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Single Axioms for the Left Group

and Right Group Calculi

WILLIAM W. McCUNE

Abstract This article is on axiomatizations of the left group calculus and
of the right group calculus. The axiomatizations use modus ponens rather
than equality substitution as the inference rule. The structures being axiom-
atized are ordinary free groups, and the sole operation is division. Previous
axiomatizations are due to J. A. Kalman. The article contains single axioms
and other simple axiomatizations of the two calculi. An automated theorem-
proving program was used extensively to find candidate axiomatizations and
to find proofs that candidates are in fact axiomatizations.

/ Introduction In [2], Kalman presents axiomatizations of the left group
tautologies and the right group tautologies. In this paper we sharpen those re-
sults by showing that Kalman's axiomatizations are dependent and by giving
other simpler axiomatizations, including ones that consist of single formulas.

A left group formula is an expression constructed from variables and a
binary function symbol E. A left group formula a is a left group tautology iff
a = 1 is valid in (multiplicative) group theory when E(x,y) is interpreted as
JC"1 -y. The left group calculus consists of left group formulas and the inference
rules variable instantiation and modus ponens, where E is treated as implication
(i.e., from a and E(a,β) infer β). An axiomatization of the left group calculus
is a finite set of left group tautologies from which every left group tautology is
derivable in the left group calculus. A single axiom for the left group tautologies
is a left group formula a such that {a) is an axiomatization of the left group cal-
culus.

There are analogous definitions for the right group calculus, in which E(x, y)
is interpreted as x-y~ι. (Ordinary modus ponens, rather than reverse modus
ponens, is used for the right group calculus. This is discussed in Section 3.)

The inference rule used for the proofs in this paper is C. A. Meredith's con-
densed detachment (cf. Lemmon et al. [5], D. Meredith [10]), which uses uni-
fication to combine the operations of modus ponens and instantiation: consider
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premises a and E(y,β)9 in which variables have been renamed, if necessary, so
that they have no variables in common; if a and y unify, then infer the (most
general) corresponding instance of β. Every formula that can be derived by mo-
dus ponens and instantiation either can be derived by condensed detachment or
is an instance of a formula that can be derived by condensed detachment (Kal-
man [4]). See the proof of Theorem 4 below for simple examples of the appli-
cation of condensed detachment.

Section 2 contains condensed detachment proofs that three (LI, L4, and L5)
of Kalman's five axioms for the left group calculus are dependent on the remain-
ing two axioms. It is then shown that

(SI) E(E(E(E(x9y)9z)9E(E(u9υ)9E(E(E(w9υ)9E(w9u))9s)))9

E(z9E(E(y9x)9s)))

is a single axiom for the left group calculus. Several other simple axiomatiza-
tions (which are not single axioms) are also given. Section 3 contains condensed
detachment proofs that four (Rl, R3, R4, and R5) of Kalman's five axioms for
the right group calculus are dependent on the remaining axiom R2:

(R2) E(x9E(x9E(E(y9z),E(E(y9u)9E(z,u))))).

Five other single axioms for the right group calculus are also given (without
proof).

Single axioms are known for the equivalential calculus (Lukasiewicz [6]),
in which E(a9β) can be interpreted as the cc-β in Boolean groups, and for
the L-calculus (C. Meredith [9]) (respectively /^-calculus (Kalman [1])) in which
E(oc,β) can be interpreted as a~ι -β (respectively a-β~ι) in Abelian groups.
Prior to the work reported in this paper, no single axioms for the left group or
right group calculi were known to the author. The new single axioms answer
questions raised by C. A. Meredith ([9], p. 222).

We made extensive use of the automated theorem-proving program OTTER

(McCune [7]) in obtaining the new axiomatizations. Theorem-proving programs
have been used to study given candidate axiomatizations in related areas (for ex-
ample, Kalman [3], Wos et al. [12], Peterson [11]), but here, the goal was to find
simpler axiomatizations. OTTER was used to generate candidate axiomatizations,
to search for proofs that the candidates are in fact axiomatizations, and to search
for dependencies in axiomatizations.

2 The left group calculus From here on, formulas are written in Polish no-
tation. In the proofs that follow, the justification [m,n] indicates that formula
m is the major premise Eaβ and that n is the minor premise, which unifies with
α. The result is the corresponding instance of β. Variables are renamed starting
with x9 y,z, u, v, w9s9 t. The formula numbers indicate position in the sequence of
formulas retained by OTTER.

Kalman's axiomatization of the left group calculus consists of the following
five axioms [2]:

(LI) EEExEEyyxzz
(L2) EEEEExyExzEyzuu
(L3) EEEEEExyExzuEEyzu v v
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(L4) EEEExyzuEEExυzEEyυu
(L5) EEExEEyxzEEuxυEEEExyuzv.

Theorem 1 The pair of formulas {L2,L3) axiomatizes the left group calculus.

Proof (OTTER): The following condensed detachment proof derives L4, L5',
which is a generalization of L5, and LI from {L2,L3}:

(L2) 3 EEEEExyExzEyzuu
(L3) 4 EEEEEExyExzuEEyzuυv

18 [4,4] EEExyzEEuyEExuz
21 [18,18] EExyEEEzuxEEvuEEzvy
22 [4,18] EExyEEEEzuEzvxEEu vy
23 [3,18] EExEyzEEEyuxEuz
25 [18,4] EExyEEEEEEzuEzvwEEuvwxy
34 [4,21] EEExyEEEzuEzvwEEsyEExsEEuvw
37 [21,4] EEExyEEEEEzuEzvwEEuvwsEEtyEExts
43 [3,22] EEEExyExzEEuvEuwEEyzEvw
46 [22,4] EEEEyxExzEEEEEu vEu wsEEv wstEEyzt
48 [23,23] EEEEExyzuEzExvEuEyυ
56 [23,18 ] EEEExyzEEuy vEzEEuxυ
58 [23,3] EEExyEEEEzuEzvEuvExwEyw
139 [43,3] EEExyEEzxuEEzyu
366 [34,139] EExEEEyzuvEEEuEywxEEzwv
372 [23,139] EEEExyzEEuyEExuυEzv
375 [18,139] EExEEyzuEEEzvxEEyvu
385 [37,25] EExyEEEEEzuvEEwuEEzwvxy

(L4) 1475 [46,22] EEEExyzuEEExυzEEyυu
2688 [56,18] ExEEyzEEzyx
3811 [48,2688] ExEyEEEEzuyEuzx
4814 [372,3811] ExEEEEyzEEzyuux
6608 [375,4814] EEExyzEEEEuυEEυuxyz

(L5') 8757 [366,6608] EEExEEyzuEEυxwEEEEzyυuw
(LI) 19117 [58,385] EEExEEyyxzz.

Theorem 2 The pair of formulas {L2,P1} axiomatizes the left group calculus:

(L2) EEEEExyExzEyzuu
(PI) EEExyzEEuyEExuz.

Proof (OTTER): PI is a left group tautology (which can be verified by rewriting
Eaβ to a~ιβ and reducing to 1). The following condensed detachment proof
derives L3 from {L2,P1}:

(L2)
(PI)

3
4
32
35
38
44
61

[3,4]
[32,32]
[32,4]
[35,3]
[38,4]

EEEEExyExzEyzuu
EEExyzEEuyEExuz
EExEyzEEEyuxEuz
EEEEExyzuEzExvEuEy v
EEEExyzEEuy vEzEEuxv
EEExyEEzxuEEzyu
ExEEyzEEzyx
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86
93
116
161
219
221
1111
1127
1511
1522

[32,44]
[38,61]
[86,44]
[35,93]
[32,116]
[4,116]
[221,221]
[4,1111]
[219,161]
[38,1511]

EEEExyzEEuyEExu vEz v
ExEEyzEEuyEEzux
EEExyEEyxzz
ExEyEEzuEEEEu vyEvzx
EEExyEEzuEEuzExvEyv
EExEEyzuEEEzyxu
EEExEyzExEEzyuu
EExEyEEzu υEEEyEuzxv
ExEEEEyzEyuEzux
ExEEEEyzEyu vEEυEzux

(L3) 1524 [1127,1522] EEEEEExyExzuEEyzuvυ.

Theorem 3 Formula SI is a single axiom for the left group calculus:

(SI) EEEExyzEEu vEEEwvEwusEzEEyxs.

Proof (OTTER): SI is a left group tautology (which can be verified by rewriting
Eaβ to a~ιβ and reducing to 1). The following condensed detachment proof
derives PI and L2 from SI:

(SI) 10 EEEExyzEEuvEEEwvEwusEzEEyxs
23 [10, \O]EEExyEEEzyEzxuEEEvwEEsvEswu
24 [10,23]EEEExyExzEEEuEEυwEυsEuEwstEEyzt
26 [24,10]EEEExEEyzEyuExEzuEEEvwEvstEEwst
32 [26,24]EEExyzEEEuxEuyz
33 [26,10]EEEExyExzuEEyzu
34 [32,32] EEExEyzExuEEEvyEvzu

(PI) 41 [33,33]EEExyzEEuyEExuz
(L2) 331 [24934]EEEEExyExzEyzuu.

Six other axiomatizations of the left group calculus were also discovered with
the assistance of OTTER. The axiomatizations include formulas from the follow-
ing list:

(L2) EEEEExyExzEyzuu
(PI) EEExyzEEuyEExuz
(P4) ExEEEEyzEyuEzux
(Ql) ExEEyzEEzyx
(Q2) EExyEEzxEzy
(Q3) EEExyEEyxzz
(Q4) EEExyExzEyz.

Each of the sets {L2,P4}, {L2,Q1,Q2}, {P1,Q3}, {P4,Q3}, {Q1,Q2,Q3},
{Q1,Q3,Q4} is an axiomatization of the left group calculus. Proofs can be found
inMcCune [8].

3 The right group calculus Kalman's axiomatization of the right group tau-
tologies consists of the following five axioms [2]:

(Rl) ExExEEyEzzy
(R2) ExExEEyzEEyuEzu
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(R3) ExExEEyEzuEyEEzυEuυ
(R4) EEExEyzEuEyvExEuEzv
(R5) EExEyEzEuvEExEvzEEyEvuv.

Let the mirror image of a formula be obtained by rewriting each occurrence
of Eaβ to Eβa. Note that each of the five axioms R1-R5 is the mirror image
(after renaming variables) of the corresponding axiom in L1-L5. When the in-
ference rule used with the right group tautologies is reverse modus ponens, it is
easy to see that the resulting calculus is isomorphic to the left group calculus.
However, Kalman states (without proof) that ordinary modus ponens can also
be used with R1-R5 to axiomatize the right group tautologies. We sketch a proof
of this result here.

Theorem 4 From formulas R1-R5, one can derive all right group tautologies
with instantiation and ordinary modus ponens.

Proof sketch (OTTER): We show that from R1-R5 (in fact, from just R2) and
ordinary condensed detachment, we can derive reverse modus ponens. We do this
by assuming Eaβ and β, for constants a and β, and deriving a. Once we have
reverse modus ponens, we can derive all right group tautologies.

(R2)

2
3
4
6
8
9
10
25
26
29
59
90
93

[4,3]
[6,3]
[8,8]
[8,2]
[9,10]
[9,8]
[9,25]
[26,26]
[29,59]
[90,3]

Eaβ
β
ExExEEyzEEyuEzu
EβEExyEExzEyz
EExyEExzEyz
EEExyzEEExuEyuz
EEaxEβx
EEEaxEyxEβy
EEExyEzyEExuEzu
EEEEaxyEEzxyEβz
EEExyzEExyz
Eβa
a.

For the right group calculus, we use ordinary modus ponens rather than re-
verse modus ponens in order to have a system that is substantially different from
the left group calculus. In addition, it appears that the right group calculus has
axiomatizations that are simpler than the left group calculus has.

Theorem 5 Formula R2 is a single axiom for the right group calculus.

Proof (OTTER): The following (ordinary) condensed detachment proof drives
R3, Rl, R4, and R5', which is a generalization of R5, from R2:

(R2) 3 ExExEEyzEEyuEzu
21 [3,3] EExExEEyzEEyuEzuEEvwEEvsEws

22 [21,3] EExyEExzEyz
24 [22,22] EEExyzEEExuEyuz
25 [3,22] EEExyEExzEyzEEuvEEuwEvw
26 [22,3] EExyEExEEzuEEzvEuvy
27 [24,24] EEEExyzEuzEEExvEyvu
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(R3)
(Rl)

(R4)

29
30
31
36
40
43
57
69
74
75
93
102
124
126
135
142
160
161
164
181
184
378
382
542
543
544
836
876
888
1029
1500
1587
2210

[3,24]
[24,22]
[24,3]
[26,22]
[27,25]
[27,29]
[30,21]
[22,40]
[40,29]
[40,21]
[57,40]
[69,69]
[74,31]
[69,75]
[43,93]
[22,93]
[24,102]
[22,102]
[102,74]
[124,36]
[126,126]
[184,181]
[184,93]
[184,382]
[164,382]
[161,382]
[57,542]
[543,378]
[543,135]
[160,544]
[543,836]
[142,1029]
[75,1500]

EEEExyzEEExuEyuzEEv wEEυsEws
EEExyEzyEExuEzu
EEExyEzyEExzEEuvEEuwEvw
EEExyEEzuEEzυEEzvEuvEExwEyw
EEExyEzyExz
EEEExyzEEuEyvzEExvu
EEExEEyzEuzvEExEyu v
EEEExyEzyuEExzu
EEExyEzEyuEExuz
EExEEyzEuzExEyu
EEExEyzEuyExEuz
EEExyzEExuEzEuy
EEExyEEzuEyuExz
EExEyzEExEuzEyu
EEExEEyyzzx
EEEExEyzEuyvEExEuzυ
EEEExyzEuzEExvEuEυy
EEEExyzuEEExvEzEυyu
EEExyzEEExu vEzEvEyu
EExEEyzEEyuEzux
EEExEyzEuEyυEExEvzu
EEExEEyzuEuEEyvEzvx
EEExEyzEzyx
EEEExEyzEuyEzux
EEEExEyzuvExEvEEzyu
EEExyEEzuEyEuzx
EEEExEyEzuEEvuyEzυx
ExExEEyEzuEyEEzυEuv
ExExEEyEzzy
EEExEEyzEuEzyυExEvu
EExEyEzuExEEyEυuEzv
EExEyEzEuυExEEyEυuz
EEExEyzEuEyυExEuEzυ

(R50 2276 [1500,1587] EExEyEzEuvEExEwzEEyEvuw.

One might conjecture that a set of formulas axiomatizes the left group cal-
culus if and only if its set of mirror images axiomatizes the right group calcu-
lus. On the contrary, although R2 is a single axiom for the right group calculus,
L2 cannot be a single axiom for the left group calculus, because it does not (or-
dinary) condensed detach with itself.

Each of the following formulas is also a single axiom for the right group
calculus (with ordinary modus ponens). Proofs can be found in [8].

(52) EExEyzExEEyuEzu
(53) ExExEEEyzEuzEyu
(54) EExEyzEExEuzEyu
(55) EExEEyzEEyuEzux
(56) EExEEEyzEuzEyux.



138 WILLIAM W. McCUNE

4 The role of OTTER The program OTTER [7] is a general-purpose, resolu-
tion/paramodulation theorem prover for first-order logic with equality. The main
consideration in the design of OTTER was the ability to quickly explore large
search spaces rather than the use of heuristics to carefully control the searches.

We used OTTER in two ways to obtain these results. First, to find the multi-
formula axiomatizations listed at the end of Section 2, we iterated as follows:
take a known axiomatization, replace a complex axiom, say a, with a set of
simpler tautologies, then search for a proof of a; if a proof is found, search for
dependencies in the new axiomatization. Second, to find the single axioms, we
generated large sets of tautologies, and with each, searched for a known axiom-
atization. The main method for generating the large sets of candidate single
axioms was to enumerate tautologies not containing instances of E(x,x). (Most
tautologies contain instances of E(x,x), but the interesting axiomatizations usu-
ally do not.) Approximately 10,000 OTTER searches were run, consuming about
four days of computer time. Another paper [8] contains a detailed presentation
of the use of OTTER to obtain the results presented in this paper.
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