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On Generalizations of a Theorem of Vaught

BALAZS BIRO*

Abstract This paper deals with the cylindric algebraic version of Vaught's
theorem on the existence of prime models of atomic theories. It is proved that
the algebraic version proved by Sereny, which states that under certain con-
ditions every isomorphism between two cylindric set algebras (Cs's) is a lower
base-isomorphism, extends to generalized cylindric algebras (Gs's) although
it does not extend to generalized weak cylindric set algebras (Gws's); indeed,
it is not true for weak cylindric set algebras (Ws's).

In this paper we investigate the following question: To which subclasses of
cylindric algebras can the algebraic version of Vaught's theorem (Theorem 2.3.4
of Chang and Keisler [6] or Proposition 3 below) concerning the existence of
prime models of atomic theories be extended? A version of Vaught's theorem has
already been stated for cylindric set algebras in Sereny [11], according to which
every isomorphism between two cylindric set algebras (Cs's) satisfying certain
conditions is a lower base-isomorphism. We prove that this theorem is true not
only for Cs's but for generalized cylindric set algebras (Gs's) as well, although
it is not true for generalized weak cylindric set algebras (Gws's). Indeed, it is false
for weak cylindric set algebras (Ws's).

It is worth adding that we have already proved for Cs's that Sereny's the-
orem requires all the conditions given in its statement (see Biro [2], [3], and [4]
and Birό and Shelah [5]).

Our treatment is based on the books Cylindric Algebras, Parts I and II, by
Henkin, Monk, and Tarski ([7] and [8]), and Cylindric Set Algebras by Henkin,
Monk, Tarski, Andreka, and Nemeti [9]. Here we recall only the notions con-
nected with our central concepts. The background of the following definitions
is in [8]. Throughout, a is an ordinal. Let (/be any set andp any element of aU.
A cylindric set algebra of dimension a (Csa) with base U or a weak cylindric
set algebra of dimension a (Wsa) with base (/determined by p is a Boolean set
algebra whose elements have α-sequences as points and whose unit element is the
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set aU or aUip), respectively (where aU{p) is the set of those sequences in "U
that differ from/? only at finitely many places), enriched by cylindrification oper-
ations and diagonal elements. Let { Uj: i E /) be a family of sets. A generalized
cylindric set algebra or a generalized weak cylindric set algebra of dimension
α (Gsa or Gwsa) with set of subbases {£//: / E /} is a structure defined similarly
to those above but having a unit element U {^: / E /}, where for each / E /, Vi
is the unit element of a Csa or Wsa, respectively, with base (// and, for / Φ j ,
ViΓ\Vj = 0. We note that all the above structures belong to the class Gwsa. The
base of a Gwsa is the union of its subbases (see Definition 3.1.1 of [8] or 1.1.1
of [9]). We note that for a given first-order language a Cs corresponds to a
model, while a Gs corresponds to a set of models (see Section 4.3 of [8]). Let 21
be a Gwsa with base Uand unit element V. Let/ be a bijection from U onto a
set W. We set/XT = {.y E " J F : / " 1 oj e Jί} for any XE ^ and call/the base-
isomorphism induced by/. Let V g F. We set ήv>X = XΓ\V' for any ^ E . 4 .
Then rlK' is the relativization (function) of 2ί to V. Let S be ©6K', the full
cylindric-relativized set algebra with unit element V'\ i.e., the algebra with uni-
verse SbF' with operations defined in the natural way (see Definition 3.1.2(i) of
[8]). Let 3ίίκ'2t =def ®&mή*y>A. That is, 9ίίK'2l is the algebra generated by the
set {X Π V : X E A}, the relativization (algebra) of 21 to V (see Definition 2.1
in Andreka and Nemeti [1]). If rlfk is an isomorphism then it is called an ext-
isomorphism. If in addition V = aU' for a set U' <Ξ (/then ήy> is called a
strong ext-isomorphism. A Gw^α 2ί is base-minimal if it is not strongly ext-
isomorphic to any Gwsa except itself. A function g is called a lower base-
isomorphism if g = k~ι °h°t for some strong ext-isomorphisms k and £ and for
some base-isomorphism h (see Definition 3.1 of [1]).

In a little more detail, we will first show that Theorem 1 of [11] on Cs's,
which is an algebraic version of Vaught's theorem referred to above, extends to
Gs's. Then we will show that this is not true if the reference to Gs's is replaced
by a reference to Gws's. That is, if 2lo and 2li are countably generated, regular,
locally finite-dimensional, and infinite-dimensional Gs's with atomic neat n-
reducts for any finite n, and/ is an isomorphism from 2lo onto 211, then/ is a
lower base-isomorphism, although this is not true for Gws's instead of Gs's.

Throughout, for typographical reasons, items of notation introduced with
a symbol in a subscript will sometimes be written with the same symbol in
brackets. For example, Rlw*& and 33m; (or 33m>/) have the same denotations as
Rl(W)2l and S3(m,/), respectively. Furthermore, in formulas the letter 'ra' always
denotes either 0 or 1.

First we recall Sereny's theorem (Theorem 1 of [11]):

Theorem 1 Suppose that 2lo and 211 are Csa

ys such that: (i) a > ω, (ii) 2ίw is
locally finite-dimensional, (iii) for every n E ω ̂ kn^m is atomic, (iv) 2tw is reg-
ular, (v) 2ίw is countably generated, and (vi)/E Is(2lo,2li). Then f is a lower
base-isomorphism.

We note that Theorem 1 is a natural generalization of the following theorem
on Boolean algebras, which is equivalent to the Axiom of Choice:

Proposition 2 If% and 211 are atomic Boolean set algebras and f 'E Is(2ί0,
2ίi) then f is a lower base-isomorphism. (Note that Boolean set algebras can be
identified with one-dimensional cylindric set algebras.)
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Further, we recall Vaught's theorem (the algebraic version of which is The-
orem 1):

Proposition 3 (See Chang and Keisler [6] Theorem 2.3.4, or Monk [10] Theorem
27.10) Suppose that A is an ordinary first-order language, Th is a complete
theory over A, and for every « G ω the Boolean algebra of the formulas of A with
at most nfree variables vθ9..., vn_x modulo Th is atomic. Then Th has an (ele-
mentary) prime model

First we will prove that Theorem 1 holds for Gs's. We start by proving some
lemmas:

Lemma 4 Suppose that 21 G Gs™8 is such that the set of its subbases is {£//:
i G /} with Ui Π Uj = Ofor i Φ j . Suppose also that X G Zd%. Then there is a
Jc /such that X = U{αί/,:i G /}.

Proof: We may assume that X Φ 0. Let/G X and/G aUh Let g G "ty be ar-
bitrary. Then, by Corollary 3.1.26 of [8], g G X. Consequently, aU( c X.

Lemma 5 Suppose that 21 G Gs£8 Π Lfa and U is a subbase of 21. Set V =
aU and 93 = 9MK«. Then 33 G Cs£* Π LfJ

Proof: Trivially, for every X G A

A^(XΠ F ) c # I

Hence, 93 is also locally finite-dimensional. Let XG A. We will show that XΓ\ V
is regular in 93. Set Δ = AmX, Σ = Δ ^ ^ Π V), and θ = Δ ~ Σ. Let/G Xand
g G aU be such that Σ 1 £ c / We have to show that g G X (see Corollary 3.1.23
of [8]). We define the function gr on a as follows: For K G a let

[/(*), if KG θ

^ ( K ) , otherwise.

We have Δ 1 g' c / so, by the regularity of A", g' G X. Hence, g G c ^ U ^ Π
V)=XΠVsince θ Π Δ W ( X Π F) = 0.

Now we are ready to state the generalization of Theorem 1 for Gsa

9s.

Theorem 6 Assume that 2ί0 and 2ίi are Gsa's and f is an isomorphism from
2ίo onto 2li such that conditions (i) through (v) o/Theorem 1 are satisfied for
m < 2. Then f is a lower base-isomorphism.2

Proof: Recall that, throughout, in formulas the letter m stands for either 0 or 1.

(1) Let the unit element of 2ίw be U [ a U m i : i e l m ] with:
(la) Umi Φ 0, and
( l b ) Umi Π Umj = 0 f o r iΦje Im.

Set Vmi =
 aUmi and 93W/ = 9?Iκ(m,/)2tw. By Lemma 4 there exists a Boolean set

algebra ©m with base Im such that

(2) Zd%m = {U{Vmi:iET}:TeCm}.
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Claim 6.1 Assume thatXG Aφ*&m9 so that, by (2), X = U{V m i : ieJ x ]
for some Jx^Im. Further, let YeAmbe such that OΦYQX and choose k G
Jx.7Ήenrl*$]k)YΦ0.

Proof: Set 3) = 911*81/*. Then, by Theorem 3.2.76 of [8]

(3) r/? ( m >*)eHom(©,8W).

So, by (3) X Ώ c ^ n ^ γ G Zd%m. As X is an atom of 3b2lm the inclusion in
the last sentence implies cf$] Y = X. As 33wA: = 9ίίκ(m *)2lw it follows, by (3),
that c(^k))rl^k)Y = XΠ Vmk = Vmk. Thus, by (la), YΠ Fw* * 0, proving
Claim 6.1.

We also have

(4) ,3b3lm is atomic, and
(5) %m is strongly ext-isomorphic to a Gsα 2lm such that each atom of £b2lm

has the form αU for some subbase U of 21 w .

In fact, (4) is a particular case of condition (iii) of Theorem 1. For (5), use (2)
to select Jx c Im such that X = U{Vmi:i G Jx] and choose /> G Jx for every
XG At£b%m Further, set Km = U(F; ( I ) : I e Aφίίm} and C/m = U{ί/z(^):
^G^3b5t m } .Then:

(6) rlylfy is a strong ext-isomorphism.

In fact, by Theorem 3.1.77 of [8], rφfy is a homomorphism. Suppose
that Y G Am is such that r/^(

(^} 7 = 0 . Then, for every X G >4^b«m, F Π J G
^4^ and Y Π ^ ( X ) = 0. Thus, by Claim 6.1, for every X G At£b%m we have
YΠX=0. Hence, by (4), 7 = 0 . Thus r/^(

(^} is an ext-isomorphism. By (lb),
rlylfy = rlmm)(αUm), so it is strong. The last three statements prove (6), which
proves (5).

Since the composition of two strong ext-isomorphisms is a strong ext-
isomorphism, by (5) we may assume that:

(7) Every atom of 3b2ίm has the form αU for some subbase U of 2ίm.

Now, let Wm be the set-theoretical union of the atoms of 3b2ίm. It can be eas-
ily seen that rφfy is a strong ext-isomorphism. (This can be proved by an ar-
gument similar to that used in the proof of (6).) By (4) and (7), if U is a subbase
of 9ίίfF(W)2ίm then aUE: ZdyHW(<m)%m. By the last two statements, similarly to
assumption (7), we may assume:

(8) For every subbase U of %m we have αU G Zd%m.

By (v), (vi), and (8):

(9) There exists a bijection η from 70 onto Iγ such that, for every i G /o,
fVoi = Vhηi.

Throughout, we suppose that η satisfies condition (9). Let / G 70. Then it is easy
to prove by (vi), (8), and (9) that/) =def Rlyφ]^ 1 / is an isomorphism from BOi

onto Bιtηi. Trivially, BOi and Bχtηi satisfy condition (i) of Theorem 1. By (3)
rfvimϊi) *s a homomorphism, so 93O/ and 331>?7; also satisfy conditions (ii), (iii), and
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(v); while, by Lemma 5, they satisfy condition (iv). Hence, by Theorem 1,.// is
a lower base-isomorphism from Boi onto BXyηi. By (9) this means that:

(10) For i E Im there is a ϋ"mi c Umi and a mapping £ from £/<Jf onto U'x\ηi

such that
(10a) ζi is a bijection (setting Vmi = aUmi)

(10b) For every / E / m , rlv»™m% *s a strong ext-isomorphism, and

(10c) For every/G/<>,/,= </ / ? ί ^

Set t/ = U{t/; / : /G/ m } ,K = U{K; /:ι £/,„}, and δ = U{ft:/G/ 0). By (lb)
and (10a):

(11) ό is a bijection from UQ onto U*.

By (lb), (9), and (10c) we have the following derivation:

(12) f=U[fi:ieIo)

= (r/?ί(

1l )Γ
1.ϊ.r/«^ )

= (r/«(l)(«t/1 ))-
l 5 r/*<o>rt/o).

By (lb), (11), and (12), / is a lower base-isomorphism.

We have now proved that Theorem 1 extends to Gsa's. Now we prove that
it is false for the much larger class Gwsa:

Theorem 7 For every infinite ordinal a there exist Wsa's 2ί0 and 2ϊi such that
they satisfy conditions (i) through (v) of Theorem 1 and these two conditions:

(vii) 2lo = 2li,
(viii) 2lo and 2li are not lower base-isomorphic.

Proof: To prove Theorem 7 it is obviously sufficient to construct base-minimal
Wsa's 2t0 and 2ίi such that they satisfy conditions (vii) and (i) through (v) and
are not base-isomorphic.

We assume that a = ω 2. For other infinite ordinals the construction is sim-
ilar. Set/?0 = α X ( 0 ) , the α-sequence with range {0}, and/?! = ω X ( 0 ) U ( α ~
ω) X {1}, the α-sequence whose values are 0 at finite numbers and 1 otherwise.
For m < 2 let 2lw be the minimal subalgebra Tin @b(Oί2(/7(w))) of the full
α-dimensional weak cylindric set algebra with base 2 determined by pm. By
2.1.16, 3.1.26, and 3.1.49 of [7] and [8] it can easily be proved that 2ί0 and Hi
are Wsa's that satisfy conditions (i), (ii), (iv), (v), and (vii) of Theorem 1. It can
also easily be proved that for each n E ω and for m < 2 the set of atoms of
9ϊrrt2lm is the set [U{dΣ: Σ is an equivalence class of E] d(a x a — E):E is an
equivalence relation on a] (see Definitions 1.8.1, 1.9.1, and 2.6.28 of [7]).

Hence, condition (iii) is also satisfied. On the other hand 2lo and 2li are
base-minimal since they are infinite-dimensional Ws's with finite bases (see the
remark following Definition 2.4.61 of [7]). But 2lo and 2li are not base-
isomorphic because for every element q of the unit element of Ax there are, for
all / E a, infinitely many j E a such that qt Φ qj, yet this is not true for 2lo Thus
(viii) is also satisfied.
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Theorem 7 proves that Theorem 1 does not extend to Gwsa

ys, and actually
is not true for Wsa

9s.
Now we note that Vaught's theorem (Proposition 3) can easily be general-

ized for noncomplete theories using Theorem 6 and Section 4.3 of [8], That is,
we have the following model-theoretical theorem (Corollary 8), where the ter-
minology of pages 44-46 of [7] is used. Thus Corollary 8 has a cylindric alge-
braic proof. A theory Th over a language Λ is called atomic iff for all nSω, the
Boolean algebra of the formulas having at most n free variables among v0,...,
ϋ π _!, modulo Th, is atomic (see page 93 in Section 2.3 in Chang and Keisler [6],
and footnote 2 on page 169 of [7], or Definition 27.5 of Monk [10]).

Corollary 8 Assume that A is an ordinary first-order language, Th is a the-
ory over A and 311 and 31 are classes of models of A such that:

(ix) Λ has countably many nonlogίcal constants,
(x) Θp3ll = Θp3l = Th, and
(xi) Th is an atomic theory.

Then there is some 31Γ g 3ft such that θpSK' = Th, and for every 2fl G 31Γ there
is anWEidl and a model ® of Th such that $ can be elementarily embedded to
both m and 9Ϊ.

We note that if Th is a complete theory then the conclusion of the corol-
lary is a straightforward consequence of Vaught's theorem (Proposition 3). How-
ever, in some countable languages there exist atomic and noncomplete theories.
Using Lemma 13.11 of Monk [10] it can be seen that an example of such a the-
ory is the pure theory of equality (which has no nonlogical constants and ax-
ioms). From Corollary 8 the following corollary easily follows:

Corollary 9 Ifΐίΐl and 31 are classes of models of a first-order language of
power ω such that θp3H = Θp3l and this common theory Th is atomic then there
is an 9TC' Q 3H such that θp3!Γ = Th also holds; and for every 3JIG 3ΪΓ there is
an 9ΐ G 31 such that 9JΪ s % i.e. 9JΪ and 9Ϊ are elementarily equivalent.

Remark By closely analyzing the proof of Theorem 5 we can conclude that
Corollary 9 can also be proved easily by a simple model-theoretical argument;
furthermore, in that argument it is enough to assume, instead of Th being atomic
(as was stated in the hypotheses of Corollary 9), that the Boolean algebra of the
sentences of our language, modulo Th, is atomic. Then 3ΪΓ can be chosen to be
the class of those models in 3tt that satisfy some 0-atomic formulas over Th, i.e.,
some atoms of the last-mentioned Boolean algebra of sentences. Further, Corol-
lary 8 follows from Corollary 9 and Vaught's theorem (Proposition 3).

NOTES

1. As R. J. Thompson pointed out, the regularity of 33 can be proved without assum-
ing that 8 is Lf, using Lemma 3.1.42 of [8].

2. A negative solution for some particular cases of Problems 3.6 and 4 of Andreka and
Nemeti [1] follows from this theorem.
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