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Peano’s Smart Children: A Provability Logical
Study of Systems with Built-in Consistency

ALBERT VISSER*

Abstract The systems studied in this article prove the same theorems (from
the “extensional” point of view) as Peano Arithmetic, but are equipped with
a self-correction procedure. These systems prove their own consistency and
thus escape Godel’s second theorem. Here, the provability logics of these sys-
tems are studied. An application of the results obtained turns out to be the
solution to a problem of Orey on relative interpretability.

1 Introduction Consistency can be built into a system in various ways. The
two best known constructions are Rosser’s and Feferman’s, both of which take
a given formal system in the usual sense as initial data. Consider, for example,
Peano Arithmetic (PA). A proof in the Peano System will count as a proof in
the Rosser System based on PA, if there is no shorter Peano proof of the nega-
tion of its conclusion. The Feferman System can be described in various inter-
esting ways, modulo provable equivalence in PA of the formulas defining the
set of theorems. One such way is this: A proof in the Peano System will count
as a proof in the Feferman System based on PA, if the finite set of arithmeti-
cal Peano axioms smaller than or equal to the largest arithmetical Peano axiom
used in the proof is consistent.
The reasons such constructions occur in the literature are various:

(i) They serve as counterexamples in the study of the relations between
Godel’s first and second Incompleteness Theorems (see [4]).
(ii) They serve as didactic examples in philosophical discussions, like the
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debate on intensionality in mathematics (e.g. [1]) and the discussion
on the possible bearing of the Incompleteness Theorems on the Minds
& Machines problem (see [10], [21], [3]).

(iii) Rosser’s construction is used to sharpen Godel’s first Incompleteness
Theorem.

(iv) Feferman’s construction is an important tool in the study of relative
interpretability (see [4], [13]).

The main objects of study in the present article are certain variants of both
Rosser’s and Feferman’s constructions. My motivations are closely related to
(i)-(iv) above:

(a) There is much interest in the study of bimodal systems in the current
literature on provability logic (see e.g. [12] and [16]). There are two
directions of research: The pure study of arithmetical self-reference and
the study of arithmetical self-reference as a tool for unifying self-
referential arguments in arithmetic (see [6], chapter 7). In the first line
of study one aims at characterizing the modal logic for a certain ‘given’
class of interpretations. There is no objection here to having ‘few’
interpretations and strong modal systems. In the second line one looks
primarily for a modal system which is sound for as many interpreta-
tions as possible, but is still rich enough to carry out the proofs of the
arithmetical arguments under study. The distinction between the two
lines described here is not precisely that between pure and applied. The
first line also has its typical applications: Solovay-style completeness
results yield a powerful machinery for producing arithmetical sentences
with rich but controlled properties. These sentences can be used to
prove various incompleteness and other kinds of results (for an exam-
ple, see Section 7 of this paper).

The contribution of this study lies along the first line. I provide
an example of a rich modal logic of not too standard a sort, valid for
two different arithmetical interpretations. This example can be used to
test conjectures concerning the conditions for uniqueness and explicit
definability of fixed points (see [15] for a discussion of these matters).
Questions of uniqueness and explicit definability generalize the prob-
lem of the precise connection between the first and second Incomplete-
ness Theorems; in this sense (a) generalizes (i). The logic can also be
used to illustrate the point that one can simulate the results of inten-
sional self-reference (as with Rosser’s Theorem) to quite an extent by
applying provably extensional self-reference —the cost being an increase
in the complexity (modulo provable equivalence) of the sentences
involved.

(b) The modal derivability conditions are an improvement in the presen-
tation of systems with built-in consistency in the discussions mentioned
under (ii) above.

(c) The methods developed have as a spin-off an application to relative
interpretability: I answer a question posed by Orey for the case of PA.

As far as prerequisites go, knowledge of [4] and [16] should bring the
reader a long way.
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2 Contents of the article In Section 3 the necessary notions and notations
are introduced. Section 4 is a step-by-step introduction to the construction of
the systems that are central in this article. This section also illustrates the powers
of provably extensional self-reference and contains a discussion of the problem
of uniqueness and explicitness of the Godel and Henkin sentences of the vari-
ous systems considered. Section 5 treats the bimodal principles valid for the two
central systems; a Kripke model completeness theorem is proved. Section 6 has
a partial result on embedding Kripke models for our modal system into arith-
metic. In Section 7 this embedding result is applied to a problem about relative
interpretability.

3 Conventions, notions, and elementary facts

3.1 Point All the arithmetical results in the next sections will be stated for
Peano Arithmetic. PA, of course, is just a convenient peg to hang the discus-
sion on; almost any RE theory into which PA, minus induction, plus Z,-induc-
tion, can be interpreted, would do. Where results on relative interpretability
appear one must also demand that the theories considered be essentially re-
flexive.

3.2 O and A (in different contexts) Let Proof(x,y) be the A, arithmeti-
cal formula representing the relation: x is the Godel number of a PA-proof of
the formula with Gédel number y. We assume for convenience that PA
vx3!yProof(x,y). Let Prov(y) = axProof(x, ). We write, par abus de langage,
‘Proof(x,A(xy,...,x,))’ for Proof(x," A(%;,...,%,)"), where:

(i) all free variables of A are among those shown
(i) "A(xy,...,x,) " is the “Godel term” for A(xy,...,X,) as defined on
p. 43 of [16].

The modal operators [J and A will appear both in the context of modal
logic and in the context of arithmetic. ‘C]A(xy,...,x,)  will stand fo; Prov
("A(x,...,%,) ). In arithmetical contexts ‘AA(xy,...,x,)’ will stand for
B("A(xq,...,%,)"), where B(x) is the arithmetization of theoremhood in the
particular system with built-in consistency that we are considering at the place
of occurrence of ‘AA(x,...,x,)’". To avoid confusion we will use AR, A¥,
etc. To differentiate arithmetical from modal contexts, we use A4,B,..., for
arithmetical formulas and ¢, v, ..., for modal propositional formulas.

If ¢ is a term for a provably recursive function we will have that (suppos-
ing that ¢ is substitutable for x in 4) PA F (LA (x)) [t/x] « OA(¢). We will
employ terms for provably recursive functions only, so we may indeed treat
X1y .. X, in OA(Xxy,...,X,) simply as free variables. Similarly for A.

‘0’ will be an abbreviation for -[J—, and ‘V’ for = A,

When we want to consider systems with other axiom sets than PA, we will
write Proof,, Prov,, [J,, etc., where « is a formula that represents the axiom
set of the system under consideration in an intensionally correct way in PA. We
fix a formula 7 correctly representing the axiom set of PA. Thus, our notation
‘0 is just short for [J,.
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3.3 Olxand O* Define:

Tlx(y) e n(¥) Ay <X,
OxA o 0,1, A4,
OlxAd = ~OlxA,

0*A = 3x0O 1xA.

It is clear that PA } 0A4 « O*A, but the difference in form will be of some
importance when Rosser-orderings come into play. (The usefulness of [J* in this
connection was discovered by Svejdar; see [18].)

3.4 Witnessing and the Rosser-ordering Let A be of the form 3IxAy(x).
Define ¢ wit A & Ay(¢). Here we assume that bound variables in 4, are
renamed, if necessary, to make ¢ substitutable for x in 4.

Let A be of the form 3xA((x) and B of the form 3xB,(x). The Rosser-
orderings between A and B are defined as follows:

A <Be3Ix(Ag(x) AVy < x —Byg(y))
A< BeIx(Ap(x) AVy < x mBy(y)).

We will always apply witnessing and the Rosser-ordering to the precise forms
in which the relevant arithmetical formulas are introduced.

In connection with the Feferman System we will consider formulas of the
form O0*C < O*D. These formulas are of the more general form A < B, where
A is Ix3yAy(x,y) with Agin Ay and where B is 3x3yB(x,y) with By in Ag.
It is of some interest to know the complexity of such formulas A < B; prima
facie A < B is £,. We have the following theorem:

Theorem PA F3x(3yAy(x,y) AVZ < xVu—By(z,u)) < Yudx(IyAy(x,y) A
vz < xBy(z,u)).

Proof: The “—” side is trivial. For the “«” side reason in PA as follows: Sup-
pose that Yuax(3yAg(x,y) A VZ < xBy(z,u)). It follows that 3Ix3y4,(x,y).
Let x, be the smallest such x. Consider any u. Pick an x such that 3y4,(x,y)
and Vz < x—1By(z,u). Clearly xy < x and hence vz < xy—By(z,u). We then con-
clude that 3yAq(xp,y) A VZ < Xy By(z,u).

Both Svejdar [18] and Lindstrém [9] show that in every degree of relative
interpretability over PA there is a sentence of the form A < B where 4 and B
are as above. Thus, every degree of relative interpretability contains a A, sen-
tence.

3.5 Relative interpretability ‘A < B’ stands for the arithmetization of:
PA + A is relatively interpretable in PA + B. PA+ A < B o vx[O(B — OTxA)
is a result due to Orey and Héjek. We list-a number of principles valid for (J
and <:

(1) PA+O(B->A)—>A<B

(12) PAF(A<BAB<C)>A<C

(13) PAF(A<BAA<C)>A<(BvC)
(14) PAFA <B— (OB— 0A)
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(I5) PAFOA <« B-(B—- 0A4)
(I6) PAFA <04
I7) PAFA<B—- (AAOC) < (BADOCQO).

The principle (I7) is new and is due to Franco Montagna. We will prove (14),
(IS), and (I7). First we treat of (I4) and (I5). Given (I1) and (I2) it is easily seen
that (I4) is equivalent to

(I14) PA+L <B- 0B
Thus it is sufficient to prove
(J1) Forall PinIl;,, PAFP<B- O(B- P).

First note that for every n, PA FvxOO(B— OfxA) e vx>n O(B - OlxA).
Pick g so big that [11g contains Robinson’s Arithmetic. We then have for S in
Lithat PAbtvx>qg O(OM'xSo S),so for PinIl; PAFvx> g O(OMxP o
P). Hence

PAFP<BoVvx>qgO(B- OMxP)
- O(B~- P).

We now turn to (I7). We prove

(J2) Forall SinX;, PAFA<B—->(AAS)<(BAS).

Suppose that S is £;. Let g be as above. Note that
PALvx>q OS> OMx(DAS) e D).

It follows that

PA FvxO(B— OtxA4) > vx > qO((BAS)— Ofx(A4AAS))
> vxO(BAS)— Olx(AAS)).

For further details see [19].

3.6 On systems Philosophically, I think it is best to make the whole appa-
ratus for generating theorems part of the identity conditions of systems. For our
purposes however, it is more convenient to confuse the systems considered with
the arithmetical predicates that codify theoremhood in the system in an inten-
sionally correct way. I will say that a system with associated arithmetical predi-
cate A if a variant of a system with predicate B if PA F vx(A(x) & B(x)).

The notion of ‘system’ is kept more or less open in this paper. The usual
formal systems are still paradigms of systemhood. The systems we consider here
are in some sense derived from the usual systems: they use the proofs of for-
mal systems as data. A second point is that the systems considered may be seen
to be extensionally equal to the formal systems on which they are based, given
the information that the original systems are consistent.

4 Systems with built-in consistency, an introduction This section serves sev-
eral purposes. First, it exhibits various ways of ‘loading’ systems with desired
‘modal’ properties. Secondly, it contains brief discussions of the various systems
with built-in consistency that can be found in the literature. Thirdly, the prob-
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lems of uniqueness and of explicitness of Godel and Henkin sentences of the sys-
tems introduced are considered. (The rationale behind the attention to these
specific problems is that these problems were historically at the crib of prov-
ability logic for [J, and also that these problems turn out to be a quite pleas-
ant starting point when one wants to get acquainted with the systems studied
here.) In the fourth place, I give examples of the powers and possibilities of
provably extensional self-reference. Specifically, I show how to use provably
extensional self-reference to construct four nonequivalent Orey sentences.

In this section ‘I’ stands for PA +, and A4, B, C stand for formulas of the
language of PA. Note that by our conventions we have that FA(x) = FvxA4(x),
but not FOA (x) - OvxA(x).

For the record we state here the usual principles valid in PA for .

P (The Peano System) The provability principles of PA are:

(L) +A=+OA

(L2) +O(A - B)— (0OA - OB)
(L3) +FOA - D004

(L4) +O(OA - A) - OA.

We will use these principles without explicit mention.
R (The Rosser System) The Rosser System is defined as follows: A4 <
O0A < O-A.

Some principles valid for the Rosser System in PA are:
1) FA=FAA
2) kAL

3) FAA-0OAA
4 F-0OL-> (A4 OA).

Some direct consequences of (1)-(4) are:

() FAA-DA )
(6) FOA - DOAA. 3),4)

It is perhaps worth noting that the set of theorems of the Rosser System is prov-
ably infinite. Reason in PA as follows: in case =[] L this is trivial. In case [J L
for any A, clearly one of A, =4, "A, "—A,..., will be Rosser-provable.

In the Rosser System we have two explicit but nonunique Henkin sentences:

7 FT e AT (€))]
@B FLoAL. ?2)

Consider a Godel sentence of the Rosser System, i.e., a sentence G such that
9 FGo AG.
We have

(100 FOG - (OAG A O-AG) 6),(9)
-1,
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Of course we can also prove
(11 FO-G-01L

but not from the modal principles collected up to now; we have to go back to
the underlying Rosser-ordering. A slight change in the definition of A removes
this defect as we will see under K.

The uniqueness or nonuniqueness of Godel sentences in the Rosser System
is still an open problem. Guaspari and Solovay show that if one allows variants
of Prov in the definition of A, the answer may be yes and may be no (see [5]).
I am not aware of any argument that there are no explicit Godel sentences for A.

Open question Are there explicit Godel sentences for AR?

Open question If one allows I, variants (with one existential quantifier in
front of the A) of Prov in the definition of AR, can there be explicit Godel sen-
tences for AR?

K (Kreisel’s symmetrized Rosser System) Kreisel’s variation on the Rosser
System is reported in [7], pp. 298-302.

Define AA < 3x[Proof(x,A4) A Yu,v,b,c < x((Proof(u,b) A Proof(v,c)) = ¢ #
neg(b))]. Clearly, AA is £,. The Kreisel System satisfies principles (1)-(4) and
the additional principle

(12) F=(AA A AA).

We can now prove (11) modally:

FO-G-» OAGAOARG 6),(9)
- O(AG A AG)
S0OL. (12)

Note also that FO L — “{A]| AA} is finite”.

R’ (A minor variation of Rosser’s System) Yet another defect of the Rosser
System is that we have no appropriate bimodal counterpart for the underlying
principle

FOL - (O0A < O-A4Av O-A < OA).
This can be easily repaired. Define

Rj=0

n+1 —

, R} U {A}, if Proof(n,A) and (—A) & R;,
R,, otherwise.

Let AA be the arithmetization of anA € R}, ;. Clearly, AA is £;. We have
that FAA & A < A—A, and even Fvx(x wit AA & x wit JA4 < A—-A4).

This last fact happens to characterize AR'.
Principles (1)-(4) hold for A, plus the additional principle

(13) FOL > (AA v A-A).
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A direct consequence is
(14) FOA - (AAv A-A). (4),(13)
Finally, note that FARA — AR'A4.

BM (The Bernardi-Montagna System) We now jump up directly to a system
which is richer, from the modal point of view, than both AX and AR'. This sys-
tem was discovered by Claudio Bernardi and Franco Montagna (see [2]). Define

BM():@

BM, U {A4}, if Proof(n,A) and BM,, U { A4} is consistent
BM,,, = in propositional logic

BM,,, otherwise.

Let AA be the arithmetization of 3n4A € BM,,,;. Clearly, AA is £;. Also,
principles (1)-(4) and (13) hold for A. We also have, by elementary reasoning,

(15) FA(A—> B)> (AA— AB).

(15) in combination with (2) entails (12), so the principles valid for ABM com-
prise those valid for A¥ and AR’ (at least insofar as we have found such prin-
ciples).

mBM (The modified Bernardi-Montagna System) For our purposes we want
the following additional principle

(16) FAA - ATOA.

It is not plausible for one to prove (16) for the BM System without additional
assumptions about the order of the proofs of PA; e.g., given [J L, why would
one have AL rather than A—~[J1? We can, however, modify the BM Sys-
tem in such a way that we get (16).

Let Fprop stand for derivability in propositional logic. Define

mBMO =

mBM,, U {4}, if Proof(n,A4) and mBM,, U {4} ¥, 70O L

mBM =
a {mBMn , otherwise.

Let AA be the arithmetization of 3In4 € mBM,,, . Clearly, AA is L;.
It is easily seen that (1)-(3) and (15) are valid. We may verify (4) in PA as
follows:

Trivially, AA — [JA. Suppose that =] L and (A, say Proof(x,A4). The
only reason A could be left out of mBM,,, is that mBM, U {A} Fp.qp
—OL1. But then O-0 1 and hence [J 1, which is a contradiction. So we
conclude that A € mBM,,; and thus AA.

(13) can be proved in PA as follows:

Suppose that [1_L. For certain x and y we will have that Proof(x, A) and
Proof(y,—mA). Let z = max(x,y). If "AA and - A—A we will have that



PEANO’S SMART CHILDREN 169

mBM_,; U {4} tprop 701 and mBM U {—A4]} Fpop, "0OL. Hence
mBMZ+1 ’_Prop =L,

Finally, we turn to (16). Clearly,

a7) F—A-DOL

from which it follows that

FOL > AOL (13),(17)
moreover

FADL - AOA (1),(15)
hence

FOL » (OA - AOA)
also

F—~O0L1 - (AOA « OOA) “4)

thus

F-0O1 - (04 - AOA).

So we may conclude that (16) holds. (Conversely, one can derive (17) from (4),
(12), and (16).)

Let us list for the sake of convenience the principles valid for A™M with
brand new names:

(Bl) FA=FAA

(B2) FA(A- B)—> (AA— AB)
(B3) F-AL

(B4) FOA - ADA

(B5) FAA-—>DOAA

(B6) F-OL - (AA o OA)
(B7) FOL > (AAv A-A).

We note some important consequences of these principles. First, a strengthen-
ing of LOob’s Axiom

(18) FA(OA - A) - AA.

Proof: FA(OA —» A) » O(OA —~ A) 5)
- [0A4
- AOA (B4)
- AA. (B2)

The second consequence is the principle of provable extensionality
(19 FO(A e B)—»TO(AA < AB).

Proof: FO(A © B) » OA (A < B) (6)
- O(AA < AB). (B2)



170 ALBERT VISSER

The next principle is an immediate consequence of (12) and (B7)
20) FOL > (AA o VA).

Let us define 0L = 1, O""!'1 =00"1, 0L = T. We will say that an
arithmetical formula A is modally closed if A is built up from T,L with the
propositional connectives and [J,A (in other words, if 4 is an interpreted sen-

tence of the closed fragment of the bimodal propositional logic with operators
O and A).

(21) Suppose that 4 is modally closed. Then there is an « € {0, . ..,w} such
that FAA & O%1.

Proof: Consider B built from T,.L with the propositional connectives and .
First there is the familiar fact that

F(BAOB) < [f1, for some B € {0,...,w].
Hence

FAB < A(BAUOB)
o ADPL.

Secondly we have that FA%L « 0%, and FADO'™ 1L & O?*7 L (as is easily
seen by considering the cases [J L and —[J L separately). Combining these results
we see that FAB « [1°1, for some 6 € {0,...,w}. (21) follows by a trivial
induction on 4. (Note that we didn’t use (B7) in the argument.)

We now turn to the Henkin sentences of A. We have already seen in (7)
and (8) that 1 and T are explicit Henkin sentences. For A™®M we can show that
they are the only explicit Henkin sentences. Consider H satisfying:

(22) FH < AH.
If H is explicit, it follows that A is modally closed. Hence by (21)
FH < O%L, for some « € {0,...,w}.
If « #0, o # w, it follows that for some n € {1,2,...}
FO'"L « AO"L
PN [:‘n+1_L.
Open question Are there nonexplicit Henkin sentences of AmBM?

Next we turn to the Godel sentences of A. Under R and K we have seen
in (10) and (11) that these have the Rosser Property. We show that they are
nonexplicit and nonunique.

Consider G satisfying (9). If G were explicit, G would be modally closed.
Hence by 21) FG & -0O0%L (a € {0,...,w}). If o # 0, we get that

FAG & A-D%L (B1),(B2)
o AL (18)

So, by (9), FG. Thus o = 0, which is a contradiction. If « = 0, we have that
FG and thus FAG, i.e., by (9), F— G, another contradiction. Hence G cannot
be explicit.
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To see that G is not unique we show that VG is also a Godel sentence and
that VG is not provably equivalent to G. First we show

23) VG e ~AVG.

To prove (23) it is clearly sufficient to show

(@ FHOL-VG
(b) F-OL->-AVG
(¢ FOL - (VG e nAVG).

We prove (a) by contraposition

FA-G - 0O-G

- (OAGADOASG)

- 0Ou1.
To prove (b), we show first

FOOL - (AVG - OVG)
- 0OAG)
- 0-G)
- 0u1).

Hence
FAVG - (OOL-01)
thus

FAVG - OAVG
- O@E0L-0u)
- 0O0L

and so, combining,

FAVG - OL.

The proof of (c) goes as follows:

FOL->ADOL
- A (VG o AG)
- (AVG o AAG)
- (AVG o A-G)
- (7AVG o VG).

(6))
6,09
(12)

(%)

(20)

)]

(as in the proof of (a))

(B3)

(B4)
(B1),(B2),(20)
(B2)
9),(B1),(B2)

Next we show that VG is not provably equivalent to G. It is clearly suffi-

cient to prove
24) FO(GeVG)->DOL.

Clearly,

F(GAVG) = ("AGAADG)

-4

(B7)
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and

F(=G A =VG) - (AG A A-G)
- 1. (12)

Combining, we get that

FO(G o VG) > OW(GAVG) v (G A VG))
- 0O0-01
- [OL.

Another way to prove (24) is by noting that

FOOL - (O(G+ VG) » O(G « AG) (20)
- [01).

We leave it to the reader to verify that our procedure yields no further inde-
pendent Godel sentences, i.e.,

(25) FGeo VVG.

In Section 5 we will see that as far as our modal principles are concerned we can-
not show more than this: if there is a Gédel sentence of A then there is a sec-
ond, nonequivalent one.

Open question Are there three pairwise nonequivalent Go6del sentences of
AmBM?

The R, K, R’, BM, and mBM systems are all £,, yet they escape the sec-
ond Incompleteness Theorem. By a well-known result of Feferman (see [4]) these
systems cannot be provably closed under the axioms and rules of predicate logic;
in other words, we do not have FAA s A. If A is one of ABM, AmBM ye
can say a bit more. Let A be one of ABM, AMBM [ et O be the conjunction of
the axioms of Robinson’s Arithmetic. We clearly have FQ, and hence FAQ,
and thus s Q. It immediately follows from the provable I,-completeness of
Robinson’s Arithmetic that

26) FAA - OpAA.
Let G be a Godel sentence of A. We have

(d FOL - (AGvV AG) (B7)
() FAG-TOAAG (26)
) FAG-0OAG
- 0O AG ©9)
(& FAG—- Ul (e),(f)
(h) FA-G - UO\A-G (26)
- 0O, AG (B1),(12)
(i FA-G-0OAG
- OAAG ©)
() FARG->[OaL (h),(®)
(k) FOL->0OalL (d),(2),())
O FOL - (O Ao OA) k)
(m) F-0OL1L - (04 OgA)
o [JA)

Q7) FOpA o OA. (1),(m)
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So ABM and A™BM are provably axiom sets for the theorems of PA. The same
thing can be proved for AR by a slightly refined variant of the above argument.
What about AR and AX? I’'m not certain, but a good guess is that it would be
so for AR but not for AK.

We now turn to systems that are provably closed under the axioms and
rules of predicate logic.

F (The Feferman System) The Feferman System was invented by Feferman
(see [4]) as an illustration in the study of the conditions for Godel’s second
Incompleteness Theorem. Orey discovered important applications of its prov-
ability predicate in the theory of relative interpretability (see [4], [13]). A modal
study of this provability predicate was made by Montagna [11].

Let us start by giving two rather different intuitive descriptions of the Fefer-
man System (or, to be faithful to the conventions of Section 3.6, I should say:
let us describe two variants of the Feferman System).

Suppose the arithmetical axioms of PA are enumerated by 4,,A4,,A4,,...,
in the order of their G6del numbers (i.e., i<j= "A4;' < "A4;"). We call a set
X of arithmetical axioms of PA initial if A;€ Xand j<i=A4; € X.

The Feferman System is simply the first-order system in the language of
PA axiomatized by F = U {X| X is a finite, initial, consistent set of arithmet-
ical axioms of PA}.

Clearly, from the extensional point of view F coincides with the usual
axiom set of PA. The Feferman System can be viewed as a system, where to be
licensed to use axiom A; one needs the external information that {A4;|j < i} is
consistent.

The second way to introduce the Feferman System is as follows. Suppose
we enumerate the proofs in the system PA by w;, m,,73,.... As soon as we hit
upon a proof m; of L, we extract the axiom A; with largest Godel number from
;. We backtrack and scratch out all the proofs employing axioms A, with k =
J. Then we go on enumerating proofs, skipping those employing axioms A
with k = j. As soon as we meet another proof of L we repeat the procedure. We
call a proof stable if it occurs in our enumeration and is never scratched out.
The stable proofs are the proofs of the Feferman System.

Under this last description the Feferman System can be seen as a fully effec-
tive procedure that will eventually yield all stable proofs. The catch here is, of
course, that someone who does not know the consistency of PA will not be able
to predict, at least not prima facie, when a proof is stable. In fact, the situation
is even subtler: someone knowing PA, but not its consistency, will ipso facto
not know that all proofs are stable, but he will know of every proof that it is
stable.

We now turn to the formal definition of the Feferman System. Define

T*(x) s w(x)AOMXT
AAsD A

The following are equivalents of AA:
28) FAA & 3Ix(OfxA A OMx1T).

where fis a primitive recursive function with



174 ALBERT VISSER

the largest of the Godel numbers of the arithmetical axioms
f(n) ={ occurring in 7, if n = "7 ' for some proof

0, otherwise

we have

29) FAA o 3x(Proof(x,A4) A OIf(x)T).
Remembering that (1*4 < ax[!xA, we have
30) FAAe NA< O L

(Bl FAA 04 < O*A4.

(31) brings out the similarity between the Feferman System and the Rosser Sys-
tem. By 3.4 and (30) or (31) we see that A is A,.

(B1)-(B6) are valid for A. In [4] all of these except (B4) are mentioned. In
[11] a modal study is made of (B1), (B2), (B3), (BS), and (B6). The validity of
(B2), (B3), and (B6) is immediate. To prove the other principles we will use the
well-known fact that PA is provably essentially reflexive, and hence

FvxO(OtxA4 - A)
from which it follows that
FvxOOTXT.
Proof of Bl:

FA = for some n } O tnA4
= forsomenFOMA A OINT
= FAA.

Proof of B4: We will prove the stronger principle
(32) Let SbeXZ;,then kS - AS.

Let Oy stand for provability in Robinson’s Arithmetic. For some g, PA |
OpA — OlgA. Let S be ;. We have that

- fgS
- (OfgSAOlgT)
- AS.

Note that we do have (B4) for A™BM | but not (32). (In fact, assuming (32) for
APBM quickly leads to the inconsistency of PA.)

Proof of B5: 1t is clearly sufficient to prove (6); i.e., F(JA - AOA. To do
this we formalize the reasoning for (B1) as follows:

FOA - 3axO0O x4
- 3xO(OMxA A OTxT)
- OAA.

Just as for A™BM AF has precisely two nonequivalent explicit Henkin sen-
tences. I will now show that AF has in fact infinitely many pairwise nonequiva-



PEANO’S SMART CHILDREN 175

lent Henkin sentences. First we need to know a bit about L-minded sentences.
A sentence A is L-minded if both A A [JA and =4 A DA are provably equiv-
alent (in PA) to a ¥, formula. A good example of a X-minded sentence is the
ordinary X, Rosser sentence. We have that

(33) If A is X-minded then FAA & (OA4 A (OL - A)).

Proof: Suppose that A is E-minded. To prove left to right, it is clear that
FAA — COA. Moreover,

F(AAAOL) > (nA - (mAAO-A)

- A(—A A O1A) (B1),(B2),(32)
> AL (B1),(B2)
- 1. (B3)

To prove right to left, we have that
HOAA(OL > A) > (OL - (AADA)

— A (A ADOA) (B1),(B2),(32)
- AA). (B1),(B2)

Moreover,
F(OAA(OL > A) - (-0OL - AA). (B6)

Note that our proof uses only (B1), (B2), (B3), (B6), and (32). (33) is an
example of the phenomenon of reduction: an arithmetical predicate takes a sim-
ple, uncharacteristic form on some restricted set of formulas. A further, more
involved example of reduction will be given in Section 7.1.

To prove that there are infinitely many pairwise nonequivalent Henkin sen-
tences I have to borrow some material and definitions from [20]. The reader not
familiar with this paper can at least get the essential idea of the argument by con-
sidering the ordinary I; Rosser sentence R (i.e., any sentence satisfying FR <
O0=R < OR) and S = OR < (O=R, and by proving for himself that R and S
are L-minded and satisfy FR & (OR A (OL - R)), FS« (OSA (OL - 9)).

Consider a tail model K. We write [¢] for the set of nodes that force ¢,
[¢] for [¢] (K,PA), and (o) for {¢) (K,PA). Note that [¢ A O¢] is upwards
closed and that F([¢] A O[¢]) « [ A O¢]. It follows that F([¢] A TI[P]) <
Ix h(x) € [¢o A O¢1, and hence that [¢] A O [¢] is provably equivalent to a
L, sentence. Combining this with the fact that F—[¢] & [—¢], we find that
[#] is E-minded.

Now consider the tail model shown in Figure 1, where the p; are only
forced as shown. Clearly, |Fp; < (Op; A (O L — p;)), hence, by the Embedding
Lemma and the fact that [ p;] is E-minded +[p;] & A [p;]. On the other hand,
fori #jIF (p;+ p;)—» -0, hence F[(p; « p;) » ~0OL], and so F([p;] «
[p;]) » ~0OL. Thus the [ p;] are pairwise nonequivalent Henkin sentences of
A. Since n can be freely chosen it follows that there are infinitely many pair-
wise nonequivalent Henkin sentences of A.

We state two open problems:

Open problem Are there Henkin sentences of AF that are not provably equiv-
alent to X, sentences?



176 ALBERT VISSER

o
Figure 1.

Open problem What are the possible truth values of the /iteral Henkin sen-
tences of AF?

We turn next to Godel sentences. Let G satisfy (9), so as in the case of
A™BM G is nonexplicit. (We can, using the observations about tail models
above, also see this “vom hoheren Standpunkt,” for consider the ‘minimal’ tail
model, i.e., the linear one. The ‘propositions’ of this model correspond precisely
to the closed fragment of Lob’s logic. Clearly, the interpretations of this closed
fragment are going to be closed under A (modulo provable equivalence). It fol-
lows that the modally closed sentences are provably equivalent to arithmetical
interpretations of elements of the closed fragment of Lob’s logic. In this model
the ‘equation’ (¢ & (¢ A (OL — ¢)) has no solution, hence no modally
closed sentence solves the equation in PA!) The argument for the nonunique-
ness of the Godel sentences of A™BM depended upon (B7), so we can’t use it
here. The problem of the uniqueness of G thus remains open. This problem was
first posed by Montagna [11].

Montagna’s problem Is G unique?

The Godel sentence of AF is an Orey sentence. Before defining what an
Orey sentence is, I want to note that the fact that G is such a sentence only
depends upon (B1), (B2), (B3), (6), and (32). Let us call a A that satisfies these
principles precocious.

An Orey sentence is a sentence A that has the property A < T and -4 <«
T. (Strictly speaking, my usage is at variance with the tradition: e.g., Godel
sentences and Rosser sentences are sentences that solve certain fixed equations;
on the other hand, we say of a sentence A satisfying H(JA4A v 0-A4) »> OL
that it has the Rosser Property. Rosser sentences have the Rosser Property, but
other sentences do as well. So the more correct usage would be: sentence with
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the Orey Property.) Trivially, the negation of an Orey sentence is again an Orey
sentence.

We now show that the Godel sentence of any precocious A is an Orey sen-
tence. Suppose that A is precocious. First we prove

(34) FA < VA.
Proof: Let B = —A; we have
FvxO (O xB - B) =

FvxOA(OMxB— B) = 6)
FvxO(AOMxB - AB) = (B2)
FvxO(OTxB - AB) = (32)
FvxO (VA - OlxA) =

FA < VA.

Secondly, one easily proves, using (I1), (I12), (I3)
(35) A< A-A<T.

We have
FG < VG (B4
< AG (B1),(B2),(B3),(11),(12)
< -G 9),d1),(d2)

hence by (35)

FG < T
moreover
F-G < V=G (4
< -AG (B1),(B2),(11),(I2)
G 9),11),(I12)

hence by (I1), (I2), and (35)
F-G < T.

A curious fact is that the Godel sentences of AF is precisely the Orey sen-
tence discovered independently by Lindstrom and Svejdar (see [9] and [18]); by
3.4 this Orey sentence is A,. In Section 7 we will see that there are infinitely
many nonequivalent Orey sentences.

Before leaving the subject of Orey sentences, I want to note that Orey sen-
tences are L;- and I, -flexible and that they are Kent sentences. Let I" be a set
of formulas. A formula A is I'-flexible if, for all Bin ', F(O~ (A4 < B)—> OL1.
A sentence A is a Kent sentence if (A A [JA) is not provably equivalent to a
sentence. I will show that an Orey sentence is a Kent sentence and leave the proof
that Orey sentences are X,- and II; -flexible to the reader. Suppose that A4 is an
Orey sentence and suppose, for a reductio, that A is a Kent sentence. Then
clearly (mA v O—A) is provably equivalent to a II, sentence and hence
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FA<TAA<T)>(mAVvO-A)a T 11n),(12)
> O(—Av 04) (I1),(I2),(J1)
- 0A - 0A)
->0-AQT (I),(12)
- 004 15)
- [0O.L.

mF (The modified Feferman System) The modified Feferman System is a
modification of both the Feferman System and of the BM System. Define

mF0=®

{mF,, U {A}, if Proof(n,A) and mF, U {A} is consistent
mF,,, =

mF,, otherwise.

Let A,A be the arithmetization of A € mF,, . Define further

AA = IxA A
N A = IxOp,A.

It is easily seen that FAA < (s A, and hence that FAA & A*A. Moreover we
have that FAA o 0OA < A*A, and even

Fvx(x wit AA & x wit A < A*A).

This last observation brings out the Rosserlike character of A.
We claim that A satisfies (B1)-(B7). The argument for the validity of
(B1)-(B6) is similar to the one for the case of AF. We treat of example (B5).
Define (0,4 < 3y < x Proof(y,A). Clearly +tvx(J—-J5,L, and hence, by
induction on x in PA, FvxO(A,A < O,A4). It follows that

FAA - A
- 3xO0O,A4
- OAA.

The argument for (B7) is similar to the one for the case of A™BM, Just like
AF, APF satisfies (32), i.e., A™F is provably I,-complete. Prima facie, A is 5.
It is seen to be A, by the following observation

36) FAA o (nOAv(OL A ADA)). (B6),(B7)

Concerning the Henkin sentences of A™F the same remarks can be made
as for AF. Just like A™BM, A™F has at least two nonequivalent Godel sentences.
Clearly, A™F is precocious. It is now easy to see that the two nonequivalent
Godel sentences and their negations give us four pairwise nonequivalent Orey
sentences. In Section 6 we will show that A™F has in fact infinitely many pair-
wise nonequivalent Godel sentences; thus, there are infinitely many pairwise
nonequivalent Orey sentences.

A™F is our final system and the main object of study of this paper. In Sec-
tion 5 we will study the principles (B1)-(B7) from the modal point of view. In
Section 6 we give a partial result on embedding Kripke models for our modal
system into arithmetic. In Section 7 we will apply the result of Section 6 to rel-
ative interpretability.
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5 The system BMF

5.1 Description of the system BMTF is the smallest system, containing the
tautologies of propositional logic, closed under modus ponens and the follow-
ing axioms and rules:

(L) t¢=F+Oe

(L2) FO(¢ - ) — (0o — OyY)
(L3) FO¢ - O0¢

(L4) FO(@¢ - ¢) > O¢

(Bl) to=FAo

(B2) FA(@—Y) - (Ad - AY)
(B3) F-AL

(B4) +FO¢— A

(B5) FA¢— OAS

(B6) F-OL - (Ado O¢)
(B7) FOL = (Adv A-g).

This list is very long and rather redundant. A more economical list would
consist of (B1), (B2), (B3), (B5), (B7), and the principles

(B8) FO¢ < (ApvDL)
(B9 FA(O¢ = ¢) » Ad.

(B8) is easily derived from (L1), (L2), and (B6). (B9) follows from (L1), (L2),
(L4), (B2), (B4), and (B6).

Let me briefly indicate how to derive the long list from the short one: (L1)
follows from (B1) and (B8); (L2) from (B2) and (B8); (L4) from (B8) and (B9);
and (B6) from (B8). We show how to derive (B4) by a familiar trick

(@ F¢— (O(oa0¢)— (64 09)) (L1)
() FAG— A(O(¢ ATP) — (6 A L)) (2),(B1),(B2)
(© FAp— A(dn9) (b),(B9)
(d FA¢—ADS (0),(B1),(B2)
() F~OL1 - (0¢— Al9) (d),(B6)
(f) FOL->(AOLvA-DOL) (B7)
(e F~A-OL (B3),(B9)
(hy FOL-ADOL (H).(2)
() FOL-O¢ (L1),(L2)
() FAOL-AO¢ (),(B1),(B2)
(k) FOL- AO¢ (h),(3)
O FO¢ - AOe. (e),(h)

Finally, (L3) follows from (B4) and (B8).
We list a few further convenient consequences of BMF:

(B10) FA¢— ¢
(B11) FO¢ - OA9
(B12) FOL - (A(@Vvy) « (Apv AY))
(B13) FO(p« ) > O(Ad < AY) (Provable Extensionality)
S FO¢ - (Yo x) =
FOo — (v[¥/p] © vix/P)). (Substitution Rule)
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5.2 Nonuniqueness and nonexplicitness in BMF Clearly, the discussion in
Section 4 on nonuniqueness and nonexplicitness of Henkin and Gdodel sentences
under mBM can be carried out in BMF; e.g., one can show

FO(p o = Ap) > O(Vp o ~AVp)
FO(p o =Ap) > (O(pe Vp)->0OL).

5.3 Kripke Semantics for BMF

5.3.1 Definitions

(a) Let K be a finite, nonempty set. Let S be a binary relation on K. The
structure <K, S) is called a lolly if
(i) for each k,k’ in K, kSTk’. Here ST is the transitive, symmetric,
and reflexive closure of S
(ii) for each k in K, there is precisely one k’ in K such that kSk’. We
will call &’ with kSk’ the S-successor of k
(iii) there is at most one k in K such that, for no &’ in K, k’Sk.
It should be clear that a lolly looks like this:

(b) A lolly such that for every k in K there is a kK’ in K such that k’'Sk is
called a circle.

(c) A structure (K, R, S) is called a lolly-frame if K is nonempty, R and S
are binary relations in K, and

(i) R is transitive

(ii) R is upwards wellfounded

Let Ko = {k in K| for no k' in K, kRk’}
K] = K\Ko
S() = SrKo
S& = the transitive, symmetric, and reflexive closure of Sy.

(iii) k € K| = (kSk’ = kRKk’)

(iv) Suppose that k € K. Let [k] = {k’|k’S{k}. Then ([k],So![k])
is a lolly. Moreover, if k’Rk, then k’'Rk” for all k” in [k]

(V) k € Ky and kSk’ = k' € K,.

(d) A lolly-model is a structure {K,R, S,l), where (K,R,S) is a lolly-
frame and | is a relation between elements of K and formulas of the
language of BMF, satisfying:

OkFT
@) kI L
(i) kK F (pAY) = (k|- ¢and k |- ¥)
W) kl-(ovy)e= (klFoorkiy)
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WMkF(p—-yY)=s(klFo=klIFY)

W)kl d=klto

(vii) k IF O¢ < for all k" such that kRk’, k' | ¢
(viii) k  A¢ < for all £’ such that kSk’, k' |+ ¢.

5.3.2 Remark It is easy to verify that lolly-frames also satisfy
kRk’'Sk” = kRk”, and kSk’Rk” = kRk".

A lolly-frame is best visualized as a conventional frame for provability logic
where the top nodes are blown up to lollies, as shown in Figure 2. Here, e.g.,
Figure 3 means Figure 4. Note that we don’t draw the arrows to exhibit the tran-
sitivity of R. Also, since R < S, we don’t write ‘S’ next to R-arrows.

5.3.3 Soundness Consider any lolly-model K = (K,R,S,|). We write K |-
¢ for: for all k € K, k I ¢. We then have that BMF | ¢ = K || ¢.

Proof: The proof is entirely routine.

5.3.4 Completeness Suppose that BMF ¥ ¢; then there is a finite lolly-
model K such that K | ¢.

We proceed with some preliminaries for the proof of 5.3.4.

5.3.5 Definition Let I' and A be sets of formulas of the language of BMF.

(a) T I A = there are finite 'y S I', Ag S A such that BMF F Ay —» WA,
(the empty conjunction is T, the empty disjunction L)

(b) Let X be a set of formulas. I' is X-saturated if T' is consistent and, for
each A S X, I'FA = thereis a ¢ € A such that ¢ €T'.

Figure 2.
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Figure 3. Figure 4.

5.3.6 Lemma Suppose that Tt A, and let X be a set of formulas. There is
a set Y < X such that Y UT is X-saturated and Y,T" It A.

Proof: The proof is entirely routine.
5.3.7 The Henkin construction Let X be a finite set of formulas that is
closed under subformulas, such that ~[J1 € X and (A¢ € X = ¢ € X). We

now construct a Kripke Model. K, the set of nodes of the Kripke model we are
constructing, consists of those sets of formulas y such that

(i) y is X-saturated
(i) if ¢ is in y and not in X, then ¢ is of the form Ay and both ¢y and
A Ay are in y.

Clearly, y consists of elements of X plus, for certain x in X Ny, Ax,AAx,
AAAYx,....Asis easily seen, K is finite and nonempty (by 5.3.6). For x,y €
k we define:

xRy = (O¢ € x= ¢,A0¢,/%¢,... € y)
and (there is a Oy € y with Oy & x)

xSy  ((—wO1) € x and xRy)
or(JLex,OLeyand (ApEX=>dEYy)
and (Ao & xand Ap € X) = ¢ & y)).

Finally, we define x | p; & p; € x.

Claim 1 R is transitive and irreflexive (and hence, upwards wellfounded).
Claim 2 xRySz = xRz.

The simple proofs of Claims 1 and 2 are left to the reader.

Claim3 Foroe X, xFp= ¢ € x.

Proof: We prove this claim by induction on ¢ in X. The only nontrivial cases
are when ¢ is of the form Oy or Ay.
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Case 1: Suppose that ¢ = Oy

Subcase 1.1: Suppose that [0y € x and xRy. Then ¢y € y, hence by IH y | ¢.
Therefore, x |F CIy.

Subcase 1.2: Suppose that Oy & x. Let x® = {x,Ax,A%x,...|Ox € x}. We
claim that xR,y I , for otherwise { Ox,0Ax,... |Ox € x} F O(Oy — ¥);
hence {Ox|Ox € x} F Oy and thus Oy € x. Quod non. By 5.3.6 there is a set
Xo € X such that x, U x® U { Oy} is X-saturated and xo U xR U {0y} I ¢. As
is easily seen, xo U xR U {0y} € K. Define y = x, U xR U {0y }. Clearly, xRy
and ¥ ¢ y and so by IH y ¥ Y. Hence x ¥ Ov.

Case 2: Suppose that ¢ = Ay. In case (- 1) € x, this reduces to the previous
case. So we assume that (J L € x.

Subcase 2.1: Suppose that Ay € x and xSy. Then ¢ € y, hence by IH y || ¥.
So we conclude that x | Ay.

Subcase 2.2: Suppose that Ay & x. Let x5 = {x|Ax € x} U {01} and x5 =
(x| Ax & x, Ax € X}. We claim that x5 I x5, for otherwise x F A Wxs, ergo
(by (B12), using the fact that J1L € x) x F W{Ax|x € xs}. Hence x I Ax for
some x in xg, which is a contradiction. By 5.3.6 there is an xy S X such that
xo U x5 is X-saturated and xo U x5 ¥ x5. Let y = x, U x5. We now show that
y € K. Suppose that » € y and » & X. Clearly » € x5, hence Av € x. Since
Avé& X, vand A Ay are in x, and since v € x and v € X, v must be of the form
Ap. We conclude that p and A Ap are in x5. Next we show that xSy. We have
OLEx,OLEy,and AxEx=x €€y If Ax & xand Ax € X, then x € xg,
so x & y. So we conclude that xSy.

Since ¥ € x5, we have that Y & y. So by IH y I ¥ and hence x [t Ay.

Claim 4 There is a y such that xRy < (~J L) € x.

Claim § For every x there is a y such that xSy.

We leave the simple proofs to the reader. (For the proof of Claim 5, note that
AL € X.)

The model we constructed is not quite a lolly-model yet, so a small trans-
mutation is needed. Consider any x such that [JL € x. Clearly we can produce
a sequence X = xoSx;S...Sx,,, where x; = x,,,; for some i < n + 1 and where
if kK <jand x; = x; then k =i and j = n + 1. We define a small lolly model L,
as follows: {({xg,...,x,},R’,S’,IF"), where

(i) R’ is empty
(i) yS’z =y = x; and z = x;,, for some j € {0,...,n}
(i) y V' pi=p: € ).

Claim 6 Fory € {xp,...,.x,}and ¢ € X,y F ¢=y | ¢.

Proof: By induction on ¢ in X for all x; simultaneously. The atomic case and
the cases of A, v, 0, and — are trivial. If ¢ is [(Jy it is sufficient to note that,
since R’ is empty, x; " Oy and that, on the other hand, OJ L € x; for each x;.
Hence by Claim 3, x; F 0L, so x; IF Oy.

Suppose that ¢ = Ay. Note that x; I Ay = x4 Y, and x; ¥ Ay =
Xis1 I . Hence x; b A¢ o Xy F ¥ 8 Xy k¥ = x| Ay
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With each x such that (0L € x we associate a small lolly-model L, as
above. Define

K*={xe K|~OL ex} U (y,x)|0L € x € K, where y is in the
domain of L}
K§ = {»,x)/0L € x € K and y is in the domain of L}
Ki={xeK|-OL1 € x}
uR*v < (u,v are in K; and uRv) or
(uis in K, v is in K§, where v = (»,x) and uRx)
uS*ve uR*vor (uisin K§, visin K¢, u = {y,x), v = {z,x) and
yS’z, where S’ is the relevant relation of L,)
Ul pis(ueKiand p;€u)or (ue€ Ky, u=<(yx)and p; € y)
K* = (K*,R*,S*,F*>.

We claim that

(A) K* is a lolly-model

B)Ifue K, then (u F*¢p=ul ¢) forop € X. If u € K§ and u = (y,x),
then (u F* ¢ =y |F ¢) for ¢ € X.

Proof of (A): One easily verifies that K* is finite and that R* is transitive,
irreflexive, and hence upwards wellfounded. Moreover, ¥ € K{ < there is a v
in K* such that uR*v. The definition of S* implies that u € K{ = (uS*v =
uR*v). We leave to the reader the easy verification that {[{y,x)], Sg I [{x, ¥>)])
is isomorphic to the lolly-frame part of L, (for {y,x) in K§). Clearly, if
uR*{y,x) then uR*(z,x) for all z in the domain of L,. Also, if u € K§ and
uS*v, then v € K.

Proof of (B): By induction on ¢ in X, simultaneously for all # in K*.

elfueKfandu=(y,x)thenu F* o=y ¢
=Y.
(The first equivalence is by a completely trivial induction.)
e Suppose that u € K{. The case where ¢ is atomic is trivial and so are
the cases of A, v, =, and —.
¢ Suppose that ¢ = Oy
o Suppose that # |F Oy and uR*v. If v is in K|, we have that uRv,
hence v |F ¢, so by IH v IF* . If v is in K, say v = {(y,x), we
have that uRx. Using Claim 2, we can show that #Ry. It follows that
» Ik ¥. Hence by IH v |F* ¢, so we conclude that » |F* Oy.
¢ Suppose that # |F* Oy and uRy. If (-OL) € y, we have that
uR*y; hence y F* ¢, soby IH y | ¢. If 0L € y, then uR* {y,y)
and <y,y) F* ¢. Hence by IH y |F ¥, so we conclude that u | Oy.
e The case where ¢ = Ay is similar.

Proof of 5.3.4: Suppose that BMF I ¢. Let X, be the smallest set that is closed
under subformulas and contains ¢ and =0 L, and let X = X, U {Ay |0y €
Xo} U {Oy| Ay € X,}. Construct a finite lolly-model K* as in 5.3.7 for X. By
5.3.6 there is an X-saturated x, S X such that xy ¥ ¢. x, will correspond to a
node of K*, say u, and u * ¢.
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5.3.8 Application In Section 4 under mBM we showed that neither in BMF
nor in PA is there an explicit Godel sentence for A, where A is interpreted in
PA as A™BM_ or AF, or A™F, In the case of BMF this fact can be easily shown
by considering the following Kripke Model:

S

®

6 Embedding circle-tail models in arithmetic We would like to generalize the
result of Solovay [17] to the logic BMF, interpreting A as AMF. To do this we
must embed lolly-models in arithmetic. This program, however, meets with a
difficulty I could not solve: in a nutshell, the problem is how to handle the sticks
of the lollies. It turns out that if the sticks are absent a straightforward embed-
ding is possible. For the record I state the obvious open problem:

Stick problem Can lolly-models be embedded in arithmetic?

Even if we do not achieve arithmetical completeness for BMF, it seems to
me that the partial result proved here is of interest: the Embedding Theorem
gives us the powerful machinery to construct arithmetical sentences (see also Sec-
tion 7). Moreover, the methods employed add to our experience with Solovay-
style arguments: we have the first example here of an embedding of structures
that are not (completely) upwards well-founded. (In this section I follow the pre-
sentation of [20].)

To get a true embedding of circle-models in arithmetic we must add a tail
to the circle-models. Consider a finite circle-model; we hang a down-going w +
1-tail (in R) under it, as in Figure 5. We can arrange it so that the nodes of the
finite model at the top are numbered 1, . ..,N, and the nodes of the down-going
tail (except the bottom) N+ 1, N+ 2,..., and the bottom is numbered by 0.
The nodes numbered N+ 1, N+ 2,...,0 will be called tail elements. We stipu-
late that at each of the nodes only finitely many atoms are forced and that on
all elements of the tail, including 0, the same atoms are forced. We call the
resulting models circle-tail models. Clearly, a circle-tail model is a circle-model.

An immediate consequence of our definition is

6.1 Tail Lemma
0 |F ¢ < there is a k such that, for all m > k, m | ¢
0 It ¢ < there is a k such that, for all m > k, m | ¢.

Proof: By a simple induction on ¢.

Let [l = {k|k I ¢}. Then, by the Tail Lemma, [¢] is either finite or
cofinite.
Note that circle-tail models satisfy the principle:

C) FOWOL- A¢)—-0O(0OL - 9).

I would be very surprised if (C) were arithmetically valid. A lolly-model to refute
(C) can be easily found.
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10

11

00
Figure 5

Open problem Is (C) arithmetically valid when A is interpreted as A™F?
For the rest of this section the following are to be kept in mind:

(1) We fix a circle-tail model K
(ii) We assume that K is suitably described in arithmetic. Specifically, we
assume that R and S are given A, definitions in such a way that all
their simple properties are verifiable
(ili) We interpret A as A™F in arithmetical contexts
(iv) ‘I stands for PAF
(v) We assume that ‘Proof” satisfies the following plausible assumptions:

FOA — vx3y > x Proof(y,A)
Fvuvv (Proof(u,v) = v < u).
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We now need to define a variant of Solovay’s reluctant function: the function
that dares not go anywhere for fear of having to stay. Our variant will not dare
to go anywhere for fear of coming there too often. To this end, define by the
Recursion Theorem

COFae Vvxiy >xhy=a
h0 =0

a, if for some a such that hkRa Proof(k,~COFa)

a, if for some a such that hkSa Proof(k,~COFa)
h(k+1) = and (nCOFa) € mF;,,

hk, otherwise.

It is easy to see that the arithmetization of ‘(wCOFa) € mF,,,’ is A, and hence
that 4 is A,. An important difference with Solovay’s original construction is
that we use ‘COFa’ instead of ¢/ = a’. Later we will see that FCOFa & [ = q;
but to show this we need 4 to be defined using ‘COF’ rather than ¢/’

We now prove a sequence of lemmas about A.

6.2 Lemma Let S* be the transitive reflexive closure of S. Then

Fvxvy(x <y — hxS*hy).
Proof: By a trivial induction on z with x + z = y.

6.3 Lemma
O F(Vz<xhz€K\)Ahx=y)> Ahx =y
(ii) Fvxvy(hx =y - Ohx = y).

Proof of (i): The proof is conducted in PA as follows. The proof is by induc-
tion on x. The case where x = 0 is trivial. Supposethat x =u + 1, vz < x hz €
K,, hx =y, and hu = v. There are three possibilities:

(a) hx was computed by the first clause of the definition of 4. So we then
have that vRy and Proof(u,~COFy), hence, AvRy and AProof(u,
- COFy). By the induction hypothesis, Ahu = v, so we conclude that
Ahx = y.

(b) hx was computed by the second clause of the definition of 4. So we
then have that vSy and Proof(u,~COFy). Since v € K, we also have
vRy. So hx was also computed by the first clause.

(c) hx was computed by the third clause. Clearly, hu = v = y = hx and
vz < u hz € K;. By the induction hypothesis Ahu = v. Moreover,
either for no w Proof(u,7COFw) or for some w Proof(u,7COFw)
and not vRw (whence not vSw, since by hypothesis u < x implies that
veE K])

Hence we have Avw < u—Proof(u,~COFw) or (AProof(u,7COFw) and
A(—vRw A vSw)), so we conclude that Ahx = y.
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Proof of (ii): By the argument used in the proof that FAA — (OAA one shows
that Fvuvv(u € mF, » O(u € mF,)). The claim now follows by an easy
induction in PA.

We define LIMa < 3x hix = a A VxVy(hx =aAx < y)— hy = a).

6.4 Lemma Fva (COFa - LIMa).

Proof: By 6.2 it is clear that Fva ((COFa A a € K;) - LIMa), so it is sufficient
to show that Fva ((COFa A a € K;) —» LIMa). We reason in PA as follows:

Suppose that COFa and a € K. Assume that « is on the circle C with,
say, a =a;58a,S...8a,Sa,,; =a;. Let x, be the unique number such that sx, €
K, and h(xo + 1) € K. Clearly, A(xo + 1) = a; for some j. By 6.3()) Ah(xo +
1) = a;, so we conclude that AW{COFg;|i=1,...,n}.

Now suppose for a reductio that =LIMa. Clearly, by 6.2 COFq,, COFa,,
...,COFa,. It follows from the definition of 4 that A —~COFa,,A—COFa,,
..., A COFa, (or how else could # move on and on?). Hence, AW {COFgq;|i=
1,...,n}and AN{—-COFgq;|i=1,...n}, therefore A 1 and thus L. So we con-
clude that LIMa.

6.5 Lemma FiaLIMa.
Proof: 1t is easily seen that F3aCOFa.

6.6 Lemma Fax hx e Ko< L.

Proof: Reason in PA as follows:

Right to left is trivial.

From left to right, suppose that Ax = a;, where g, is on the circle C,
given by a,Sa,S...Sa,Sa,.; = a;. We have that (hx = a, by 6.3(ii), hence
OW{COFg;|i = 1,...,n}. h moved up to g, by the first or by the second
clause. In either case we have (] COFag;.

We now show for k =0,...,n — 1 that ﬂ(\{DAkﬁCOnglj= L,...,k+1},
by (external) induction on k. The case where & = 0 is simply (J—=COFgq,. Sup-
pose that A {0 A*~COFgq,|j=1,...,k + 1}. By (B11) A{JA**!' ~COFgq;|j =
1,...,k+ 1}. We now need to show (0 A**! <=COFagy.,,. Clearly

O@hx =a, A N{—COFg;|j=1,...,k+ 1)) >3y = x hy = ax4>)
hence
O((hx = a; A N{—~COFgq;|j=1,...,k + 1}) > A—~COFqgy,,).
We conclude using (L1), (L2), (B1), (B2), and (B11) that
(OLhx = a; A M{OLK-COFq;|j=1,...,k + 1}) > O 2COFgy,.
Moreover, by (B11) we have from (JAx = g, that OAfhx = a;. So finally
OA ! 2COFgy,,.

We have found that A {0 A" ! -COFg;|j=1,...,n}. On the other hand, we
have OW(COFgq,|j = 1,...,n}, hence DN“\X/{COFQJU =1,...,n}. Com-
bining we find (A"~ 'L and hence [J 1.
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Consider i in K. We call the S-successor of i i, and the S-predecessor i.

6.7 Lemma
(i) F(COFu A uSv) - VCOFv
@ii) F(y € Ky A COFy) - ACOFoy
(iii) F(y € KgAn O1) = (ACOFgy —» COFy)
@(iv) F(y € Kga O1) » (COFy & ACOFay).

Proof:

(i) Reason in PA as follows. Suppose that COFu, uSv, and A-COFv.
By 6.4 LIMu. Suppose that Ax = u and for all y = x hy = u. For some z
(—COFv) € mF,. Consider w such that w > x, w > z, and Proof(w,~COFv).
Clearly, (-COFv) € mF,, ;. Hence # would move up to v at w + 1. Quod non.
So we conclude that = A - COFv.

(ii) Immediate from (i) using F(y € Ky A COFy) — [0 1, which follows
directly from 6.6, and F[J 1L = (VA < AA).

(iii) Reason in PA as follows. Suppose that y € Ky, (01, and ACOFay.
From (J L we have by 6.6 that for some z € Ky COFz. By (ii) ACOFoz. Hence
by 6.4, (B1), (B2), and ACOFgy, Ay = z and thus y = z. (We have II;-Reflec-
tion for A!)

(iv) By (ii) and (iii).

6.8 Definitions

(i) Let f be a function from the propositional variables of the language
of BMF to the sentences of PA. We define ( )/ from the formulas of
the language of BMF as follows:

o (p) =f(p)

e ( )/ commutes with the propositional connectives (including T, 1)
e (O¢)/ = O(¢) (note that ‘[0’ shifts its meaning!)

° (Lg) = A(¢)

(ii) Consider ¢ in the language of BMF. If [¢] is finite, we set
[¢] = W{COFi|i I ¢} (we take W@ = (0 =1)
If [¢] is cofinite, we set

[¢] = N(—COFililt ¢}  (we take AD = (0 = 0)

Note that [¢] is simply an arithmetization of 3Ix € [¢]] COFx
(ili) Define Fp; = [p;], and {¢) = ($)".

6.9 Embedding Theorem F(o) < [o].

Proof: 1t is clearly sufficient to show in PA that [ ] ‘commutes’ with the logi-
cal constants, including [J and A. The cases of the propositional constants are
trivial (using 6.4). We show that (i) F[Oy] « O[y] and (i) F[AY] « A[Y].

Proof of (i): In case {i|i F Oy} is infinite, we have that [y ] = [¢] = ,
hence [Dy] = [¢] = (0 = 0). It follows that F[[Oy] < I [y¥]. Suppose that
{i]i | ¢} is finite. Reason in PA as follows:

From right to left, let ji,...,j; be the complete set of nodes such that
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Jx I OY and ji I ¥. Suppose that (I[y¢]. Clearly, 0~ COFj,. Suppose that
Proof(p,~COFj) and Ap = y. There are two possibilities:

Case 1: yRji. If yRjy, clearly h(p + 1) = ji.

Case 2: —yRj. It follows that if COFx, then = xRjy, for if we had yS*xRjj, it
would follow that yRj. )

In both cases, COFx — —xRj.

On the other hand, it is easily seen that if x It CJy then xRj, for some k.
Hence, COFx — x | 0y, so we conclude that [(Jy].

From left to right, suppose that COFi for some i such that i | [Iy.
Because i # 0, # must have moved up to i at a certain point by clause 1 or
clause 2 of the definition of 4. In either case we have that [J-~COFi. Suppose
that Ax = i. By 6.3(ii), Ohx = i. If i € K, we have by 6.6 (0L, and hence
O[y]. If i € K, we see that [1-COFi and OAx = i imply (Ovy(COFy — iRy),
thus we conclude that (I [y].

Proof of (ii): Clearly, F[ 0O L - (Ay o Oy)],hence F—O L - ([AY]l e O[¥])
by the fact that [ ] ‘commutes’ with the propositional connectives and [J. Also,
F=OL->(A[y] e O[¥]). So we may conclude that F= 0L - ([Ay] e A[¢]).

To complete the argument we need to show that FO L — ([Ay] & A[¥]).

FOL - ([AY] e ([Ay]AOL)
o [AYyATL]
© W{COFj|jIF Ay A1)
o W{COFmi|iFyaOL)

< W{ACOFi|ilF¢y DL} (6.7(iv))
o AW{COFililFy A OL} (B12)
o AlyaOL]

< AYD. (B1),(B2),(B4)

6.10 Remark The reduction result proved as (33) in Section 4 clearly applies
to A™F. It implies that for the arithmetical embedding of fraditional tail models
we have that FA[¢] © (O[é] A (OL - [¢])). We can now understand this
result in a new way: the arithmetical embedding of traditional tail models is sim-
ilar to the arithmetical embedding of circle-tail models which have just single-
ton circles! (This point will become even clearer in the light of Lemma 7.3.)

6.11 Application There are infinitely many nonequivalent Godel sentences
for ATF,

Proof: 1t is clearly sufficient to prove that for any » there are » nonequivalent
Godel sentences for A. Consider the circle-tail model shown in Figure 6.
Let s be a sequence ¢ ¢, ...c, of 0’s and 1’s. Consider an atom p;. Let

agiFps=c;=0
aiFps=ci=1
b; I+ ps for all j
0 IF ps.

Define G, = [p,]. It follows immediately from the Embedding Theorem that
FG, < 7 AG,. Moreover, if s # s’ then F (Gy < Gy) - O L.



PEANO’S SMART CHILDREN 191

1
!
|
1
[}
I
I
I

°0
Figure 6.

Because Godel sentences of A are Orey sentences it follows that there are
infinitely many nonequivalent Orey sentences.

7 A™F meets relative interpretability In this section ‘A’ will stand for <A™’
in arithmetical contexts, ‘+’ will stand for ‘PAF. We fix a circle-tail model K.

For convenience we now repeat the derivability conditions we collected for
relative interpretability in 3.5:

1) FO(B-A)—>A<B

(12) F(A<BAB<C)»>A<C

(13) FHA<BAA<C)> A< (BvC)

(14) FA < B - (OB~ 0A)

(I5) F0A < B— O(B - 0A)

(16) FA < 0A

(I17) FA<B- (AATC) < (BAOC)

(J1) forall PinIl,, PA+P < B— O(B— P)

(J2) forallSinZ,, PA+A<B— (AAS)< (BAS).



192 ALBERT VISSER

We add the (for our purposes) essential (34) of Section 4
(J3) FA <« VA.

Note that (I5), (I6), and (I7) are redundant in our present list.
We list some immediate consequences of our list:

J4) FA <« AA. (B1),(B2),(B3),(I11),(33),(12)
Define A =B< A <<BAB<A.
(Js) FH(A=A'AB=B')> (A<Bo A" <B) (I2)
J6) FN{A; < B;li=1,...,n}

> W{A;li=1,...,n} <WI[B;li=1,...,n} (I1),(12),(13)
(J7) FB= (Bv OB) (I11),(16),13)
(J8) If PeIl,, then FOO((B v OB) & P)

> (B Co O(C— (Bv OB)) I1n,dJs),Jd7n,Jn

We now wish to take a closer look at the interaction between <t and the sen-
tences [¢] constructed in Section 6. The classes of sentences [¢], constructed
for different circle-tail models, are too poor to refute all modal principles not
valid in PA in a language with [J and <. For example, Per Lindstrom has shown
that there is a £; sentence A such that

A< T->0A4<T).
On the other hand we will see that
Fl¢l «T—-0([¢] @ T).

This weakness, however, turns out to be a strength: [¢] < T reduces to a sim-
pler formula. (We encountered the phenomenon of reduction before in connec-
tion with Feferman’s Predicate.)

We define an ad hoc modal operator ( )* as follows: [¢*] is the smallest
set X such that [¢] € X, and if j € X N K, then ¢/ € X. In other words,
[¢*1 is obtained by adding to [¢] all circles C such that CN [¢] # .

7.1 Reduction Theorem Flol <Aoo TOA- ([0"]VvO[o™]).
To prove this we need a few lemmas.
7.2 Definition We define a recursive function A, as follows:
ho0 =0
a, if for some a such that hykRa, Proof(k,~COFa)

hk, otherwise.

ho(k + 1) ={

Here ‘COF’ is as in Section 6. Note that COF is based on /# and not on Aj.

7.3 Lemma
() F(Vz< x hz€ K|) > hx = hgx
(ii) Let S* be the transitive, reflexive closure of S; then FVx hoxS™* hx.

Proof: The proof in both cases is by a simple induction on x in PA. These induc-
tions are much like the proof of 6.3(i).
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7.4 Corollary [ob] is A,.

Proof: 1t is clearly sufficient to show that sentences of the form COFj are A,.
In case i € K, we have by 6.9 that FCOFi & ACOFai, hence COFj is in A,.
In case i € K; we have by 6.4 and 7.3 that

FCOFi & (3x hox = i AVXVY((hox = iAX < p) = hy =1)).
7.5 Definition Consider X € K. We call X upwards persistent if (i € X and
iSj) = je X.
7.6 Lemma Suppose that [¢] is upwards persistent. Then [¢] is provably
equivalent to a L, sentence.

Proof: In case [¢] is infinite this is trivial. So, supposing that [¢] is finite,
we show that

Flo] © W {3x hox = i|i |- ¢}.

We reason in PA as follows:

From right to left, suppose that Apx =i for i € [¢]. iS*hx by 7.3(i),
hence by the upwards persistence of [¢], ix € [¢]. Thusvz>x hz € [¢1,
so we conclude that [¢].

From left to right, suppose that COFj for i € [¢]. In case i € K; we
have by 7.3(i) 3x hyx = i. Suppose that i € K|, say i is on circle C. Clearly there
isauon Canda ysuchthat iy =u and for all z < y, hz € K;. By 7.3() hyy = u.

Then [¢] is upwards persistent, i is in [¢1], iis on C, hence C < [¢].
We conclude that u € [¢], and so 3y Agy € [¢].

7.7 Lemma Suppose that i is on circle C. Then FCOFi < W {COF/j|j €
C}.

Proof: Reason in PA as follows: By 6.7(ii) we have that (J(COFwi — A COFi);
hence by (I1) (ACOFi) <« COF=i. By (J4) and (I12)

COFi < COFmi
and similarly we have that

COFri <« COFx?i

COF 7" % <« COF7"\j.

Here we suppose that »n is the number of elements of C. By (I1), (I2) and the
above we have that

COFi < COFi
COFi < COF i
COFi < COFn"~i;
hence by (I3)
COFi < W{COF7*i|0 < k < n}.
In other words

COFi < W{COFj|j € C}.
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7.8 Lemma Flol =[¢*].

Proof: 1t is immediate that F[¢*] < [¢], so we need to show that F[¢] <
[¢*]. Reason in PA as follows: First, note that by 7.9 O ([¢] «© ([¢ AT L] v
[¢pA—-0OL]). Hence by (J6) and (I1) [o A OL] < [¢*ATL] - [0] < [¢*].
It follows that we may restrict ourselves to ¢ with [¢] S K. So suppose that
[¢] € Ky. Clearly [¢*] consists precisely of those circles C such that [¢] N
C is not empty. We have by 7.7 and (J6)

W{COFi|i | ¢} <« W{W{COFEj|j € C}|CN [¢] # D}.
In other words, [¢] < [¢*].
7.9 Lemma ([6*] v O[d*)) is provably equivalent to a I1, sentence.

Proof: Note that F=([¢*] v O[9*]) © [¢* A O—¢*]. Moreover, as is easily
seen, [—¢* A O—¢*] is upwards persistent. Apply 7.6, and we are done.

Proof of 7.1: We have

Flol <A [¢*]1 <4 (7.8),J5)
o 0A- (o] v O[e™]). (7.9),J8)

7.10 Corollary Flol <« To O(OL — [¢¥)).
Proof: We leave it as an exercise to the reader to show that
FOMA vV OA) « O(OL — A).

7.11 On a question of Orey Orey asks: for which sets I' of propositional for-
mulas in the variables p,,...,p, are there arithmetical sentences By,...,B,
such that I' = {(#|¢(By,...,B,) < T}? (I learned this formulation of Orey’s
problem from Per Lindstrom. Actually, the question is asked for arbitrary essen-
tially reflexive theories 7. I think that inspection of the argument of this paper
shows that the answer given here applies to consistent essentially reflexive RE
theories 7 into which PA restricted to I,-induction can be translated.)

Let us say that {¢|¢(By,...,B,) < T} is the interpretability class of
By,...,B,. A moment’s reflection shows that interpretability classes I should
satisfy

@) Ter
(i) L ¢T
(iii) ¢ Fprop Y and ¢ €T = Y €T

We will show that, conversely, every set I' of propositional formulas in
D1, .. .,D, satisfying (i), (ii), and (iii) is an interpretability class.

Proof: Let T be a class of propositional formulas in py,...,p, satisfying (i),
(ii), and (iii). The plan of the proof is to construct a circle-tail model K and to
take B; = [p;]. 7.10 tells us that what happens below the circles is really irrele-
vant, so we start by stipulating an arbitrary tail, say by . ..b3;Rb,Rb;, where no
atom is true at the nodes b;. We then proceed to construct the circles.

rc= {¢]|¢ is a propositional formula in the variables p,,...,p, and ¢ &
I'}. Note that I and I' are both closed under provable equivalence in propo-
sitional logic (in the language based on py,...,p,). Let ¢, ..., o, be represen-
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tatives of the equivalence classes of I" and let Y, .. .,¥,, be representatives of
the equivalence classes of I'C. Define:

Ke={iipll=sisk 1=j=m)
LS, jYyej=jand (1 =i<kandi’' =i+ 1)
or (i=kand i’ =1)).

Let us say that the nodes </, ;) for fixed j form a circle C;.

Consider a node <i,j). Clearly ¢; ifp;op ¥/, 50 there is an assignment f of
truth values to py,...,p, under which ¢; is true and y; is false. Pick such an
assignment f and put {i,j) [ ps = fp, = T.

Clearly, on every circle C; there is a node <i,j) such that <i,j) I ¢,.
Hence (OL — ¢7) and (DO L — ¢;) are forced everywhere in the model.

On the other hand, no node ¢i,j) on C; forces y;, hence ¢i,j) It 0L —
Y. It follows that (O(O L — ;) - 1) is forced everywhere in the model.

Put B; = [ p,]. Note that for any propositional formula x in py,...,p, we
have that x(B,,...,B,) =<{x). We have by 6.9 that

FOM@OL - [¢7]) = (7.10)
Flg:l 2T = (7.9),(I1),(J5)
Heé)aT=

Foi(By,...,B,) < T = (Reflection Principle)

¢;(B1,...,B,) < T.
Moreover, by 6.9

FOOL - [¢yf)-» 0L = (7.10)
Fly,] <T->01 = (6.9),(11),(J5)
|‘(¢J) 9T-0L=

Fj(By,...,B) 9 T->01L =

~(;(By,...,B,) < T). (Reflection Principle)

Note that the uses of the Reflection Principle are eliminable here: we could just
have proved the necessary lemmas externally, i.e., in nonformalized form. (In
case the theory under consideration is not PA it may even be necessary to rea-
son externally.)

It follows immediately that ' = {¢|¢(B;,...,B,) < T}.

7.12 Remark Note that in the proof of 7.11 it would have sufficed to con-
sider representatives ¢; of the equivalence classes in I' that are minimal in the
implication ordering. Similarly, we need only consider representatives y; of the
equivalence classes of I'C that are maximal in the implication ordering.

REFERENCES

[1] Auerbach, D. D., “Intentionality and the Godel theorems,” Philosophical Studies,
vol. 48 (1985), pp. 337-351.

[2] Bernardi, C. and F. Montagna, “Equivalence relations induced by extensional for-
mulae: classification by means of a new fixed point property,” Rapporto
Matematico 63, Dipartimento di Matematica, Via del Capitano 15, 53100 Siena,
Italia.



196 ALBERT VISSER

[3] Bowie, G. L., “Lucas’ number is finally up,” Journal of Philosophical Logic, vol.
11 (1982), pp. 279-285.

[4] Feferman, S., “Arithmetization of metamathematics in a general setting,” Fun-
damenta mathematica, vol. 49 (1960), pp. 35-92.

[5] Guaspari, D. and R. M. Solovay, “Rosser sentences,” Annals of Mathematical
Logic, vol. 16 (1979), pp. 81-99.

[6] Hajek, P., “Experimental logics and II;-theories,” The Journal of Symbolic
Logic, vol. 42 (1977), pp. 515-522.

[7] Hilbert, D. and P. Bernays, Grundlagen der Mathematik, 2nd edition, Springer-
Verlag, Berlin, 1970.

[8] Jeroslow, R. G., “Experimental logics and A,-theories,” Journal of Philosophical
Logic, vol. 4 (1975), pp. 253-267.

[9] Lindstrém, P., “Some results on interpretability,” pp. 329-361 in Proceedings of
the 5th Scandinavian Logic Symposium, Aalborg, 1979.

[10] Lucas, J. R., “Minds, machines and Godel,” Philosophy, vol. 36 (1961), pp.
120-124.

[11] Montagna, F., “On the algebraization of Feferman’s predicate,” Studia Logica,
vol. 37 (1978), pp. 221-263.

[12] Montagna, F., “Provability in finite subtheories of PA and relative interpretabil-
ity: A modal investigation,” The Journal of Symbolic Logic, vol. 52 (1987), pp.
494-511.

[13] Orey, S., “Relative interpretations,” Zeitschrift fiir Mathematische Logik und
Grundlagen der Mathematik, vol. 7 (1961), pp. 146-153.

[14] Putnam, H., “Trial and error predicates and the solution to a problem of
Mostowski,” The Journal of Symbolic Logic, vol. 30 (1965), pp. 49-57.

[15] Smorynski, C., “Modal logic and self-reference,” pp. 441-496 in Handbook of
Philosophical Logic, edited by D. Gabbay and F. Guenthner, Reidel, Boston, 1984.

[16] Smorynski, C., Self-reference and Modal Logic, Springer-Verlag, New York, 1985.

[17] Solovay, R. M., “Provability interpretations of modal logic,” Israel Journal of
Mathematics, vol. 25 (1976), pp. 287-304.

[18] Svejdar, “Degrees of interpretability,” Commentationes Mathematicae Universi-
tatis Carolinae 19, pp. 789-813.

[19] Svejdar, “Modal analysis of generalized Rosser sentences,” The Journal of Sym-
bolic Logic, vol. 48 (1983), pp. 986-999.

[20] Visser, A., “The provability logics of recursively enumerable theories extending
Peano arithmetic at arbitrary theories extending Peano arithmetic,” Journal of
Philosophical Logic, vol. 13 (1984), pp. 79-113.

[21] Webb, J., Mechanism, Mentalism and Metamathematics, Reidel, Dordrecht, 1980.

Central Interfaculty Department of Philosophy
State University of Utrecht

3508 TC Utrecht

The Netherlands





