On Finite Models of Regular Identities

JÓZEF DUDEK and ANDRZEJ KISIELEWICZ

Abstract

It is a known result of Austin that there exist nonregular identities with all nontrivial models being infinite. In this note a certain analogue of this result for regular identities is presented and some remarks in this connection are given.

1 Perkins [4] proved that it is undecidable whether an identity (and in consequence, a finite set of identities) has a nontrivial model (i.e., a model of cardinality greater then one). Austin [1] in improving the result of Stein [5] found an identity with infinite models but with no nontrivial finite one. McKenzie [3] proved that it is also undecidable whether an identity (a finite set of identities) has a nontrivial finite model.

All these results are based on properties of nonregular identities. For regular identities (i.e., those with the same variables appearing on both sides, cf. [2]) the model problems mentioned above are trivial. It is known that for each finite set of regular identities the so-called τ-semilattices provide models of arbitrary cardinalities.

More precisely, let τ be a finite type of algebras, i.e., a sequence $\left\langle n_{1}, \ldots\right.$, $\left.n_{k}\right\rangle$ of nonnegative integers, and $x y$ a semilattice operation on a set A (a semilattice operation can be defined on every finite set A). For $1 \leqq i \leqq k$ we define an n_{i}-ary operation on the set A by $f_{i}=x_{1} x_{2} \ldots x_{n_{i}}$. The algebra $\left\langle A, f_{1}, . ., f_{k}\right\rangle$ is then called a τ-semilattice. Any τ-semilattice is polynomially equivalent to the corresponding semilattice and clearly is a model for any set of regular identities in type τ. Let us also note that each one-element algebra is a τ-semilattice.

Thus, τ-semilattices can be treated as trivial models for regular identities. Let us now inquire about other models.

We will show that a set of regular identities close to the lattice identities
has models that are not τ-semilattices, though each such model is infinite (Theorem 1). This is a result analogous to those of Austin [1] and Stein [5], and in consequence leads to a problem for regular identities analogous to that considered by McKenzie [3]. In this case, however, the situation is more complex, since as we will show each single regular identity has a finite model that is not a τ semilattice (Theorem 2), and therefore the approach of [3] and [4] does not apply here.

Our terminology is standard. If the need arises we recommend that one refer to [6]; some basic notions of graph theory are also assumed to be familiar to the reader.

2 Let + and - be binary function symbols. Consider the following set of identities (we write $x y$ for $x \cdot y$):

$$
\begin{aligned}
\Sigma: x+x & =x, \\
x x & =x, \\
x+y & =y+x, \\
x y & =y x, \\
(x+y) z & =(x+z) y .
\end{aligned}
$$

Theorem 1

(a) Each finite model of Σ is $a\langle 2,2\rangle$-semilattice
(b) There is a model of Σ which is not a $\langle 2,2\rangle$-semilattice.

Proof: (a) Let $\mathfrak{A}=\langle A,+, \cdot\rangle$ be a model of Σ. If $x+y=x y$ holds in \mathfrak{N}, then by the last identity in Σ the operation $x+y=x y$ is associative and so \mathfrak{A} is a $\langle 2,2\rangle$ semilattice. We prove that in the opposite case the number of binary polynomials over \mathfrak{A} is infinite, which implies that \mathfrak{A} itself is an infinite model. More precisely, we show that for $n=0,1,2, \ldots$ the following polynomials

$$
s_{n}(x, y)=x+2^{n} y
$$

(where $x+k y$ abbreviates $(\ldots((x+y)+y)+\ldots)+y$ with y occurring k times) are pairwise distinct over \mathfrak{N}.

Using the identities of Σ, it is easy to check that
(1) $\left(s_{n}(x, y)\right) y=x y$
(2) $\quad\left(s_{n}(x, y)\right) x=s_{n-1}(x, y)$.

Indeed, for (1) we have that $(x+k y) y=((x+(k-1) y)+y) y=(y+(x+$ $(k-1) y) y=(y+y)(x+(k-1) y)=(x+(k-1) y) y=\ldots=x y$.

For (2), $x+2^{n} y=\left(\left(x+\left(2^{n}-1\right) y\right)+y\right) x=(x+y)\left(x+\left(2^{n}-1\right) y\right)=$ $\left(\left(x+\left(2^{n}-2\right) y\right)+y\right)(x+y)=(x+2 y)\left(x+\left(2^{n}-2\right) y\right)=\ldots=(x+$ $\left.2^{n-1} y\right)\left(x+2^{n-1} y\right)=s_{n-1}(x, y)$.

Now assume that $s_{n}(x, y)=s_{m}(x, y)$ for some $0 \leqq m<n$. Then by (2) $s_{n-m}(x, y)=s_{0}(x, y)=x+y$; that is, for some $k \geqq 1, s_{k}(x, y)$ is commutative. Using (1) and (2) it follows that $s_{k-1}(x, y)=\left(s_{k}(x, y)\right) x=\left(s_{k}(y, x)\right) x=y x$, which is commutative as well, and by applying this argument again and again we get that $s_{0}(x, y)=y x$, that is, $x+y=x y$. This is a contradiction, proving (a).

Figure 1.
(b) Let T be the set of the finite binary trees on a countable set S with roots as in Figure 1. Isomorphic trees are considered as identical. We define a binary operation \oplus on T as follows: if $t, u \in T$, then $t \oplus u$ is the tree obtained from t and u by adding one more node (intended as the root of $t \oplus u$) and two edges connecting this node with the roots of t and u (see Figure 1). The operation $t \oplus u$ is commutative, but not associative.

Now we define the binary operations + and \cdot on T as follows:

$$
x+y= \begin{cases}x, & \text { if } x=y \\ x \oplus y, & \text { otherwise }\end{cases}
$$

Clearly, $x+y$ is idempotent and commutative, but not associative. To define $x \cdot y$, we first introduce some notation. Let

$$
\begin{aligned}
& y \mathbf{a}=\left(\ldots\left(\left(y \oplus x_{1}\right) \oplus x_{2}\right) \oplus \ldots\right) \oplus x_{n}, \text { where } \mathbf{a}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle, n \geqq 0 \\
& y \mathbf{a} \overline{\mathbf{a}}=\left(\ldots\left(\left((y \mathbf{a}) \oplus x_{n}\right) \oplus x_{n-1}\right) \oplus \ldots\right) \oplus x_{1} \\
& \left.y \mathbf{a} z \overline{\mathbf{a}}=\left(\ldots\left(((y \mathbf{a}) \oplus z) \oplus x_{n}\right) \oplus x_{n-1}\right) \ldots\right) \oplus x_{1} .
\end{aligned}
$$

By induction on the total number of nodes we define

$$
x \cdot y= \begin{cases}y \mathbf{a}, & \text { if } x=y \mathbf{a} \overline{\mathbf{a}} \text { for some } \mathbf{a} \\ x \mathbf{a}, & \text { if } y=x \mathbf{a} \overline{\mathbf{a}} \text { for some } \mathbf{a} \\ (y \mathbf{a}) \cdot t, & \text { if } x=y \mathbf{a} t \overline{\mathbf{a}} \text { for some } t \text { and } \mathbf{a} \\ (x \mathbf{a}) \cdot t, & \text { if } y=x \mathbf{a} t \overline{\mathbf{a}} \text { for some } t \text { and a } \\ 1, & \text { otherwise }\end{cases}
$$

By 1 we denote here the one-element tree, which is included in T. Note that for a empty $(n=0)$ we have that $x \cdot x=x$, showing that $x \cdot y$ is idempotent. Clearly, it is also commutative.

Now, let T_{0} be the subset of T of all those trees not containing a subtree
of the form $x \oplus x$. Then, $x+y$ and $x \cdot y$ are still operations on T_{0}. We show that

$$
(x+y) z=(x+z) y=(y+z) x
$$

holds in T_{0}.
For $x=y=z$ this is trivial.
If $x=y \neq z$, then $(x+y) z=x z$, and $(x+z) y=(x+z) x=x z$ (since $x+z=x \mathbf{a} z \overline{\mathbf{a}}$ with empty a). Similarly, $(y+z) x=x z$.

We may thus assume that x, y, and z are pairwise distinct. According to the definition of $x \cdot y$ we consider four special cases with regard to the term $(x+y) z$.
(1) $z=(x+y) \mathbf{a} \overline{\mathbf{a}}=(x \oplus y) \mathbf{a} \overline{\mathbf{a}}$
(2) $z=(x \oplus y) \mathbf{a} t \overline{\mathbf{a}}$
(3) $x \oplus y=z \mathbf{a} \bar{a}$ (then either $y=(z \oplus x) \mathbf{b} \overline{\mathbf{b}}$, or dually, $x=(z \oplus y) \mathbf{b} \overline{\mathbf{b}})$
(4) $x \oplus y=z a t \overline{\mathbf{a}}$.

In case (1), $(x+y) z=(x \oplus y) \mathbf{a}$, and $(x+z) y=(z+x) y=((y \oplus x) \mathbf{a} \bar{a} \oplus$ $x) y=(y \mathbf{b} \overline{\mathbf{b}}) y=y \mathbf{b}=(y \oplus x) \mathbf{a}$, as required. The same is true for $(y+z) x$. In case (2) the proof is analogous. In case (3), $(x+y) z=z \mathbf{a}(x+z) y=y(z \oplus x)=$ $((z \oplus x) \mathbf{b} \overline{\mathbf{b}})(z \oplus x)=(z \oplus x) \mathbf{b}=z \mathbf{a}$ (since, in this case, \mathbf{b} is obtained from a by deleting the first element $x)$, and also $(y+z) x=(((z \oplus x) \mathbf{b} \overline{\mathbf{b}}) \oplus z) x=$ $(((x \oplus z) \mathbf{b} \overline{\mathbf{b}}) \oplus z) x=(x \mathbf{c} \overline{\mathbf{c}}) x=x \mathbf{c}=(z \oplus x) \mathbf{b}=z \mathbf{a}$. The same proof applies for the dual case $x=(z \oplus y) \mathbf{b} \overline{\mathbf{b}}$. Again, in case (4) the proof is analogous. Otherwise, $(x+y) z=1$. Then, also $(x+z) y=(y+z) x=1$, because if $(x+z)$ or $(y+z) x \neq 1$, then applying the proof like that above for $y(x+z)$ or $y(y+$ $z) x$, respectively, we obtain that $(x+y) z \neq 1$. Hence, $\left\langle T_{0},+, \cdot\right\rangle$ is a model of Σ, which completes the proof of the theorem.

3 In view of results of McKenzie [3] and Perkins [4], one can conjecture that the question of whether or not a finite set of regular identities has a nontrivial (not τ-semilattice) model is undecidable. However, our problem is more complicated than those treated of in [3] and [4]. As a matter of fact, their results concern single identities, the undecidability of the question for a finite set of identities being a simple consequence. In contrast to this, for our question we have:

Theorem 2 Each single regular identity has a nontrivial finite model (not a τ-semilattice).

Proof: To show this, first note that the problem in question actually concerns the sets of identities with at least one having just a single variable on one side. Indeed, otherwise an algebra $\langle A, F\rangle$ with all the operations equal to a fixed constant provides a suitable model. If a regular identity has a variable on one side, then this is the only variable appearing in this identity. Thus, all that remains to show is that each such identity I has a finite model other than a τ-semilattice. This we show as follows. Suppose that the identity I has a variable x at the righthand side, and r is the number of the occurrences of x at the left-hand side. If $r=2$, then putting $f(x)=x$ for all unary operators appearing in I , we have just
the identity $x x=x$, and any finite idempotent noncommutative groupoid (with some trivial unary operators added) provides a model as required. If $r=1$, then the problem is trivial. For $r \geqq 3$, suppose at first that the only function symbol appearing in I is a symbol of a binary operation $x y$ and consider the set of identities

$$
\Sigma^{\prime}=\{\mathrm{I}, x y=y x,(x y) z=x(y z)\} .
$$

Then the identity I can be replaced by just

$$
x^{r}=x
$$

and it is clear that any cyclic group of order $r-1$ is a model for Σ, and therefore a model for I itself (by the assumption that $r-1>1$).

Now, if I is an identity in a type τ, then we construct an algebra of type τ from a cyclic group of order $r-1$ by the same construction as that applied to semilattices in Section 1. The result, which we may call a τ-cyclic group, is clearly a model for I, which completes the proof.

REFERENCES

[1] Austin, A. K., "A note on models of identities," Proceedings of the American Mathematical Society," vol. 16 (1965), pp. 522-523.
[2] Jónsson, B. and E. Nelson, "Relatively free products in regular varieties," Algebra Universalis, vol. 4 (1974), pp. 14-19.
[3] McKenzie, E., "On spectra, and the negative solution of the decision problem for identities having a finite nontrivial model," The Journal of Symbolic Logic, vol. 40 (1975), pp. 186-196.
[4] Perkins, P., "Unsolvable problems for equational theories," Notre Dame Journal of Formal Logic, vol. 8 (1967), pp. 175-185.
[5] Stein, S. K., "Finite models of identities," Proceedings of the American Mathematical Society, vol. 14 (1963), pp. 216-222.
[6] Taylor, W., "Equational logic," Houston Journal of Mathematics (1979), pp. 1-83.

Józef Dudek
Mathematical Institute
University of Wrocław
pl. Grunwaldzki 2/4
50-384 Wrocław, Poland

Andrzej Kisielewicz
Technical University of Wrocław
Institute of Mathematics
ul. Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

