Notre Dame Journal of Formal Logic Volume 30, Number 4, Fall 1989

On Finite Models of Regular Identities

JÓZEF DUDEK and ANDRZEJ KISIELEWICZ

Abstract It is a known result of Austin that there exist nonregular identities with all nontrivial models being infinite. In this note a certain analogue of this result for regular identities is presented and some remarks in this connection are given.

1 Perkins [4] proved that it is undecidable whether an identity (and in consequence, a finite set of identities) has a nontrivial model (i.e., a model of cardinality greater then one). Austin [1] in improving the result of Stein [5] found an identity with infinite models but with no nontrivial finite one. McKenzie [3] proved that it is also undecidable whether an identity (a finite set of identities) has a nontrivial finite model.

All these results are based on properties of nonregular identities. For regular identities (i.e., those with the same variables appearing on both sides, cf. [2]) the model problems mentioned above are trivial. It is known that for each finite set of regular identities the so-called τ -semilattices provide models of arbitrary cardinalities.

More precisely, let τ be a finite type of algebras, i.e., a sequence $\langle n_1, \ldots, n_k \rangle$ of nonnegative integers, and xy a semilattice operation on a set A (a semilattice operation can be defined on every finite set A). For $1 \leq i \leq k$ we define an n_i -ary operation on the set A by $f_i = x_1 x_2 \ldots x_{n_i}$. The algebra $\langle A, f_1, \ldots, f_k \rangle$ is then called a τ -semilattice. Any τ -semilattice is polynomially equivalent to the corresponding semilattice and clearly is a model for any set of regular identities in type τ . Let us also note that each one-element algebra is a τ -semilattice.

Thus, τ -semilattices can be treated as trivial models for regular identities. Let us now inquire about other models.

We will show that a set of regular identities close to the lattice identities

Received May 28, 1987

624

FINITE MODELS

has models that are not τ -semilattices, though each such model is infinite (Theorem 1). This is a result analogous to those of Austin [1] and Stein [5], and in consequence leads to a problem for regular identities analogous to that considered by McKenzie [3]. In this case, however, the situation is more complex, since as we will show each single regular identity has a finite model that is not a τ semilattice (Theorem 2), and therefore the approach of [3] and [4] does not apply here.

Our terminology is standard. If the need arises we recommend that one refer to [6]; some basic notions of graph theory are also assumed to be familiar to the reader.

2 Let + and \cdot be binary function symbols. Consider the following set of identities (we write xy for $x \cdot y$):

$$\Sigma : x + x = x,$$

$$xx = x,$$

$$x + y = y + x,$$

$$xy = yx,$$

$$(x + y)z = (x + z)y.$$

Theorem 1

(a) Each finite model of Σ is a $\langle 2,2 \rangle$ -semilattice

(b) There is a model of Σ which is not a $\langle 2,2 \rangle$ -semilattice.

Proof: (a) Let $\mathfrak{A} = \langle A, +, \cdot \rangle$ be a model of Σ . If x + y = xy holds in \mathfrak{A} , then by the last identity in Σ the operation x + y = xy is associative and so \mathfrak{A} is a $\langle 2, 2 \rangle$ -semilattice. We prove that in the opposite case the number of binary polynomials over \mathfrak{A} is infinite, which implies that \mathfrak{A} itself is an infinite model. More precisely, we show that for n = 0, 1, 2, ... the following polynomials

$$s_n(x,y) = x + 2^n y$$

(where x + ky abbreviates $(\dots ((x + y) + y) + \dots) + y$ with y occurring k-times) are pairwise distinct over \mathfrak{A} .

Using the identities of Σ , it is easy to check that

(1)
$$(s_n(x, y))y = xy$$

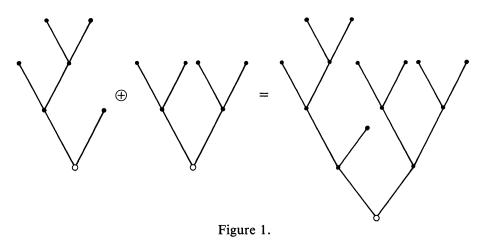
(2)
$$(s_n(x,y))x = s_{n-1}(x,y).$$

Indeed, for (1) we have that (x + ky)y = ((x + (k - 1)y) + y)y = (y + (x + (k - 1)y)y = (y + y)(x + (k - 1)y) = (x + (k - 1)y)y = ... = xy.

For (2), $x + 2^n y = ((x + (2^n - 1)y) + y)x = (x + y)(x + (2^n - 1)y) =$ $((x + (2^n - 2)y) + y)(x + y) = (x + 2y)(x + (2^n - 2)y) = \dots = (x + 2^{n-1}y)(x + 2^{n-1}y) = s_{n-1}(x, y).$

Now assume that $s_n(x, y) = s_m(x, y)$ for some $0 \le m < n$. Then by (2) $s_{n-m}(x, y) = s_0(x, y) = x + y$; that is, for some $k \ge 1$, $s_k(x, y)$ is commutative. Using (1) and (2) it follows that $s_{k-1}(x, y) = (s_k(x, y))x = (s_k(y, x))x = yx$, which is commutative as well, and by applying this argument again and again we get that $s_0(x, y) = yx$, that is, x + y = xy. This is a contradiction, proving (a).

JÓSEF DUDEK and ANDRZEJ KISIELEWICZ



(b) Let T be the set of the *finite binary trees* on a countable set S with roots as in Figure 1. Isomorphic trees are considered as identical. We define a binary operation \oplus on T as follows: if $t, u \in T$, then $t \oplus u$ is the tree obtained from t and u by adding one more node (intended as the root of $t \oplus u$) and two edges connecting this node with the roots of t and u (see Figure 1). The operation $t \oplus u$ is commutative, but not associative.

Now we define the binary operations + and \cdot on T as follows:

$$x + y = \begin{cases} x, & \text{if } x = y \\ x \oplus y, & \text{otherwise.} \end{cases}$$

Clearly, x + y is idempotent and commutative, but not associative. To define $x \cdot y$, we first introduce some notation. Let

$$y\mathbf{a} = (\dots ((y \oplus x_1) \oplus x_2) \oplus \dots) \oplus x_n, \text{ where } \mathbf{a} = \langle x_1, x_2, \dots, x_n \rangle, n \ge 0$$

$$y\mathbf{a}\overline{\mathbf{a}} = (\dots (((y\mathbf{a}) \oplus x_n) \oplus x_{n-1}) \oplus \dots) \oplus x_1$$

$$y\mathbf{a}z\overline{\mathbf{a}} = (\dots ((((y\mathbf{a}) \oplus z) \oplus x_n) \oplus x_{n-1}) \dots) \oplus x_1.$$

By induction on the total number of nodes we define

$$x \cdot y = \begin{cases} y\mathbf{a}, & \text{if } x = y\mathbf{a}\overline{\mathbf{a}} \text{ for some } \mathbf{a} \\ x\mathbf{a}, & \text{if } y = x\mathbf{a}\overline{\mathbf{a}} \text{ for some } \mathbf{a} \\ (y\mathbf{a}) \cdot t, & \text{if } x = y\mathbf{a}t\overline{\mathbf{a}} \text{ for some } t \text{ and } \mathbf{a} \\ (x\mathbf{a}) \cdot t, & \text{if } y = x\mathbf{a}t\overline{\mathbf{a}} \text{ for some } t \text{ and } \mathbf{a} \\ 1, & \text{otherwise.} \end{cases}$$

By 1 we denote here the one-element tree, which is included in T. Note that for a empty (n = 0) we have that $x \cdot x = x$, showing that $x \cdot y$ is idempotent. Clearly, it is also commutative.

Now, let T_0 be the subset of T of all those trees not containing a subtree

626

of the form $x \oplus x$. Then, x + y and $x \cdot y$ are still operations on T_0 . We show that

$$(x + y)z = (x + z)y = (y + z)x$$

holds in T_0 .

For x = y = z this is trivial.

If $x = y \neq z$, then (x + y)z = xz, and (x + z)y = (x + z)x = xz (since $x + z = xaz\bar{a}$ with empty a). Similarly, (y + z)x = xz.

We may thus assume that x, y, and z are pairwise distinct. According to the definition of $x \cdot y$ we consider four special cases with regard to the term (x + y)z.

(1) $z = (x + y)\mathbf{a}\mathbf{\bar{a}} = (x \oplus y)\mathbf{a}\mathbf{\bar{a}}$

(2) $z = (x \oplus y) \mathbf{a} t \bar{\mathbf{a}}$

(3) $x \oplus y = z a \bar{a}$ (then either $y = (z \oplus x) b \bar{b}$, or dually, $x = (z \oplus y) b \bar{b}$)

(4) $x \oplus y = z \mathbf{a} t \bar{\mathbf{a}}$.

In case (1), $(x + y)z = (x \oplus y)\mathbf{a}$, and $(x + z)y = (z + x)y = ((y \oplus x)\mathbf{a}\bar{\mathbf{a}} \oplus x)y = (y\mathbf{b}\bar{\mathbf{b}})y = y\mathbf{b} = (y \oplus x)\mathbf{a}$, as required. The same is true for (y + z)x. In case (2) the proof is analogous. In case (3), $(x + y)z = z\mathbf{a} (x + z)y = y(z \oplus x) = ((z \oplus x)\mathbf{b}\bar{\mathbf{b}})(z \oplus x) = (z \oplus x)\mathbf{b} = z\mathbf{a}$ (since, in this case, **b** is obtained from **a** by deleting the first element x), and also $(y + z)x = (((z \oplus x)\mathbf{b}\bar{\mathbf{b}}) \oplus z)x = (((x \oplus z)\mathbf{b}\bar{\mathbf{b}}) \oplus z)x = (xc\bar{\mathbf{c}})x = x\mathbf{c} = (z \oplus x)\mathbf{b} = z\mathbf{a}$. The same proof applies for the dual case $x = (z \oplus y)\mathbf{b}\bar{\mathbf{b}}$. Again, in case (4) the proof is analogous. Otherwise, (x + y)z = 1. Then, also (x + z)y = (y + z)x = 1, because if (x + z) or $(y + z)x \neq 1$, then applying the proof like that above for y(x + z) or y(y + z)x, respectively, we obtain that $(x + y)z \neq 1$. Hence, $\langle T_0, +, \cdot \rangle$ is a model of Σ , which completes the proof of the theorem.

3 In view of results of McKenzie [3] and Perkins [4], one can conjecture that the question of whether or not a finite set of regular identities has a nontrivial (not τ -semilattice) model is undecidable. However, our problem is more complicated than those treated of in [3] and [4]. As a matter of fact, their results concern single identities, the undecidability of the question for a finite set of identities being a simple consequence. In contrast to this, for our question we have:

Theorem 2 Each single regular identity has a nontrivial finite model (not a τ -semilattice).

Proof: To show this, first note that the problem in question actually concerns the sets of identities with at least one having just a single variable on one side. Indeed, otherwise an algebra $\langle A, F \rangle$ with all the operations equal to a fixed constant provides a suitable model. If a regular identity has a variable on one side, then this is the only variable appearing in this identity. Thus, all that remains to show is that each such identity I has a finite model other than a τ -semilattice. This we show as follows. Suppose that the identity I has a variable x at the righthand side, and r is the number of the occurrences of x at the left-hand side. If r = 2, then putting f(x) = x for all unary operators appearing in I, we have just the identity xx = x, and any finite idempotent noncommutative groupoid (with some trivial unary operators added) provides a model as required. If r = 1, then the problem is trivial. For $r \ge 3$, suppose at first that the only function symbol appearing in I is a symbol of a binary operation xy and consider the set of identities

$$\Sigma' = \{I, xy = yx, (xy)z = x(yz)\}.$$

Then the identity I can be replaced by just

 $x^r = x$

and it is clear that any cyclic group of order r - 1 is a model for Σ , and therefore a model for I itself (by the assumption that r - 1 > 1).

Now, if I is an identity in a type τ , then we construct an algebra of type τ from a cyclic group of order r - 1 by the same construction as that applied to semilattices in Section 1. The result, which we may call a τ -cyclic group, is clearly a model for I, which completes the proof.

REFERENCES

- [1] Austin, A. K., "A note on models of identities," Proceedings of the American Mathematical Society," vol. 16 (1965), pp. 522-523.
- [2] Jónsson, B. and E. Nelson, "Relatively free products in regular varieties," Algebra Universalis, vol. 4 (1974), pp. 14-19.
- [3] McKenzie, E., "On spectra, and the negative solution of the decision problem for identities having a finite nontrivial model," *The Journal of Symbolic Logic*, vol. 40 (1975), pp. 186-196.
- [4] Perkins, P., "Unsolvable problems for equational theories," Notre Dame Journal of Formal Logic, vol. 8 (1967), pp. 175-185.
- [5] Stein, S. K., "Finite models of identities," Proceedings of the American Mathematical Society, vol. 14 (1963), pp. 216-222.
- [6] Taylor, W., "Equational logic," Houston Journal of Mathematics (1979), pp. 1-83.

Józef Dudek Mathematical Institute University of Wrocław pl. Grunwaldzki 2/4 50-384 Wrocław, Poland Andrzej Kisielewicz Technical University of Wrocław Institute of Mathematics ul. Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland