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Abstract We prove that it is consistent that there exists a subgroup of the
symmetric group Sym(λ) which is not included in a maximal proper sub-
group of Sym(λ). We also consider the question of which subgroups of
Sym(λ) stabilize a nontrivial ideal on λ.

I Introduction The work in this paper was motivated by the following ques-
tion, which was raised by Peter Neumann. If λ > ω, does every proper subgroup
of Sym(λ) lie in a maximal subgroup of Sym(λ) ? While a positive answer seems
very unlikely, all of the results up to this point have concerned sufficient con-
ditions for a subgroup G < Sym(λ) to lie in a maximal subgroup of Sym(λ).
For example, the main theorem in MacPherson and Praeger [3] states that if
G < Sym(ω) is not highly transitive, then G is contained in a maximal subgroup.
In Section 2, we shall prove the following result.

Theorem 1 (Fλ) There exists a subgroup G < Sym(λ) such that the set L =
[H\ G < H < Sym(λ)} is a well-ordering under inclusion of order-type 2 λ. In
particular, G is not contained in a maximal subgroup of Sym(λ).

It is not known whether this theorem can be proved in ZFC. Our extra
hypothesis F\ is the following statement. Let Sym< λ(λ) be the group of all per-
mutations TΓ of λ such that |Mov(ττ)| < λ, where Mov(7r) = {a \ aπ Φ α}. Let
S(λ) = Sym(λ)/Sym<λ(λ).

(Fλ) If T< S(λ) is a subgroup with \T\ < 2λ, then there exists an element
of infinite order TΓ G 5(λ)\Γsuch that <Γ,τr> = Γ* <ττ>.

Here * denotes the free product. We shall also show that Fλ is consistent with
but independent of ZFC.

Another result from [3] states that if /is a nontrivial ideal on λ which con-
tains a set X with \X\ = \λ\X\ = λ, and G < S{1] = {TΓ E Sym(λ) \Γ = /},
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then G is contained in a maximal subgroup of Sym(λ). It is also shown in [3]
that if IGI < λ, then there exists such an ideal / with G < 5^/j. In the third sec-
tion of this paper, we shall obtain a stronger version of the latter result and also
prove the independence of the strongest conceivable version. We shall see that
the least size of a subgroup G < Sym(λ) which fails to stabilize such an ideal is
bounded below by the size B(λ) of the smallest family of uniform ultrafilters
which cover [λ] λ . In the final section, we shall prove that it is consistent that
B(λ) is much bigger than the size of any maximal almost disjoint family T £

Our notation follows that of Kunen [2]. Thus if Ψ is a notion of forcing and
p9q G P, then q < p means that q is a strengthening of p. The notation p || q
means that/7 and q are compatible conditions. A subset XC λ is said to be a moi-
ety if \X\ = \λ\X\ =λ.

2 The main result Theorem 1 is an immediate consequence of the follow-
ing result.

Theorem 2.1 Let Sbea group with \ S | = K > ω. Suppose that whenever T<S
is a subgroup with \ T\ < K, then there exists an element of infinite order π G S\ T
such that <Γ, τr> = Γ* <τr>. Then there exists a subgroup G<S such that the set
L = [H\G < H< S] is a well-ordering under inclusion of order-type K.

Proof: Let S = [ga \ a < K }. We shall define inductively a sequence of strictly
increasing chains of subgroups (Hβ \ β < ot) for a < K such that the following
condition is satisfied.

(*) If β < γ < a, then H$ Π HΊ

Ί = H}.

We set H$ = 1. If λ is a limit ordinal, then we define

H}= U Hg i f β < λ
β<a<λ

H£ = U H%.

Assume that HJ has been defined for all β < γ < a. Our intention is that, at the
end of the construction, we will have that

where H$ = Uβ<a<κHβ- To accomplish this, we take steps to ensure that for
all β < K, if g G H$+ι\Hβ, then <Ho,g) = H§+ϊ. So suppose that there exist
β + 1 < a, g e H$+1\H$ and h G Hg+X such that h £ <Hg,g). By hypothesis,
there exist elements of infinite order τri,7r2 G S\H£ such that <//α,7r1,7r2> =

1 1 1

define H^+1 = (H%,πuπ2,φ). We must check that if 0 < γ < α, then

(•*) Hy Π H£ = Hy.

There are three possibilities to consider.

Case L Suppose that g G H", and hence also h G H". Then Hy+ι =
^ 7 * < τri> * <τr2>, and (**) is obvious.
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Case 2. Suppose that h G //", but g £ H%. It is easily checked that

H«+X = H« * < T l > * <7Γ2> * <g-lΊΓ2g>.

Furthermore, if z G Hy+ι, z = a\ an is the unique reduced sequence expres-
sion with respect to the above free product decomposition, and m is the length
of the unique reduced sequence expression of z with respect to the decomposi-
tion H% * <τr!> * <ττ2>, then m > n. Hence (**) holds.

Case 3. Suppose that g,h £ H". Then the proof that (**) holds is similar to
that in Case 2, using the free product decomposition

Finally, let δ = min{£|^ £ H%+1 j , and define H£} = <J/£+1,&>-
It is now clear that we can perform the construction successfully. This com-

pletes the proof of Theorem 2.1.

The following result, which is an easy exercise, establishes the consistency
ofF λ .

Theorem 2.2 (GCH) For all λ > ω, F λ holds.

We now prove the independence of F λ for cf(\)>ω and for λ = ω. We first
deal with the case when λ = ω.

Theorem 2.3 Let M t= κω = K. Then there exists a generic extension M[G] in
which the following are true.
(i) 2 ω = JC.

(ii) There exists a subgroup T < S(ω) of cardinality ωi such that for all TΓ G
S(ω)\T, there exist g,h e 7Λ1 with [gπ,h] = 1.

Proof: By first adding K Cohen reals if necessary, we can suppose that M 1=
2ω = K. We now perform an iterated finite support construction Ma9 a < ωi. We
pass from Ma to M α + 1 via a 2-step c.c.c. iteration, say

M α C M α ° + 1 C M α + 1 .

First let

jp = {/?|/?:ω-*ωisa finite injective function}.

Then M° + 1 =Ma[G]9 where G is a generic subset of IP. Let TΓ = UG and Γα =
Sym(ω)Mθί. Clearly TΓ G Sym(ω).

Claim 2.4 //*#! , . . . , g Λ e Γ α , then C[\<i<nfix{^gi) is an infinite subset ofω.

Proof: Fix /Gω. Let 3D consist of those q G P for which there exists m > t such
that for all 1 < / < n, gfλqgi(m) = m. It is enough to show that 3D is a dense
subset of IP. Let p G IP. For each 1 < / < n, there are finitely many r such that
gi(r) G dom/7 U ran p. So there exists m > t with

{#/("*) 11 ^ / ^ Λ) ΓΊ [dom/7 U ran/?] = 0 .

Let # < p satisfy q(gi(m)) = g;(m) for 1 < / < n. Clearly q G 3D. This proves
Claim 2.4.
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Now we explain how to pass from M°+1 to Ma+\. Let T = {fix(τr^) | g G Γα j .
By Kunen's A10 [2] (p. 289), there exists a c.c.c. notion of forcing such that the
generic extension M α + 1 has the following property: there exists an infinite sub-
set S C ω such that | S\F\ < ω for all F G T . Choose an infinite cycle φ such that
Mov(^>) = 5. Then for each g G Γα, |Mov(τr*) Π Mov(ρ)| < ω. Hence, when
regarded as elements of S(ω), we have that [TΓ*,^] = 1. Now write τrα = TΓ and
φa = φ9 and let T= {^ayψd \ OL < ω{). Then clearly Tsatisfies the requirements
of the theorem. This completes the proof of Theorem 2.3.

Theorem 2.5 Suppose that M t= GCH and c/(λ) > ω. Then there exists a
generic extension M[G] such that M[G] N -»Fλ.

Proof: Let λ = ωa. For each i < ω, let μt = ω α + z . Let IP = Fn(μω92) be the set
of finite functionsp from μω to 2, and let Ψn = Fn(μn,2) for AZ < ω. Let G be
a generic subset of IP and let Gn = GΠΨn. Note that for 1 < n < ω, Af [Grt] 1=
2 λ = μπ: while M[G] N2λ = (/xω)+.

Let TΓ G Sym(λ) M [ G ] , and let TΓ be a IP-name of TΓ. For each Λ < ω, let τrΛ =
{<α,j3> I (3/7 G GΛ)/? Ih τT(α) = β}. Then πΛ G Af[σΛ] and τrΛ c TΓ. Also TΓ =
U/iGω ̂ "/i Since cf(λ) > ω, there exists n < ω such that | dom(τrΛ)| = λ. By tak-
ing a suitable subset of τrπ if necessary, we can suppose that | λ\dom(τrπ)| =
|λ\ran(τrΛ)| = λ. Hence there exist ψ,θ G Sym(λ)M [ G« ] such that ψ D τn and
Mov(ί) = dom(τrrt). Then f i x ^ " 1 ^ 2 Mov((9), so that [φ~ιτr9θ] = 1.

Let G = U/ίGω Sym(λ)M [ G r t ], and let Γbe the corresponding subgroups of
S(λ)M[G]. Then \T\ = μω< 2 λ, and Γwitnesses the failure of Fx in M[G].

J Small subgroups of Sym(λ) In [3], the following observation is made.

Lemma 3.1 Let G < Sym(λ). Then the following are equivalent.
(i) For some proper ideal I on\ which contains a moiety of λ, G < S{/).

(ii) There exists a moiety Aofλ such that for all g\,... ,gnG G,

\Φ U A".

If condition (ii) holds, we say that λ is not G-covered.

Definition 3.2

C(λ) = min{|G|G < Sym(λ), λ is G-covered}.

In [3], it is proved that C(λ) > λ. To explain what is going on here, it is useful
to introduce three more cardinal functions.

Definition 3.3
(i) A(λ) is the least cardinal K such that if & C (P(λ) is an almost disjoint fam-

ily, then | β | < K.
(ii) B(λ) is the least size | / | of a family of ultrafilters % c fl>(λ), / E /, such

that
(a) for all / G / and X G %, \X\ = λ;

(b) μrcλlAΊ^jcU/e/^/.
(iii) D(\) is the least size | / | of a family of sets [Yj \j G J] c (p(λ) such that
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(a) for ally E / , \Yj\ = λ;

(b) if X c λ with IX | = λ, then there exists y G J with Y) g X

Theorem 3.4

λ < Ά(λ) < B(λ) < C(λ) < Z>(λ) < 2 λ.

Corollary 3.5 IfG < Sym(ω) and \G\ < 2ω, then ω is not G-covered.
It is clear that λ<A(λ)<B(λ). We prove the other inequalities in the next

two lemmas.

Lemma 3.6

Proof: Suppose G < Sym(λ) is such that λ is G-covered. Let 01 be a uniform
ultrafilter on λ; i.e., \X\ = λ for all XG ^ Suppose that there exists a moiety
X e 01 such that g[X] Π X E 01 for all g G G. Then for all g!, . . . ,gπ E G,

E 11. Let /be the ideal which is dual to the filter

T = j Z E (P(λ)|There exist g!,...,gw E G with f) gi[X]QZ\.

Then G < Sj/j and /is a proper ideal which contains a moiety of λ, a contradic-
tion. Hence for each moiety XG 01, there exists gGG such that X\g[X] E 01.

Fix an element g G G and let

If * ! , . . . , ^ E S ( g ) , then

n [Xi\giχι]] = f n χ)\( u

In particular, UI</</J£[^7] = ̂ [Ui</</2^/] niust be a moiety of λ, so that
Ui<i<«^ is a moiety. Hence λ\Ui</</i-*/ = Πi</</i (λ\-X/) is a moiety. Con-
sequently, there exists a uniform ultrafilter OL(g) 2 {λ\X|XE S(g)}. So every
moiety of λ lies in one of the uniform ultrafilters {01} U (Ol(g) | g E G j . Hence
B(λ)< | G | , andso£(λ) < C(λ).

Lemma 3.7

C(λ)<Z)(λ)

Proof: Let T Q (P(λ) satisfy the following:

(a) |ΛΊ = λ for ΛΓET;

(b) if Y Q λ with IY \ = λ, then there exists Z G T with ^ c Y;
(c) | T |

Clearly we can also suppose that

(d) each X E T is a moiety.

For each ^ E T, let TΓ^ E Sym(λ) be an involution such that -κχ[X] =
, and let G = <τr^|XE T>.
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Now let A c λ be a moiety. Then there exists Z G T with X g A. Thus
^ λYAΓ2λY4, so that λ = A U πχ[A]. Hence λ is G-covered, and so

C(λ)<Z>(λ).

The final result in this section shows that it is consistent that there exists
G < Sym(λ) with \G\ < 2 λ such that λ is G-covered. It also demonstrates the
consistency of B(λ) < C(λ).

Theorem 3.8 Suppose that M f= GCH and λ > ω is regular. Let λ = ωa and
K = ω α + ω . Let Ψ = Fn(κ,2) be the partial order of finite functions from K to 2,
and let G be a generic subset of IP. Then the following statements are true in
M[G].
(a) 2 λ = κ +

(b) A(\)=B(λ) = \+

(c) C ( λ ) = D ( λ ) = κ.

Proo/: The facts that 2 λ = κ+ and ^4(λ) = λ+ are included in Theorem 5.6 of
Baumgartner [1]. Arguing as in the proof of Theorem 2.5, we easily obtain that
D(\) < K. Thus to prove (c), it is enough to show that C(λ) > K.

So suppose that there exists Γ < Sym(λ)M [ G ] with λ < |Γ| = θ < K such
that λ is Γ-covered. Then there exists / C K of cardinality θ such that Γ G
M[GΠ Fn(I92)] = TV. Let Q = Fn(λ,2) and let H C Q be generic over N.
We shall show that λ is not Γ-covered in N[H], which yields the desired con-
tradiction.

L e t / = U [p\p e H) and let S = {a G λ \f(a) = 1}. Clearly S is a moiety
of λ. Let 7Γi,..., τrΛ G Γ and let 2D consist of the # G Q satisfying:

(+) There exists β G λ and γ ^ . . j ^ λ such that

(i) τr/(7,) = β for 1 < / < Λ ;

(ii) q(Ύi) = 0 for 1 < / < n.

Clearly 3D is dense in Q, and if q G 3D then q Ih Ui</<Λ π* [S] Ψ λ. Thus λ is
not Γ-covered in N[H].

It only remains to compute B(λ). We shall do this via the following series
of lemmas.

Definition 3.9 A IP-name σ is simple if it has the form

where

(a) J c \ has cardinality λ.
(b) If a Φ β, then dom qa Π dom qβ = 0 .
(c) There exists Λ < ω and fσ:n-+2 such that for all α G X

(i) dom#α = {αo» .»αιι-i)
(ϋ) Qa(oίi) =fσU) ίoτi<n.

Lemma 3.10 If σ is a simple Ψ-name, then Ihσ G [ λ ] \

A straightforward Δ-system argument yields the next result.

Lemma 3.11 Suppose that G g P is generic and that M[G] tτGe [λ] λ .
Then there exists a simple Ψ-name σ such that M[G] t= σG Q τG.
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Thus it suffices to find λ"1" uniform ultrafilters in M[G] such that σG is con-
tained in one of them for each simple IP-name σ. We shall also make use of the
following well-known result.

Lemma 3.12 For any cardinal θ > ω, Fn(2θ,2) is the union of θ centered
subsets.

Clearly it is enough to show that B(λ) < λ+. Initially we will work inside M.
Let ("UQ, I a < λ+ ) E Mbe a sequence of uniform ultrafilters on λ such that for
each Xe [λ] λ Π M, there exists a < λ+ with XE "U .̂ Let σ = {(ά,qa) | a E X]
be a simple P-name, and let dom qa = [aOi... ,αw_i} for each a E X Then
Jf E 'ILy for some 7 < λ+. Define an equivalence relation =Ί on λκ by:

φ =y θ iff ( α | ^ ( α ) = θ(a)) E ^

Let [φ]Ύ be the =7-class containing φ E λ/c, and let λκ/c\ίy = {[^]71 φ E λ/c).
Then σ determines pσ E i ^ ί ^ / Ί L γ ^ ) as follows. For i < n, define Λz E

 λ/c by

Λz(α) = α z i f α E ^

= 0 i f α E λ \ X

Letdompσ= {[Λo]7, Λhn-X]y} and setpσ([A/]7) =/ σ (ι) .

Lemma 3.13 Suppose that σj = {(ά,ql)\a S Xj] is a simple Ψ-name for
j < k. Suppose further that:
(1) Xje<VLyforj<k;
(2) pσo,... ,Ar*_, Λέw e α common strengtheningp E F«(λ/c/cU7,2).

lhσ0 Π Π σk-X E [ λ ] λ .

Proof: For eachy < k and α E A}, let dom q{ = {aί,...,α^-i) Let Z E "U7

consist of those a < λ satisfying

(a) α EΛ'oΠ ••• Π A}t_i.

(b) If s < t < k, I < ns - 1 and m<nt-\, then

ctf = at

mm[hf]Ί=[ht

m}Ί.

Let r E P be arbitrary and β <λ. Then there exists a G Z such that

(c) j8 < α < λ.
(d) dom r Π dom ̂  = 0 for all y < k.

We define ^ = rU Uj<kQI- Assuming that q E IP, we have that q < r and that
<7 Ih α E σ0 Π Π σ^-!. Thus it is enough to show that q is a well-defined
function. Suppose that ctf = a^ for some s<t<k. Then, since [Λf]7 = [Λ4]7

and pσs9pσt are compatible, we must have/^([λf]7) =/7σ/([Λ^]7) and hence

For each γ < λ+, let Q7 = Fn (λ/c/cU7,2) E M. In the remainder of the proof,
we will work inside M[G]. Notice that the cardinality of (λ/c/cU7)

Mis at most
2 λ in M[G]. So by Lemma 3.12, we can express Q7 = Uα<\AΎξ as a union
of λ centered sets. Let S = {σG \ σ is a simple P-name). For each γ < λ+ and
£ < λ, define ^ = [ σG \pσ E ^ } . Then
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5 = U U^.If (σo)G,...,(σ*_1)Ge cU7£
7 < λ +

then/7σo,... ,pσ/c_ι have a common strengthening in Q7 and so lhσ0 Π Π σ*_i G
[λ] λ . Thus CU7£ can be completed to a uniform ultrafilter on λ. This completes

the proof that B(λ) = λ+.

4 Covering families of ultrafliters

Theorem 4.1 Let MY GCH. Let λ and K > λ+++ be regular cardinals. Then
there exists a notion of forcing IP, which preserves cofinalities and cardinalities,
such that ifG^Ψis generic then

M[G] N λ+ = A(\)< B(\) = K = 2\

Definition 4.2 IP consists of all conditions p = (a,h,f,g) satisfying
( i ) α G [ κ ] * λ + + .

(ii) Λ : [ α ] 2 - λ .
(Hi) There exist finite u g a, v £ λ such that/: uxυ-+2 and g: [w]2->2.
(iv) If g(a9β) = / ( α , τ ) = / ( ^ τ ) = 1, then γ < Λ(α,j8).

The order relation is the natural one.
The intuitive meaning is that we are adjoining the sets Aa = {7 < λ |

f(a,y) = 1} for a < K. The function h gives a vague promise that AaΠAβ^
h(a,β). But h is unreliable, and should only be taken seriously when g(a, β) = 1.

Definition 4.3
(a) q = <aϊ,hufugι) < /? = <ao,hθ9fo,go) iff # < A/O = / I andgo = £i.

(b) q = {auhufugx) < p = (ao,hOifo,go) iff q <p, ao = a{ and Λo = Λi
α/7

Lemma 4.4 7/* ^ < p, then there exists r G IP swcΛ Λ̂αί q < r < p.
ap pr

An easy Δ-system argument yields the next result.

Lemma 4.5 If p G IP, then [q G IP I q < p) satisfies the c.c.c.
1 ap '

Lemma 4.6 Ifp G IP tffltf fisa Ψ-name of an ordinal, then there exists qEF
such that
(i) q ^ P\

pr

(ii) ifr<q and r Ih r = 7 , *ΛeΛ ίΛere exists r' II r ^wcΛ that r' < q and r'W f = 7 .

Proof: We define inductively/?/, and also /} ,7y for successor,/ such that:

(i) Po=Pl
(ii) Pi < /? and the chain [pk\ k < /} is strictly decreasing and continuous;

(iii) η ψ pj and η Ih r = 7,-;

(iv) i f y ^ ^ t h e n r ^ | rh
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Suppose that the construction can be continued for all i < α>i. Then there
exists p* G P with p* < pt for all i < ωι. Notice that for each successor j <ωί9

pr

there exists r* G P such that r* < ry and r* < /?*. But then [rj \j < ω\ is a suc-

cessor) is an uncountable antichain, which contradicts Lemma 4.5.
So where does the inductive construction break down? Since [q E P | q < p)

pr

is λ+++-closed, the construction cannot fail at a limit stage. Thus we can sup-
pose that Pi has been constructed, but that it is impossible to construct A+i>
r/+i,7, +i. We claim that q =Pj satisfies our requirements. Suppose not. Then
there exists 7 and r < Pi with r Ih τ = 7 such that there is no r' < A satisfying

ap

r' II r and r'\\- f = 7. Let r/+1 = r < /?l+i ^ A» and let 7,+1 = 7. Then (iv) must
ap pr

fail, and so there exists j < / with η || r/ + 1. In particular, yj = 7,+1 = 7 and η Ih
r = 7. But now there exists r* < /?,- with r/ < η and r/ || r, which is a contra-
diction.

Using the fact that [q e P | q < p] is λ+++-closed for each/? G IP, we easily

obtain the following result.
Lemma 4.7 Ifτi9i < λ++, are IP-names for ordinals and p G IP, then there
existsq<psuch thatifi< λ+ + andr<q with rIhτ, = 7, ίΛefl ίήereβxfeίsr' | r
such that r' < q and r' Ih f, = 7.

ύr/7

Lemma 4.8 IP preserves all cardinals and cofinalities less than or equal to

Proof: For example, suppose that p Ih / : λ+ + -> λ+ + +. Let q < p

satisfy the conclusion of Lemma 4.7 with respect to the P-names/(ά), a < λ++.
Since {rEΦ\r<q} satisfies the c.c.c, we see that q Ih/is not a cofinal map

1 ap '

in λ+ + +.

An easy Δ-system argument (which makes use of the assumption that M N
GCH) yields the next result.

Lemma 4.9 P is λ+ + + +-c.c; and hence P preserves all cardinals and cofinal-
ities.

Lemma 4.10

Ih4(λ) = λ + . ,

Proof: Suppose that p Ih "< tx\\ i < λ + + ) is an almost disjoint family in (P(λ)."
For each i < j < λ++, let T/, = sup (7} Π 7} ). Then p Ih f̂  < λ. Choose ςr < p

satisfying the conclusion of Lemma 4.7 with respect to the P-names ?#, i<j<
λ++. Using Lemma 4.5, we see that there exists /% < λ such that q Ih 7} Π 7} c jĝ ..

Since MN GCH, λ + + - > ( λ + ) t Hence there exists Hc\++ with | i^ | = λ+

and j8 < λ such that for all distinct ij G H, q Ih 7} Π ^̂  c j8. Let G' 3 ^ be
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generic and 7} = (7})G-. Then in M[G']9 [7}\/31 / e H} is a collection of λ+ non-
empty pairwise disjoint subsets of λ, which is a contradiction.

Definition 4.11 For each a < κ9 Aa = {<7,<α,Λ,/,g» | / (α,τ) = 1).

Lemma 4.12

(i) lHA*l=λ.
(ii) Ifp = <a9h9f9g) andg(a,β) = 1, ^

Lemma 4.13

Proof: Suppose not, and let θ = λ+ + + +. Then there exists a IP-name £) for a
uniform ultrafilter on λ, distinct ordinals α, < K for / < 0, and conditions/?/ G IP
such that/?/ \\-Aa. G S. Let/?/ = <tf/,Λ/,.//,£/> We can suppose that αz G at for
each i < 0.

Since Λf N GCH, we can also suppose that the following hold.

(i) {a, I / < θ} forms a Δ-system with root A and the Λ, are pairwise com-
patible functions.

(ii) {W/11 < 0 j forms a Δ-system with root (7, {f/1 / < 0} forms a Δ-system
with root V; and the .//,&• are pairwise compatible functions. Since
\A\ < λ++, we can also suppose that

(iii) α, ί A for all / < 0.

Fix i <j < 0. Since α/,α:y ί >4, we can form a condition # = (a,h,f,g} <
/?/,/?, such that g(ai9oίj) = 1 and h(ai9aj) is given a sufficiently large value. But
then

q Ih Aaι Π ̂ ίαy c Λ(ai9ctj) < λ,

which is a contradiction.
This completes the proof of Theorem 4.1. The following problems remain

open.

Question 4.14 Suppose that G < Sym(λ) and | G\ < 2 λ. Is G contained in
a maximal subgroup of Sym(λ)?

Question 4.15 Does C(λ) = D(λ)Ί

Question 4.16 Is it consistent that C(ωx) = ω2 < 2ωi?

Acknowledgments Professor Baumgartner's research was partially supported by NSF
Grant DMS-8906964. Professor Shelah's research was supported by the BSF and the
Fund for Basic Research administered by the Israel Academy of Sciences and Human-
ities. Professor Thomas's research was partially supported by NSF Grant DMS-8902139.

REFERENCES

[1] Baumgartner, J., "Almost disjoint sets, the dense set problem and the partition cal-
culus," Annals of Mathematical Logic, vol. 10 (1976), pp. 401-439.



MAXIMAL SUBGROUPS 11

[2] Kunen, K., Set Theory, North-Holland, Amsterdam, 1980.

[3] MacPherson, H. and C. Praeger, "Maximal subgroups of infinite symmetric
groups," Journal of London Mathematical Society, vol. 42 (1990), pp. 85-92.

Department of Mathematics
Dartmouth College
Hanover, NH 03755

Institute of Mathematics
The Hebrew University
Jerusalem, Israel

Department of Mathematics
Rutgers University
New Brunswick, NJ 08903




