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Pαrαconsistency and the C-Systems of da Costa

IGOR URBAS

Abstract It is argued that, both in view of da Costa's conditions for para-
consistent systems and for independent reasons, the failure of the C-systems
to enjoy the property of intersubstitutivity of provable equivalents constitutes
a deficiency which it is reasonable to attempt to remedy. Two extensions of
the C-systems are considered, and both are shown to collapse all but the base
system Cω into classical logic. The general result is established that there is
no extension of the stronger C-systems which both enjoys the intersubsti-
tutivity property and is weaker than classical logic. Methods of constructing
alternative but related hierarchies for which this property might more suc-
cessfully be secured are suggested.

1 The C-systems and the paraconsistency conditions The systems CΛ(1 <
n < ω) are among the best-known contributions of da Costa and his collabo-
rators to the program of constructing paraconsistent logics, i.e., logics capable
of supporting inconsistent theories without collapse into triviality.

In [5], da Costa and Alves state that, in general, systems of paraconsistent
logic must satisfy the following conditions:

(I) From two contradictory formulas A and -ιA, it must not be possible
in general to deduce an arbitrary formula B

(II) Such systems should contain most of the schemata and deduction rules
of classical logic that do not interfere with (I).

In considering the C-systems specifically, da Costa states in [4] that "it
seems natural that they satisfy" not only (I) and (II), but also the following:

(III) In these systems, the schema -> (A & -u4) must not be derivable
(IV) It must be simple to extend the systems to first-order predicate calculi

(with or without equality).

Of these four conditions, only two are beyond controversy: (I) is unani-
mously accepted as a necessary condition for paraconsistent systems, and (IV)
is also uncontroversial, if only because paraconsistency researchers have stan-
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dardly sought to guarantee the stability of their systems under the burden of
inconsistency at the propositional level, rather than by tampering with the usual
(classical) rules governing the quantifiers.

Conditions (II) and (III), on the other hand, have variously been either
rejected outright (see, for example, [3] and [9]), or modified (see [13]). Certainly,
the construction of paraconsistent logics incorporating -*(A & ->v4) is not
unusual, even in Brazilian circles, as the J-systems of Arruda and da Costa tes-
tify (see [2]). And the extensive research into relevant logics represents a signifi-
cant departure from the view that classical logic is an ideal to be approximated,
insofar as paraconsistency considerations allow (see [1] or the more recent [11]).

Even if all four conditions are accepted, however, it is not absolutely clear
that they are all satisfied by the C-systems. Conditions (I) and (III) present no
problem, for -> (A & -vl) is indeed not derivable in Cn{\ < n < ω), nor is an
arbitrary proposition B derivable from contradictory formulas A and -«A And
the first-order extension of the systems, as described in [4], is evidently simple
enough to satisfy (IV). Rather, it is with respect to (II) that some room for doubt
emerges.

One of the problems in assessing whether the C-systems satisfy (II) is that,
as da Costa himself notes in [4], this condition is somewhat vague. Certainly,
it is not exactly clear what measure of containment of classical schemata and
rules constitutes satisfaction of (II). Nor is the condition determinative in the
construction of paraconsistent systems, for it suggests no means of deciding
between candidate schemata or rules which could singly but not jointly be added
to a base system without interfering with (I).

Notwithstanding these and other reservations about (II) expressed in [13],
the tenor of this condition is clear enough. But there is one important point of
divergence between the C-systems and classical logic which provides a ground
for concern, both in light of (II) and for independent reasons. For unlike clas-
sical logic, and for that matter, virtually every other reasonably familiar system
of logic, the C-systems do not enjoy the property of intersubstitutivity of prov-
able equivalents (see [6], Corollary to Theorem 1). This property at the very least
appears to be required for the systematic behavior of the connectives in a logic;
its absence from the C-systems is held in [8] and [12] to be responsible for the
difficulty in obtaining natural and elegant algebraic and semantic perspectives
on these systems. And, of course, the absence of so apparently central a
property—or more precisely, of the rules or schemata required to guarantee this
property—may well indicate one respect in which the C-systems do not ade-
quately meet condition (II).

In the following section, we investigate more precisely the failure of the C-
systems to enjoy the property of intersubstitutivity of provable equivalents, and
whether these systems can be extended so as to secure this property.

2 The C-systems and the property of intersubstitutivity of provable equiva-
lents The postulates (axiom schemata and rule) of the base system, Cω, are
as follows:

(1) AD(BDA)
(2) (ADB)D ((A D (B D C)) D (A D C))
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(4) (A & B) D A
(5) (A &B)DB
(6) AD (BD (A & B))
(7) AD (AvB)
(8) BD(AvB)
(9) ( iDC)D ((B DC)D ((A v B) D C))

(10) Av-*A
(11) -y-iADA.

Postulates (1) to (9) axiomatize positive intuitionistic logic. From this basis,
Cω is neatly constructed by adding (10) and (11), rather than by adding their
intuitionistic "duals", -ι(A & ~*A) and A D -\-\A.

We note that, by Theorem 1 of [6], sufficient to collapse Cω into Co (clas-
sical logic) is the addition of the reductio schema, (ADB)D ((A D -ιB) D -\4).
The remaining systems Cπ(l < n < ω) extend Cω by adding this schema, though
in a qualified fashion rather than simpliciter. For each system, the schema is
qualified by a formula which can be interpreted as expressing the proposition
that B is not paradoxical, or "behaves classically". For Q , the qualification is
the formula B°, which is defined as -i(Z? & -ι2ί). In addition, compounding
principles ensure that compounds of "classical" formulas are themselves "clas-
sical".

The postulates of Q are those of Cω together with the following:

(12)° B° D ((A DB)D ((A D -i£) D -iA))
(13)° (A° &B°)D (A&B)°
(14)° (A° &B°)D (AvB)°
(15)° (A° &B°)D (ADB)°
(16)° B° D ( i f i ) ° .

For each remaining CΛ(1 < n < ω), B° is replaced by B{n\ which is the
conjunction Bn & Bn~ι &...&B1, where Bι = B° and Bι = Bfti^. (For com-
pleteness, Bil) is defined to be B1.)

The postulates of CΛ(1 < n < ω) are those of Cu except that (12)° to (16)°
are replaced by the following:

(12) ( w )

 B{n) D ({A D B ) D ftA D -^B) D -,A))

(13) ( Λ ) (A(n) & B<n)) D (A & Bγn)

(14) ( π ) (A{n) & B(n)) D (Ay B){n)

(15) ( π ) (A(n) &B(n))D (AD Bγn)

(16) ( π ) Bin) D (-iB)in).

By Theorem 9 of [4], the systems C0,Cι,C2,... ,Cω are all distinct and
form a linear hierarchy with strongest member C o and weakest member Cω .

We now turn to the property of intersubstitutivity of provable equivalents
(hereafter, SE). For axiomatic systems like the C-systems, it is most natural to
define two formulas B and C to be provably equivalent just in case (BD C) &
(CD B), abbreviated by B= Cf is derivable. (We note that this is not the only
sort of equivalence definable in these systems; other definitions are given in [8].)
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SE then is the property that, where B is a subformula of a theorem A, and C
is a formula which is provably equivalent to B, the result of substituting C for
some or all occurrences of B in A is also a theorem.

Because the C-systems incorporate positive intuitionistic logic, they at least
enjoy the property of intersubstitutivity of provable equivalents in negation-free
contexts (SE+). It is where negation is involved that intersubstitutivity fails, as
the following result shows.

Theorem 1 The systems Cn(\ < n < ω) do not enjoy SE.

Proof: Easily derived in Cω, and therefore in each CΛ(1 < w < ω), are the sche-
mata A Ξ (A & A) and -\A D -ιA. If Cr t(l < n < ω) enjoyed SE, then -ιA D
-i (A & A), the result of substituting A & A for (one occurrence of) A in
-iA D -iA, would also be derivable. However, the following matrices show that
-iA D -*(A & A) is not derivable in CΛ(1 < n < ω), for they validate the
postulates of these systems, but invalidate this schema when A is assigned the
value 1.

D I 0 1 2 3 4 I -i & 1 0 1 2 3 4 v I 0 1 2 3 4

*0 0 1 2 3 4 4 0 0 1 2 3 4 0 0 0 0 0 0

*1 0 0 2 3 4 3 1 1 0 2 3 4 1 0 1 1 1 1

2 0 0 0 3 3 3 2 2 2 2 4 4 2 0 1 2 0 2

3 0 0 2 0 2 2 3 3 3 4 3 4 3 0 1 0 3 3

4 0 0 0 0 0 0 4 4 4 4 4 4 4 0 1 2 3 4

(Only the values 0 and 1 are designated.)

A much sharper result can be obtained for Cω:

Theorem 2 In Cωf the schema -ifi s -iC is derivable if and only ifB and C
are the same formula.

Proof: The proof proceeds by considering the Gentzen-style system WGω of
[10], which is stronger than Cω in that, while for every formula AD B deriva-
ble in Cω the sequent A -> B is derivable in WGω, the converse does not hold.
(The terminology used in this proof is that of [7].)

We note first that the inference figure Cut is proved in [10] to be eliminable
from WGω, and that the system is shown to be not finitely trivializable, i.e.,
there is no formula B such that B -» C is derivable for an arbitrary formula C.
From this it follows that WGω has no derivable sequent of the form -• -ιB. For
WGω has no initial sequents of this form; hence, such a sequent could only be
derived by the inference figure -i-IS from the sequent B -+. But from the lat-
ter B -> C follows by Thinning in the succedent for an arbitrary formula C, con-
tradicting the fact that WGω is not finitely trivializable. Hence, WGω has no
derivable sequent of the form -> -ι A

We now show by induction on the length of derivation in WGω that, if
Γ -• -i5 is a derivable sequent, then -*B is a (possibly improper) subformula of
some member of Γ.

Base case: In this case, Γ -> -\B is an initial sequent of the form i f i -• -ιB. Of
course, -ιB is a subformula of itself.
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Inductive step: In this case, Γ -> -ι2? is derived by application of some inference
figure. The only candidates are the structural figures (Thinning, Contraction,
and Interchange), the -IA figures (D-IA, &-IA, and v-IA), and -ι-IS.

However, -i-IS is not a possibility. For if Γ -> -ι2? were derived from 2?,
Γ -• by —i-IS, then the sequent B & (&Γ) -> would also be derivable (where (&Γ)
represents the conjunction of all of the members of Γ), and hence so would B
& (&Γ) -+ C for arbitrary C by Thinning, contradicting the fact that WGω is
not finitely trivializable. A similar argument shows that Γ -> -ιB cannot be the
result of Thinning in the succedent.

This leaves only those figures in which the principal formula occurs in the
antecedent. We consider only Thinning and D-IA; the remaining figures can be
dealt with similarly.

If Γ -> -yβ is derived by Thinning in the antecedent, then Γ is a sequence
of the form C, Γ', and the upper sequent of the figure is Γ" -*> -i A The obser-
vation that -> -\B cannot be derived in WGω ensures that Γ' is not empty. By
the inductive hypothesis, then, -ιB is a subformula of some member of Γ", and
hence also of some member of Γ.

If Γ -> -i2? is derived by D-IA, then Γ is a sequence of the form C D A ΓΊ,
Γ2, and the upper sequents of the figure are T\-+C and D, Γ2 -> -*B. By the
inductive hypothesis, -τB is a subformula of D or of some member of Γ2. But
then it must also be a subformula of some member of Γ.

We have shown, then, that for every sequent of the form Γ -> -ιβ deriv-
able in WGω, -i2? must be a subformula of some member of Γ. To complete
the proof of Theorem 2 it suffices to note that, if -ι5 ss -ιC is a theorem of Cω,
then -i2? -+ -iC and -iC-> -»2? are both derivable sequents in WGω, and there-
fore -i2? and ->C must each be a subformula of the other, from which it follows
that they are in fact the same formula.

Theorem 2 shows that, despite the incorporation of postulates (10) and (11),
Cω is a very weak system with respect to negation: no two (different) negated
formulas are provably equivalent in this system. We turn now to the stronger
C-systems. For simplicity, we initially restrict our attention to Q .

Particular interest attaches to the question of which formulas are prov-
ably equivalent in d to the schema B°9 because of the special role which this
formula plays. It might be expected that such trivial variants as -> (-»2? & B) or
-i ((B & -i£) & (B & ->£)) could be proved equivalent in Q to B°, and hence
equally capable of expressing the proposition that B "behaves classically". But
in the absence of SE there is no guarantee of a uniform argument to this effect,
for although (B & ->£) = (~^B & B) and (B & -π£) Ξ ((B & -*B) & (B &
-ι£)) are easily derived in Q , it does not follow that -i (B & -*B) = -> (~^B &
B) and -i (B & ->£) = -ι ((B & -iΛ) & (B & ij?)) are also derivable. These cases
must therefore be considered individually.

A first result is promising:

Theorem 3 InCu the schema -ι (B & -»£) s -. {(B & -i2ϊ) & (B & -«£))
is derivable.

Note In this and subsequent proofs we will make use of the following rules and
schemata, easily shown to be derivable in positive intuitionistic logic and there-
fore in all of the C-systems.
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^ CDD DDE
Transitivity:

CDE

C D (D D E)
Permutation of antecedents:

DD (CDE)

CD (DDE)
Importation: ^ n

(C&D)DE
τ, (C&D)DE
Exportation:

CD (DDE)

Prefixing: (DD E) D ((CD D)D (CD E))

Suffixing: (CD D) D ((DD E)D (CD E))

Distribution: (C & (Dv E)) = ((C & D) v (C & E))
(Cv (D&E)) = ((CvD) & ( C v £ ) ) .

In addition, we will use the following schemata, easily shown to be deriv-
able in Cω with the assistance of (9) and (10):

Cω-reductio: (CD -*C) D ~>C
(-iC DC) DC.

Proof of Theorem 3: The derivation of ~> (B & -•£) D -ι ((B & ^B) & (B &
-•/?)) is as follows. By postulate (4), we have both

((B & -I B) & (5 & i £ ) ) D (£ & i £ ) and (B & -•£) D 5,

from which follows, by transitivity,

((B & -iB) & (B & -.£)) D 5.

A similar argument, using (5) also, yields

((B & -iB) & (B & ->£)) D πfi.

Substituting ((5 & -.5) & (B & ->5)) for 4̂ in (12)° and permuting antecedents
yields

(((B & π5) & (B & -i£)) D 5 ) D ((((5 & -i£) & (5 & -i^)) D ~^B) D
(B° D-i((B& -iB) 8c (B& -iB)))).

But the first two antecedents have been shown to be derivable, hence by two
applications of (3) we obtain the desired

B° D I ((B & -.5) & (B & -nB)).

The converse derivation is as follows. We show first that (B & -t^)° is
derivable in Q . Substituting (B & ->£) & -ι (B & ^B) for A in (12)° and per-
muting antecedents yields

(((B & -ι£) & -i (5 & -ifi)) D 5 ) D (((5 & -iB) &^(B& -xB)) D -*B) D
(B° D -i ((5 & π ί ) & -. (B & -iB))).
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The first two antecedents are easily derived, leaving

B° D -i((B &πfi)&π(5& -iB)).

But an instance of (5) is

((B & -.£) & I (B & -•£)) D 5°,

hence by transitivity we obtain

((B & -iB) & -. (B & -i^)) D -1 ((5 & π5) & -i (B & ->£)).

From this follows, by Cω-reductio and (3),

-i((£& -i£) &-.(£& -i£)),

which is by definition (B & -i£)°.
To continue, it follows straightforwardly from the above result and (13)°

that ((B & -ι£) & (B & -iB))° is also derivable in Q . We now consider the
result of substituting B & -*B and (B & T B ) & (B & -*B) for, respectively, A
and B in (12)°. As just observed, the first antecedent is derivable in Q , leaving

((B & -π£) D ((5 & -•£) & (5 & -•£))) D
(((£ & -iB) D -I((JB & -ifi) & ( ^ & -1J8))) D - ι ( 5 & ->J5)).

The antecedent of the above schema is also easily derived, using (6) and (2),
leaving

((B & -iJJ) D -i {(B & -•£) & (B & -iΛ))) D -. ( 5 & -•£).

But an instance of (1) is

-i ((B & -TB) & (B & - B)) D ((5 & -iB) 3 -i ((B & -ifi.) & ( 5 & -iB))),

whence by transitivity we obtain the desired

-i ((B & -iB) & (B & -iB)) D -i (B & -i5).

We have shown, then, that one of the formulas put forward as a trivial var-
iant of B° is in fact provably equivalent to it in Q . Unfortunately, the same
cannot be said for the second formula, -ι (-il? & B).

Theorem 4 InCu the schema -• (B & -i5) s -i (->ΰ & 5) fe Hoί derivable.

Proof: One half of this schema, - (5 & -il?) D -ι (-i£ & 5) is in fact deriv-
able in C.i as follows. Instances of postulates (5) and (4) respectively are (~ιB &
B)DB and (^B &B)D -\B. Substituting -LB & B for A in (12)° and permuting
antecedents yields ((-^B & B) D B) D (((-^B & B) D -«£) D (B° D -i(-•# &
5))). But the first two antecedents have been shown to be derivable; hence by
two applications of (3), we obtain B° D -> (-uB & £) , which is just the desired
- i ( £ & -.B) D -ι(-ιB & B).

The converse, however, is not derivable. This is shown by the following
matrices, which validate the postulates of Q but invalidate this schema when
B is assigned the value 1.
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D 1 0 1 2 3 4 5 1 -i & I 0 1 2 3 4 5 v 1 0 1 2 3 4 5

*0 0 0 0 0 0 5 5 0 0 1 2 3 4 5 0 0 0 0 0 0 0

*1 0 0 0 0 0 5 2 1 1 1 4 3 4 5 1 0 1 0 1 1 1

*2 0 0 0 0 0 5 3 2 2 3 2 4 4 5 2 0 0 2 0 2 2

*3 0 0 0 0 0 5 4 3 3 3 3 3 4 5 3 0 1 2 3 3 3

*4 0 0 0 0 0 5 5 4 4 4 4 4 4 5 4 0 1 2 3 4 4

5 0 0 0 0 0 0 4 5 5 5 5 5 5 5 5 0 1 2 3 4 5

(Only the value 5 is not designated.)

That -i (B & -ιB) and -ι (-if? & B) are not provably equivalent in Q is
certainly curious, if not anomalous. For, as is argued with respect to the simi-
larly deficient system J! in [13], such fine discrimination between what would
ordinarily be regarded as mere syntactic variants demands some sort of justifi-
cation. But the motivating considerations for Q , namely, conditions (I) to (IV),
not only do not support such discrimination but militate against it. For although
-ι(B & -iB) = -ι(-ιJ9&i?)is not derivable in Q , the matrices in the proof of
Theorem 1 show that this schema can be added to Q without compromising its
satisfaction of condition (I). For the C-systems, satisfaction of (I) is equivalent
to the underivability of the schema (A & ~^A) D B. But the matrices in ques-
tion invalidate this schema (when A is assigned the value 1 and B is assigned the
value 2, for example) while at the same time validating not only the postulates
of Q but also -• (£ & -•£) = -i (-iB & B).

The absence of the above schema from Q , then, presents itself as not only
anomalous in its own right, but in contravention of at least the spirit of con-
dition (II). These considerations univocally suggest that Q should be extended
to include this schema.

Of course, it is not to be expected that the mere addition of -i (B & -»/?) =
-i (-ιB & B) will remedy any other deficiencies of Q . For, as Theorems 3 and

4 show, the presence of a schema stating the equivalence of B° to one syntac-
tic variant is not sufficient to guarantee its equivalence to any other. And even
if sufficiently many such schemata could be added to secure the equivalence
of B° to all such variants there is no reason to believe that the deficiencies ex-
ibited in Theorem 1 would not remain, for it is shown there that, in general,
-iA = -i (A & A) is not derivable in Q , notwithstanding that the particular
instance of this schema obtained by substituting B & ~^B for A is shown to be
derivable in Theorem 3.

Rather than attempting to treat individually the symptoms of the failure
of the C-systems to enjoy SE, a more obviously systematic strategy is to attempt
to secure this property directly. In [12], two methods of extending the C-systems
in order to secure SE are proposed:

CD D
(i) addition of the rule RC:

C Ξ= D
(ii) addition of the (weaker) rule EC: .
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Because the C-systems enjoy SE+, and lack only the property of intersub-
stitutivity of provable equivalents in negated contexts, it is evident that the addi-
tion of either RC or EC is sufficient to guarantee SE in full. Moreover, the
admissibility of EC (in any extension of a C-system) is also a necessary condi-
tion for SE.

3 The RC-systems We first investigate the result of adding RC to the C-
systems. For each CΛ(1 < n < ω), the result of adding RC will be called RCΛ.
(We note that this diverges from the nomenclature of [12], in which the resulting
systems are called CCΛ(1 < n < ω).)

The following initial result and its proof are taken directly from [12]:

Theorem 5 RCω Φ Co (classical logic). In particular, the schema (A & -ιA) D
B is not derivable in RCω.

Proof: The following matrices validate the postulates of RCω but invalidate the
above schema when A is assigned the value 1 and B is assigned the value 2.

D I P 1 2 I -π & I P 1 2 v I P 1 2

* 0 0 1 2 2 P P 1 2 P O O P
1 P P 2 P 1 1 1 2 1 0 1 1
2 0 0 0 0 2 2 2 2 2 0 1 2

(Only the value 0 is designated.)

Thus, the addition of RC to Cω does not result in any compromise of con-
dition (I), and the system so obtained certainly does not suffer from the defi-
ciencies exhibited in Theorem 2. Unfortunately, the same is not true of the
stronger C-systems. The following result is proved in [12], but we employ a
rather simpler proof below.

Theorem 6 For 1 < n < ω, RCΛ = Co.

Proof: It suffices to show that, for any 1 < n < ω, the formula Bin) is deriv-
able in RCω. Since this is a subsystem of each RCn(l < n < ω), it follows that,
in each such RCrt, the formula qualifying the reductio schema in (12)(Λ) is
derivable, and hence so is unqualified reductio. As noted earlier this suffices to
collapse Cω, and therefore every RCΛ(1 < n < ω), into classical logic.

We first show that B° is derivable in RCω for any formula B. An instance
of postulate (4) is (B & ~^B) D B. Applying RC yields -*BD ->{B & -•£). Sim-
ilarly, (5) and RC yield -»-»£ D -«(5 & -•£). These, together with (9), yield
(-i5v m i ) D -i (B & -i#). But the antecedent is an instance of (10), so (3)
yields -> (B & - 5), which is B° by definition.

From this it follows straightforwardly that Bn is derivable in RCω for 1 <
n < ω, since each such Bn is itself of the form (B""1)0. A simple inductive
argument then shows that the conjunction Bn & Bn~ι &... & B°, which is by
definition B^n\ is also derivable.

Thus, the addition of RC to the C-systems collapses all but the weakest sys-
tem, Cω, into classical logic. We turn instead to EC, in the hope that the addi-
tion of this rule will not have such drastic consequences.
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4 The EC-systems For each CΛ(1 < n < ω), the result of adding EC is
called ECΛ. (This is as in [12].)

Theorem 7 EC ω Φ C o .

Proof: This follows from Theorem 5 and the fact the EC is derivable from RC
in any extension of Cω; hence, ECω is a subsystem of RCω.

In fact, ECω is a proper subsystem of RCω.

Theorem 8 ECω Φ RCω.

Proof: The following matrices validate the postulates of ECω, but invalidate the
schema -> (B & -»5), shown to be derivable in RCω in the proof of Theorem 6,
when B is assigned the value 1.

D I 0 1 2 3 4 5 6 7 1 - H

*0 0 1 2 3 4 5 6 7 7

1 0 0 2 3 2 3 6 6 2

2 0 1 0 3 1 5 3 5 5

3 0 1 2 0 4 1 2 4 4

4 0 0 0 3 0 3 3 3 3

5 0 0 2 0 2 0 2 2 2

6 0 1 0 0 1 1 0 1 0

7 0 0 0 0 0 0 0 0 0

& I 0 1 2 3 4 5 6 7 v | 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0

1 1 1 4 5 4 5 7 7 1 0 1 0 0 1 1 0 1

2 2 4 2 6 4 7 6 7 2 0 0 2 0 2 0 2 2

3 3 5 6 3 7 5 6 7 3 0 0 0 3 0 3 3 3

4 4 4 4 7 4 7 7 7 4 0 1 2 0 4 1 2 4

5 5 5 7 5 7 5 7 7 5 0 1 0 3 1 5 3 5

6 6 7 6 6 7 7 6 7 6 0 0 2 3 2 3 6 6

7 7 7 7 7 7 7 7 7 7 0 1 2 3 4 5 6 7

(Only the value 0 is designated.)

Thus, ECω is distinct from RCω. We now determine whether ECΛ(1 <
n < ω) are distinct from RCrt(l < n < ω). Several lemmas are required.

In the following lemmas, Fn is defined for each system CΛ(1 < n < ω) to
be the schema B{n) & (B & -»#).

Lemma 1 In each Cn(l < n < ω) the schema FnD A is derivable.

Proof: An instance of postulate (12)(Λ) of each Cn (1 < n < ω) is B(n) D ((-υ4 D
B) D (( -ΛA D - I 5 ) D -i -vl)). Permuting antecedents yields (-*A D B) D ((-ιA D
-iB) D (Bin) D ^->>4)). An instance of (1) isBD (-ΛD B)9 so transitivity de-
livers B D ((-1̂ 4 D -«JB) D (B(n) D ~*-*A)). Permutation yields (-*A D -*B) D
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(B D (B{n) D -»-vl)), which by (1) and transitivity is further reduced to -*B D
(B D (B{n) D -i-\<4)). Permutation and importation transform this into (B{n) &
(B & -«£)) D -i -υ4. By (11) and transitivity, this yields (B{n) & (B & -π£)) D A,
which is, by definition, Fn D A.

Lemma 2 In Cω the schema A v A^ι) is derivable, for 1 < / < ω.

Proof: We first consider the schema -υ4'. For 1 < i < ω, -u4' is by definition
-i-iM 1 '- 1 & T / Γ ' - 1 ) . By (11), we have π - « ( i 4 w & -rd1'"1) D (A1"1 &
-ii41'"1), and by (5), G41"1 & -i^1""1) D -iΛ1""1; hence, by transitivity, we
obtain -ιA' D -i^l'""1. A straightforward inductive argument shows that we
therefore have -u4' D ~^A° for all 1 < / < ω, and thus for all 1 < i < ω, since
-π^l1 is just ~î 4°. But ->y4° is by definition -i-i (A & -Ί.4). By (11), we have
-i-i 04 & -i>4) D (̂ 4 & -1^4), and by (4), (v4 & -vl) D ̂  whence by transi-
tivity again we obtain ~^A° D A. This, together with the above-derived -ιA* D
-iA°, yields -*A' D A, for 1 < i < ω.

To continue, an instance of postulate (10) of Cω is A' v -ιA'f which,
together with the schema ~^Ai D A of the preceding paragraph, quickly leads
to A v A\ for all 1 < / < ω. Explicitly, we have A v A\ A v A'"ι

9 ...9AvA°,
which can be conjoined to yield {Ay A1) & (A v^7 '"1) &.. .& (AvA°). An
appropriate number of applications of distribution and (3) transform this schema
into A v 04'" & ̂ l7"1 &... &A°), which is by definition the desired A vA{i).

Lemma 3 In each Cn(\ < n < ω), the schema /?

Λ

( π ) is derivable.

Proof: The following is an instance of (9):

(Fn D F^) D ((F^n) D Fln)) D «Fn vF w

( Λ ) ) D F Π

( Λ ) )).

In each CΛ(1 < Λ < ω) the first antecedent is derivable by Lemma 1. The sec-
ond is easily derived in Cω, and the third is also derivable in Cω by Lemma 2.
This leaves the desired F^n) as a schema derivable in each CΛ(1 < n < ω).

Lemma 4 In each Cn(\ < Λ < ω), the schema (ADFn) DA(n) is derivable.

Proof: The following is an instance of prefixing:

(Fn D A^) D ((A D Fn) D (A D AM)).

The antecedent is derivable in each Cn(\ < n < ω) by Lemma 1, leaving

(ADFn)D (ADA™).

Permuting antecedents yields

AD ({ADFn)DAw).

An instance of postulate (1) is

A{n)D {{ADFn)DA{n))9

which, together with the preceding schema and an instance of (9), yields

(A vA(n)) D ((A D Fn) D A(n)).

But the antecedent is derivable in Cω by Lemma 2, leaving the desired

(ADFn)DA{n).
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Lemma 5 In each Cn(\ < n < ω), the schema (A D Fn) D (A D Fn)
{n) is

derivable.

Proof: An instance of postulate (6), with antecedents permuted, is

F^n) D (A(n) D (A(n) & F^)).

The antecedent is derivable in each Cn(\ < n < ω) by Lemma 3, leaving

An instance of postulate (15)(/2) of each Cn(\ < n < ω) is

04<π) &F Λ

( Λ ) )D ( ^ D F J ( " > .

By transitivity, the two preceding schemata yield

A{n) D (A DFn)
in).

But by Lemma 4, in each CΛ(1 < n < ω), we have

( Λ D F Λ ) D Λ ( Λ ) ,

whence, by transitivity again, we obtain the desired

(A D Fn) D (A D Fn)("K

Lemma 6 In each Crt(l < Λ < ω), the schemata and deduction rules of posi-
tive classical logic are derivable.

Proof: This is stated in various places, e.g. for Q in Theorem 3 of [4]. But it
also follows fairly easily from Lemma 2 above. For to obtain an axiomatics for
positive classical logic it suffices to add the schema A v (A D B) to positive
intuitionistic logic as axίomatized by postulates (1) to (9) of Cω. By Lemma 2,
we have AvA{n) in Cω. Conjoined with postulate (10), this yields (A v A{n))
& (A v -iv4). By distribution, this is equivalent to A v (A(n) & -iv4). In each
CΛ(1 < n < ω), the schema ((A & -vl) & A(n)) D B follows straightforwardly
from an instance of postulate (12)(/ϊ), and this reduces easily to (A(n) & ~^A) D
(AD B). Together with the preceding schema, and with the assistance of (9),
this yields the desired Ay (AD B).

Lemma 7 In each Cn(\ < n < ω), the schema B s ((B D Fn) D Fn) is
derivable.

Proof: The following is an instance of postulate (9):

(Fn DA)D ((A DA)D ((Fn v A) D A)).

The first antecedent is derivable in each Cπ(l < n < ω) by Lemma 1, and the
second is easily derived in Cω, leaving

(FnvA)DA.

Substituting B = ((B D Fn) D Fn) for A yields

(Fn v(B= ((B D Fn) D Fn))) D (B = ((B D Fn) D Fn)).

But the antecedent is an instance of the positive classical tautology

Av(B={(BDA)DA))9
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and is therefore derivable in Crt(l < n < ω) by Lemma 6, leaving the desired

B=((BDFn)DFn).

Lemma 8 In each Cπ(l < n < ω), the schema ({B D Fn) D Fn)
{n) is

derivable.

Proof: Substituting B D Fn for A in the schema of Lemma 5 yields

((B D Fn) D Fn) D ((B D Fn) D Fnγ
nK

Substituting (B D Fn) D Fn for A in the schema of Lemma 4 yields

(((B D Fn) D Fn) D Fn) D ((B D Fn) D Fnγ
n).

These two schemata, with the assistance of (9), yield

(((B D Fn) D Fn) v (((B D Fn) D Fn) D Fn)) D
((BDFn)DFn)(n).

But the antecedent is an instance of the positive classical tautology A v (A D
B), and is therefore derivable in each CΛ(1 < n < ω) by Lemma 6, leaving the
desired

({BΏFn)DFnγ
n\

Finally, we are in a position to determine the result of adding the rule EC
to the systems Cn(\ < n < ω).

Theorem 9 For 1 < n < ω, ECΛ = Co.

Proof: As noted at the end of Section 2, the addition of EC to Cπ(l < n < ω)
suffices to guarantee the property SE. This permits the following very simple
proof.

In each ECn(l < n<ω), B and (B D Fn) D Fn are provably equivalent by
Lemma 7, and the schema ((B D Fn) D Fnγ

n) is derivable by Lemma 8. Because
they enjoy SE, it follows that B^n\ which is the result of substituting B for
(BD Fn)D Fn in this schema, is also derivable in each ECW(1 < n < ω). As in
the proof of Theorem 6, this yields unqualified reductio, which suffices to col-
lapse each ECΛ(1 < n < ω) into classical logic.

It will be noted that the proof of Theorem 9 does not rely upon the actual
derivability of the rule EC in ECn(l < n < ω); it is sufficient merely that this
rule be admissible. But, as noted at the end of Section 2, the admissibility of EC
in any extension of CΛ(1 < n < ω) is a necessary condition for SE. We can
therefore state the following more general result.

Theorem 10 There is no extension of any Cn (1 < n < ω) which enjoys SE
but which is weaker than classical logic.

(We note that an alternative proof of Theorem 9 can be constructed using
the schema ->T in place of Fn, where T is defined to be an arbitrary theorem
of Cω. While this has the slight advantage that, unlike Fn, -iT is not relative to
each Cπ(l < Λ < ω), it has the disadvantage that Lemma 1 and those subse-
quent lemmas that rely upon it must be restated to apply to ECΠ(1 < n < ω)
rather than to Cn(\ < n < ω). This is because the schema ->T D A is not deriv-
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able in the latter systems, but only in the former. This alternative proof, there-
fore, does not demonstrate as clearly that it is precisely because the C-systems
fail to enjoy SE that they do not collapse into classical logic).

5 Conclusion Obtaining analogues of the C-systems which both enjoy SE
and satisfy the paraconsistency conditions, then, is not to be achieved by exten-
sion but perhaps by some other method of variation. One possibility, which
involves the least revision of the C-systems as they stand, is to retain all of the
postulates of these systems but to redefine the schema B°. For there is nothing
sacrosanct about the original definition of this schema as -ι (B & -»2?); in dif-
ferent contexts other candidates may well prove to be more adequate in express-
ing the proposition that B "behaves classically". A second and more radical
possibility is to retain the method of constructing the higher C-systems but to
change the base system. Among the possible alternatives to Cω which suggest
themselves are the systems NCω and OCω defined in [14]. A third possibility is
to combine both of these approaches, which is essentially what is involved in the
construction of the "intuitionistic" analogues of the C-systems in [3]. All of these
possibilities will be considered in greater detail elsewhere.
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