
241

Notre Dame Journal of Formal Logic
Volume 30, Number 2, Spring 1989

Combinαtors and Categorial Grammar

PETER SIMONS*

Abstract From Ajdukiewicz onwards categorial grammar has failed to char-
acterize adequately the twin roles of variable-binding operators and the vari-
ables they bind. Categorial grammars are, however, adequate for languages
using combinators and dispensing with bound variables, but the combina-
tors used hitherto have been insufficiently flexible to eliminate bound vari-
ables from languages which allow both higher-order quantification and
multi-place functors, such as those of Lesniewski. This paper introduces
seven multigrade combinators and shows how they can be used to eliminate
bound variables from Lesniewskian languages, yielding logical languages as
powerful as these but in perfect harmony with Ajdukiewicz's type of gram-
mar. An alternative to multigrade combinators will also be considered and
the significance of the result for the understanding of languages with more
flexible category assignments is studied.

/ Introduction: Categorial grammar and bound variables The history of cat-
egorial grammar is usually said to have started with the 1935 paper by Ajdukie-
wicz [1] on syntactic connection. The practices Ajdukiewicz attempts to codify
in the paper were applied explicitly by Lesniewski, although the basic principles
of categorial grammar had already been enunciated without being applied by
Husserl and had been applied without being enunciated by Frege. Ajdukiewicz's
achievement consisted principally in the introduction of a notation for syntac-
tic categories and an algorithm for testing the syntactic connection of strings of
expressions. Since Ajdukiewicz's inception of categorial grammars they have
been considerably refined in numerous ways, in particular in the direction of
making them more adequate for natural languages (cf. [2] and the literature cited
therein). Ajdukiewicz's account is, however, unsatisfactory in one crucial respect,
which shows up in the treatment not of natural languages but of the languages
of mathematics and logic which employ bound variables and operators binding

*My thanks go to Karel Lambert and to the referee for their advice.

Received February 24, 1987; revised June 23, 1987

242 PETER SIMONS

them. Ajdukiewicz does indeed offer an analysis, but it fails to capture what he
recognized as the essence of such operators, namely the way in which they bind
variables. Consider for example the universal quantifier: on Ajdukiewicz's anal-
ysis there is no difference between a sentence Vx(Fx), where the quantifier binds
a variable in its scope, and a sentence Vx(Fa) where it does not. This difference,
for instance, is crucial for a description of Lesniewski's logical systems, where
vacuous quantification is not even syntactically well-formed. Ajdukiewicz is
forced to regard the string consisting of the universal quantifier followed by one
or more variables as a simple, unanalyzed symbol, because he sees no way (con-
sistent with an extensional account of logic) of taking V as a functor taking the
variables as arguments. Hence his account fails to preserve the compositionality
which is such an attractive feature of categorial grammar. It is thus ironic that
Ajdukiewicz's grammar, which is inspired by Lesniewski's work in logic, is ade-
quate only for the tiny quantifier-free fragments of languages, such as those
of Lesniewski, employing bound variables. This inadequacy does not show up
directly in the application of categorial grammar to natural languages, which at
least superficially lack the device of bound variables.

Despite the developments categorial grammar has undergone since Ajdu-
kiewicz's paper, I consider this problem still unsolved. No categorial grammar
I have come across satisfactorily captures the roles of bound variables and the
operators binding them. In a way this is not surprising, since variable binding
is an essentially nonfunctorial operation, whereas categorial grammars codify
only functorial combination. Bound variables mark places, of particular syn-
tactic categories, for operators to reach into, and the use of equiform variables
allows an operator to reach into more than one place at once. Thus, in a real
sense bound variables are only, as the older terminology had it, "apparent". As
physical constituents of physical expressions, bound variables are an expedient,
and do not so to speak correspond to any constituent of the proposition the sen-
tence expresses, but represent rather a pattern of binding. A pattern is, however,
precisely something which is not a constituent expression, since a pattern can-
not, while a constituent can, be exhibited in isolation from its context. It is nev-
ertheless attractive to view a variable binder together with its variable pattern
as a functor, and its matrix as an argument: in the semi-English sentence 'Vx(x
flows)' the quantifier-variable pattern ίy^x(x—)' takes the one-place predicate
'. . . flows' to yield a sentence, in just the way that its English counterpart Every-
thing' does. So if we can find a way to eliminate binder-variable patterns in favor
of functors like this, we can apply categorial grammar directly to the result.

Now it is in principle possible to avoid bound variables in many formal sys-
tems if one employs combinators, as was shown, independently, by Schδnfinkel
and Curry ([3],[4],[11]). Combinators were indeed introduced in order to pro-
vide a clearer understanding of variable binding. Suppose then that for every
expression containing bound variables there is an equivalent one containing com-
binators but no bound variables, to which the principles of categorial grammar
apply directly. This can be viewed in one of two ways. If we consider the com-
binatorial language to reveal the logical form of the variable-binding language,
it shows how categorial grammar may be applied to variable-binding languages,
albeit not to their surface form. If on the other hand we consider the combina-
torial language as merely providing a language of equivalent expressive power

COMBINATORS AND CATEGORIAL GRAMMAR 243

to the variable-binding language, while categorial grammar fails to provide a
face-value syntactic analysis of this, we have still shown how to find a categorial
language equivalent to it in expressive capacity. Of these two viewpoints, I
incline towards the first, and would regard the combinatorial analysis as reveal-
ing the way in which categorial grammar applies to variable-binding languages.

However, the Schonfinkel-Curry combinators are not adequate to the task
of eliminating bound variables from all languages, since they apply only to func-
tors which take one argument, whereas in most languages there are multi-place
functors. This is not an insurmountable drawback to the use of these combina-
tors in formulating logical languages, since a multi-place functor can be replaced
by what Lesniewski calls a multi-link functor (see [7]). Consider for example the
two-place addition functor + , which for any two numerical terms, for exam-
ple 2 and 3, forms a complex numerical term, here 2 + 3, by being simulta-
neously "saturated" by the two terms, and which accordingly has syntactical
category n/nn in Ajdukiewicz's familiar fraction notation. One may instead take
the functor $ which is of category (n/n)/n9 and obtain a numerical term not by
two simultaneous "saturations" but by two successive ones: first form the com-
plex functor $(3), of category n/n, and then saturate it with the term 2 to get
$(3)(2), which is finally of category n. By use of this device the syntax of com-
binators may be kept simple. However there are languages, such as those of Les-
niewski, which explicitly distinguish syntactically between multi-link functors and
their associated single-link, multi-place ones: the functors -I- and $ belong to dif-
ferent categories and cannot be substituted salva congruitate for one another.
So the Schonfinkel-Curry combinators cannot be used as they stand to elimi-
nate variables from such a language.

On the other hand, Quine has used combinators to eliminate variables from
languages with multi-place functors (see [9],[10]). Quine's combinators are how-
ever specially adapted to languages of first-order, whereas other languages —
again, such as those of Lesniewski —may contain bound variables of any
syntactic category. Quine's combinators are too weak to eliminate bound vari-
ables of categories other than that of names.

So, if bound variables are to be eliminated from languages as rich in their
syntactic categories as those of Lesniewski, or any other language in which both
higher-order variables are quantified and multi-place functors occur, in such a
way that the principles of categorial grammar apply directly to the result, fea-
tures of both approaches must be combined. This paper indicates how this can
be done, and so in my opinion solves the problem of the adequacy of categorial
grammars for a wide range of variable-binding languages. Rather than present
and describe a particular language, I give a general recipe for applying the result
to languages constructed on the pattern of those of Lesniewski. The result is of
interest not just to Lesniewski scholars. Lesniewski's logical systems are com-
parable with simple type theories, so the results are relevant to these and to
higher-order logics in general. Lesniewski's languages are taken as exemplary
because (modulo bound variables) they are explicitly constructed along categorial
lines, so their recursively constructed grammar is relatively simple, and yet also
very rich in its categories, so that in describing how to provide a grammar for
Lesniewskian languages it becomes clear how to do so for languages with more
restricted grammars.

244 PETER SIMONS

It is not initially necessary to consider categorial grammars in complete
generality, but only to the extent required for the description of the grammar
of Lesniewskian languages. For this one need only consider simple categorial
grammars, which are such that each token expression in a category belongs just
to this category and to no other. Many categorial grammars allow a single token
expression to belong simultaneously to many categories, which are derived
according to what are called type-change rules.1 Such extended categorial gram-
mars are more adequate for describing the grammar of natural languages than
are simple categorial grammars. However, Lesniewskian languages do not
require this refinement for their description; herein consists both their simplicity
and their rigidity in comparison with natural languages. I will come back later
to the relevance of the main result of this paper to languages with type-change
rules.

2 Lesniewskian languages

2.1 Categories The syntactic or grammatical categories are generated recur-
sively: they divide exhaustively into basic categories and functor categories.
Functor categories are characterized uniquely by the categories of their syntactic
inputs (in order) and the category of their output. Simple categorial languages
recognize a single structural principle: the simultaneous saturation of a functor
expression by one or more argument expressions, taken in a certain order, forms
a unified complex expression. How saturation and the order of arguments is
marked in concreto varies, as comparisons among natural languages show. How-
ever, the constraints of linearization suggest one natural way of realizing such
structure, which is to split the principle into two structural principles: a linear,
"horizontal" principle in which expressions are formed into sequences, and a
hierarchical, "vertical" principle in which functors are applied to such sequences.
The sequential principle can be realized in a written language by forming strings
of expressions, letting the usual conventions of writing the successive words of
a text represent the order of sequence. The hierarchical principle may be real-
ized by enclosing such strings and attaching a functor to the resulting package.
For linear terms this is easily attained by delimiting the string with parentheses
and pre- or (less frequently) post-posing the functor expression. It is this way
which Lesniewski adopts, and his procedure is followed here both in the gram-
mar of the languages and (here deviating somewhat from tradition) in the way
expressions signifying the categories are constructed. We shall not therefore con-
sider directional categorial grammars, in which a distinction is made between
functorial application to the left and to the right. Directionality may be required
for an adequate description of many formal and most or all natural languages,
but it introduces complications that would obscure our main point. Lesniewski's
languages were explicitly constructed in a way which made it unnecessary to con-
sider directionality.

We are now able to characterize the categories available in a Lesniewskian
language by a simultaneous recursion defining both category and category
sequence. We presuppose as a primitive the concept basic category. Basic cat-
egories are given by a finite list:

COMBINATORS AND CATEGORIAL GRAMMAR 245

Cl Each of the finite number of basic categories is a category.
C2 For all a, if a is a category then a is a category sequence.
C3 For all a and p, if a is a category and p is a category sequence then the

sequence consisting of p followed by a is a category sequence distinct from
the other two.

C4 For all a and p, if α is a category and p is a category sequence, then the
functor category taking as inputs the members of the sequence p in order
and yielding as output the category a is a category distinct from all the
input categories and from the output category. Functor categories formed
in this way are distinct iff their input category sequences are distinct, or
their output categories are distinct, or both.

C5 Nothing is a category or category sequence except in virtue of C1-C4.

I adopt the following notation for categories:

Nl Basic categories are symbolized by simple symbols. I shall mention only
's' for the category of sentences and V for the category of names.

N2 Each category symbol is also used to symbolize the same category consid-
ered as a category sequence.

N3 If 'p' symbolizes a category sequence and 'a ' a category, then the concate-
nation 'pa' symbolizes the category sequence consisting of the first cate-
gory sequence p followed by the category a.

N4 If a is a category and p a category sequence, then 'α(p) ' symbolizes the
functor category whose output category is a and whose input category
sequence is p.

N5 All category symbols are formed in accordance with the directives N1-N4.

The notation may be illustrated with examples. The categories of •+• and $ from
the previous example are now represented by n(nn) and n(n)(n), respectively.
The category of the functor of sentential negation is s(s), that of sentential con-
junction is s(ss), while that of a functor forming an intransitive verb from a
transitive verb and a name (in that order) is s(n)(s(nn)n).

In the languages formulated by Lesniewski there are only two different
hierarchies of categories. The language of protothetic, in effect a system of
propositional types, has as its sole basic category that of sentence, while the lan-
guage of ontology, Lesniewski's general logic, which is akin to a simple type the-
ory in expressive power, adds the second basic category of name. Here, however,
the only restriction we place on the number of basic categories is that it be finite.

2.2 Parentheses and other brackets In his directives for constructing logi-
cal systems Lesniewski is very liberal in what he allows as expressions: there are
no set prescriptions concerning the shape or typeface of symbols (whether con-
stant or variable) of a given category. We shall follow this liberality in not spec-
ifying exactly which symbols are to be admitted into the languages under
consideration, provided only that certain restrictions are observed. In this way
our account applies to any language constructed along these lines.

Lesniewski even allows distinct but equiform expression-tokens to belong
to different categories and leaves it to the context to disambiguate. This is made
possible by requiring that each functor category have associated with it a char-

246 PETER SIMONS

acteristic shape of parentheses for enclosing its arguments. While the device of
using different shapes of parentheses has its attractions, because it allows equi-
form symbols to be used for analogous constants of a different category, and
because it sometimes aids clarity, it is theoretically dispensable and can be
typographically extravagant.2 Things are kept simple here by tightening up the
requirements on symbols: once a symbol is assigned to a category all symbols
equiform with it are stipulated to belong to that category and no other. In this
way only one shape of parentheses is needed, the usual curved ones: (,). This
minimal deviation from Lesniewski's liberalism is worth the gain in typographi-
cal and grammatical simplicity. We follow Lesniewski, however, in distinguish-
ing the parentheses which enclose the arguments of a functor from the symbols
which enclose the variables bound by a universal quantifier, which are lower left
and right corners: L , _,, and from the symbols which mark the scope of the
quantifier, which are upper left and right corners: Γ , π . It is clear that these
two punctuating tasks are so different from that performed by parentheses that
it is appropriate to mark the difference by different symbols.3

2.3 Metalinguistic conventions Although in principle I agree with Lesniewski
that the primary and ontologically most acceptable way of considering expres-
sions is as concrete tokens between which there are relations of equiformity, the
convention adopted above allows us to ignore the difference between equiform
tokens and to employ the more usual metalinguistic devices, treating metalin-
guistic expressions as denoting expression types. The metalinguistic devices
employed in this paper are as follows, where 'wfe' abbreviates 'well-formed
expression' and 'wfeseq' abbreviates 'finite sequence of well-formed expressions':

Letter Terms The letters a, b, c, d, e9 f, g9 with or without subscripts are
used as schematic letters for wfe types.

Autonymous Terms Tokens of left and right parentheses, left and right
upper and lower brackets, and any other stipulated expressions of the object lan-
guage, may be employed in a metalinguistic manner as names for their own types
in the object language.

Sequence Letter Terms The letters r, s, t with or without subscripts stand
for finite sequences of expressions. Because wfes are sequences of length 1 they
also count as sequence terms.

Descriptive Sequence Terms Two basic expressions are employed as
schematic terms signifying kinds of sequence of wfes: V. . . ' signifies wfeseqs
whose first members are the sequence r (there need be no others, and r may be
a single wfe); '.../•' signifies wfeseqs whose last members are the sequence r
(with similar qualifications).

Concatenation If x and y name or signify expressions, the concatenation
xy signifies their sequence. So we can name sequences like ab, rs, ras, and wfes
like f(r). In combination with descriptive sequence terms, concatenation is a
powerful device enabling us to signify various kinds of wfe and sequence, e.g.,
...a...,a...b,f(a...), L6_, Γf(a...b...c)n.

2.4 Formation rules for Lesniewskian languages Here we present recursive

principles for constructing well-formed expressions (wfes) of a Lesniewskian Ian-

COMBINATORS AND CATEGORIAL GRAMMAR 247

guage. Formation rules normally concern only well-formed formulas (wffs) and
sometimes also well-formed singular terms, but more extensive stipulations are
required here because of the syntactic complexity of Lesniewskian languages.

2.4.1 Preliminary requirements Every expression is either simple or complex
and no expression is both. Simple expressions may be called (following Les-
niewski) words. Words are either terms or punctuators and no word is both.
Punctuators are left and right parentheses and upper and lower corners and
nothing else, and do not belong in any category. Each term belongs to a single
category. Every term is either a constant or a variable of its category and no term
is both. The distinction between constants and variables is here a purely syntactic
one. Complex expressions consist of certain finite sequences of words. Every
expression, whether simple or complex, must have exactly one decomposition
into words. So, for instance, the expression ')(' may not be a word, since it is
equiform to a complex expression consisting of two punctuators.4

2.4.2 Proper variable sequences A proper variable sequence (pvs) is a
nonempty sequence of variables, none of which are alike:

PVS1 Every variable is a pvs.
PVS2 If r is a pvs and a is a variable and a does not occur in r then ra is a pvs.
PVS3 Nothing else is a pvs.

One pvs is a shuffle of another iff they contain the same variables but perhaps
differ in the order in which they occur.

2.4.3 Definitions for the specification of well-formedness A well-formed for-
mula (wff) is a wfe of category s.

If r is a pvs and a is a wff, then Lr_, ran is a quantifier expression, the
initial L^_J of which is called its quantifier and the a of which is called its
scope.

If the variable a occurs in the wfe b in the scope of a quantifier in b whose
pvs contains a, then this occurrence of a is bound in b. If a occurs in b but not
in the pvs of a quantifier in b and is not bound in b this occurrence of a is free
in b, and a is said to occur free in b.

A wfe in which some variable occurs free is called open, one with no free
occurrences of any variable is closed. A closed wff is called a sentence.

2.4.4 Formation rules The following specification recursively defines 'well-
formed expression' (wfe) and 'finite sequence of well-formed expressions'
(wfeseq).

WF1 Every term of category a is a wfe of category a.
WF2 Every wfe of category a is a wfeseq of category sequence a.
WF3 If r is a wfeseq of category sequence p and a is a wfe of category a then

ra is a wfeseq of category sequence pa.
WF4 If/is a wfe of category φ(p) and A* is a wfeseq of category sequence p

then/(r) is a wfe of category φ.

248 PETER SIMONS

WF5 If A* is a pvs and a is a wff such that each variable in r occurs free in #,
then Lr_| ra~1 is a wff.

WF6 Nothing is a wfe or wfeseq except by virtue of WF1-WF5.

Notice that this recursive specification runs parallel to the recursive specifica-
tion of the categories except for the quantifier clause WF5. It is precisely here
that the syntax of languages with bound variables breaks the bounds of simple
categorial grammar.

3 Multigrade combinators Schδnfinkel-Curry combinators work only for
one-place functors, but they are categorially flexible, whereas Quine's combi-
nators can cope with multi-place functors, but eliminate only individual vari-
ables. The combinators introduced here combine both aspects. Because they are
not assigned to a fixed syntactic category I call them multigrade combinators.
In Section 5 this conception will be examined in more detail.

3.1 Syntax To a Lesniewskian language we add the following seven symbols:

I W R K J B U

and require that no word or complex expression of the unextended language be
equiform to any of them. The following clauses must now be added to the for-
mation rules:

WFI If a is a wfe of category a, so is I {a).
WFW If/is a wfe of category φ(a{.. .anan)9 where n > 1, then W{f) is a

wfe of category φ{ax... an).
WFR If/is a wfe of category φ(cί\a2 .. .α Λ) , where n > 2, then R(f) is a

wfe of category φ(a2 . . . α w αi).
WFK If/is a wfe of category φ(β1.. .βn){ax.. . α m), where m > 1 and n >

1, then AX/) is a wfe of category φ(β2. -βn)(<x\ -<xmβi)-
WFJ If /is a wfe of category φ(βx... βn) (ax ... am), where m > 1 and n >

1, then /(/) is a wfe of category φ(amβ{ . . .βn)(otx .. .o^- i) .
WFB If g is a wfe of category y(Φι... φm), where m > 1, then B(g) is a wfe

of category

γ (α n . . . « ! „ , . . .0LmX . ..CLmnm)(φχ(θLn . . .aϊni). . .φm(oιmi -Oίmnj)

where for each /, 1 < / < m, nt > 1.
WFU If /is a wfe of category s(ot\... αΛ), where Λ > 1, then ί/(/) is a wff.

The exclusion clause WF6 needs to be modified to accommodate these new
clauses.

The extended language contains both the combinators and the bound vari-
ables and quantifiers. So there are wfes which are "mixed", containing some
combinators and some bound variables. The "pure" fragments (combinator-free
and bound-variable-free) are what is principally of interest; the extended lan-
guage is there to allow us to proceed step by step from one pure fragment to the
other.

COMBINATORS AND CATEGORIAL GRAMMAR 249

3.2 Transformation rules Each combinator is now introduced by name and
its effect shown by an equation. The equation means that two expressions of the
kind signified by the two sides are synonymous and can therefore be substituted
for one another in all contexts. The equations may be treated as schematic
bidirectional transformation rules, schematic because each illustrative example
covers an infinite range of structurally similar cases. Because of the need for
parentheses, linear notation is difficult to survey and in practice I always work
with structural diagrams. The structure of a complex functor/argument expres-
sion is shown by a tree diagram in which the leftmost node at any level repre-
sents the functor and those to the right of it represent the arguments (in order)
of this functor. So the diagram

f a b c

represents the syntactic structure of the wfef(abc). Because of the recursivity
of the grammar, both the functor/and the arguments a, b, c may themselves
be complex to any finite degree. Schematic diagrams, including dots to mark
omitted arguments, correspond to the use of descriptive sequence terms, and
schematic diagrams corresponding to linear notation are given for each combi-
nator. The dots in descriptive sequence terms and in schematic diagrams are the-
oretically dispensable, but they are so widely used that it is helpful to employ
them to present the rules in a compact and easily understood way. The variables
in the illustrations are chosen to harmonize with the schematic indications of cat-
egory given in the formation rules in Section 3.1. So/is of category φ(...),
an of category an, and so on. In this way the effective category of a combina-
tor on an occasion of its use may be computed using the inputs and outputs as
given in the syntactic rules.

Identity: I
Effect: a = I (a)
Diagram:

..Λ
/ a

Comment: Applied to any wfe, /yields a wfe of the same category, but with an
extra layer of functorial structure.

Reflection: W
Effect: f(a{. ..anan) = W{f){ax ...an)

250 PETER SIMONS

Diagram:

f aλ . . . an an = Λ. ax . . . an

W f

Comment: Applied to a functor whose last two arguments are alike, W
eliminates this repetition.

Rotation: R
Effect: f{axa2...an) = R(f)(a2.. .anax)
Diagram:

f ax a2 . . . an = Λ a2 . . . an ax

R f

Comment: The first shall be last. Applied to functors of at least two arguments,
R takes the front one to the end and moves the rest forward. R is nilpotent of
degree equal to the number of arguments the functor takes.

Lowering: K

E f f e c t : f(ax ...am)(bx... bn) = K(f)(ax... ambx)(b2 ...bn)
Diagram:

/ \ bX...bn = / \ NN^ & 2" " b n

f ax . . . am / \ ^ ax . . . am bx

K f

Comment: Applies to multi-link functors and shifts the first of the uppermost
group of arguments ("upper" in view of the usual tree representation of the syn-
tax) down to be the last of the arguments in the next lower batch. If n = 1 the
upper arguments all disappear and the syntactic depth of the sequence of batches
of arguments is reduced by one.

Raising: J
Effect: f(ax . ..am){bx ...bn)= J(f)(ax . . .am_x){ambx ...bn)

COMBINATORS AND CATEGORIAL GRAMMAR 251

Diagram:

/ j \ bχ ''' bn = / \ \v °m bι ...bn

f a{ ... am y Λ aγ ... am-X

J f

Comment: The converse of lowering. If m = 1 the lower level of arguments dis-
appears and the depth of the argument batches is again reduced by one. Both
lowering and raising can thus be used repeatedly to "level up" deeply nested
argument structures.

Composition: B
Effect: g(fι(an "θlnι).. Jm(aml . ..amnj)

= B(g)(A - >fm)((*n -ci\nλ -aml . ..amnj
Diagram:

/l an . . . d\nχ . . . fm i am\ - - amnm

/ \ a \ \ - - a \ n x ••• c ι m ι . . . a m n m

y//\. f\ - - fm

B g

Comment: Takes a functor whose arguments are themselves functor-argument
combinations and separates these inner functors from their arguments, form-
ing a multi-link functor whose lower argument batch is the original functors in

252 PETER SIMONS

turn and whose upper argument batch is their arguments taken in turn. It is thus
comparable to the operation of composing functions, whence its name. Struc-
turally, composition is the most important combinator, and may be likened to
the conductor of an orchestra: the other combinators are as it were cued in by B.

Uniυersalization: U
Effect: L ' J Γ / (* Γ = £/(/)
where /has category s(aχ... an) for n > 1, where s is a pvs whose category
sequence is a.\... an, and r is a pvs which is a shuffle of s, and finally, none of
the variables in r (or s) occur free in /.
Diagram:

y\ u f
f s

Comment: If B is the conductor, U is the star soloist. It is the combinator for
whose sake all the others exist, because it alone eliminates bound variables (W
only eliminates repetitions). U is the universal counterpart to Quine's (existen-
tial) derelativization combinator, but it is categorially far more flexible, as it
needs to be.5

4 Eliminating bound variables

Theorem Every combinator-free wfe of an extended Lesniewskian language
is equivalent to a wfe which contains neither quantifiers nor variables which are
bound in that wfe.

Remark Because the quantifier is the only variable binder and because vacuous
quantification is not permitted, the conditions of a wfe's containing no quan-
tifiers and its containing no variables bound in it are equivalent.

Lemma Let b be a quantifier-free wfe in which the variable a occurs. Then
b is equivalent to a wfe of the form f(a), where a does not occur in f

Sublemma Let b be as in the Lemma. Then b is equivalent to a wfe of the
form g(a), where a occurs in g one less time than in b.

Proof: The proof of the Sublemma is by induction on the depth of the shal-
lowest occurrence of a in b.

Definition The depth of occurrence of one wfe in another is defined as
follows:

Dl Each wfe occurs within itself with depth 0.
D2 If f(r) occurs in a wfe with depth d then the occurrences of/and the argu-

ments in r occur in this wfe with depth d + 1.
D3 If L r j Γ α π occurs in a wfe with depth d then both a and the variables in

the pvs occur in this wfe with depth d + 1.

COMBINATORS AND CATEGORIAL GRAMMAR 253

This covers all cases. Intuitively, depth can be pictured as the number of steps
one must take down a constituency tree from the base to the occurrence of the
expression in question.

The first base case is where this depth is 0. Then b is a, so replace b by
I {a). We need to consider another base case: depth 1. Then a is an immediate
constituent of b. Since b is quantifier-free, a must be either a functor of b or
an argument of b. If a is an argument of b then b has the form f{rx ar2), where
rx and r2 are sequences, either or both of which may be null. We may notate
the steps required as a series of equations:

f{rγar2) = R(.. .R(f). . .)(r2r{a)
= I(R(...R(f)...))(r2rιa)
= B(I)(R(...R(f)...))(r2rιa)
= K{.. .K{B(I))...)(R(. ..R(f)...)r2rι)(a).

This is of the form required. Note that either or both of R, K might not be
needed at all. In the following such null cases will not be specially mentioned.
The second subcase is the case where a is a functor of b. Then b has the form
a{r). We proceed as follows:

a(r) = I(a(r))
= B(I)(a)(r)
= J(B(I))(ar).

This now has the form of the previous subcase, with a as argument, and the pro-
cedure from that may be applied to bring a out to the top right on its own.

Having dealt with the base cases, assume now that we can raise variables
to the top right from depths up to and including n, where n > 1, and suppose
our shallowest a is at depth n + 1. So a is at depth 2 or more. Suppose a is an
immediate constituent of a wfe c, and this in turn is an immediate constituent
of a wfe d. We have as part of the structure tree then

d depth n — 1

c depth n

I
a depth n + 1

and there are precisely four cases to consider:

Case 1: c is a functor of d, a is a functor of c
Case 2: c is a functor of d, a is an argument of c
Case 3: c is an argument of d, a is a functor of c
Case 4: c is an argument of d, a is an argument of c.

Since b is quantifier-free, these are all the cases that can occur: we take them
in turn.

254 PETER SIMONS

Case 1. d = a(r)(s) (for certain sequences /*, s)

= I(a(r))(s)
= B(I)(a)(r)(s)
= J(B(I))(ar)(s)
= R(J(B(I)))(ra)(s)
= J(R(J(B(I))))(r)(as).

Now a is at level n and the inductive hypothesis can be applied.

Case 2. For a certain functor/and sequences rΪ9 r2, and s, where /Ί and r2 are
possibly null, we have

d=f(rιar2)(s)
= R(...R(f)...)(r2rιa)(s)
= J(R(...R(f)...))(r2rι)(as)

and a is at level n again.

Case 3. For a certain functor/, and sequences r{, r2, and s, where as before
either or both of r{ and r2 might be null

d=f(rιa(s)r2).

If any of the members of rx, Λ*2 are terms like e, replace them by the equivalent
complex expressions I(e). Then d is equivalent to an expression of the form

f (g ι (s ι) . . . a (s) . . . g n (s n)) = B (f) (g x . . . a . . . £ „) ($! . . . 5 . . . $ „) .

is still at level w + 1, but it is now an argument, and the procedure of Case 2
applies.

Case 4. d = g(rιf(s{as2)r2).
Again, if there are any plain terms in rx or r2 replace them by their / counter-
parts, so we obtain a formula equivalent to d of the form

gifΛh).. J{sxas2).. . / „ (* „)) = B(g)(fι.../.. . / „) (* ! . . .Sιas2 ...tn)

and a is at depth n, where the inductive hypothesis can apply. This completes
the inductive step.

So we can always bring a shallowest occurrence of a out to the top right.
This completes the proof of the Sublemma.

We now use this to prove the Lemma. Since for any quantifier-free wfe b
containing a we have an equivalent wfe c(a), where c contains one less occur-
rence of a than b, we simply apply the sublemma as often as required to suc-
cessively bring out occurrences of a until there are none left. We then have a wfe
equivalent to b of the form

where / does not contain a. We now apply / or K as often as required to level
up all the α's into one batch, and then apply JFas often as required to elimi-
nate repetitions, and we end up with a wfe of the form g(a) as required, where
a does not occur in g, since g has the form W{... W{J... (/ (/)) . . .) . . .) , or
W(. . . W(K. . .K{f))...)...), and a does not occur in /. This proves the
Lemma.

COMBINATORS AND CATEGORIAL GRAMMAR 255

Now we turn to the Theorem. The proof proceeds by induction on the
depth of nesting of quantifiers. If there are no quantifiers in b we need to do
nothing. If there are quantifiers in ό, then at least one quantifier expression c
in b is of the form Lr_, Γan, where a is quantifier-free. Consider all the vari-
ables in the pvs r. Each one occurs free in #. Applying the Lemma, we bring
these variables out, one by one, to the right, so that only one occurrence of each
remains. We then apply J or K as often as required to level all these variables
into one batch, so we have a — g(s) for some g and s, where s is a pvs which
is a shuffle of r and g contains none of the variables in r. We then apply U to
get U(g) = L ^ J Γ ^ (5) Π = c This quantifier and these bound variables may
thus be made to disappear. Note that because of the liberality of Lesniewski's
quantifier rules we do not need to arrange the variables in s in the same order
as in r: any shuffle suffices. It is obvious that because The wfe b is only finitely
complex, finitely many applications of this technique will remove all quantifiers
and bound variables, as the Theorem states.

The elimination of bound variables may be illustrated by an example. The
so-called short axiom of Lesniewski's ontology may be written as follows:

[ab]\ a G b . = . [3c]. a G c & c G b.

We now rewrite this according to the syntactic rules of the grammar given in this
paper, with functors always preceding their arguments in parentheses, and
eliminating the particular quantifier. We then get

Lα6jΓs(e(α6) ~ (LcJ

Γ-(&(e(flrc)G(c6))Γ)Γ.

Applying the combinator rules this may be converted step by step into a formula
without quantifiers or bound variables. One such possible conversion (there are
several possible) yields the following result:

U{W{R{R(W(R{B(=)(eB(~)(K(B(U))(K(K{B(~)))
W(R(R(R(B(&)(ee)))))))))))))).

As can be seen from this example the combinator formulation of a wfe is —at
least for those of us (the majority) accustomed to quantifier-variable notation—
much harder to scan. It will be noted that there are as many £/'s in the result
as there were quantifiers in the original, and each logical constant occurs just
as many times as in the original. Use of W could have allowed us to reduce the
epsilons to one, but there is no particular point in doing so.

5 Taming wild combίnators A simple categorial grammar is one in which
no token of an expression belongs to more than one category. In natural lan-
guages, for instance, this appears not to be the case: in the sentence 'Someone
admires Ronald5 the quantifier 'someone' may be taken as of category s(s(n))
to account for the syntactic connection of the phrase 'admires Ronald', while
it is also of category s(n)(s(n)(n)) to account for the syntactic connection of
the phrase 'someone admires'. In the system given here this does not occur: each
token of each wfe has only one category. But with the advent of the combina-
tors, different tokens of one and the same combinator type belong to different
categories. This is easiest to see in the case of the combinator /, which can belong

256 PETER SIMONS

to category α(α) for any a. Hence, although each individual token of a com-
binator symbol is assigned to exactly one category, the symbol as such is not.
The combinators are thus, in a sense, in contrast to the other symbols in our
form of Lesniewskian language, of a "wild" category, although the formation
rules set limits in each case to the range of categories a combinator may assume.
In Lesniewski's own languages, terms themselves may be "wild", in that different
occurrences may belong to different categories. We disallowed this option for
the sake of simplicity, so the circumstance that combinators are not of fixed cat-
egory is slightly discomforting.

One consequence of the wildness of combinators is that, when working
backwards from a combinator wfe to an equivalent one without combinators
by a top-to-bottom application of the equivalence rules (moving in the oppo-
site direction to the one used up to now), we need to know the effective cate-
gories of the combinators if we are to know what the wfe that we end up with
means. Consider for example the following reduction:

L Λ 7 (f l) η = LΛΓ/(/(fl))Ί

= Lα/J

Γ5(/)(/)(α)π

= LΛΓAfi(/))(/β)Ί

= U(J(B(I))).

Notice that this reduction takes no account of the specific category of a (and
hence of/): the same reduction goes through for a of any category a and/of
the corresponding category s(a). Hence, if we did not know the category of one
of the initial variables the wff without variables could not tell us. Even in cases
where knowledge of the categories of constants remaining in a reduced formula
(as in the case of the reduced form of the short axiom of ontology) enables us
to determine uniquely the effective categories of the combinators if the whole
is to be well-formed, this only emerges at the end of the top-to-bottom (outside-
in) analysis, and until that point a number of tiresome dummy variables have
to be dragged through the analysis until we find out that some of them are super-
fluous.

To overcome these problems, one could adopt the alternative approach of
replacing the seven variable-category combinators by seven sheafs or families
of fixed-category combinators, where the category is denoted by an index at-
tached to the relevant letter. This is unambiguous and is clearer in cases of pos-
sible ambiguity or doubt, but it requires a cumbersome and often heavily
redundant notation, and we are still obliged to recognize the structural similarity
among the members of these sheafs by using the letters /, R, W, etc. in a
quasifunctional way. For these reasons the procedure adopted in this paper
appears to me to have the edge, though this is a pragmatic stance which could
be overturned by other considerations.

6 Languages with extended categorial grammars Our considerations have
applied to Lesniewskian languages, which, aside from the usual nominalistic
treatment of them by Lesniewskians, can be considered as simple type theories:
propositional ones in the case of protothetic, nominal and propositional in the
case of ontology. So the recipe for eliminating variables of all categories can be

COMBINATORS AND CATEGORIAL GRAMMAR 257

applied to languages which are poorer in their categories than those of Les-
niewski, with minor alterations to account for the peculiarities of the language
in question. Most languages, for instance, allow quantifiers to bind variables
only one at a time, which is a special case of the one admitted by Lesniewski.
The actual combinators which will need to be employed to obtain a variable-free
language of equivalent strength to a given language will vary according to the
syntactic categories admitted by the language and the variable-binding primitives
of the language. Lesniewski happened to use only one variable binder, the
universal quantifier.

A theoretically more important issue is how the approach adopted here
applies to extended categorial grammars, in which there are type-change rules.
The use of combinators allows us to shed light on what is actually going on in
such languages.

The variability of category admitted in this case goes beyond that coun-
tenanced by the admission of multigrade combinators. While different combi-
nators' tokens may have different categories, each individual token has only one
category. In the case of extended categorial grammars the same expression token
may in situ have more than one category.

One feature remarked above in connection with the use of SchonfinkePs
and Curry's combinators was that they apply only to one-place functors. Schδn-
finkel and Curry compensate for the loss of multi-place functors by using multi-
link ones instead, with binary nesting to the left. In natural languages it often
appears to matter little whether the one or the other structural analysis is em-
ployed, e.g. whether 'Nancy supports Ronald' is seen as involving the double
saturation of a two-place verb 'supports' —category s{nn) —by two names, or
the saturation of a multi-link 'supports' —category s(n)(n) — by one name and
the saturation of the resulting one-place predicate by the other name. Consider-
ations of grammaticality and intuitions about what counts as a grammatical unit
appear to require more than one analysis. (We are here once more ignoring ques-
tions about directionality, which also plays a role in natural languages.) So for
many purposes it appears that the same functor token may be assigned more
than one category, e.g. Φ(aβ) or φ(β)(a). Now in fact in a fixed-category lan-
guage, combinators give us the means to move from one of these categories to
another. For instance, if/has category φ(β)(a), then K{f) and /(/) have cat-
egory φ(otβ). So it is always possible to replace a multi-link functor by a closely
related multi-place one. Getting from a multi-place to a multi-link functor re-
quires a little more work (our combinators were chosen to make the other di-
rection easy), but it can be done. For instance, if g is of category 7(0$), then
K(B{I))(K(B(I))K(B(I)))(g) has category y(β)(a). For suppose g has cate-
gory 7(0:18), a has category α, and b has category β. Then we have

g(ab) =I(g(ab))
= B(I)(g)(ab)
= K(B(I))(ga)(b).

Putting X — K(B(I)) and repeating these three steps on X(ga)

= X(Xg){a){b)

258 PETER SIMONS

and finally repeating them again on X{Xg)

= X(XX)(g)(a)(b)

which when written out in full is

= K(B(I))(K(B(I))K(B(I)))(g)(a)(b).

So a language in which a functor is allowed to be either multi-place or multi-
link (or any of the intermediate categories which occur in more complex cases)
may be viewed as one in which all of the fixed-category functors, related to one
another by the combinatorial transformations of the kind illustrated, are com-
prised together as possible categorial guises of a particular expression.

This perspective can also be adopted for the type-change rules suggested
in the literature. The most widely accepted rule is known, after its author, as
Geach's Rule.6 It may be stated in this form:

GR If an expression has category γ(φ), it may also be assigned the category
y(a)(φ(a)) for any a.

The rationale is this: if/has category φ(a), g has category y(φ), and a has cat-
egory α, then we may analyze the string gfa either thus

7(Φ) \φ

/ a

or alternatively thus

7

γ(oO (φ(a)) φ(a) a

g f

replacing the right-branching by a left-branching structure and giving g a dif-
ferent category. A moment's thought shows that this is what happens in a fixed-
category language when the combinator B is applied. What Geach's Rule effec-
tively does is to allow an expression g to have, as need be, any of the categories
allowable to B(g). The obvious generalization of Geach's Rule to multi-place
functors simply mimics the categorial effects of B. Once again, the flexible
assignment of categories is elucidated in terms of the relationships B imposes
among fixed-category expressions.

COMBINATORS AND CATEGORIAL GRAMMAR 259

Another rule to have found widespread currency is Montague's Rule7:

MR If an expression has category α, it may also be assigned category φ(φ(a))
for any φ.

Here the rationale is that in a combination such as/(α), where/has category
φ(a) and a has category α, it may be expedient to reverse the roles of functor
and argument, i.e., see the structure as a(f). Once again, if/and a have the
fixed categories as given above, we can obtain a complex combinator which
works on a to yield the same result. Here is the derivation:

f(a) = I(f(a))
= B(I)(f)(a)
= J(B(I))(fa)
= R(J(B(I)))(af)

and using the same combinator X(XX) = K{B(I)){K(B{I))K(B(I))) as before
we can bring/out on its own, thus getting

f(a)=M(a)(f)

where

M = K(B(I))(K(B(I))K(B(I)))(R(J(B(I)))).

So Montague's Rule effectively allows us to exchange a for M(a), which has the
category φ(φ(a)), without needing to change the expression itself.

What is the significance of this? The categorial flexibility of languages with
type-change rules is made up for among fixed-category languages by the pres-
ence of the combinators, or rather, just the structure-modifying ones B, K, J,
/, and R. (The variable-eliminating combinators Wand Udo not enter the pic-
ture.) I find it illuminating to view type-changes or categorial flexibility in this
way, since type-change rules are there to facilitate different structural analyses
of complex expressions, and this is precisely what the structure-modifying com-
binators make explicit. One way in which this approach may be helpful is that
the use of combinators together with fixed-category expressions allows us a way
to plot the limits of categorial freedom in a flexible-category language. Con-
versely, someone who has seen the attraction of extended categorial grammars
will see another rationale for introducing the combinators into fixed-category
languages, over and above the wish to provide variable-less alternatives to a lan-
guage with bound variables. To eliminate the variables from a language with
flexible categories is then simply an easier task than for Lesniewskian languages,
since we may choose structural guises for an expression which allow the reduc-
tion of repetitions and elimination of quantifiers and variables that much more
quickly. But we still need combinators to get rid of bound variables and the
operators binding them.

As in the case of the issue of fixed-category vs. wild combinators, I leave
it as a theoretically undecided issue whether fixed-category or flexible-category
languages in general are in any sense more fundamental than the other. It may
be that there is no true or false answer to such a vague question, but that it is
simply an issue of purpose and expediency.

260 PETER SIMONS

7 Final remarks Most logical languages allow for wffs to contain free
variables — what Russell called "real" variables. In some cases the use of free vari-
ables is merely an abbreviation, and results from omitting universal quantifiers
whose scope is the whole formula. Such variables are not really free, and can
be eliminated along the lines of this paper. Genuinely free variables on the other
hand obviously cannot be eliminated using combinators, since variables can only
be induced to disappear in tandem with their binding operators. In this respect
free variables behave syntactically exactly like constants. The essential differ-
ence between constants and free variables is not a syntactic but a semantic one.
There are several ways in which this difference may be treated semantically, and
discussion of the various approaches and their respective advantages and dis-
advantages goes beyond the scope of this paper.

Quine has claimed that his elimination of bound variables from first-order
logic offers a "purer analysis of the variable than SchδnfinkeΓs."8 This is true
only if by 'the variable' we understand 'the nominal variable'. But for anyone
who — unlike Quine — is prepared to accept bound variables in other categories
than that of name, Quine's analysis is insufficiently powerful, and the elimina-
tion given here can be offered as a more general analysis of the variable than
either SchδnfinkePs or Quine's, one which at the same time finally realizes the
aim of Ajdukiewicz's categorial grammar in its intended generality.

NOTES

1. See [5]; [2], pp. 125 ff.

2. In [6], for instance, there are more than thirty different shapes of parentheses.

3. The corners have the added advantage of aiding legibility by not crossing the cen-
ter of a line, and the similarity of upper and lower corners marks their functional
association.

4. The perils of ignoring this condition are illustrated in Lesniewski's criticisms of von
Neumann; cf. [8], pp. 156 ff.

5. Geach in [5] uses a combinator corresponding to U.

6. Cf. [5], p. 485; [2], p. 125.

7. Cf. [2], p. 126.

8. [10], p. 304 of the reprint. See also Quine's commentary on Schόnfinkel [11], p. 357
of the English translation.

REFERENCES

[1] Ajdukiewicz, K., "Die syntaktische Konnexitat," Studia Philosophica, vol. 1
(1935), pp. 1-27. Partially translated as "On syntactical coherence," by P. Geach,
Review of Metaphysics, vol. 20 (1966), pp. 635-647. Translated as "Syntactic con-
nection," by H. Weber, pp. 207-231 in Polish Logic, 1920-1939, edited by S.
McCall, Clarendon Press, Oxford, 1967.

[2] van Benthem, J., Essays in Logical Semantics, Reidel, Dordrecht, 1986.

COMBINATORS AND CATEGORIAL GRAMMAR 261

[3] Curry, H. B., "Grundlagen der kombinatorischen Logik," American Journal of
Mathematics, vol. 52 (1930), pp. 509-536 and 789-834.

[4] Curry, H. B. and R. Feys, Combinatory Logic, vol. 1, North Holland, Amster-
dam, 1958.

[5] Geach, P. T., "A program for syntax," pp. 483-497 in Semantics for Natural Lan-
guages, edited by D. Davidson and G. Harman, Reidel, Dordrecht, 1972.

[6] Kowalski, J. G., "Lesniewski's ontology extended with the axiom of choice," Notre
Dame Journal of Formal Logic, vol. 18 (1977), pp. 1-78.

[7] Lejewski, C , "A theory of non-reflexive identity and its ontological implications,"
pp. 65-102 in Grundfragen der Wissenschaften und ihre Wurzeln in der Meta-
physik, edited by P. Weingartner, Pustet, Salzburg, 1967.

[8] Lesniewski, S., "Introductory remarks to the continuation of my article: 'Grund-
zuge eines neuen Systems der Grundlagen der Mathematik'," translated by S.
Teichman and S. McCall, pp. 116-169 in Polish Logic, 1920-1939, edited by S.
McCall, Clarendon Press, Oxford, 1967.

[9] Quine, W. V. O., "Variables explained away," Proceedings of the American Phil-
osophical Society, vol. 104 (1960), pp. 343-347. Reprinted as pp. 227-235 in
Selected Logical Papers, Random House, New York, 1966.

[10] Quine, W. V. O., "Algebraic logic and predicate functors," pp. 214-238 in Logic
and Art: Essays in Honor of Nelson Goodman, edited by R. Rudner and I. Shef-
fler, Bobbs-Merrill, Indianapolis, 1972. Revised version printed as pp. 283-307 in
The Ways of Paradox and Other Essays, Harvard University Press, Cambridge,
Massachusetts, 1976.

[11] Schδnfinkel, M., "Uber die Bausteine der mathematischen Logik," Mathematische
Annalen, vol. 92 (1924), pp. 305-316. Translated as "On the building blocks of
mathematical logic," by S. Bauer-Mengelberg, pp. 355-367 in From Frege to
Gόdel: A Source Book in Mathematical Logic, 1879-1931, edited by J. van
Heijenoort, Harvard University Press, Cambridge, Massachusetts, 1967.

Institut fur Philosophie
Universitάt Salzburg
Franziskanergasse 1
A-5020 Salzburg, Osterreich

