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Some Modal Logics Based on
a Three-Valued Logic
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1 Introduction A K-modal logic based on Lukasiewicz’s three-valued logic
has been formulated by Schotch [2]. In this paper we formulate K-, M-, S4-, and
SS5-modal logics based on a general three-valued logic by using the notion of a
matrix in [3].

In Section 2, we define truth values, formulas, and matrices. In Section 3,
we introduce three-valued Kripke models defined in [1]. In Section 4, we pre-
sent the systems K, M, S4, and S5 of modal logic based on a general three-
valued logic (3-K3, 3-K,, 3-Mj;, 3-M,, 3-S4;, 3-S4,, 3-S5;, and 3-S5,). 3-K3,
3-M;, 3-545, and 3-S5; are modal logics based on a three-valued logic in which
the modal operators take on all three of our truth-values. 3-K,, 3-M,, 3-S4,,
and 3-S5, are modal logics based on a three-valued logic in which the modal
operators take only the two classical truth-values. In Section 5, we develop the
syntax of 3-K;, 3-M;, 3-S4;, and 3-S5; (i = 2,3) and it will be shown that the
cut-elimination theorems no longer hold in 3-X;, 3-M;, 3-S4;, and 3-S5;. In Sec-
tion 6, we prove the completeness theorems for 3-K;, 3-M;, 3-S4;, and 3-S5;.

2 Matrices

2.1 Truth values We take 1, 2, and 3 as truth-values. Intuitively ‘1’ stands
for ‘true’ and 3’ for ‘false’, whereas ‘2’ may be interpreted as ‘undefined’ or
‘meaningless’.

We denote the set of all the truth values by T. T = {1,2,3}.
2.2 Primitive symbols

(1) Propositional variables: p, g, r, etc.
(2) Propositional connectives:

Fi(#,..%,) =i=12,... 8021
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With each F; we associate a function f; from T into T. We call f; the
truth function of F;.

(3) Modal symbol: .

(4) Auxiliary symbols: (, ).

2.3 Definition of a formula

(1) A propositional variable is a formula.
(2 If Ay,...,A,, are formulas, then F;(A4,...,A,) is a formula (i =

1,...,0).
(3) If A is a formula, then [JA is a formula.

2.4 Matrices Gentzen’s sequent 44, ...,A4,, - B|,...,B, means intuitively
that some formula of 4,,...,A4,, is false or some formula of By, ...,B, is true.
The truth-value 1 corresponds to the succedent and the truth-value 3 cor-
responds to the antecedent. We extend the notion of a sequent to three-valued
logic.
When A,(") (v=12,3;i=12,...,m,; m, = 0) are formulas, we call the
following ordered triple of finite sets of formulas a matrix:

(A7, AR U AR, Aam U Al A0,

We call A“) .. A,(,,ll) or AP, A,(,,Zz) or AY,. A(” the 1-part or
the 2-part or the 3- part respectively. The matrix [Al yeo A,(,,ll) hU {A(z’
A,(nzz)} U {A‘” .. A,(,,3 }; means intuitively that some formula of All),
A,(,,ll) is false or some formula of A(Z) . ,A,(,,ZZ) is undefined or some for-

mula of A(3 ),...A ,(n‘? is true.

2.5 Abbreviations

(1) When L is a matrix, we denote the series of formulas occurring in the
i-part of L by L;.

(2) When m,, = 0 for all u € T, we denote this matrix by ¢ and call it the
empty matrix.

(3) Let R < T. The matrix such that m, = 1 and AW = A forall p €
R and m, = 0 for all u & R is abbreviated by {A}g. In particular,
{A}r_(, is denoted by {A},. {A}(,,,. .. ) is denoted by (A4},

(4)F0r matrices L,M we put LUM= {LI,MI}I U {Lz,Mz}z U {L3,
Ms;}s.

(5) We write L C M, if for all u € T every formula which occurs in L,
also occurs in M,,.

3 Kripke models

3.1 Definition of a Kripke model A 3-K3 model is a structure 9N = (W, R, ¢)
where

(1) W is a nonempty set

(2) R is a binary relation on W

(3) For all s € W and every propositional variable p, ¢(p,s) assigns a truth-
value in T.
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3.2 Given any 3-K3 model I, the truth value ¢(A,s) of a formula 4 at s
is defined as follows:

(1) ¢(E(A1s ce 9Aa,~)’s) zﬁ(¢(Al,S)’ s ,¢(Aa,9s))

1, if for all ¢ such that sRt, ¢(A,f) = 1.
2, if there exists a ¢ such that sR? and ¢(A4,¢) = 2.

3, if for all ¢ such that sRt, ¢(A,t) #+ 2 and there
exists a u such that sRu and ¢(A,u) = 3.

(2) ¢(0A,s) =

3.3 3-K, models Now, a 3-K, model is obtained from a 3-K3; model by
replacing (2) in 3.2 by the following (27).

1, if for all ¢ such that sRt, ¢(A,t) =1

3, otherwise.

(2) ¢(0A,s) = {

34 A matrix L = {4",..., 40}, U (4P,..., AP, U 4P, ..,
A,(,f; }3 is called 3-K; valid if for all 3-K; models 9M; and any s € W, there exists
an A}") in L such that qb(A}“),s) = u. In the case where m, = 0, this definition
is consistent with the classical definition of the validity of a sequent.

3.5 Let ON; be a 3-K; model. We say that N, is a 3-M; model if R is reflex-
ive, a 3-S4; model if R is reflexive and transitive, and a 3-S5, model if R is an
equivalence relation.

3.6 We define 3-M; validity, 3-S4; validity, and 3-S5; validity in the same
manner as we defined 3-K; validity.

4 Formal systems Now we introduce the formal systems 3-K3, 3-Mj, 3-S43,
and 3-S5; by using Takahashi’s matrix. Henceforth K, L, M, etc. stand for
matrices.

4.1 3-K;
(1) A matrix of the form {A}, U {A}, U {A}; is called a beginning matrix.
(2) Inference rules:
(1) Weakening

L
—(fLCK
z 4 )

(2) Cut

LU {A)},, KU {A4)
LUK

(3) Inference for propositional connectives: Let fi(u,...,pnq,) = p

LU{A},,...,LU{A4,]}

LU ({F(Ay,...,A)

" (p#E )

Ko,
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(4) Inferences for modal connectives:
{4}, U {A,IE}, U {E};

(05
{0A}, U {OA4,0r,0r}, U {0}, ’
(A}, UL}, U (AT} (OK,)

{0A4}, U {Or,05}, U {0A4,0T);

where I',; L, etc. mean (void or nonvoid) series of formulas and OT
denotes the set {{(IB: B I'}.

(3) Provable matrices: A matrix is called 3-K;-provable if it is obtained
from beginning matrices by a finite number of applications of the above
inference rules. We write L (in 3-K3) if L is provable in 3-Kj.

4.2 3-M; 3-Mj is obtained from 3-K;3 by adding the following rules (134
and 0.

{I'}; U (AL}, U (AT},
('} U {0OA,Z}, U {0OAIT};

{ThHufAarUials
{I'}h U {0A4,Zh U (a)

(0O23)

(O8h.
3

4.3 3-S4;  3-S4 is obtained from 3-Ms; by replacing the rules 0f, and Of;
by the following rules:

{4}, U {Or,0Z}, U {0OT'});

{04}, 0 {01,028}, U {00},

{4}, U {OT,05}, U {4,070,

{0A4}, U {Or,08}, U {0A4,0T'},

(07

(O7%).

4.4 3-5§5;  3-§5;is obtained from 3-S4; by replacing the rules [17* and (054
by the following rules:

{4,007}, U {0A}, U {0OX)s

{0A4,07}, U (0A}, U {0}

{4,007} U {0A), U {4,008}, (055)
(0A,00}, U {0A}, U {0A4,08}), 727

(07%)

4.5 We define 3-M; provability, 3-S4; provability and 3-S5; provability in
the same manner as we defined 3-K; provability.

4.6 3-K, is obtained from 3-K; by adding the following beginning matrix:
{0A}; U {0OA4};.

4.7 We define 3-M,, 3-S4,, and 3-S5, in the same manner as we defined
3-K,.
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5 Syntax of the systems We can easily prove the following lemmas.

5.1 Lemma
(1) The rules Of, and OF; are admissible in 3-S4;.
(2) The rules Of* and 0% are admissible in 3-S5;.
(3) The following rule (1% is admissible in 3-S5;.
{4,070}, U {4,058}, U {JA}; (05%)
{0A4,07}, U (04,05}, U {(OA}); ~ 7

5.2 Lemma

(1) F{A}; U {OA}, U {A);5 in 3-M;, 3-S4;, and 3-S5,.
2) F{A};, U {OA}, U {(0OA}5 in 3-M;, 3-S4;, and 3-S5,;.
(3) H{OOA}, U {0A4}, U {DA}; in 3-S4; and 3-S5;.
4 H{OOA}, U (DA}, U {O0A}; in 3-S4; and 3-S5,.

5.3 Theorem 1 The cut inference rule cannot be eliminated in 3-K;, 3-M,,
3-S4,‘, and 3-SS,~.

Proof: We give an example of a provable matrix which is not provable without
using the cut inference rules.

(1) In the case of 3-K; and 3-M;: Let F(*) be a propositional connective
with the associated function f from T to T which is defined by f(1) = f(2) =
fB3)=1

(A}, U (A}, U {4},
(A, F(AL U [A),
{F(A),F(A)L U {A],

{F(A)} SO HF (A
Hence by weakening F{F(A)}; U {F(A)}, and FH{F(A)}; U {F(A)}5.
A F(A)}, U A
{F(A)}, U [F(A)}, (O5,) {F(A)}, U (F(A)}; ©K,)

{OF(A)}, U (OF(A4))2 (OF (A} U {OF(A)}5
(OF(A)}L YV {OF(A)
{OF(A
Therefore F{[(OF(A)}; in 3-K; and 3-M;. But it is evident that {{JF(A)}, is not
provable without the cut inference rules.
(2) In the case of 3-S4, and 3-S5;: Let G (*) be a propositional connective

with the associated function g from T to T which is defined by g(1) =g(2) =
g(3) = 3. Similarly we can prove {G(A)}; U {G(A)}; and {G(A)}, U {G(A)}5.

{G(A} U {G(A)s K {(G(A)L U (G(A)}s
(O13) (Oz23)
{O0G(A)} VU {OG(A)ls (DG (AL VU {OG(A)s
{0G(A)); U (G (A)s
{LG(A)}3
By Lemma 5.1 F{{JG(A)}; in 3-S4; and 3-S5;. But it is evident that {{1G(A)}3
is not provable without using the cut inference rules.

Q2 #3)

(Weakening)

(1 #2)

(Weakening)
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6 Semantics of 3-K;, 3-M,;, 3-S4;, and 3-S5,.
6.1 Theorem 2 (Soundness Theorem) If a matrix is provable in 3-K;, 3-M;,
3-S4;, or 3-S5;, then it is valid in 3-K;, 3-M;, 3-S4;, or 3-S5;, respectively.

Proof: This can easily be proved by induction on the construction of a proof
of the given matrix.

6.2 Lemma If L is G-unprovable, then for any formula A, L U {A}; U
{A},or LU {A}; U {A};0r LU {A}, U {A}; is G-unprovable.

Proof: Suppose that LU {A}; U{A4},, LU{A};U{A};,and LU {4}, U {A4};
are G-provable. By using the cut inference rules we can prove that L is G-provable.

6.3 Let the matrix K be fixed. We denote the set of subformulas of formulas
occurring in K by FL(K). If the matrix L is G-unprovable and for any 4 €
FL(K),A€eL NL,orAEL NLyor A€ L,N L3, we call L G-complete.
We denote the set of G-complete matrices by Cg(K).

6.4 Lemma (Lindenbaum’s Lemma) If L is G-unprovable, there exists an
N such that

(1 N e Cs(K)

)N,DL,forany ueT.

Proof: We fix an enumeration of FL(K),B;,B,,...,B,,. We define N,(n =
0,1,...,m) as follows:

N()-:L

Ny U {Byy1}1 U {Buyr)a, if Ny U {Byi}1 U By )2 is consistent
Npr1= { Ny U {Byi1 31 U {Bryids, if N, U By} U { B,y ] is consistent
N, U {B,;1}2 U {B,,1}3, otherwise.

m
We put N = |J N,,. It is evident that N satisfies (1) and (2).

n=0

6.5 Lemma Forany A € FL(K), L € C5(K), and \,u,v € T where \, p,
vy are distinct,

A€L,ifftL, U {A]\ U {A4},.
Proof: Left-to-right is trivial. For right-to-left, suppose that A ¢ L, and L, U
{A}\ U [(A},. Since L € C5(K), A€ L,NL,. So kL. This is a contradiction.

We can easily prove the following lemmas.

6.6 Lemma For any 1JA € FL(K) and L € Cs.,(K)
W) IfOA e L,, then A€ L,.
QIf0AeL,NL;, then A€ L, N Ly,

6.7 Lemma For any OA € FL(K) and L € Cs.54,(K)
(M) IfOA € L,, then OUA € L,.
Q) IfOA € L, N Ly, then OOA € L, N L.
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6.8 We prove the completeness theorem by a powerful method of a canon-
ical model for G(G = 3-K;, 3-M,, 3-S4;, 3-S5;). We define the canonical G-
model GG = (CG (K),Rc;, ¢)G) (G = 3-K,', 3—M,', 3-541) as follows:

(1) LRGN iff JA € L, implies A € N, and 04 € L, N L; implies A €
N, N N;.
(2) ¢g(p, L) =piff p€ L;(p = 1,2,3).

Similarly we define the canonical 3-S5;-model C3.g5, = (Cj_s5,(K), R3_s5,,
¢3.55,) as follows:

(1) LR3.55, N iff 0A € L, implies 04 € N, (u = 1,2,3).
() ¢3.55,(p, L) =piff pe Ly (p=1,2,3).
6.9 Lemma Cg is a G model.

Proof: (1) In the case G = 3-K;: immediate from the definition.

(2) In the case G = 3-M;: by Lemma 6.6 C; is a G-model.

(3) In the case G = 3-S4;: by Lemmas 6.6 and 6.7 C; is a G-model.

(4) Inthe case G =3-S5;: it is sufficient to show that LR; N implies NRs L.
Suppose it is not the case that 04 € L,. Because L € Cg(K), DA€ L\ N L,,
by the assumption (04 € Ny N N,. Therefore it is not the case that A € N,.

6.10 Lemma Forany L € C5(K) and A € FL(K)
¢c(A, L) =pif A€ L;.

Proof: We prove it by induction on the length of A. In the case of A =
Fi(By,...,B,,), we can prove it as in [3]. Therefore we only consider the case
of A =0B8.

1. In the case of G = 3-K; or 3-Mj:

I(1). p = 1: Suppose OB € Lj = L, N L;. For any N such that
LRGN, B € Ni = N, N Nj. By the induction hypothesis,
¢s(B,N) = 1. Hence ¢5(0B,L) = 1.

1(2). u = 2: Suppose (OB € L; = Ly N Lj. Since {(IB}, U {OOC &
L, ODe L,N L3}, U{OBOD €& L, N Ly} is G-un-
provable as a restriction of L, {B}; U {C;0C &€ L,}, U
also G-unprovable. By Lemma 6.4 there exists an /N such
that LRGN, B € N; N N3 = Ns. By the induction
hypothesis ¢5(B,N) = 2. Hence ¢5([B,L) = 2.

1(3). p = 3: Similar to I(1), I1(2).

I1. In the case of G = 3-S4;: By Lemma 5.1, we can prove it as in 1.
II1. In the case of G = 3-§5;:
ITI(1). p = 1: Suppose OB € Li = L, N L;. Let N be such that
LRsN. By the definition of R; and Lemma 6.6 B €
N, N N;. Therefore, by the induction hypothesis,
¢(B,N) = 1. Hence ¢5(0OB,L) = 1.
II1(2).x = 2: Suppose OB & Ls =L, N L;. Since {OB,JCe L} U

{OD € L,}, U {OB,0OF € L3}; is G-unprovable as a
restriction of L, by O{3{B,0C€ L,}, U {OD € L,}, U
{B,JF € L3}3 is also G-unprovable. By Lemma 6.4,
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there exists an N such that LR;N and B € N; N N;.
By the induction hypothesis ¢5(B,N) = 2. Hence
¢(OB,L) = 2.
I11(3). u = 3: We can prove it as in I1I(1),I11(2).
IV. In the case of G = 3-K, or G = 3-M, or G = 3-§4, or G = 3-§5,: We
now show that [1B € L5 cannot hold, so that in view of cases I, II, and III
above, ¢5([0B,L) = 2 cannot obtain. If [JB € L5, then by the beginning
matrix {{JB}; U {(OB}; we can prove that L is G-provable. This is a con-
tradiction.

6.11 From Lemmas 6.9 and 6.10 we have the following completeness
theorem:

Theorem III (Completeness Theorem) If a matrix is valid in 3-K;, 3-M,,
3-S4;, or 3-S5, then it is provable in 3-K;, 3-M;, 3-S4;, or 3-SS5; respectively.
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