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An Isomorphism Between Rings and Groups

AWAD A. ISKANDER

Abstract Bijective functors σ and p are constructed between a category (R
of commutative nonassociative rings and a category 9 of nilpotent groups,
such that for all R e <R and G G S, P°R = R and σpG = G. Furthermore,
if £ is a subclass of (R, then <£ has a decidable elementary theory iff σ<£ has
a decidable elementary theory.

Among the methods used to prove that certain classes of models have
undecidable elementary theories are the "interpretation of one class into another"
(cf. [7]), "semantic embedding" (cf. [1]), and "syntactic inclusion" (cf. [3]).
MaFcev [3] used "syntactic inclusion" to show that the class of all nilpotent class
Az-groups (for n>2) has an undecidable elementary theory. In fact, MaPcev
employed a notion which we will here call "syntactic isomorphism". If two
classes of models are syntactically isomorphic, then their elementary theories are
either simultaneously undecidable or simultaneously decidable. One of the results
of [3] states that the ring of integers Z is syntactically isomorphic to the free nil-
potent class 2-group on two free generators, and the class of all not necessar-
ily associative rings with identity is syntactically isomorphic to a class of nilpotent
class 2-groups with two constants. In the present paper, we show that certain
classes of rings with identity are syntactically isomorphic to classes of nilpotent
groups whose nilpotency class is at most 3; in particular, the ring of integers Z
is syntactically isomorphic to the free nilpotent class 3-group with two free gen-
erators, and the class of all Boolean algebras is syntactically isomorphic to a class
of nilpotent class 2-groups.

The phrase "nonassociative ring" will mean "a ring with identity (denoted
by 1) that is not necessarily associative". The notations of decidability theory
that will be used here are those of [7]. Unless otherwise stated, the notations of
group theory that are used here are those of [4].

/ Let JC be a class of models of type r. The first-order language of type τ
will be denoted by Lr. The elementary theory of JC, i.e., all sentences of Lr that
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are valid in every member of JC, will be denoted by Th5C. The following notion
was used informally in MaPcev [3]:

Definition Let 3^, 3Z2 be classes of models of type τx, τ 2 respectively. The
classes Ku JC2 are called syntactically isomorphic if there is an algorithm that
assigns to every A G JCi a 3C2-model σA9 to every B G JC2 a JCj-model pB, to
every sentence Φ G Lr2 a sentence σ Φ E L η , and to every sentence Ψ G LT! a
sentence pΨ G Lr2 such that

(i) for every A G 3ΐι and £ G JC2, pσ/4 = 4̂ and σpB = 5
(ii) for all sentences Φ G Lr 2 and Ψ e L τ l 5 Φ E Thσ 4̂ iff σΦ G Tlb4 and

* G T h p £ i f f p * G T h £ .

Thus, if 3Cj and JC2 are syntactically isomorphic, then ThJCi is decidable
iff ThJC2 is decidable. If £ is a subclass of J€χ and σ£ = {σA :A G <£}, then
<£ is syntactically isomorphic to σ<£. As the ring of integers Z has an undecid-
able elementary theory (cf. [7]), MaFcev showed that the free nilpotent class
2-group with two free generators has an undecidable elementary theory by estab-
lishing a syntactic isomorphism between it and the ring of integers Z. We shall
show here that the class of all commutative nonassociative rings R, satisfying
the identity 2x(yz) = 2(xy)z and for every x G R there is a t G R such that
2t = x(x - 1), is syntactically isomorphic to a class of nilpotent groups.

All the groups considered here will be groups with two fixed elements, a{

and a2. If G is such a group, we shall use the following notations:

(1) Gj is the centralizer of α, in G, / = 1,2
(2) if,4,j? are subsets of G, thenA£= [xyixeA, y G B] and [A,B] =

{[x,y] =χ-1y~1xy:xeA,yeB}
(3) α21 = [02,^]

( 4 ) α G = [[a29Gx]9ax][[a29Gxha2]
(5)βG= [G29Gx]aG
(6) if x G G, then

υxx= {yeGx: [y,a2]xeaG],
V2x= iyeG2: [auy]xeaG], and
TΛ: = {y G βG :y~2[s,t] G aG for some s G U2 x and / G Ui (xarϋ1)}.

The neutral element of G will be noted by e. The center of G will be
denoted by fG. The commutator subgroup of G will be denoted by y2G, and
in general yn G will denote the nth member of the lower central series of G,
n = 2,3,. . . . We shall also use the abbreviations [x,j,z] for [[x,7],z] and
[A,B,C] for [[A,B],C] where x9y,zG G and A,B9C c G.

2 Let (R be the class of all commutative nonassociative rings R such that

(i) for all x,y,z G R, 2x(yz) = 2(xy)z
(ii) for every x G R, there is a ί G Z? such that 2ί = X(Λ: — 1).

The class (R contains the ring of integers Z and all Boolean rings; it also
contains all associative and commutative algebras over fields of characteristic
not 2. The class (R is closed under homomorphic images and Cartesian products.
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Let S be the class of all nilpotent groups G, of nilpotency class at most 3,
with two fixed elements a\, a2 such that

(Al) for all x G G each of the sets Ui [a2ix] and U2[x,a{] is not empty
(A2) [a2,Gl9aι] Π [a2,Gua2] = {e}
(A3) if x G G and [ahx] G αG, / = 1,2, then x e βG
(A4) if JC G |8G, then the following conditions are equivalent:

(i) x2 G αG, (ii) [flbx] = e9 (iii) [tf2)x] = β
(A5) there are mappings f: βG -> G, , / = 1,2, such that

(a) fa2l = ah ^x G U/JC for all x G /3G, / = 1,2
(b) if x9y,z G βG and z = xy, thenfz -fiXfiy, i = 1,2
(c) if Λ: G αG, then/}* = e, i = 1,2
(d) if x,j> G j8G, then ίf2xjxy] lf{xj2y] G αG
(e) if x9y9z G ̂ G, then {[f2xjx [f2yjχz]} [fιZ,/2[f2xJιy]])2 G aG
(f) if x,j^ G βG, then there are 5 G T I Λ J C , / ^ ] , / G Tx, u G T>

such that [/2x,/ij] = [al9fχ[f2x9fιy]\[al9s][f1x9fιu9aι\[f2t9

f\y,a2].

Now we can formulate the main theorem of this paper.

Theorem 1 The class of nonassociative rings (R is syntactically isomorphic
to the class of groups g.

3 The proof of Theorem 1 depends on the following lemmas:

Lemma 1 Let G be a nilpotent group whose nilpotency class is at most 3,
and let a,b,c G G. Then

(i) y2 G is abelian
(ii) The mappings x -• [x,b,c], x -* [a,x,c], and x -+ [a,b,x] are

homomorphisms of G into γ 3 G
(iii) The mapping x -* [x,c] is a homomorphism ofy2G into y3G
(iv) [a,b,c][b,c9a][c,a,b] = e.

Proof: Most of the statements of this lemma are probably well known. For the
sake of completeness, however, we shall sketch a proof.

Since [7 2G,7 2G] c γ 4 G = {e} (cf. [4], p. 122), γ 2 G is abelian.
Let x,y G G. Then

[xy,b] =[x9bV[y9b] (cf. [4], p. 119)
= [x,b][x,b,y][y,b]
= lx,b][y9b]lx9b9y].

So

[xy,b,c] = [[x,b] [y,b],c] (since γ 3 G is central)
= [χ,b9c][*bHy,b9c]
- [x,b,c] [y,b,c] (since γ 3 G is central).

This establishes (ii) since the other mappings are similar.
Since every element of γ 2 G is a product of commutators, (iii) will fol-

low if we show that [[x,y] [z,t]9c] = [x9y9c] [z,t,c] for all x,y,z,t G G. But
[[x,y][z9t]9c] = [x,y,c][z>t][z,t,c] = [x9y9c][z9t9c] (since γ 3 G is central).
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Actually (iv) is the Hall-Witt identity

[a9b-ι,c]b[b,c-ι

9a]c[c9a-\b]a = e

(cf. [4], p. 119). By (ii) and the fact that γ3G is central, [a,b,c]-ι[b9c,a]~ι[c9

a9b]~ι = e, from which (iv) follows.

Lemma 2 Let Gbea nilpotent group whose nilpotency class is at most 3 and
let aΪ9a2G G. Then

(i) [fl2,Gi,tf/] is a subgroup ofG, i = 1,2
(ii) aG is a central subgroup of G.

Proof: Since Gγ is a subgroup of G and [a2,Gi,0, ] is a homomorphic image of
Gi by (ii) of Lemma 1, [a29Gί9ai] is a subgroup of γ3G. Since aG is the prod-
uct of these subgroups of γ3G, condition (ii) follows.

Lemma 3 Let G be a nilpotent group of nilpotency class at most 3, with ele-
ments aΪ9a2. Assume that for every xG [ G2, Gx ] each of the sets \Jχ x, \J2x is
not empty. Then

(i) [G 2 ,G!]c [a29Gx]aG
(ii) [G29GX] c [G29ax]aG

(iii) βG = [a2,Gι]ocG = [Gl9ax]aG
(iv) ifxGGl9yG G2, then

[a2,x,y] = [y,x,a2] and [y,aux] = [y,x,a{]
(v) [G29GuGi] = [a29Gl9aι]9 i = 1,2

(vi) βG is a subgroup of G
(vii) the mappings x-> [a2fx] aG andy^> [y,aλ] aG are homomorphisms

of the groups GlfG2, respectively, onto the quotient group βG/aG.

Proof: L e t x e [G2,Gi], yG Ui*. Thenx= [a2iy]u for some u G aG. This
shows (i). Statement (ii) is similar. Statement (iii) follows from (i), (ii), and
Lemma 2. Statement (v) follows from (i), (ii), and (iv). Thus, we need to show
(iv), (vi), and (vii).

By (iv) of Lemma 1, [a2ix,y] [x,y,a2] [y>a2,x] = e. If y G G2, then
[y9cι2] = e and [a2,x9y] = [x,y9a2]~ι = [y9x9a2] by (iii) of Lemma 1. The
remaining statement of (iv) is similar.

Now, we need to show (vi) and (vii). Let x9y G G\. Then

[a29xy-1] = [a29y~l][a29x][a2tx9y~l]
= [02>x] [a2>y~ι] [ΰ2>x>y~ι] (since γ 2 G is abelian)
G [a29x][a29y-ι]aG(by(v)).

Thusee [a2ίy][a29y~ι]aG9 i.e., [a29y]~ι G [a2,y~ι]aG. Hence [a29xy~ι] G
[a29x] [al9y]~ιaG. This proves (vi) and the first part of (vii). The second part
of (vii) is similar.

Lemma 4 Let G be a nilpotent group of nilpotency class at most 3, with ele-
ments aχ9a2. Suppose that G satisfies the conditions:

(ϊ)ifxG [G 2 ,Gi], then each of the sets U!Λ:,U2Λ: is not empty
(ii) ifx G G and [ai9x] G aG9 i = 1,2, then x G βG.
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Then βG is a subgroup of G, aG is a central subgroup of G, and R = pG is a
nonassociative ring whose additive group is βG/aG; the ring multiplication of
R is given by the following: ifx,yE βG, then XOLG X yaG = [s,t]aG where
s E U2x, t GUiy; the ring identity element is a2\θίG. Moreover, ifΨ is a first-
order sentence in the language of nonassociative rings, we can construct a sen-
tence pΨ in the language of groups with constants ax,a2 such that Ψ E ΎhR iff
pV E ThG.

Proof: From Lemma 3, βG is a subgroup of G. From Lemma 2, aG is a cen-
tral subgroup of G. Since βGζy2G and γ 2 G is abelian (by Lemma 1), βG/aG
is an abelian group. We need to show first that multiplication on R is well-
defined. Let xE βG. Thenx = x'u wherex 1 E[G 2 ,G x ],ue aG. Thus Uf x =
U,x'. Hence U/X is not empty, i = 1,2. Let x,y E βG, s,sf E U2x, t,f E Uxy.
Then {a2,s~xs'\ = e and [ax,s~ιs'] E [ax,s]~x[ax,s

f]aG = xx~ιaG = αG, by
(vii) of Lemma 3. Thus [aiys~ιs'] E αG, / = 1,2. Hence v = s~ιs' E βG. Sim-
ilarly w = t~xt' E j3G. Thus s' - sv, t' = tw. Now [s',f] = [st;,ίw] = I>^H>]

[ $ M Γ = fow][$M] = [s9w][s,t]v[v,t] = [s,t][s,w][v,t] (since T 2 G is
abelian). Since [s,w] E [s,βG] = [s,[G2,G{]] c [ G 2 , G 1 , G 2 ] " 1 £ αG by (v)
of Lemma 3 and (ii) of Lemma 2, and similarly [v,t] E aG, [s',ϊ] E [s,t]aG.
Thus multiplication on R is well-defined.

Moreover, a2XaG X j>αG = [ύr2,f]αG = yaG and xαG X a2XaG =
[5, #i ] αG = xaG for all Λ:,.y E j3G. This shows that α2i ̂ ^ is the identity element
of R. We need to show that multiplication on R distributes over addition. Let
x,y,z GβG,re \52x, s E Uxy, teUiZ. Then st E Ui (yz). Indeed, [a2,st] E
[a2,s] [a2,t]aG by (vii) of Lemma 3. Thus [tf2,sΫ] EjzαG and st E Ui(^z).
Hence xaG X (yaG-\-zaG) = xaG X (yz)aG = [r,st]aG= [r,s] [r,t]aG (by
a method similar to the proof of (vii) of Lemma 3) = xaG X yaG + xaG X zaG.
This shows left distributivity. Right distributivity is similar.

Now we need to prove the last part of Lemma 4. Let Ψ be a first-order
sentence in the language of nonassociative rings. We can assume that Ψ =
(<2i*i)(β2*2) (QnXn)%(xuX2, .*»), where [QX,Q2,... ,Qn] c {a,v}
and Ψo is a quantifier-free formula built from atomic formulas in the language
of nonassociative rings via logical connectives. To say that Ψ is valid in R = pG
is a demand on the group G. This demand, in turn, is equivalent to the valid-
ity in G of a first-order sentence in the language of groups with constants aua2.
We shall denote such a sentence by pΨ. The statements x E αG and xGβG are
expressible, respectively, by the following first-order formulas:

A(x) ss (3s)(Bt)(aιS « sai κaλt « taxκx^ [a2,s,ax] [a2,t,a2]),
B(x) Ξ= (3«)(3tO(αiW ~ «#i Λ^4(t;) Λ X « [α2,w]f).

The sentence pΨ can be obtained from Ψ by replacing:

1. every atomic formula of the form x X y « z by

(£(Λ:) Λ 5(^) Λ £(z)) -• ((35)(30(«2^ ~ sa2Λaιt ~ tax Λ

^4(x[αi,5]) Λi4(^[ί,α2]) Λ.4(z[ί,5]));

2. every atomic formula of the form x + y » z by

( ί U ) Λ B(^) Λ Λ(z)) -> ̂ ( z " 1 ^ ) ; and

3. the constant 1 by [a2,ax].
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4 Now we complete the proof of Theorem 1. Let R E (R. The set of all ele-
ments x E R such that 2x = 0 will be denoted by 0/2. It is clear that 0/2 is an
ideal of R and the quotient ring R/(0/2) is associative. Also, if x E R, then the
elements t such that 2t = x(x - 1) are unique modulo 0/2. We denote by tx the
coset t + 0/2 where It = x(x — 1). The group σR will be constructed as follows:
The carrier set is R X R X R X R/(0/2) X R/(0/2). If Λ: E σ/?, then xt will
denote the zth entry in x, i = 1,... ,5. The operation ° on σR is defined as fol-
lows. Let x,y E σR. Then

(x°y)i = */ + Λ, * = !>2

( ^ Λ = ^5+^5 + ^3^2+ {χ2y\)y2 + y\tχ2.

The groupoid just defined is a group belonging to the class g. The neutral
element of G = σi? is e = (0,0,0,0,0), and if x E G = σi?, then the inverse of
x is given by

( x " 1 ) ^ -xh ι = 1,2

U " ! ) 3 = --^3 + ̂ 1^2
(X~1)4 = -X4 + *1*3 ~ ^2^(^1 + 1)
(x~ι)5 = -x5 + x2^3 - X\t(x2 + 1)

If Λ:,^ E σi?, then the commutator [x,y] is given by

[χ,y]i = o, / = 1,2
[*,.)>]3 = ^27l - J f l Λ
[ΛΓ,y]4 = X3 J ! - XX^3 + X2tyι - ^2^1
[X,J]5 = Xiyi - ^2^3 + (*2(JΊ - ^l))^2 + J l ^ 2 ~ ̂ 1^2-

The following claim will be needed later:

Claim Let R E (R and G = σR. Let ax = (1,0,0,0,0), a2 = (0,1,0,0,0). Then

(ϊ)βG = y2G
(ii) aG = y3G

(iii) fG = Gx Π G2 = {x E 0G :x2 E αG)
(iv) G, i5 απ abelian group, i = 1,2.

Proo/: It is clear that α2i = (0,0,1,0,0) and Gx = i? X 0 X 0/2 X i?/(0/2) x
Λ/(0/2); G2 = 0 X i? X 0/2 x i?/(0/2) x R/(0/2); [a2,Gx] = {(0,0,x,^,0):
x E t f ) ; t ^ ^ ! , ^ ] = 0 x 0 x 0 x R/(0/2) x 0; [tf2,Gi,tf2] = 0 x 0 x 0 x
0 X i?/(0/2); αG = [uf2,Gb«i] ° [a2,Gua2] = 0 X 0 x 0 X i?/(0/2) x
R/(0/2); [G2,Gλ] = {(0Axy,xty,ytx):x,y E R}; and /3G = [G,,^] αG =
0 x 0 x i ? X i?/(0/2) X R/(0/2).

Since βG Q y2G and γ 2 G is the subgroup of G generated by [G,G] ^
0 x 0 x R x R/(0/2) x R/(0/2), and /3G is a subgroup of G from the defini-
tion of the operation <>, βG = 7 2 G . Also, since α G c 7 3 G c 0 x 0 x 0 x
R/(0/2) x R/(0/2) = aG, we conclude that αG = y3 G. The center of G is the
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set of all x E G such that [x,y] = e for all y EG. Thus x2y\ - Xi.y2 = 0 for all
Ji >̂ 2 Ξ #. Hence xj = x2 = 0. Also x ^ E 0/2 for all ̂ G i ? . Hence 2x3 = 0.
Conversely, if xι = x2 = 2x3 = 0, then x E fG. Thus fG = 0 x 0 X 0/2 x
R/(0/2) x #/(0/2) = Gi Π G2. It is clear that fG g /3G. Let x E jSG. Then
x 2 E αG iff 2x3 = 0. Thus ζG = {x E j3G:x2 E aG}. From the definition of
the operation °, G\,G2 are abelian. This establishes the claim.

Since 7 3 G c ξG, where G is nilpotent of class at most 3, it is clear that
G = σR is abelian iff the ring R is trivial (0=1). The group G = σR is nilpo-
tent of class 2 iff γ 2 G is nontrivial and y3G is trivial; i.e., iff i? is nontrivial and
R = 0/2. In other words, G = σi? is nilpotent of class 2 iff R is nontrivial and
R satisfies the identity x = x2.

Condition (A2) is clearly satisfied by G = σR. The group G satisfies con-
dition (A3). Indeed, let x E G, [*/,*] E aG, i = 1,2. We have [aux]3 = -x2

and [a2,x]3 = xx. Thus j ^ = x2 = 0 and x E βG. The group G also satisfies
condition (A4). Indeed, condition (A4)(i) is equivalent to x E fG by (iii) of
the Claim. Thus (A4)(i) implies (A4)(ii) and (iii). Conversely, if x E βG and
[aux] = e, then x1 = x2 = 0 and -x 3 E 0/2. Thus JC E fG, i.e., x 2 E αG by (iii)
of the Claim and so (A4)(ii) implies (A4)(i). Similarly, (A4)(ϋi) implies (A4)(i).

By (i) of the Claim, if we show that G satisfies (A5)(a), then G satisfies
(Al). Thus G E S, if we show that G satisfies (A5). Define/! (0,0,x3,x4,x5) =
(x3,0,0,0,0), f2(0,09x39x4,x5) = (0,x3,0,0,0). It is clear that/ is a homomor-
phism of βG into Gh fid2\ = ah i = 1,2. If x E βG, then

[fι,x,a2] oχ= [(χ3,0,0,0,0),(0,1,0,0,0)] (0,0,x3,x4,^)
= (0,0,-x3,*,*)°(0,0,*3,*,*)
= (0,0,0,*,*) E αG.

Similarly, [auf2x] ° x E αG. Thus G satisfies (A5)(a), (b), and (c). We shall
show that G satisfies (A5)(d). Let x,y E. βG. Then

[fiXyfiy] ° ifiXtfiy]
= [(0,x3,0,0,0),(j3,0,0,0,0)] [(x3,0,0,0,0),(0,^3,0,0,0)]
= (0,0,x3^3,*,*) (0,0,-x3j>3,*,*)
= (0,0,0,*,*) EaG.

To show that G satisfies (A5)(e), let x,y,z E ]8G. Then

UixJdfiyJizW = [(0,^,0,0,0),/! (0,0,j3z3,*,*)]
= [(0,x3,0,0,0),(^3z3,0,0,0,0)]
= (0,0, x 3 ( j 3 ^ 3 ),*,*);

[fιzJ2[f2xJiy]] = [(z3,0,0,0,0),(0,x3Λ,0,0,0)]

= (0,0,-z3teΛ).*)*)
Thus the left hand side of (A5)(e) is

((0,0,x3(j3z3),*,*) • (0,0,-z3(x3 j3),*,*))2 =
(0,0,2(x3(.y3z3) - Z3(X3J3)),*,*) = (0,0,0,*,*) E αG

since i? satisfies the identity 2u(vw) = 2(uv)w and R is commutative.
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The proof that G = σR G S will be complete if we show that G satisfies
(A5)(f). We show first that if x,t G βG and t3 G tx3, then t G Tx. Indeed, Γ2 =
(0,0,/ 3,*,*Γ 2 = (0,0,-2*3,*,*) = (0,0,-*30*3 - 1),*,*) and [/2*,/i(*
aΰ1)] = [(0,*3,0,0,0),(x3 - 1,0,0,0,0)] = (0,0,x3(x3 - 1),*,*). Thus t~2 .
UixJΛx•<%{)] G αG, i.e., t G Tx Let x,y,s,t,u G 0G, /3 G tx3i u3 G 0>3, and
*3 € /[/2JC,/i^]3 = *(* 3Λ). Then / G Tx,w G Ίy and 5 G T L ^ x , / ^ ] . The
right hand side of (A5)(f) is

[fixJiy] = [(0,^3,0,0,0), (^,0,0,0,0)]
= (0,0,x3j3,x30>3,.y3ta3).

[tf2,/i[/2^/iJΊ] = [(0,1,0,0,0), (x3Λ,0,0,0,0)]
= (O,O,x3y3,t(x3y3),O),

[aϊ9s] = [(1,0,0,0,0), (0,0,53,*,*)]
= (0,0,0,-53 + 0/2,0) = (0,0,0,-f (*3Λ),0),

UixJiWA = [(0,JC3,0,0,0),(ii3,0,0,0,0),(l,0,0,0,0)]
= [(0,0,x3«3,*,*),(1,0,0,0,0)]
= (0,0,0,JC3ii3 + 0/2,0) = (0,0,0,x3^3,0),

l/2t,fiy,a2] = [(0,/3,0,0,0), (j3,0,0,0,0), (0,1,0,0,0)]
= [(0,0,/3j3,*,*),(0,1,0,0,0)]
= (0,0,0,0, ί3j>3 + 0/2) = (0,0,0,0,j3^3).

Thus the right hand side of (A5)(f) is (0,0,Λ:3^3, t(x3y3),0) (0,0,0,-ί(x3y3),0) <>
(0,0,0,x3/>3,0) (0,0,0,0,j3^3) = (0,0,Λ: 3 Λ ,0,0) (0,0,0,x3ίy3,j;3^3) = (0,0,
*3^3»^3ίy3»ΛtXϊ)- Thus the two sides of (A5)(f) are equal and G = σR G Q.

5 If G G Q, then G satisfies the conditions of Lemma 4 and R = pG is a ring.
Condition (A5)(d) implies that i? is commutative and condition (A5)(e) implies
that R satisfies the identity 2x x (y x z) = 2(x x y) x z. From condition
(A5)(f), for every x G βG there is a t G Tx; i.e., r" 2[j,z] G αG and ί G βG
where j> G U2Λ: and zEUi (jra^i1). Thus the nonassociative ring pG = βG/aG
satisfies the condition: For every x G pG, there is a / G pG such that 2t-xx
{x- 1), i.e.,pGG(R.

Let Φ be a first-order sentence in the language of groups with constants
aua2 and let R G (R. The validity of Φ in σR is equivalent to some demand on
the nonassociative ring R. This demand, in turn, is equivalent to the validity of
some first-order sentence in the language of nonassociative rings. We shall
denote such a sentence by σΦ. We can assume that Φ = {Q\X\)(Q2Xi)
(βn*π)Φo(*i>*2. ,xn), where [QUQ2,... ,Qn) ^ {v,3)and Φo is a quanti-
fier-free formula built from atomic formulas in the language of nonassociative
rings via logical connectives. The sentence σΦ can be obtained from Φ by re-
placing

1. every quantifier (Qx) by (Qxi)(Qx2)(Qx3)(Qx4)(Qx5)
2. every atomic formula x-y » z by the conjunction of xx + yx » Z\, x2 +

^2 * Z2, *3 + J3 + ^2^1 « ^3, 2(X4 + J>4 + X 3^) + X 2 O Ί O Ί " Ό) «

2z4, 2(x5 + ̂ 5 + Λ:3^2 + (x2yι)y2) + (x2(x2 - l))y1 « 2z5
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3. every constant a\ by {a{)\ = 1, (ax)j = 0 if j = 2,3,4,5
4. every constant a2 by (a2)2 = 1, (a2)j = 0 if j = 1,3,4,5.

6 Now we shall show that if R G (R then pσi? = i?. Indeed, βσR = 0 X 0 X
i? x Z?/(0/2) x R/(0/2) and ασl? = 0 X 0 X 0 X i?/(0/2) x R/(0/2). The map-
ping δ: pσR -> i? defined by δ((O,O,Λr,*,*) o aσR) = x is a homomorphism of the
nonassociative ring pσi? onto R and its kernel is trivial.

7 The proof of Theorem 1 will be concluded if we show that for every G G
S, σpG = G. To establish this, we define for any given G G 8 homomorphisms
/ 3 ,/ 4 ,/ 5 from the group /?G into βG, [a2,Gι,aι], t ^ G i , ^ ] * respectively, and
show that the mapping θ: σpG -» G defined by ftx: = f\X\ f2X2f?>x?>f4X4/5X5 is
the required isomorphism.

Let x G j3G and ί G Tx. Define/3x = [tf2>/i*] [fli,ί]. We shall show that
/ 3 is an endomorphism of βG whose kernel is αG and which satisfies x~ιf3x G
αG. Indeed, / 3 is well defined. Let x, t, V G βG, u, u' G U2ΛΓ, t;, i;' G Ui (jcαJi1),
and t~2[u,υ], t'"2[u\υ'] G αG. From the proof of Lemma 4, [w,ι;]αG =
[U\V']OLG. Since j8G is abelian (by Lemma 1), we get (t~ιt')2 G αG. But then,
by(A4), [aur

ιn = e. Thus [α h /] = [flr^ίίί-^')] = [aut']. Now let/3jc =
e. Then [a2ifιx] = [̂ ,cfi] G αG. Hence Λ: G αG. Conversely, if x G αG, then
f{x = eby (A5)(c) and / G TΛΓ = αG. Thus/3x = e. Moreover, x~xfcx = x~x [a2,
f\x] [<*\yt] G αG. It remains to show that if x,y G βG, then/3(x>>) = / 3 x / 3 j .
Indeed,

la2Jι(xy)] = [a2,fixfiy] = [a2jιx][a29fιy][a2jixjiy]
= [a2jχx][a2,fxy][xjλy]
= ίa2Jix][a2Jιy][f2x,auf1y]
= [a1jχx][a2j\y][f2xj\y,aι\

(by (A5)(a) and (iv) of Lemma 3); and

ifiiwhMxya ΐ)] = ifixfiyJΛxyaϊΐ)]
e [/2χ,/i (xyβii1)] [/2Λ/1 ( ^ ^ I 1 )] «G
= ifixJΛxaϊΐ)] ίfixJiy] ίfiyJΛyaϊΐ)] [f2yJiχ]<χG
= [M/i^] 2 [/2XJi(W)l [ΛΛ/iίJ'^Wασ

(by (A5)(d) and (vii) of Lemma 3).
Thus if s G Tx, t G Ty, w G T(jcy), then u2 G [f2xJiy]2s2t2aG; i.e.,

(H~1rf[/2x,/i.>>])2 e αG. Hence, by (A4), [auu-χst[f2xJιy]} = e and
[*i,κ] = [«i^][«i,^][«i,[/2^/i^]] (by (in) of Lemma 1). So

Mxy) = [<t29fi(xy)][auu]
= [a29fχx] [a29fxy] [f2x,fιy,aι][aus] [aut] [au[f2xJιy]]
= [a2jix][aus][o2jιy][a1,t] =/3x/3^.

Define/3+/x = [jc,α/] for x G 0G, 1 = 1,2. By Lemmas 1 and 3 / 3 + / is a
homomorphism of βG onto [#2,Gi,tf/], / = 1>2. The kernel of / 3 + l is {JC G
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βG: x2 E OLG] (by A4). Thus if x E σpG then fjXj is a well-defined element of
G for ally = 1,2,3,4,5. Thus θ is a well-defined mapping of σpG into G. The
homomorphisms/) satisfy the following relations for all x9y,z E βG/aG:

(*) [/2*,/i;v] = / 3 ( * x y)Mχ x 0 / 5 ( 7 x tx)
(**) [/3*,/i7,/2*] = / 5 ( ( * x 7) x *)
(***) [/3*,/}7] =fs+i(x X 7), / = 1,2.

The equality (*) follows from (A5)(f). The left hand side of equation (**)
is equal to [a2j\ [f2xj\y] JiZ] due to the fact that u E ίa2,fλu]aG and aG
is a central subgroup of G. Thus

•[/2*,/lΛ/2*] = [ff2 /lί/2*>/lJ'L/2Z] = I f2Z, fΛ f2X, fI y],d2]

= fs(zx (xx y)) =f5((x xy) x z) (by (iv) of Lemma 3).

Since/3XE [a2ifιx]aG= [f2x,aι]aG,

[f3*Jiy] = [fiX,a\J\y] = UixJiy^x] (by (iv) of Lemma 3)
=Mχχy)\

ihxJiyλ = [a2jχxj2y] = [f2yJiX,a2] (by (iv) of Lemma 3)
= fs(yχχ)=fs(χχy)

Now we show that for any x,y E σpG, θxθy = θ(x ° y). Since f4X4/5X5
is central, it is sufficient to consider the case # 4 = ΛΓ5 = J4 = j>5 = VαG, where
4άG= ixeβGix2 E αG). First,

/3^3/l7l/2^2=/lJ;l/2J;2/3^3[/3^3ί/lJl/2>;2]

= /l>;l/2J;2/3^3[/3^3>/l7l][/3^3,/272]

= f\y\fiyifιχ*fA(χ* x JΊ)/S(*3 x 72) (by (***)),

f2X2f\y\ ^fxyifiXiUiXiJxyΔ
^fiyJiXiMxixyύMxi x OΌΛίΛ x ^2) (by (*))•

Thus

θxθy = fiXifiXiΛxiΛyifiyifiyi
= flXlflXlAyifiyifsXsf^Xs XJl)/sto X J2)/373
=/ixifixifiyifiyiMx?, + Λ ) / 4 ( ^ 3 x JO/5U3 x 72)

(since αG is central and 0G is abelian)
=f\χ\f\y\f2XiMχi x JΊ)/4(*2 x ίyO/sί^i x ^2)

fiyiMXl + 73)/4(*3 X 7l)/5U3 X 72)
=/i(*i +7O/2^Λte x yύhyih(χ-h + y3)Mχ3 *yi + χi x OΊ)

/5U3 X 72+7i X^ 2)
= /iUi + y 1)f2X2fiyiMxi x 71) 1/3(̂ 2 x J Ί J ^ Λ I Λ ^ +73)

/4U3 X Ji + X2 X ίyi)/5(^3 X 72 + 7l X **2>
= /lUl + 7l)/2U2 + y2)h(X2 X 7l)/5(U2 X 7l) X 72)/3(^3 + 73)

/4U3 X 7i + X2 X tyx)Mx3 X 72 + 7i X tx2) (by (***))
= /lUl + 7l)/2U2 +72)/3 (̂ 3 +73+^2 X7l)/4(^3 X7l +X2 X UΊ)

/5( ̂ 3 X 72 + (X2 x 7i) X 72 + 7i X tx2) (since αG is central)
= θ(χoy).

Thus ^ is a group homomorphism. It is clear that θ is also a homomorphism of
groups with constants aua2* We need to show that θ is bijective. First we prove
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that θ is injective. Let x E σpG and θx = e. Then e = f\X\ f2*2fox?>f4*4/5X5-
HenceyU-xO = (fιXι)~ι =/2*2/3*3/4*4/5*5, and [02»/i(-*i)] = [#2,
/ 2 * 2 /3*3/Λ/S^5] = \a2,hxι\ £ «G. Thus *! = αG a n d / ^ i = e. Hence
/ 2 * 2 Ξ 0G and [f2X2^\] £ «G, and x2 = «G and/ 2x 2 = e. Thus/3x3 E αG.
But x3 = (f3x3)aG = OLG. Thus/3x3 = e. Hence f4x4f5x5 = e, but by (A2)
/4X4 =/5^5 = β. Hence x4 = x5 = VαG. This shows that x is the neutral element
of σpG, i.e., θ is injective. It remains to show that θ is surjective. Let G E 8 and
s E G. We need to find an Λ: E σpG such that s = 0ΛΓ. Let SΊ = [#2,s] > 52 =
[s9ax]. By (Al) there are ff E G/, i = 1,2, such that sx E [α 2 ,^]αG and 52 E
U2>#i]αG. Thus 5Ί,̂ 2 ̂  βG and/!5Ί,/25 2 are defined. Let 5 3 = (Zi^iΛ^)"1^.
Then53E)SG. Indeed, [ α ^ ] = [ α i ^ ^ f 1 / ^ ! " ^ ] E t ^ , / ^ - 1 ] [aus]aG =
[a\J2S2\~X[aus]otG = 5252~

1o:G = exG. Similarly, [α2,53] E exG. By (A3) 53 E
βG. Let z = ( Λ ^ ) " 1 ^ . Then z E αG. Hence there are u9vSGι such that z -
[a2,u,aι][a2,v,a2] =fΛ<*2,u]f5[<*2>v] =/4^4/5^5. Thus s = 0x where xt =
SjOίG if / = 1,2,3 and Xj = Sj^JaG if j = 4,5. Thus θ is surjective, which con-
cludes the proof of Theorem 1.

8

Corollary 1 IfGEQ, then Gx, G2 are abelian subgroups of G, Gγ Π G2 =
ζG = [xG βG:x2 E αG), 0G = γ 2G, and OLG = γ 3 G.

This follows from the Claim of the proof of Theorem 1 and the fact that
G = σpG.

Corollary 2 The ring of integers Z is syntactically isomorphic to the free nil-
potent class 3-group on two free generators.

Proof: Let F be the free nilpotent class 3-group with the two free generators
aι,a2. Every element of F can be written uniquely as x = afaia^a^a^ where
s,t,u,v,w E Z, a3 = [a2iaι], a4 = [a3,a{], and a5=[a3,a2] The mapping that
sends the above element x to the element (5, t, u, v, w) of σZ is an isomorphism
of F onto σZ.

Since the elementary theory of the ring of integers Z is undecidable (cf. [7]),
the elementary theory of Fis also undecidable. Another proof of this is given
in [3]. Also, since Z is syntactically isomorphic to the free nilpotent class 2-group
with two free generators (cf. [3]), we conclude that the free nilpotent class
2-group on two free generators and the free nilpotent class 3-group on two free
generators are syntactically isomorphic.

Corollary 3 The class of all nontriυial nonassociative rings satisfying the
identity x = x2 is syntactically isomorphic to the class of all nilpotent class
2-groups G with elements aua2 and satisfying

(Bl) Gj Π G2 = ζG
(B2) there are homomorphisms ft: ζG -> G, such thatfja2ι = ah i = 1,2, and for

every xG fG, [f2x,aλ] =x= [a2j\x]
(B3) for every x E fG, [f2xjλx\ = x.
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Proof: Let G be a group satisfying all the conditions of Corollary 3. Then G E S
Indeed, (Al) follows from (B2) since γ 2 G £ ξG for all nilpotent class 2-groups.
Condition (A2) is trivial since aG Qy3G = {e}. To show (A3), let x E G and
[ahx] = e,i = 1,2. Then x E ζG by (Bl) and Λ: = [a2jλx] E 0G by (B2). Thus
βG = ζG= [a2,Gι] = [G2yaλ] = [G2,Gλ]. Conditions (A5)(a),(b),(c) follow
from (B2). We need to show that conditions (A4), (A5)(d),(e),(f) hold in G.
Since G satisfies the conditions of Lemma 4, pG = βG/aG is a ring satisfying
the identity x = x x x by (B3). Thus every element of fG is of order 2. Hence
(A4) and (A5)(e) hold, and for every x E fG, e E T*. Hence the right hand side
of (A5)(f) is [a2Jx[fixJiy]] = UixJxV] by (B2). This proves (A5)(f). Since
x x x = x in pG, pG is a commutative nonassociative ring and so (A5)(d) fol-
lows. Thus G E S Conversely, if R is a nonassociative ring satisfying x = x2,
then σi? satisfies (Bl), (B2), and (B3) since such an R belongs to (R and 0/2 =
R. Thus σR is nilpotent of class 2.

There are infinitely many varieties of nonassociative Boolean algebras, i.e.,
nonassociative rings satisfying the identity x = x2 (see [2]).

Corollary 4 The class of all nontriυial Boolean algebras is syntactically iso-
morphic to the class of all nilpotent class 2-groups G with elements ax, a2 and
satisfying (Bl), (B2), (B3), and

(B4) for all x,y,zeζG9 [f2x,fΛf2yJιz]] = [/2[/2*,/iJ>],/iz].

Proof: This follows from Corollary 3 since a Boolean algebra is polynomially
equivalent to a Boolean ring. A Boolean ring is an associative ring satisfying the
identity x = x2. Condition (B4) is equivalent to the associativity of multiplica-
tion in pG.

From [6], the class of all Boolean algebras has a decidable elementary the-
ory. Hence the class of groups in Corollary 4 has a decidable elementary theory.

From [8], a variety of associative rings has a decidable elementary theory
iff it satisfies x = xn for some integer n > 1. All such rings belong to the class
(R. Thus the corresponding classes of groups have decidable elementary theories.

It may be noted that the correspondences R^ σR and G -> pG provide a
bijective equivalence between the category of rings (R with ring homomorphisms
preserving the identity elements and the category of groups 9 with elements
a\,a2 and homomorphisms preserving aι,a2. Thus σ,ρ preserve homomorphic
images and Cartesian products. The algorithm given in Theorem 1 is uniform
between the categories S and (R.

9 We shall now consider the special cases of rings of prime characteristic and
algebras over fields in general.

Lemma 6 Let m be a positive integer. Then the following conditions on a
group G E S w£ equivalent:

1. The element a{ is of order m
2. The element a2 is of order m
3. The element [a29ax] is of order m
4. The ring pG is of characteristic m.
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Under these conditions, the following also hold: The exponent ofG is (6,m)m;
the groups γ 2 G, Gu G2 are each of exponent m; the exponent of γ 3 G is
m/(2, m); the exponent of ξG is m/2 ifm is divisible by 4 and is m otherwise.

Proof: Let R E (R and xE σR.By induction on the positive integer n9 we can
show that

(xn)i = nxh i = 1,2
(x")3 = nx3 + (n(n - l)/2)x1x2

(xn)4 = nx4 + (n(n - \)/2)xxx3 + (n(n - \)(n - 2)/6)x?x2 + (fl(fl - 1)/
2)x2txι

(xn)5 = nx5 + (n(n - l)/2)x2x3 + (Λ(/I - l)(2/i - X)/G)xxxl + (Λ(/I - 1)/
2)x 1 ta 2 .

It is clear that αf = (£,0,0,0,0) and ax is of order m iff i? is of character-
istic m. Also a2ϊ = (0,0, £,0,0) and #2 1 is of order m iff R is of characteristic m.
Thus, for G = σR, conditions 1,3,4 are equivalent. The equivalence of condi-
tions 2,4 is similar. Since, by Theorem 1, for every G E 8 G = σpG, the first
part of Lemma 6 is proved.

If R is of characteristic m, then jc ( 6 ) W ) m = e for all x E σR. The ele-
ment a\a2 is of order (6,m)m. Indeed, ((^1^2^)3 = km(km — l)/2 = 0 iff
(29m)\k; {{axa2)

km)A = km{km - \){km - 2)/6 + 0/2 = 0/2 iff (3,m)\k; and
({aλa2)

km)5 = km(km - \){2km - l)/2 + 0/2 = 0/2 iff (3,m)|£. This shows
that G = σR is of exponent (6,m)m. Since G{ = R x 0 x 0/2 x R/(0/2) x
i?/(0/2), for x E Gi we have ( * w ) 3 = mx3 = 0, (xm)4 = mx4 + (m(m -
1)/2)X!X3 + 0/2 = 0/2, and (xm)5 = mjc5 + 0/2 = 0/2. Thus xm = e for all
x E G!. Since #! is of order m, Gλ is of exponent m. Similarly, G2 is of expo-
nent m. As 7 2G = 0 X 0 X R X i?/(0/2) x R/(0/2), if x E γ 2 G, then xm = e.
Hence γ 2 G is of exponent m as α2i is of order m. That the exponent of γ 3 G is
m/(29m) can be proved similarly. Now ζG = 0 x 0 x 0/2 x R/(0/2) x i?/(0/2).
If Λ: E ΓG, then xx = x2 = 2Λ:3 = 0. Thus (Λ:^)3 = kx3 and (ΛΓ )̂̂  = A:xy + 0/2 if
j = 4,5. Thus xk = e iff 2\k and m|2A:; i.e., 21 A: and /w/(2,/w)|it. Thus the
exponent of ξG is m/2 ii A\m and m otherwise.

In the case of rings of prime characteristic, the conditions on the groups
G E 8 can be rewritten without recourse to the mappings / i ,/ 2 . First, we con-
sider the case of rings of characteristic 2.

Theorem 2 The class of all nontrivial nonassociatiυe rings satisfying the iden-
tity x = x2 is syntactically isomorphic to the class of all nilpotent class 2-groups
G with elements a\, a2 such that

(Cl) GUG2 are of exponent 2
(C2) GλΠG2 = ζG
(C3) for all x E ζG, there are xt E Gh i = 1,2, such that [a2,xλ] = [x2ya{] =

[*2>*l] =X

Theorem 3 The class of all nontrivial Boolean algebras is syntactically iso-
morphic to the class of all nilpotent class 2-groups G with elements aua2 satis-
fying (Cl), (C2), (C3), and
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(C4) for allx,y,z G ζG, there are yx,tx,zx,vx G Gx, x2,y2,v2 G G 2 such that
[a2,y\] = l>2»0i] =y, [β2,Zi]=z, [x2,ai] = x, [a2,vx] = [y2izx], [v2,ax] =
[Xi,yi], and [x2,vx] = [v2,zx].

Now we consider the case of rings of odd prime characteristic.

Theorem 4 Let p be an odd prime. Then the class of all nontriυial associa-
tive and commutative rings of characteristic p is syntactically isomorphic to the
class of all nilpotent class ̂ -groups G with elements ax,a2 satisfying (Al), (A2),
(A3), and (D4)-(D9).

(D4) For x G βG, the following conditions are equivalent:
(i) xGaG (ii) [ax,x] = e (iii) [a2,x] = e.

(D5) Gι,G2 are abelian of exponent p
(D6) ifx G βG, then xp G aG
(DΊ)for allx,y G βG, there are xt G U, x, yt G U/ty, / = 1,2, such that [x2,yx]

[*i,y2] <ΞaG
(D8) for all x,y,z G βG, there are x2 G U2x, yt G Ό^y, / = 1,2, zx G UiZ, u G

Ui[j>2,*i], tf/κ/veU2[X2>JΊ] such that [x2,u][zx,v] G aG
(D9)for all x,y G βG, there are x2 G U2x, J i G U j , r G \JX [x2,yx], s G

T[ΛΓ2, yx], / G T x , w G T^, «! G Uj w, ύr̂ rf ί2 G U 2 / 5WcΛ /Λα/ [x 2 ,Λ] =
[a2,r] [ax,s] [x2,ux,ax] [t2,yx,a2].

(The class of groups defined in Theorem 4 is an elementary class. This is
the reason for introducing aG and βG.)

Proof: If R is an associative and commutative ring of odd characteristic, then
R G (R. We need to show that the groups satisfying the conditions of Theo-
rem 4 belong to Q. Theorem 4 will then follow from Lemma 6 and Theorem 1
since βG/aG is of exponent p.

Condition (A4) is equivalent to (D4) since βG/aG is of exponent p (an odd
prime) by (D6). Also, from (D5) and (D6), we can consider GX,G2, and βG/aG
as vector spaces over the field of integers modulo p, since βG Qy2Gis abelian
(by Lemma 1). By Lemma 3 (vii) the mappings gι•: G, -> βG/aG, i = 1,2,
defined by gxx = [α2,Λ:]αG, g2x = [x,ax]aG, are homomorphisms of abelian
groups. These mappings can be considered as surjective linear transformations
of the given vector spaces. Choose a basis of βG/aG containing a2XaG. For
every element b of this basis choose xz G G, such that g/jt,- = b and g/#z =
a2XaG, i = 1,2. The mapping b -»*/ can be extended to a linear transformation
hi of βG/aG into G,; moreover, g/Λ, is the identity mapping on βG/aG, i =
1,2. The composition/ of the natural homomorphism of βG onto βG/aG and
hj is a homomorphism of βG into G, such t h a t / x G U/X, //#2i = α,, / = 1,2,
x G j3G. Thus G satisfies (A5)(a),(b),(c).

IfxGβG, 5,5rG UiX, then s~ιs'EaG. Indeed, [a2,s~ιsf] G [a2,s]~ι[a2,
s']aG = x~ιxaG = aG. Furthermore, [ax,s~ιsf] =eGaG. Thus s~ιs' G j3G
by (A3). Hence by (D4) s~ιs' G aG. Similarly, if t,tf G U2x, then t'ιt' G aG.
Let x, j G j3G. By (D7), there are JC, G U/X, ^ G U/j, / = 1,2, such that [x2,
y\\[Xuyi\ € αG. But [/2x,/i>>] = [x2c,yxd] where c,rfG aG. Thus [/2^,
/i^] = lX2,yι] Similarly [/iJC,/2^] = [xi,^2], and so (A5)(d) holds. By the
same argument we can show that (D8) implies (A5)(e). Thus the operation X on
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pG is associative and commutative. From condition (D9) we have [ΛTI,.)Ί] =
[fixj\y\, [<*\>r] = [a2,fi[f2X,fiy]], [*2,Wi,tfi] = \f2xJ\U9a{\9 [t2,yx,
a2] = [fitJιy,a2]. Also Ί[x2,yx] = T[f2xjxy]. Thus G satisfies (A5)(f) and
G G g .

The proof of Theorem 2 follows from a similar argument. Theorem 3 fol-
lows from Theorem 2 since a Boolean algebra is polynomially equivalent to a
Boolean ring, and condition (C4) states that the ring pG is associative.

The class of all nontrivial associative and commutative rings of character-
istic 3 corresponds, by Theorem 4, to a class of nilpotent class 3-groups of expo-
nent 9. The class of all nontrivial associative and commutative rings of
characteristic/?, where/? is a prime greater than 3, corresponds via Theorem 4
to a class of nilpotent class 3-groups of exponent /?. This follows from Lem-
ma 6. Since the class of associative and commutative rings of characteristic p
contains the ring of polynomials over the field of integers modulo p, such classes
have undecidable elementary theories (cf. [5]). Thus, for every odd prime/?, the
class of groups described in Theorem 4 has an undecidable elementary theory.

10 Now we consider algebras over fields of characteristic not 2 or 3. Let F
be a field. A group G is called an F-group if the elements of F act as operators
on G such that xaxb = xa+b

9 (xa)b = xab for all x G G, a,b G F For algebras
over fields we have the following:

Theorem 5 Let Fbe a field of characteristic not belonging to {2,3}. Then the
class of all nontrivial associative and commutative algebras over F is syntacti-
cally isomorphic to the class of all nilpotent class 3-F-groups G with elements
aua2 satisfying (Al), (A2), (A3), (D4), (D7), (D8), (D9) and

(El) for all x9y GG9a,beF,

[χ\yb] = [x9y]iώ[x9y9x]aia-l)b/2[x,y,y]abib-1)/2

(E2) for all (x,y) G (Gx X Gx) U (G2 x G2) U (βG X βG) andaGF, (xy)a =
χaya

(E3) if F is of characteristic 0, then OLG is closed under F.

Proof: Let G satisfy the conditions of Theorem 5. First, Gλ and G2 are F-
groups. Indeed, let x G Gh a G E Then by (El), [ahx

a] = [ahx]a[ai9x9ai]0

[ai9x9x]a(a-l)/2 = e, i.e., xa G G, .
If FΊs of prime characteristic/?, then G satisfies xp = e. Also, from (E2),

(xy)2 = x2y2 in Gx and G2. Thus G\9 G2 are abelian and G satisfies conditions
(D5) and (D6). Hence, by Theorem 4, pG is an associative and commutative ring
of characteristic p and the groups σpG and G are isomorphic. Hence aG =
ζG = Gj Π G2. Thus αG is closed under F From this and (E3) aG is an F-
group regardless of the characteristic of F. We shall show that βG is also an F-
subgroup of G. Let x G GΪ9 a G F Then [a2ίx

a] = [a2,x]a[a2,x9x]a(a-1)/2.
Hence [a2ix]a G [a2ix

a]aG since αG is F-closed. But Gx is also F-closed, and
thus [a29x]a G βG. Hence, by (E2), /3G is closed under F Also due to (E2), Gj,
G2, ]SG, and αG can be considered as vector spaces over F Since [a2fx

a] G
[fl2^]aaG for every x G G l s the mapping x-> [#2,;t]αG is a linear transfor-
mation of the vector space Gx onto the vector space βG/aG. The proof after
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this point follows the argument of the proof of Theorem 4. The ring pG inherits
the F-algebra structure: If x,y G βG, x2 G Ό2x, JΊ G U ^ , and a G F, then
a- ((xaG) X (yaG)) = [x2,y{]

aaG = [x2,yζ]aG = (xaG) X (a- (yaG)) since
Ia2,yf] e [a29yx]

eaG = yaaG; i.e., y? G \}xy
a.

The group σi? is an F-group whenever R is an associative and commuta-
tive F-algebra. The action of F on σR is defined as follows: if x G σR and a G
F, then

(xa)i = a xh 1 = 1,2
(Λrα)3 = α.X3+(«(«- l)/2)^lX2
(JC")4 = * x4 + (*(* - l)/2) .JCJJCJ + (*<α - 1)(* - 2)/6) X?Λ:2

+ (β(έi-l)/4) jc 2x 1(jc 1-l)
(xα)5 = ff.jt5 + (α(flr - l)/2) -x2x3 + (fir(fir - I)(2a - l)/6) XiX2

2

+ (a(a- \)/4) XιX2(xi- 1).

The F-group σi? satisfies all the conditions of Theorem 5. Furthermore, the
isomorphism G = σpG is an isomorphism of F-groups with constants ax, a2 and
the isomorphism R = pσ/? is an isomorphism of F-algebras.

The construction of σΦ and pΨ, where Φ is a first-order sentence in the lan-
guage of F-groups and Ψ is a first-order sentence in the language of algebras
over F, is the same as that in the proof of Theorem 1 with the following addi-
tions:

• every atomic formula in Ψ of the form a-x « z is replaced by (B(x) Λ
B(z))-*A(z~ιxa)\

• every atomic formula in Φ of the form z « xa is replaced by the con-
junction of z\ * Λ JCI, z2 « «-x2> ^3 * # *3 + (e(a - l ) ^ ) - ^ ^ * *4 *
α x4 + (β(έi - l)/2) -JCiΛa + (α(α - l)(α - 2)/6) -jcfe + (a(a - l)/4)
•^XiίX! - 1), andz 5 * a-x5 + (a(a - l)/2) x2x3 + (α(α - l)(2α -
l)/6) -xxxl + (α(α - l)/4) Xi*2(*2 " D

// In conclusion, let F(k,n) be the free nilpotent class £-group on n free
generators. As we mentioned above, the groups F(2,2) and F(3,2) are syntac-
tically isomorphic. It is our opinion that by using methods similar to those of
[3] and to those of the present paper, one can show that the groups F(j9 m) and
F(k9n) are syntactically isomorphic for any j,k,m,n > 2.

REFERENCES

[1] Burris, S. and P. Sankapavar, A Course in Universal Algebra, Graduate Texts in
Mathematics, Springer-Verlag, New York, 1980.

[2] Iskander, A. A., "Nonassociative Boolean rings," Proceedings of the Seventeenth
International Symposium on Multi-Valued Logic, May 1987, Boston, pp. 40-45.

[3] MaFcev, A. I., "On a correspondence between rings and groups" (in Russian), Mat.
Sbornik, vol. 50(92) (1960), pp. 257-266. American Mathematical Society Transla-
tions, vol. 45 (1965), pp. 221-231.



RINGS AND GROUPS 529

[4] Robinson, D. J. S., A Course in the Theory of Groups, Graduate Texts in Mathe-
matics, Springer-Verlag, New York, 1982.

[5] Robinson, R. M., "Undecidable rings," Transactions of the American Mathemat-
ical Society, vol. 70 (1951), pp. 137-159.

[6] Tarski, A., "Arithmetical classes and types of Boolean algebras," Bulletin of the
American Mathematical Society, vol. 55 (1949), p. 64.

[7] Tarski, A., A. Mostowski, and R. M. Robinson, Undecidable Theories, North Hol-
land, Amsterdam, 1953.

[8] Zamyatin, A. P., "Varieties of associative rings whose elementary theory is undecid-
able," Soviet Mathematics Doklady, vol. 17 (1976), pp. 996-999.

Department of Mathematics
University of Southwestern Louisiana
PO Box 41010
Lafayette, LA 70504-1010




