in Giambrone [3] and [4], the additional strength is already there in the canonical
models and seems to be needed for the normalization argument for systems such as T.

3. This is a devastating fact for RW, since W and WI are equivalent therein. But this
is not so for better systems such as TW.

4. We (this author and the reader) owe a debt to the referee for several corrections and
suggestions for clarification of this paper.
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