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An Isomorphism Between Rings and Groups
AWAD A. ISKANDER

Abstract Bijective functors ¢ and p are constructed between a category ®
of commutative nonassociative rings and a category G of nilpotent groups,
such that for all R € ® and G € G, poR = R and 0pG = G. Furthermore,
if £ is a subclass of R, then £ has a decidable elementary theory iff ¢ has
a decidable elementary theory.

Among the methods used to prove that certain classes of models have
undecidable elementary theories are the “interpretation of one class into another”
(cf. [7]), “semantic embedding” (cf. [1]), and “syntactic inclusion” (cf. [3]).
Mal’cev [3] used “syntactic inclusion” to show that the class of all nilpotent class
n-groups (for n = 2) has an undecidable elementary theory. In fact, Mal’cev
employed a notion which we will here call “syntactic isomorphism”. If two
classes of models are syntactically isomorphic, then their elementary theories are
either simultaneously undecidable or simultaneously decidable. One of the results
of [3] states that the ring of integers Z is syntactically isomorphic to the free nil-
potent class 2-group on two free generators, and the class of all not necessar-
ily associative rings with identity is syntactically isomorphic to a class of nilpotent
class 2-groups with two constants. In the present paper, we show that certain
classes of rings with identity are syntactically isomorphic to classes of nilpotent
groups whose nilpotency class is at most 3; in particular, the ring of integers Z
is syntactically isomorphic to the free nilpotent class 3-group with two free gen-
erators, and the class of all Boolean algebras is syntactically isomorphic to a class
of nilpotent class 2-groups.

The phrase “nonassociative ring” will mean “a ring with identity (denoted
by 1) that is not necessarily associative”. The notations of decidability theory
that will be used here are those of [7]. Unless otherwise stated, the notations of
group theory that are used here are those of [4].

1 Let X be a class of models of type 7. The first-order language of type 7
will be denoted by L7. The elementary theory of X, i.e., all sentences of L7 that
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are valid in every member of X, will be denoted by ThX. The following notion
was used informally in Malcev [3]:

Definition Let X, X, be classes of models of type 7;, 7, respectively. The
classes X, X, are called syntactically isomorphic if there is an algorithm that
assigns to every A € X; a X,-model oA, to every B € X, a X,-model pB, to
every sentence ® € L7, a sentence 0® € L7, and to every sentence ¥ € L7, a
sentence p¥ € L7, such that

(i) for every A € X, and B € X,, pcA = A and goB = B
(ii) for all sentences ® € L7, and ¥ € L7, & € ThoA iff 6® € ThA and
¥ € ThpB iff p¥ € ThB.

Thus, if X, and X, are syntactically isomorphic, then ThX, is decidable
iff ThX, is decidable. If £ is a subclass of X, and 0L = {64 :A4 € £}, then
&£ is syntactically isomorphic to 6£. As the ring of integers Z has an undecid-
able elementary theory (cf. [7]), Mal’cev showed that the free nilpotent class
2-group with two free generators has an undecidable elementary theory by estab-
lishing a syntactic isomorphism between it and the ring of integers Z. We shall
show here that the class of all commutative nonassociative rings R, satisfying
the identity 2x(yz) = 2(xy)z and for every x € R there is a ¢t € R such that
2t = x(x — 1), is syntactically isomorphic to a class of nilpotent groups.

All the groups considered here will be groups with two fixed elements, a,
and a,. If G is such a group, we shall use the following notations:

(1) G; is the centralizer of ¢; in G, i = 1,2
(2) if A, B are subsets of G, then AB = {xy:x€ A, y € B} and [A4,B] =
{[x,y] =x"y~xy:x € A, y € B}
(3) az; = a3, a4]
@ oG = [[a3,Gy1,a1][[a,G],a,]
() BG = [G,,G]1aG
(6) if x € G, then
Uix=1{y € G;: [y,a:]x € aG},
U,x={y € Gy: [a,y]x € aG}, and
Tx={y€BG:y?[s,t] € aG for some s € U, x and ¢ € U (xa3;')}.

The neutral element of G will be noted by e. The center of G will be
denoted by {G. The commutator subgroup of G will be denoted by v, G, and
in general v, G will denote the nth member of the lower central series of G,
n =2,3,.... We shall also use the abbreviations [x,y,z] for [[x,»],z] and
[A,B,C] for [[A,B],C] where x,y,z€ G and A,B,C < G.

2 Let ® be the class of all commutative nonassociative rings R such that

@) for all x,y,z € R, 2x(yz) = 2(xy)z
(ii) for every x € R, there is a f € R such that 2¢ = x(x — 1).

The class ® contains the ring of integers Z and all Boolean rings; it also
contains all associative and commutative algebras over fields of characteristic
not 2. The class ® is closed under homomorphic images and Cartesian products.
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Let G be the class of all nilpotent groups G, of nilpotency class at most 3,
with two fixed elements a;,a, such that

(A1) for all x € G each of the sets U;[a,,x] and U, [x,a,] is not empty
(A2) [a3,Gy,a1] N [a;,G,a,] = {e}
(A3) if x € G and [a;,x] € aG, i = 1,2, then x € 3G
(A4) if x € BG, then the following conditions are equivalent:
() x2 € aG, (i) [a;,x] = e, (iii) [a;,x] =e
(AS) there are mappings f;: B3G — G;, i = 1,2, such that
@) fiayy = a;, fixe Uxforallxe pG,i=1,2
(b) if x,y,z € BG and z = xy, then f;z = fixfiy, i = 1,2
(¢c) if x€ aG, then fix=¢e,i=1,2
(d) if x,y € BG, then [fox, fi¥][f1x, /2] € aG
(© if x,5,z € BG, then (Lax, /1[0, /1211112, L215o%,/1¥1)* € oG
(f) if x,y € BG, then there are s € T[fox,fiy], t € Tx, u € Ty
}UCh that [fox,f1y] = (a2, filox, iyl [ay, s1fox, fiu,ai] [ f2t,
1), a2].

Now we can formulate the main theorem of this paper.

Theorem 1 The class of nonassociative rings R is syntactically isomorphic
to the class of groups G.

3 The proof of Theorem 1 depends on the following lemmas:

Lemma 1 Let G be a nilpotent group whose nilpotency class is at most 3,
and let a,b,c € G. Then

(i) v. G is abelian
(ii) The mappings x — [x,b,c], x = [a,x,c], and x — [a,b,x] are
homomorphisms of G into v;G
(iii) The mapping x — [x,c] is a homomorphism of v,G into y3G
@iv) [a,b,c][b,c,allc,a,b] = e.

Proof: Most of the statements of this lemma are probably well known. For the
sake of completeness, however, we shall sketch a proof.

Since [y, G,v2G] € v4G = {e} (cf. [4], p. 122), v, G is abelian.
Let x,y € G. Then

[xy,b] = [x,017[y,b] (cf. [4], p. 119)
[x,b][x,b,y]1[y,b]
[

x,bl1[y,bllx,b,y].

i

So

[xy,b,c] = [[x,b][y,b],c] (since v;G is central)
= [x,b,c]P) [ y,b,c]
[x,b,c]1[y,b,c] (since v3G is ceniral).

Il

This establishes (ii) since the other mappings are similar.

Since every element of v, G is a product of commutators, (iii) will fol-
low if we show that [[x,¥][z,t],¢c] = [x,»,c]l[z,¢c] for all x,y,2,t € G. But
[[x,»1[z,t],c] = [x,y,c]>[z,¢t,c] = [x,y,¢][z,t,c] (since v3G is central).
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Actually (iv) is the Hall-Witt identity
[a,b71,c1?[b,c 7" al[c,a™ !, b]" = e

(cf. [4], p. 119). By (ii) and the fact that v3G is central, [a,b,c]![b,c,al " ![c,
a,b]™! = e, from which (iv) follows.

Lemma 2 Let G be a nilpotent group whose nilpotency class is at most 3 and
let ay,a, € G. Then

() [ay,Gy,a;] is a subgroup of G, i = 1,2
(ii) aG is a central subgroup of G.

Proof: Since G, is a subgroup of G and [a;, G;,q;] is a homomorphic image of
G, by (ii) of Lemma 1, [a,,G;,a;] is a subgroup of 3 G. Since aG is the prod-
uct of these subgroups of v3G, condition (ii) follows.

Lemma 3 Let G be a nilpotent group of nilpotency class at most 3, with ele-
ments ay,a,. Assume that for every x € [ G,,G] each of the sets U x, U, x is
not empty. Then

@) [G2,Gy] € [a3,G1]aG

(li) [GZ’GI] < [Gz,d]]aG
(iii) BG = [a3,G(]1aG = [Gy,a,]aG

(iv) if x € Gy, y € Gy, then

a2, x,¥] = [y, x,a;] and [y,a1,x] = [y,x,a,]

(V) [GZ’GI’Gi] = [aZSGl’aila i= 132

(vi) BG is a subgroup of G
(vii) the mappings x — [a,,x1aG and y = [ y,a;1aG are homomorphisms

of the groups G,,G,, respectively, onto the quotient group G/aG.

Proof: Let x € [G,,G], y € Uy x. Then x = [a,,y]u for some u € aG. This
shows (i). Statement (ii) is similar. Statement (iii) follows from (i), (ii), and
Lemma 2. Statement (v) follows from (i), (ii), and (iv). Thus, we need to show
@iv), (vi), and (vii).

By (iv) of Lemma 1, [a3,x,¥]1[x,¥,a5]1[y,a;,x] = e. If y € G,, then
[y,a5] = e and [ay,x,¥] = [x,5,a,]"! = [y,x,a,] by (iii) of Lemma 1. The
remaining statement of (iv) is similar.

Now, we need to show (vi) and (vii). Let x,y € G;. Then

[az,xy7'] = [az,y 7 1@z, X [ay, %,y "]
= [ay,x][az,y '1laz,x,y~'] (since ¥, G is abelian)
€ [a2,x][a2, 7' 1aG (by (v)).

Thus e € [a,,y][a2,7 " ']1aG, i.e., [a;,y]1 7! € [a;,y ' ]aG. Hence [a,,xy 1] €
[@2,x]1[a2,y]1 'aG. This proves (vi) and the first part of (vii). The second part
of (vii) is similar.

Lemma 4 Let G be a nilpotent group of nilpotency class at most 3, with ele-
ments a,,a,. Suppose that G satisfies the conditions:

() if x € [G1,G,], then each of the sets U, x,U,x is not empty
(i) if x € G and [a;,x] € aG, i = 1,2, then x € 3G.
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Then 3G is a subgroup of G, aG is a central subgroup of G, and R = pG is a
nonassociative ring whose additive group is 3G/aG; the ring multiplication of
R is given by the following: if x,y € BG, then xaG X yaG = [s,t1aG where
s € Uyx, t € U, y; the ring identity element is ay;aG. Moreover, if ¥ is a first-
order sentence in the language of nonassociative rings, we can construct a sen-
tence pV in the language of groups with constants a,,a, such that ¥ € ThR iff
oY € ThG.

Proof: From Lemma 3, 3G is a subgroup of G. From Lemma 2, aG is a cen-
tral subgroup of G. Since BG S v, G and v, G is abelian (by Lemma 1), 3G/aG
is an abelian group. We need to show first that multiplication on R is well-
defined. Let x € 8G. Then x = x’u where x’ € [G,,G,], u € aG. Thus U;x =
U;x’. Hence U;x is not empty, i = 1,2. Let x,y € 8G, 5,5 € Uyx, t,t' € U y.
Then [a,,s7!s’] =e and [a;,s7's’] € [a1,5] !a;,5']aG = xx"'aG = aG, by
(vii) of Lemma 3. Thus [a;,s"!s’] € oG, i = 1,2. Hence v = s ~'s’ € 8G. Sim-
ilarly w = t7'¢' € BG. Thus s’ = sv, t’ = tw. Now [s',¢'] = [sv,tw] = [sv, w]
[sv,t]* = [s,w]l[sv,t] = [s,w]ls, ¢]1%[v,¢] = [s,t]1[s, w]l[v,¢] (since v, G is
abelian). Since [s, w] € [5,8G] = [5,[G»,G1] € [G1,G4,G,]17! € aG by (v)
of Lemma 3 and (ii) of Lemma 2, and similarly [v,¢] € aG, [s,t'] € [s,t]aG.
Thus multiplication on R is well-defined.

Moreover, a;;aG X yaG = [a,,t]aG = yaG and xaG X aaG =
[s,a;]1G = xaG for all x,y € BG. This shows that a,; aG is the identity element
of R. We need to show that multiplication on R distributes over addition. Let
X, ,2€BG, re Uyx,s€ Uyy, t € Ujz. Then st € U;(yz). Indeed, [a,,st] €
[az,s][az,t]aG by (vii) of Lemma 3. Thus [a;,5t] € yzaG and st € U;(yz).
Hence xaG X (yaG + zaG) = xaG X (yz)oG = [r,st]aG = [r,s][r,t]aG (by
a method similar to the proof of (vii) of Lemma 3) = xaG X yaG + xaG X zaG.
This shows left distributivity. Right distributivity is similar.

Now we need to prove the last part of Lemma 4. Let ¥ be a first-order
sentence in the language of nonassociative rings. We can assume that ¥ =
(Q1x1)(Q2x2) . . . (@nXn) Yo (X1, X2, . . ., Xpn), Where {Qy, (05, ..., 0} S {3,V}
and ¥, is a quantifier-free formula built from atomic formulas in the language
of nonassociative rings via logical connectives. To say that ¥ is valid in R = pG
is a demand on the group G. This demand, in turn, is equivalent to the valid-
ity in G of a first-order sentence in the language of groups with constants a;,a,.
We shall denote such a sentence by p ¥. The statements x € aG and x € G are
expressible, respectively, by the following first-order formulas:

A(x) = (3s)(At)(ays = say A ayt = tay Ax = [ay,5,a1][as,t,a2]),
B(x) = Qu)(3v)(a1u = ua; N A(v) Ax = [ay,ulv).
The sentence p ¥ can be obtained from ¥ by replacing:

1. every atomic formula of the form x X y = z by
(B(x) A B(y) A B(2)) = ((3s)(3t)(axs = say A ayt = tay A
A(xlay,s)) A Ayt a)) A A(z]2,5]);
2. every atomic formula of the form x + y = z by
(B(x) A B(») A B(z)) > A(z"'xy); and
3. the constant 1 by [a,,a;].
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4 Now we complete the proof of Theorem 1. Let R € ®R. The set of all ele-
ments x € R such that 2x = 0 will be denoted by 0/2. It is clear that 0/2 is an
ideal of R and the quotient ring R/(0/2) is associative. Also, if x € R, then the
elements ¢ such that 2¢ = x(x — 1) are unique modulo 0/2. We denote by £x the
coset £ + 0/2 where 2¢ = x(x — 1). The group oR will be constructed as follows:
The carrier set is R X R X R X R/(0/2) X R/(0/2). If x € oR, then x; will
denote the ith entry in x, i = 1,...,5. The operation - on oR is defined as fol-
lows. Let x,y € oR. Then

(xey)i=xity,i=12

(X°¥)3=x3+y3+ X2

(Xo)a=x4+ys+ X391 + X200,

(x°p)s =Xs+ s+ X392 + (X201)y2 + Y1 1x5.

The groupoid just defined is a group belonging to the class G. The neutral
element of G = oR is e = (0,0,0,0,0), and if x € G = oR, then the inverse of
X is given by

(x‘l),- = —X;, i= 1,2
x 3= X3+ x1%,
(x4 = —x4 + X% — X (x + 1)
(x_1)5 = —X5 + XpX3 — xlt(xz + 1)

If x,y € oR, then the commutator [x,y] is given by

[x,y]i = 0: l= 1’2

[xX,¥]3=x91 — X102

[, 7]a = X301 — X135 + X28¥1 — y21Xy

[%,Y]s = X392 — X203 + (Y1 — X1) Y2 + Yilx; — X1 8y,

The following claim will be needed later:
Claim Let R € R and G = oR. Let a; = (1,0,0,0,0), a, = (0,1,0,0,0). Then

() BG = 72G

(ii)) aG = v3G
(iii) {G = G, N G, = {(x € BG: x> € aG}
(iv) G; is an abelian group, i = 1,2.

Proof: 1t is clear that a,; = (0,0,1,0,0) and G, = R X 0 X 0/2 X R/(0/2) X
R/(0/2); G, =0 X R x 0/2 X R/(0/2) X R/(0/2); [a,G,1] = {(0,0, x, tx,0) :
X € R}; [a2,Gy,a1] =0x0X%x0X R/(0/2) X 0; [a,G1,a,] =0 X0 X0 X
0 x R/(O/Z), aG = [az,Gl,a‘] o [02,01,02] =0x0x0x R/(0/2) X
R/(0/2); [G5,Gq] = {(0,0,xy,xty, ytx) : X,y € R}; and BG = [G,,G] e aG =
0XxXx0XRXR/(0/2) X R/(0/2).

Since BG € v, G and v, G is the subgroup of G generated by [G,G] S
0Xx0XRXR/(0/2) X R/(0/2), and BG is a subgroup of G from the defini-
tion of the operation o, 8G = v,G. Also, since aG S y;G S0 X 0 X 0 X
R/(0/2) X R/(0/2) = aG, we conclude that oG = 3 G. The center of G is the
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set of all x € G such that [x,y] = e for all y € G. Thus x,y, — x; y, = 0 for all
Y1,¥2 € R. Hence x; = x, = 0. Also x3y; € 0/2 for all y; € R. Hence 2x3 = 0.
Conversely, if x; = x, =2x3 =0, then x € {G. Thus {G =0 x 0 x 0/2 X
R/(0/2) X R/(0/2) = G{ N G,. It is clear that {G < BG. Let x € BG. Then
x% € oG iff 2x3 = 0. Thus {G = {x € G :x? € aG}. From the definition of
the operation -, G, G, are abelian. This establishes the claim.

Since y;G < {G, where G is nilpotent of class at most 3, it is clear that
G = oR is abelian iff the ring R is trivial (0 = 1). The group G = ¢R is nilpo-
tent of class 2 iff o, G is nontrivial and 3 G is trivial; i.e., iff R is nontrivial and
R = 0/2. In other words, G = ¢R is nilpotent of class 2 iff R is nontrivial and
R satisfies the identity x = x2.

Condition (A2) is clearly satisfied by G = oR. The group G satisfies con-
dition (A3). Indeed, let x € G, [a;,x] € aG, i = 1,2. We have [a;,x]3 = —x;
and [a,,x]3 = x;. Thus x; = x, = 0 and x € BG. The group G also satisfies
condition (A4). Indeed, condition (A4)(i) is equivalent to x € {G by (iii) of
the Claim. Thus (A4)(i) implies (A4)(ii) and (iii). Conversely, if x € 8G and
[a;,x] = e, then x; = x, = 0 and —x; € 0/2. Thus x € {G, i.e., x> € aG by (iii)
of the Claim and so (A4)(ii) implies (A4)(i). Similarly, (A4)(iii) implies (A4)(@).

By (i) of the Claim, if we show that G satisfies (A5)(a), then G satisfies
(Al). Thus G € G, if we show that G satisfies (A5). Define f; (0,0, x3,X4,Xs5) =
(x3,0,0,0,0), £5(0,0,x3,x4,x5) = (0,x3,0,0,0). It is clear that f; is a homomor-
phism of BG into G;, fia,; = a;, i = 1,2. If x € 3G, then

[flax’aZ] °X = [(X3,0,0,0,0),(0,1,0,0,0)] ° (0,0,X3,X4,X5)
= (0,0,‘)(3,*,*) ° (0,0,X3,*,*)
= (0,0,0,*%,*%) € aG.

Similarly, [a;,f>x] - x € aG. Thus G satisfies (AS5)(a), (b), and (c). We shall
show that G satisfies (AS)(d). Let x,y € BG. Then

Lax, fiy] e Lfix, f2¥]
= [(O,x3,0,0,0),(J’3’0,0,0,O)] ° [(x3,090,030),(05y390a0’0)]
= (0,0,x3}’3,*’*) ° (0,0,—X3y3,*,*)
= (0,0,0,*%,%) € aG.

To show that G satisfies (A5)(e), let x,y,z € BG. Then

[f2x’fl [ny’flz]] = [(03x330’0’0)1f1 (0,0,}'323,*,*)]
= [(O,X3,0,0,0),(y3Z3,0,0,0,0)]
= (0,0, X3(y3Z3),*,*);

[flz’fZ[f2x3f1y]] = [(Z3,0,0,0,0),(O,X3y3,0,0,0)]

(0,0,—23(X3y3),*,*).
Thus the left hand side of (AS)(e) is

((0,0,X3(y323),*,*) ° (0,0,—'23(X3y3),*,*))2 =
(0,0,2()(3(}’323) - z3(x3y3))9*9*) = (0’0,05*a*) € aG

since R satisfies the identity 2u(vw) = 2(uv)w and R is commutative.
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The proof that G = oR € G will be complete if we show that G satisfies
(AS5)(f). We show first that if x,7 € 8G and t; € fx3, then ¢ € Tx. Indeed, t % =
(O’O’t’s’*:*)_z = (an,_2t39*a*) = (0,0,‘—X3(X3 - l)a*,*) and [fzx’fl(x°
a2—ll )] = [(O,X3,0,0,0),(X3 - 19090’0’0)] = (0,0,X3(X3 - 1)9*’*)' Thus t-z °
[ox fi(xeast)] € aG, i.e., t € Tx. Let x,,s,t,u € 8G, t; € tx3, u3 € ty;, and
S3 € t[fax,f1¥]s = t(x3y3). Then ¢t € Tx,u € Ty and s € T[f,x,f1¥]. The
right hand side of (AS)(f) is

[foyfly] = [(0$x350a0$0)a(y3a09030’0)]
= (0,0,x3y3,Xx3ty3,y31x3).

[as, filfax, 1¥]] = [(0,1,0,0,0),(x3 ¥3,0,0,0,0)]
(0,0,X3y3, t(X3y3),O),

= [(1,090’0’0) > (O’Oa §3 a*’* )]
= (0,0,0,—53 + 0/230) = (090a0’_t(x3y3),0)’

[fzx’fl uQal] = [(O,X:;,0,0,0),(ug,0,0,0,0),(1,0,0,0,0)]
= [(0,0,X3U3,*,*),(1,0,0,0,0)]
(0,0,0,X3 us + 0/2’0) = (0,0,0,X3 ty3 ’0)’

[(0, t3 ’O’an)’ (}’3,0,0,0,0), (Oa 1’0,0,0)]
[(0’0’ t3y39*’*))(0y1’0’090)]
(0,0,0,0,#3y3 + 0/2) = (0,0,0,0, y3£x3).

Thus the right hand side of (A5)(f) is (0,0, x3 y3,2(x3¥3),0) © (0,0,0,—#(x3 y3),0)
(0’0$0’x3ty3a0) ° (0,0,0,0,y3tX3) = (0,0,x3}’3,0,0) ° (0,0,0,x3ty3,y3tX3) = (0a09
X3Y3,X31y3,Y38x3). Thus the two sides of (AS)(f) are equal and G = oR € G.

[ay,s]

Il

[th’flysaZ]

5 If G € G, then G satisfies the conditions of Lemma 4 and R = pG is a ring.
Condition (A5)(d) implies that R is commutative and condition (A5)(e) implies
that R satisfies the identity 2x X (¥ X z) = 2(x X y) X z. From condition
(A5)(f), for every x € BG thereis a t € Tx; i.e., t7%[5,2] € aG and ¢ € G
where y € U, x and z € U, (xa3!). Thus the nonassociative ring oG = 8G/aG
satisfies the condition: For every x € pG, there is a ¢ € pG such that 27 = x X
(x — 1), i.e., pG € Q.

Let ® be a first-order sentence in the language of groups with constants
a;,a, and let R € R. The validity of ® in oR is equivalent to some demand on
the nonassociative ring R. This demand, in turn, is equivalent to the validity of
some first-order sentence in the language of nonassociative rings. We shall
denote such a sentence by ¢®. We can assume that & = (Q;x;)(02x3) ...
(Onx,) P (x1,%2, - . . ,X), Where {Q1,0,,...,0,} S {V,3}and P, is a quanti-
fier-free formula built from atomic formulas in the language of nonassociative
rings via logical connectives. The sentence c® can be obtained from & by re-
placing '

1. every quantifier (Qx) by (Qx;)(Qx2)(Qx3)(Ox4)(Qxs)

2. every atomic formula x-y = z by the conjunction of x; + y; = z;, x5 +
V2=, X3+ y3+ X001 =23, 2(X4 + ya + X391) + X201 () — 1)) =
224, 2(X5 + ys + X392 + (201)32) + (X2(x2 — 1) y; = 225
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3. every constant a; by (a;); =1, (a;); =0if j = 2,3,4,5
4. every constant a, by (az), = 1, (a3); = 0if j = 1,3,4,5.

6 Now we shall show that if R € ® then poR = R. Indeed, BoR =0 X 0 X
R X R/(0/2) x R/(0/2) and a6R =0 X 0 X 0 X R/(0/2) X R/(0/2). The map-
ping 6 : poR — R defined by 6((0,0, x,*,%) e 2oR) = x is a homomorphism of the
nonassociative ring poR onto R and its kernel is trivial.

7 The proof of Theorem 1 will be concluded if we show that for every G €
G, opG = G. To establish this, we define for any given G € G homomorphisms
f3,[4,f5 from the group BG into BG, [a,,Gy,a,], [a2,G1,a,], respectively, and
show that the mapping 6 : 0pG — G defined by 0x = fi x| f2X, f3X3 faX4 f5X5 is
the required isomorphism.

Let x € 8G and ¢t € Tx. Define f3x = [a,,f1x]1[a;,t]. We shall show that
f5 is an endomorphism of G whose kernel is «G and which satisfies x "' f;x €
aG. Indeed, f; is well defined. Let x,2,¢" € 8G, u,u’ € U, x, v,v’ € Uy (xaz),
and ¢ 2[u,v], t’"?[u’,v’] € aG. From the proof of Lemma 4, [u,v]aG =
[u’,v']aG. Since BG is abelian (by Lemma 1), we get (¢ 71#')?> € «G. But then,
by (A4), [a;,¢t't’] =e. Thus [a;,t] = [a;,t(t 7 ¢')] = [a;,t']. Now let f3x =
e. Then [a,,f;x] = [t,a;] € aG. Hence x € aG. Conversely, if x € aG, then
fix=eby (A5)(c) and ¢ € Tx = aG. Thus f3x = e. Moreover, x "' f3x =x " [a,,
fixlla,,t] € aG. It remains to show that if x,y € G, then f3(xy) = f3xf3).
Indeed,

[az, f1(xp)] ay, fixfiyl = laz, fix]lay, fiyllas, fix, f1)]
a, fix1laz, f1y11x,/1)]

aZ’flx] [aZ’fly] [f2x’a1 9fly]

a

»S1x1lax, [iy]Lx, fiy,a]
(by (A5)(a) and (iv) of Lemma 3); and

[
[
[
[

Lfaxfoy, fi(xyas)]

Lex, fi(xyas)l Ly, fi(xyas!t) ] aG

LAax, 1 (xas)] Lax, Av1Ley fi (vt )1 [ o0, fix]aG
Loax, [iyPLx, fi(xaz)] L2y, fi(vast)] oG

(by (A5)(d) and (vii) of Lemma 3).

Thus if s € Tx, t € Ty, u € T(xy), then u? € [fox,f,7]1%5%t%aG; i.e.,
(u st fox, f1y])? € aG. Hence, by (A4), [a;,u"'st[fox,fiy]] = e and
lay,u]l = [ay,s]la,t]1ay, [ f2x, f1y]] (by (ii)) of Lemma 1). So

[fa(xy), fi(xyaz')]

i mi

= [aZ’fl (x.l’)] [alau]
= [ay, fix]laz, /1y 12X, f1y,a1]lay,s]ay, t]ay, [ fox, f10]]
= [ay, fix]lay,s]lay, fiyllay, t] = f3xf3).

S3(xp)

Define f3,;x = [x,a;] for x € G, i = 1,2. By Lemmas 1 and 3 f3,;is a
homomorphism of 8G onto [a,,Gy,a;], i = 1,2. The kernel of f3,; is {x €
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BG:x? € aG} (by A4). Thus if x € gpG then Jixj is a well-defined element of
G for all j = 1,2,3,4,5. Thus 6 is a well-defined mapping of opG into G. The
homomorphisms f; satisfy the following relations for all x,y,z € 8G/aG:

(*) (2%, /1] = f3(x X y) fa(x X ty) f5(y X tx)
(*%) [f3x, /i3, /22] = fs((x X y) X 2)
(k) [f3x,fiy] = frri(x X p), i =1,2.

The equality (*) follows from (A5)(f). The left hand side of equation (**)
is equal to [ay, f1lfox,f1¥],/22] due to the fact that u € [a,, fiul oG and oG
is a central subgroup of G. Thus

Lfox, [y, 23] = lax, il ox, f12), /22] = [faz, filox, f12],a2]
=fs(z X (x X »)) = fs((x X y) X z) (by (iv) of Lemma 3).

Since f3x € [a,, fix]aG = [ fox,a1]1aG,

[f3x,/1¥] = [fax,a1, /1] = [ 2% /1,a,] (by (iv) of Lemma 3)
= fa(x X »);

Lf3x, fox] = laa, f1x, /23] = [0, f1X,a,] (by (iv) of Lemma 3)
=f5(y X x) = fs(x X ).

Now we show that for any x,y € opG, 0x0y = 0(x o y). Since fyx4f5Xs
is central, it is sufficient to consider the case x4, = xs = y4 = ys = vaG, where
VaG = {x € 8G:x? € aG}. First,

[3x3 fivi oy = it ava f3x31 f3x3, i1 202]
=iy fax3 [ f3xs, [iyi 1 Lf3x3, /2 02]
= finifaya f3xs fa(xs X y1) fs(x3 X y2) (by (%)),

Laxa ivy = finrfoaxalfaxa, finn]
= finnfaxafz(xa X 1) fa(xz X 1) fs(y1 X tx3) (by (%)).

Thus

0x0y = f1x1f2%2 [3X3 [101/2Y2 /373
= fix12X2 1 012Y2F3%3 fa(X3 X Y1) f5(x3 X »2) f3)3
= fixiaxa f1y122205(x3 + y3) fa(x3 X p1) fs(x3 X y3)
(since aG is central and 8G is abelian)

= fixifivifoxafs(x2 X y1) fa(x2 X 1) fs(yy X tx3)
L2Y2f3(x3 + ¥3) falxs X y1) f5(x3 X »3)

= 10 + y)faxafs(x2 X Y1) 2y2 f3(X3 + y3) fa(xs Xy + X2 X 1)
S5(x3 X y2 4+ y1 X 1x2)

= fi(x1 + YD) aXo oy f3(x2 X 1) [f3(X2 X ¥1), L2021 03(x3 + 3)
Ja(x3 X yy+ X3 X 1) fs(x3 X 2 + y1 X 1x3)

= f1(x1 + ) falxa + ¥2) f300 X y1) fs((X2 X y1) X ¥2)f3(x3 + y3)
Ja(xz X y1 + X3 X 191) f5(X3 X y2 + y1 X 1x3) (by (¥%%))

=f1(x1 + y)f2(x2 + 22) f3(x3 + y3 4+ X2 X 1) falxs X y1 + X3 X tyy)
Ss(x3 X ¥y + (x3 X y1) X y5 + y; X tx;) (since aG is central)

=0(x-y).

Thus 6 is a group homomorphism. It is clear that 6 is also a homomorphism of
groups with constants a;,a,. We need to show that 6 is bijective. First we prove



RINGS AND GROUPS 523

that 6 is injective. Let x € 0pG and 0x = e. Then e = f1x; foX2 f3X3 [aX4 [5X5.
Hence fi(—x1) = (f1x1)™' = faxaf3x3faXaSsxs, and [ay, f1(—x1)] = [az,
f2X2f3X3f4X4f5X5] = [02,f3X3] € aG. Thus X1 = aG and flxl = e. Hence
frx, € BG and [ fox;3,a,] € oG, and x, = aG and f,x, = e. Thus f3x; € aG.
But x3 = (f3x3)aG = aG. Thus f3x; = e. Hence fyx, fsxs = e, but by (A2)
faxs = fsx5 = e. Hence x4 = x5 = yaG. This shows that x is the neutral element
of 0pG, i.e., 0 is injective. It remains to show that 6 is surjective. Let G € G and
s € G. We need to find an x € 0pG such that s = 6x. Let s; = [a,,s5], s =
[s,a;]. By (Al) there are ¢; € G;, i = 1,2, such that 5; € [a5,7;]aG and s, €
[t2,a,]1aG. Thus s;,s, € BG and f;sy, f>5, are defined. Let s3 = (f15,./252)'s.
Then s; € BG. Indeed, [ay,53] = [ay, /255 fisT's] € [ay, fo55 " ]ay,s]aG =
(a1, /25,1 ay,s]1aG = 5,57 aG = oG. Similarly, [a,,53] € aG. By (A3) s5; €
BG. Let z = (f353) " 's3. Then z € aG. Hence there are u, v € G, such that z =
[az,u,ai]laz,v,a;]1 = fylaz,ul fslaz,v] = fysafsss. Thus s = 6x where x; =
s;aG if i = 1,2,3 and x; = s;vaG if j = 4,5. Thus 0 is surjective, which con-
cludes the proof of Theorem 1.

8

Corollary 1 If G € G, then G,, G, are abelian subgroups of G, G; N G, =
¢G = {x € G :x* € aG}, BG = v, G, and oG = v;G.

This follows from the Claim of the proof of Theorem 1 and the fact that
G = 0pG.

Corollary 2 The ring of integers Z is syntactically isomorphic to the free nil-
potent class 3-group on two free generators.

Proof: Let F be the free nilpotent class 3-group with the two free generators
a,,a,. BEvery element of F can be written uniquely as x = afa}aiafa? where
s,t,u,v,w €Z, a3 = [a,,a,], a3 = [a3,a,], and as = [a3,a,]. The mapping that
sends the above element x to the element (s, ¢,u,v, w) of ¢Z is an isomorphism
of F onto oZ.

Since the elementary theory of the ring of integers Z is undecidable (cf. [7]),
the elementary theory of F is also undecidable. Another proof of this is given
in [3]. Also, since Z is syntactically isomorphic to the free nilpotent class 2-group
with two free generators (cf. [3]), we conclude that the free nilpotent class
2-group on two free generators and the free nilpotent class 3-group on two free
generators are syntactically isomorphic.

Corollary 3 The class of all nontrivial nonassociative rings satisfying the
identity x = x? is syntactically isomorphic to the class of all nilpotent class
2-groups G with elements a,,a, and satisfying

(Bl) G] N Gz = fG

(B2) there are homomorphisms f;: {G — G; such that f;a,, = a;, i = 1,2, and for
every x € {G, [fox,a1] = x = a3, f1X]

(B3) for every x € {G, [f2x,f1x} = x.
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Proof: Let G be a group satisfying all the conditions of Corollary 3. Then GE€ G.
Indeed, (A1) follows from (B2) since v, G < {G for all nilpotent class 2-groups.
Condition (AZ2) is trivial since aG € v3G = {e}. To show (A3), let x € G and
[a;,x] =e, i =1,2. Then x € {G by (B1) and x = [a,, f;x] € BG by (B2). Thus
BG = ¢G = [ay,G,] = [G,,a;] = [G,,G,]. Conditions (AS5)(a),(b),(c) follow
from (B2). We need to show that conditions (A4), (AS)(d),(e),(f) hold in G.
Since G satisfies the conditions of Lemma 4, oG = 8G/aG is a ring satisfying
the identity x = x X x by (B3). Thus every element of {G is of order 2. Hence
(A4) and (AS5)(e) hold, and for every x € {G, e € Tx. Hence the right hand side
of (AS5)(f) is [ay, /1l fox, /1¥]] = [f2x, /1] by (B2). This proves (A5)(f). Since
X X x = x in pG, pG is a commutative nonassociative ring and so (AS5)(d) fol-
lows. Thus G € G. Conversely, if R is a nonassociative ring satisfying x = x2,
then oR satisfies (B1), (B2), and (B3) since such an R belongs to ® and 0/2 =
R. Thus oR is nilpotent of class 2.

There are infinitely many varieties of nonassociative Boolean algebras, i.e.,
nonassociative rings satisfying the identity x = x? (see [2]).

Corollary 4 The class of all nontrivial Boolean algebras is syntactically iso-
morphic to the class of all nilpotent class 2-groups G with elements a,,a, and
satisfying (B1), (B2), (B3), and

(B4) for all x,y,z € (G, [fax, filox, [12]] = [lf2x, fiy], f12].

Proof: This follows from Corollary 3 since a Boolean algebra is polynomially
equivalent to a Boolean ring. A Boolean ring is an associative ring satisfying the
identity x = x2. Condition (B4) is equivalent to the associativity of multiplica-
tion in pG.

From [6], the class of all Boolean algebras has a decidable elementary the-
ory. Hence the class of groups in Corollary 4 has a decidable elementary theory.

From [8], a variety of associative rings has a decidable elementary theory
iff it satisfies x = x” for some integer » > 1. All such rings belong to the class
®R. Thus the corresponding classes of groups have decidable elementary theories.

It may be noted that the correspondences R — oR and G — pG provide a
bijective equivalence between the category of rings ® with ring homomorphisms
preserving the identity elements and the category of groups G with elements
a,a, and homomorphisms preserving a;,a,. Thus g, p preserve homomorphic
images and Cartesian products. The algorithm given in Theorem 1 is uniform
between the categories G and R.

9 We shall now consider the special cases of rings of prime characteristic and
algebras over fields in general.

Lemma 6 Let m be a positive integer. Then the following conditions on a
group G € G are equivalent:

1. The element a, is of order m
2. The element a, is of order m
3. The element [a,,a,] is of order m
4. The ring pG is of characteristic m.
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Under these conditions, the following also hold: The exponent of G is (6,m)m;
the groups v,G, Gy, G, are each of exponent m; the exponent of vy3G is
m/(2,m), the exponent of {G is m/2 if m is divisible by 4 and is m otherwise.

Proof: Let R € & and x € oR. By induction on the positive integer n, we can
show that

(x");=nx;, i=1,2

(x™)3 = nx; + (n(n — 1)/2)x;x,

(x™)4 = nxs + (n(n — 1)/2)x;x3 + (n(n — 1)(n — 2)/6)x?x, + (n(n — 1)/
2)x3tx;

(x™)s = nxs + (n(n — 1)/2)x3x3 + (n(n — 1)(2n — 1)/6)x;x% + (n(n — 1)/
Z)XIUQ.

It is clear that af = (k,0,0,0,0) and a; is of order m iff R is of character-
istic m. Also a%; = (0,0,%,0,0) and a,, is of order m iff R is of characteristic m.
Thus, for G = oR, conditions 1,3,4 are equivalent. The equivalence of condi-
tions 2,4 is similar. Since, by Theorem 1, for every G € G G = 0pG, the first
part of Lemma 6 is proved.

If R is of characteristic m, then x®™™ = ¢ for all x € oR. The ele-
ment a,a, is of order (6, m)m. Indeed, ((a,a,)*™); = km(km — 1)/2 = 0 iff
2,m)| k; ((a1a2)*™)y = km(km — 1) (km — 2)/6 + 0/2 = 0/2 iff (3, m)|k; and
((a1a3)*™)s = km(km — 1)(2km — 1)/2 + 0/2 = 0/2 iff (3, m)| k. This shows
that G = oR is of exponent (6,m)m. Since G; = R x 0 x 0/2 x R/(0/2) X
R/(0/2), for x € G, we have (x™); = mx3 =0, (x™)y = mx4 + (m(m —
1)/2)x1x3 + 0/2 = 0/2, and (x™)s = mxs + 0/2 = 0/2. Thus x™ = e for all
x € G;. Since qj is of order m, G, is of exponent m. Similarly, G, is of expo-
nent m. As y,G=0x0X R X R/(0/2) X R/(0/2), if x € v,G, then x™ = e.
Hence v, G is of exponent m as a,, is of order m. That the exponent of v; G is
m/ (2, m) can be proved similarly. Now (G =0 x 0 X 0/2 x R/(0/2) x R/(0/2).
If x € {G, then x; = X, = 2x3 = 0. Thus (x¥); = kx3 and (x*); = kx; + 0/2 if
Jj = 4,5. Thus x*¥ = e iff 2|k and m|2k; i.e., 2|k and m/(2,m)|k. Thus the
exponent of {G is m/2 if 4|m and m otherwise.

In the case of rings of prime characteristic, the conditions on the groups
G € G can be rewritten without recourse to the mappings f;, f,. First, we con-
sider the case of rings of characteristic 2.

Theorem 2 The class of all nontrivial nonassociative rings satisfying the iden-
tity x = x? is syntactically isomorphic to the class of all nilpotent class 2-groups
G with elements a,,a, such that

(C1) Gy, G, are of exponent 2

C)G NG, =G

(C3) for all x € (G, there are x; € G;, i = 1,2, such that [a,,x,] = [x3,a41] =
[x2,x1] = x.

Theorem 3 The class of all nontrivial Boolean algebras is syntactically iso-
morphic to the class of all nilpotent class 2-groups G with elements a,, a, satis-
Jying (C1), (C2), (C3), and
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(C4) for all x,y,z € ¢G, there are y,,t,,2;,V, € Gy, X2,¥2,05 € G, such that
laas il =yl =y [a2,21] =2, [x2,a1] = x, [az, v1] = [2,21], [v2,a4,] =
[x2, 311, and [x3,v,] = [v3,2,].

Now we consider the case of rings of odd prime characteristic.

Theorem 4 Let p be an odd prime. Then the class of all nontrivial associa-
tive and commutative rings of characteristic p is syntactically isomorphic to the
class of all nilpotent class 3-groups G with elements a,,a, satisfying (Al), (A2),
(A3), and (D4)-(D9).

(D4) For x € 8G, the following conditions are equivalent:
() x € oG (i) [a;,x] =e (i) [az,x] = e.

(DS) Gy, G, are abelian of exponent p

(D6) if x € BG, then x? € oG

(D7) for all x,y € BG, there are x; € U;x, y; € U;y, i = 1,2, such that [x,, ]
[x1,»2] € aG

(D8) for all x,y,z € BG, there are x, € Uyx, y; €Uy, i=12,z1 €Uz, u €
Ui [y2,21], and v € U,y [ x5, y,] such that [x,,u][z,,v] € aG

(DY) for all x,y € BG, there are x, € Uyx, y; € Uy, r € Ui[x,71], s €
Tlx2, 311, t € Tx, u € Ty, u; € U u, and t, € U, t such that [x,,y,] =
[az,r]lay,s]x2,ui,a111t2, 51, ).

(The class of groups defined in Theorem 4 is an elementary class. This is
the reason for introducing oG and G.)

Proof: If R is an associative and commutative ring of odd characteristic, then
R € R. We need to show that the groups satisfying the conditions of Theo-
rem 4 belong to G. Theorem 4 will then follow from Lemma 6 and Theorem 1
since 3G/aG is of exponent p.

Condition (A4) is equivalent to (D4) since BG/aG is of exponent p (an odd
prime) by (D6). Also, from (D5) and (D6), we can consider G;, G,, and G/aG
as vector spaces over the field of integers modulo p, since 3G < v, G is abelian
(by Lemma 1). By Lemma 3 (vii) the mappings g;: G; = BG/aG, i = 1,2,
defined by g, x = [a;,x]aG, g,x = [x,a;]aG, are homomorphisms of abelian
groups. These mappings can be considered as surjective linear transformations
of the given vector spaces. Choose a basis of 3G/aG containing a,; «G. For
every element b of this basis choose x; € G; such that g;x; = b and g;a; =
a,;aG, i = 1,2. The mapping b — x; can be extended to a linear transformation
h; of BG/aG into G;; moreover, g;h; is the identity mapping on 8G/aG, i =
1,2. The composition f; of the natural homomorphism of 3G onto BG/aG and
h; is a homomorphism of BG into G; such that f;x € U;x, fia,; = a;, i = 1,2,
x € BG. Thus G satisfies (AS)(a),(b),(c).

If x€BG, s,s’ €U, x, then s~ls’ € aG. Indeed, [a,,57's’] € [a3,5] [ ay,
s'1aG = x"'xaG = aG. Furthermore, [a;,5's'] = e € aG. Thus s~ !s’ € BG
by (A3). Hence by (D4) s~!s’ € aG. Similarly, if ¢,#’ € U, x, then t~'#' € oG.
Let x,y € BG. By (D7), there are x; € U;x, y; € U;y, i = 1,2, such that [x,,
nlix1, 1] € aG. But [f5x,fiy] = [x3¢,y:d] where ¢,d € aG. Thus [f,x,
f1y] = [x2,:]. Similarly [fix,/,y] = [x1,7,], and so (A5)(d) holds. By the
same argument we can show that (D8) implies (AS5)(e). Thus the operation X on
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oG is associative and commutative. From condition (D9) we have [x;,¥;] =
[f2x9f1y] ’ [al’r] = [a29f1 [f2x9fly]] ) [x2’ul’al] = [f2x’f1 u’al], [t2ay1’
] = Lt fiv,a]. Also Tlxy,y1]1 = T fox, fiy]. Thus G satisfies (A5)(f) and
Geg.

The proof of Theorem 2 follows from a similar argument. Theorem 3 fol-
lows from Theorem 2 since a Boolean algebra is polynomially equivalent to a
Boolean ring, and condition (C4) states that the ring oG is associative.

The class of all nontrivial associative and commutative rings of character-
istic 3 corresponds, by Theorem 4, to a class of nilpotent class 3-groups of expo-
nent 9. The class of all nontrivial associative and commutative rings of
characteristic p, where p is a prime greater than 3, corresponds via Theorem 4
to a class of nilpotent class 3-groups of exponent p. This follows from Lem-
ma 6. Since the class of associative and commutative rings of characteristic p
contains the ring of polynomials over the field of integers modulo p, such classes
have undecidable elementary theories (cf. [5]). Thus, for every odd prime p, the
class of groups described in Theorem 4 has an undecidable elementary theory.

10 Now we consider algebras over fields of characteristic not 2 or 3. Let F'
be a field. A group G is called an F-group if the elements of F act as operators
on G such that x%x? = x®*? (x?)? = x% for all x € G, a,b € F. For algebras
over fields we have the following:

Theorem 5 Let F be a field of characteristic not belonging to {2,3}. Then the
class of all nontrivial associative and commutative algebras over F is syntacti-
cally isomorphic to the class of all nilpotent class 3-F-groups G with elements
a,,a, satisfying (Al), (A2), (A3), (D4), (D7), (D8), (D9) and

(El) for all x,y € G, a,b € F,

[xa’yb] — [x’y]ab[x’y’x]a(a—l)b/Z[x’y’y]ab(b—l)/Z
(E2) for all (x,y) € (G1 X G1) U (G, X G,) U (BG X BG) and a € F, (xy)* =

xaya
(E3) if F is of characteristic 0, then oG is closed under F.

Proof: Let G satisfy the conditions of Theorem 5. First, G; and G, are F-
groups. Indeed, let x € G;, a € F. Then by (El), [a;,x°] = [a;,x]°[a;,x,a;]°
[a;,x,x]%@ V2 = ¢ je., x° € G,.

If Fis of prime characteristic p, then G satisfies x” = e. Also, from (E2),
(x»)? = x2»% in G, and G,. Thus G;, G, are abelian and G satisfies conditions
(D5) and (D6). Hence, by Theorem 4, pG is an associative and commutative ring
of characteristic p and the groups goG and G are isomorphic. Hence aG =
¢G = G; N G,. Thus oG is closed under F. From this and (E3) oG is an F-
group regardless of the characteristic of . We shall show that 3G is also an F-
subgroup of G. Let x € G, a € F. Then [a,,x°] = [a,,x]%[a5,x,x]9(¢~ D72,
Hence [a;,x]? € [a,,x%] aG since aG is F-closed. But G, is also F-closed, and
thus [a,,x]? € BG. Hence, by (E2), BG is closed under F. Also due to (E2), Gy,
G,, BG, and G can be considered as vector spaces over F. Since [a,,x?] €
[a2,x)%aG for every x € G,, the mapping x — [a5,X] aG is a linear transfor-
mation of the vector space G; onto the vector space 3G/aG. The proof after
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this point follows the argument of the proof of Theorem 4. The ring pG inherits
the F-algebra structure: If x,y € BG, x, € U,x, y; € U;», and a € F, then
a- ((xaG) X (yaG)) = [x2,¥11%aG = [x3,¥{]1aG = (xaG) X (a- (yaG)) since
[az, 1] € [a2,71]°aG = y®aG; i.e., yf € U y°.

The group oR is an F-group whenever R is an associative and commuta-
tive F-algebra. The action of F on R is defined as follows: if x € 6R and a €
F, then

(x“),~ =a-x;, i= 1,2

(x)3=a-x3+ (a(a—1)/2)-x1x,

(XY =a-x4+ (a(a — 1)/2) -x1x;3 + (a(a — 1)(a — 2)/6) -xtx,
+ (a(a - 1)/4)-x2x1(x1 - 1)

(x%s=a-xs + (a(a —1)/2) -x,x3 + (a(a — 1)(2a — 1)/6) -x, x3
+ (a(a — 1)/4) -x1 x2(x5 — 1).

The F-group R satisfies all the conditions of Theorem 5. Furthermore, the
isomorphism G = gpG is an isomorphism of F-groups with constants «,,a, and
the isomorphism R = poR is an isomorphism of F-algebras.

The construction of ¢® and p ¥, where @ is a first-order sentence in the lan-
guage of F-groups and ¥ is a first-order sentence in the language of algebras
over F, is the same as that in the proof of Theorem 1 with the following addi-
tions:

e every atomic formula in ¥ of the form a-x = z is replaced by (B(x) A
B(2)) = A(z7'x%);

e every atomic formula in ¢ of the form z = x¢ is replaced by the con-
junction of z; = a-x1, 2y = a-x3, 23 = a-x3 + (a(a — 1)/2) -x1 %3, 24 =
a-x4+ (a(a—1)/2) -x1x3 + (a(a — 1)(a —2)/6) -xix, + (a(a — 1)/4)
XXx1(x; — 1), and zs = a-x5 + (a(a — 1)/2) - xyx3 + (a(a — 1)(2a —
1)/6) -x1x% + (a(a — 1)/4) - x1x3(x; — 1).

11 In conclusion, let F(k,n) be the free nilpotent class k-group on n free
generators. As we mentioned above, the groups F(2,2) and F(3,2) are syntac-
tically isomorphic. It is our opinion that by using methods similar to those of
[3] and to those of the present paper, one can show that the groups F(j,m) and
F(k,n) are syntactically isomorphic for any j, k,m,n = 2.
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