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Two Formal Systems for Situation Semantics

JUAN BARBA ESCRIBA

Abstract We are going to present two formal systems intended to capture
some of the basic features of Barwise and Perry's situation semantics. The
first one is a multidimensional system which allows formal counterparts of
situations (including incoherent ones), the relational theory of meaning, and
the strong consequence relation. Our second system is an extension of the
former one and considers a set of actual situations, so that the notion of con-
straint can be expressed in it. Soundness, completeness, and compactness will
be proven for both systems.

1 The language L First of all, we introduce the language L and its seman-
tics. L has the following symbols:

Binary connectives: Λ, -*, | .

Quantifier: V.

Unary connectives: ->, (g),-, for each natural number /.

Identity symbol: = .

We also have denumerable sets of predicate letters, constants and variables. All
the wffs of L are closed formulas and are defined in the usual way.

The models for L are structures N = < W, U, £>, |[ ]], 5>, where W and U are
sets, Wφ 0 , and D is a function defined on Wsuch that for each v E WD(v) £
ίΛ I J is a function assigning a value [c] | E (/to every constant c. S is a func-
tion such that for each v E W9 S(v) is a set of (/-formulas of the form Prx... rn

or -ιPrx... rn, where Γ/ E U, for 1 < / < / ? . (We are using the concept of ί/-for-
mula in the same way it is used in Smullyan [9].) We also require that whenever
(-i)P/*!.. .rn E S(Ui), r{.. ,rnE D(Ui). (We use (-ι)v4 to represent either A
or -i>4. Obviously, when (~^)A appears more than once in the same context, all
its occurrences should be interpreted in the same way.)

Each element v of Whas an associated set S(v) of atomic {/-formulas or ne-
gations of atomic (/-formulas. S(v) can be considered as a set of positive and
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negative facts, so each v E W represents a situation. As we have imposed no max-
imality or coherence restriction on the function S, partial situations and inco-
herent situations are allowed in our semantics.

By u we represent an ω-tuple <ι/ 0 , . . . , κ, . . . > of elements of W. Now we
can define the relations N (support) and H (reject) for ω-tuples, u9 elements v of
W and CZ-wffs A as follows:

Atomic formulas

1. u9 v\=Ptι...tn iff Pltχl . . . ltnl eS(υ).
u9vlPtι...tniff i P E / i J . . . ltnj eS(v).

2. u,v\=t = t' iff M E D(υ) and [/] = [ / ' ] .
u9v=\t = tf iff it^ΛtΊ GD(v) and [ί]| Φ \t'\.

Complex formulas

3. u9υ¥ -*A iff w,tHΛ.
u9 v =\ -ιA iff ύ,υY A .

4. u, v N A A B iff u, v \= A and ύ,v \=B.
u, v H A A B iff u, v =1 4̂ or w, f =1 .β.

5. u, v \^ A ^ B iff u, v \= A only if £7, ̂  (= 5.
u9 v =\ A ^ B iff u, v ^= A and u,v =i B.

6. i/, f 1= ^415 iff w, f 1= v4 and ύ,υYB.
ύyυ Λ A\B iff ύ^v V A and ύ^vΛB.

7. w, ι> N Vx̂ l iff for all r G ( / , w , ι ; h .4 [r/x].
u,vΛ VxA iff for some r E (7, i?, f =1A [r/x].

8. u9v \= ®jA iff w, Uj ¥ A.
ϋ>v =\ (g)jA iff ύ9 u,: H ^4.

Given a model TV, an ω-tuple uinW and a set Σ of wffs we say that ύ sup-
ports Σ in N iff ϊί,uo\=A for every 4̂ E Σ, and that w rejects Σ (in N) iff i/, u0 tf
A, for every A E:Σ. u,v support (reject) a wff A (in M) iff w, v YA (u, v =\ A).

Observe that an atomic formula A can be supported and rejected simulta-
neously by the same ύ9 v. So, if we interpret u9v\=A and u, v =1A as "A is true
relative to u9 v" and "A is false relative to u, v", we have four truth values:
"true" (1), "false" (0), "true and false" (2) and "undefined" (?). The truth tables
of our propositional operators are as follows:

AAB I 1 I 2 1 ? I 0 1 A-+B I 1 I 2 I ? 10 1 A/B I 1 I 2 I ? I 0 1 A\ ^Λ

1 1 2 7 0 1 1 2 7 0 1 1 2 7 0 1 0

2 2 2 0 0 2 1 2 7 0 2 1 2 7 0 2 2

7 7 0 7 0 7 1 1 1 1 7 7 7 7 ? 7 ?

0 0 0 0 0 0 1 1 1 1 0 7 7 7 ? 0 1

We can define an existential quantifier in the usual way: 3;c4 —df -^iχ-^A
and then we have:

9. ύ, v N 3x̂ 4 iff there is some r E U such that w, v 1= A [r/x].
u,v=\ ixA iff for every r E U9 u, v H A [r/x].
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The quantification domain is U. But we can quantify over the domain of any
of the members of u using the restricted quantifiers V, and 3/? which are de-
fined as follows:

ViXA =df\/x{®ix = x-+A),

3JXA —df -iV/X-«^4.

(Notice that autoidentity works like an existence predicate.)
With this definition we have that:

10. u, v (= V/Λ iff for every r E /)(«/), w, v YA[r/x].
ύ9 v =1 V/̂ 4 iff for some r E D(ui)9 u,v A A [r/x].

11. u, v 1= 3/X̂ 4 iff for some r E £>(«/), u9 υ YA[r/x].
u9υΛ 3iXA iff for every r E £>(«/), w, tH A[r/x].

Definite descriptions can be contextually defined in the following way:

P(ixA) =df 3x(A(x) ΛVy(A(γ) ^ x = γ)) \Vx(A(x) -+ P(x)).

From this definition it follows that:

12. u, v 1= P(ΊXA) iff there is exactly one rGU such that u, υ YA [r/x] and

for that r, i?, t> (=P(r).
w, f H P(?Λ>1) iff there is exactly one r G U such that w, i; t=y| [r/x] and

for that r, 5 , H P ( r ) .

Substituting restricted quantifiers for the quantifiers in the definition of def-
inite descriptions, we obtain restricted descriptions, which refer to the only el-
ement in a domain /}(«/) which satisfies the description condition. Define

P(iiXA) =4ίlix(A(x)ΛViy(A(y)-+x = y))\vix(A(x)->P(x)).

Then,

13. u,v\= P(iiXA) iff there is exactly one r E D{ut) such that u, v \=A[r/x],
and for that r, u9v N P(r).

u9υΛ P(iiXA) iff there is exactly one r E D(Uj) such that u, v YA[r/x],
and for that r, u9v =\ P(r).

We could have introduced definite descriptions as complex singular terms of
L, but, as we have just seen, that would not render us any additional expressive
power.

It should be noticed that the propositional fragment of L containing only
the standard operators (~>,Λ,V,->) and with no nested arrows (i.e., excluding all
formulas A -* B where either A or B contains the symbol "-•") is just Anderson
and Belnap's FDE system (see [1]; the proof can be found in Barba [2]). When
we consider formulas with nested arrows, L differs clearly from relevance logics
because formulas like A -> (B -* A) or A -• (B -* B), which are not theorems of
any relevance logic, are valid in L.

The language L and situation semantics As we said above, the elements of
the set Wm our models represent situations. But each v E ^determines not only
a set of facts, but also a set of individuals D(υ). This set may be interpreted as
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the set of individuals existing in v or the set of relevant individuals in situa-
tion v. The main purpose of the function D is providing a quantification domain
for each situation.

The relations N and H hold among ω-tuples u, members v of W, and sen-
tences A. But, for many purposes, the interesting cases are those in which v is
uQ (i.e., the first coordinate of w), so we shall write u V A instead of u, u0 \=A.
The meaning of a sentence A may be seen as a relation among situations which
holds among the situations of any u such that u \=A. We have a relational ac-
count of meaning, as situation semantics requires. Notice that only a finite num-
ber of the Uj in u are relevant for determining whether u t= A (all those Uj such
that (x)7 does not occur in A are irrelevant).

Given any u, we can consider u0 as the described situation, some wz as the
discourse situation, and any Uj as a resource situation. It may seem that our
semantics would be closer to Situation Semantics if we used ordered triples in-
stead of ω-sequences. Our purpose is, however, to stress the part played by re-
source situations in natural language semantics. If a resource situation is to be
conceived as a set of facts exploited by the speaker along the discourse, there
seems to be no finite limit to the number of such situations available to him. We
assume that any chunk of discourse may involve any finite number of resource
situations, and our use of ω-tuples intends to make explicit such possibility.

Roles can be represented by means of definite descriptions. For instance, the
speaker role can be designed using a description of the form ijxSx, where Uj is
the discourse situation and S is a predicate letter to be interpreted as "speaks".
The proposed description refers to the only individual speaking in the discourse
situation. That is the interpretation assigned in Barwise and Perry [3] for the
word "I". More generally, any expression which purports to refer to an individual
may be represented in L by a (restricted) definite description involving the ap-
propriate situations in u. This idea can be extended to proper names. We pro-
pose to interpret that when someone uses a name "X", he is in fact referring to
the only individual named "X" in a contextually given situation. This does not
depart strikingly from Barwise and Perry's ideas. They certainly say that proper
names are not hidden descriptions, but "names are not unique, and this is re-
flected in their semantical properties; they serve not only as noun phrases, but
also as common nouns. Although my use of 'Aristotle' has no intimate connec-
tion with most of the properties I believe Aristotle had, it does have an intimate
semantic connection with one he had, being an Aristotle" ([3], pp. 165-166).
Moreover, "each name β has an associated property, which we express with the
phrase 'being a β'" ([3], p. 167). Our proposal is just to employ that associated
property to identify the reference of proper names.

Notice that a definite description is a partial function assigning individuals
to tuples u, so that, implicitly, we have a speaker's connections function c
which determines the reference of individual expressions relative to the context
(as Barwise and Perry wish): the (partial) function which assigns a reference to
each definite description relative to a tuple u.

Barwise and Perry claim that situation semantics explains the difference be-
tween referential and attributive use of definite descriptions: when used attribu-
tively, a description must be interpreted in the described situation, whereas when
used referentially it must be interpreted in a contextually given situation (a re-
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source situation). Our restricted descriptions capture this distinction, and so
attributive and referential uses of definite descriptions can be adequately repre-
sented in L.

One of the main purposes of our language L is providing a rigorous formal
account of the notion of strong consequence in situation semantics. First, we de-
fine a consequence relation N between sets of wffs as follows: Let Σ,Ω be any
sets of wffs. Then, Σ t= Ω iff for any ω-tuple u in any model M/ύuVΛ for ev-
ery A G Σ then ύ t= B, for some B G Ω. The usual conventions are assumed, so
that "Γ,A \= Δ" should be read as "Γ U {A} 1= Γ", "HΔ" as " 0 h Δ", and so on.
(We use the symbol "t=" to represent both the supporting relation and the con-
sequence relation. Both uses can be found in the literature, and because the con-
text makes clear the intended use in each case we prefer not to introduce a new
symbol.)

This is a consequence relation in the standard logical sense of the expression,
and it obviously has some of the properties Barwise and Perry demand from a
consequence relation (recall the connections between L and FDE explained
above). Also, the relation 1= has a syntactic counterpart, as we shall prove be-
low. But t= is a relation between sets of sentences of L, which are intended to be
counterparts of natural language sentences, whereas situation semantics' strong
consequence is a relation between statements, which are sentences together with
an utterance situation (composed of a discourse situation, the speaker's connec-
tions, and some resource situations). In our semantics, the resource situation
corresponding to a tuple ύ = < u0... un . . . > would be represented by the tuple
u+ = (ux... un... > (ύ minus the described situation u0). Then the counter-
part of a statement is a pair (A, w+>. Let vAϊi+ = (v, U\... un . . . >. Then the
statement (B9ύ

+) is a consequence of the statement (A9u
/+) in a model M(of

course, we suppose that both u+ and u'+ have been extracted from M) iff for
every v G W, if vAuf+ YA then v Au+ VB. (Notice once more that only a finite
number of the coordinates in u+ and u'+ are relevant.)

Observe that this consequence relation is unavoidablely relative to models and
that it is not a consequence relation in the standard logical sense.

These are not the only implication relations which could be considered in our
semantics. An interesting one could be, for instance, "A implies B independently
of the contexts in which A and B are uttered (i.e., independently of whether they
are uttered in the same context or in different ones)". The formal counterpart
of such relation would be: For any wffs A and B, A implies B independently of
the context iff for any M, v, u, ύ\ if vAύ V A then vAύ' ¥ B.

A sequent system for L: S^ A sequent is a pair <Γ, Δ > where Γ, Δ are finite
sets of wffs of L. We write Γ h Δ to denote that <Γ, Δ> is provable. According
to the usual conventions, we writer, A,B, and T,A instead of {̂ 4}, {A,B}, and
TU{A}9 respectively, and Γh, hΔ instead of Γ h 0 and 0 hΔ. SL has the fol-
lowing axiom schemes and rules:

Axiom schemes

1. A \-A
2. (g),-* = t\ -y®it = t'\-
3. <g)/*i =sx.. .®itn = sn,(-^)®iPtλ ...tn\- {-^)®iPsx ...sn.
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Rules I

w Γ h Δ

Γ.Γ'hΔ.Δ'

Γ,AhA ΓI-Λ.Δ
3 Γ,-ii/4hΔ Γh-i-iy4,Δ

T,A,B\-A T\-A,A;T\-B,A

Γ^ΛβhΔ T\-AΛB,A

Γ,-ιA HΔ ΓiffhΔ Γ h ^A,^B,A

Γ,^(AΛB) \-A Γ \-^{AΛB),A

T\-A,A;Γ,B\-A Y,A VB,A

T,A^BVA T\-A-*B,A

Γ,A,-iB\-A Γ\-A,A;Γ\-^B,A

Γ,-ι(A-+B)\-A Γh-ι(A-+B),A

T,A,B\-A Γ\-A,A;Γ\-B,A

T,A\B\-A ΓbA\B,A

T,A\^B\-A Γ\-A\-ιB,A
1 2 3 Γ,^(A\B)\-A 1 2 b Γ\--ι{A\B),A

ΓM(OhΔ Γh^(Q,A

Γ,vx4(x) h Δ Γ h Δ,Vx4(x)

15 Γ,^(/)hΔ Γh^(/),Δ

Γ,-IVΛΓ^4(JC) hΔ Γ h-iVx^4(Λ:),Δ

(*) provided that t does not occur in Γ, Δ, VxA(x).

Π a Γ,Q)(g) 0ΛhΔ Γ K ^ , A ( < I )

r,(-.MhΔ v ' ΓM-IM.Δ

(*) 4̂ is an atomic formula.

Γ,(g), f = f h Δ Γ,®, f = y h Δ

Γ,(-.)<g>,P(OHΔ Γ,(-.)®,/ = ί ' h Δ

2 0 r,(g),72 = fohA

Γ,<8>/ro = ί i, ®kti =h\-A

2 1 Γ,<g>/f0 = f i h Δ

Γ,<8>//o = Ό, <8>/ίi = ίi I" ->®/ίo = ί i . Δ '

The most salient feature of this set of rules is the inexistence of independent
rules for the negation symbol ->, having instead many rules for different kinds
of negated formulas. It would be desirable to have a "classical" rule for nega-
tion as, for instance, from T,A h Δ infer Γ I—>A,A. But it would not be
sound: take the axiom AY A and apply the rule to obtain K4, ~>A. As A £A,



76 JUAN BARBA ESCRIBA

soundness would require that )rA9^A. But this is not true: if A is an atomic
formula, we would need that for any u in any model, either A G S(u) or -ιA G
S(u), contradicting the partiality of situations.

Notice that all the rules above are introduction rules except 17a and 17b. In
both cases we could have used introduction rules (a simple inversion of the ac-
tual rules would do), but then we would have to modify Rules 18-21 in such a
way that any of the atomic formulas appearing in those rules preceded by (g),
should be allowed to appear with no prefix. That would complicate not only the
sequent system but the completeness proof as well. We have chosen the simplest
way, despite the loss of elegance.

Rules II We include here some rules affecting the operators ®z. By C(B) we
mean any wff containing B. We have the following rules:

T,C(®nA)\-A ΓhC«g)/-.Λ),Δ

Γ,C(-.®^)hΔ ΓhC(-ι<g>/,4),Δ

2 , a T,C(®j(A*B))\-Δ Γ h C ( ® f (Λofl)),Δ

Γ, C( ( g ^ o (><),.£) f-Δ Γhq^og^A

where ° is any binary operator.

Γ,C(®iVxA)\-A ΓhC((g)fVx/l),Δ

Γ,C(V*® f Λ) hΔ Γ hC(Vjc(g)/y4),Δ

Γ,C(® y v4)hΔ ΓhC((g)y i4),Δ

Theorem 1 (Soundness theorem) Γ h Δ only ifY t= Δ.

Proof: It can be easily checked that: (i) if Γ h Δ is an axiom, then Γ H Δ, and
(ii) the rules preserve the t= relation.

The set of rules II implies that, for any wff A of L, there is a formula A
such that every operator (x)7 in A has in its scope only expressions of the form
t = t' or Ptx.. ,tn9 where t\.. Λn are singular terms (parameters or variables)
and such that A and A are equivalent in the following sense: u, v YA iff ύ, v f=
>Γ and i?, t> =1 A iff w, i; H A. Accordingly, we can ignore any formula which
contains propositional operators or quantifiers within the scope of any <g), with-
out loss of generality. That is what we shall do in the sequel. Thus, the set of rules
II will not be needed at all in our further work. This explains why we have di-
vided our rules into two different sets.

Completeness of S^ We shall prove that, for any two sets of wffs Σ and Ω,
Σ t= Ω only if there are finite sets Γ, Δ, Γ c Σ, and Δ c Ω such that Γ h Δ.

Extend the language L with a denumerable set Cons of new constants, and
fix an enumeration of Cons.

L e t / / = [(A,1):A GΣ) U [(B,0):BG Ω), and let h{.. .hn . . .be any enu-
meration of H. We shall show that either there are sets Γ c Σ, A c 1) such that
Γ V Δ or there are a model M and an ω-tuple ύ which supports Σ and rejects Ω.
In order to do so, we construct a tree from which we can obtain either a proof
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of Γ h Δ or a model M and an ω-tuple ύ as required. Each node of the tree con-
tains a pair (A, />, / = 1,0, where / indicates whether or not A is a formula which
should be supported by the desired ύ and M.

We construct a tree for <Σ,Ω> step by step, according to the following instruc-
tions:

Step 0: Put h0 in the topmost node of the tree, and go to the next step.

Step n + 1: Consider the nύ\ node of each open branch, and proceed accord-
ing to the form of the pair <C, /> contained in it. We shall not consider every case,
as they can be easily deduced from corresponding sequent rules. See Smullyan
[9] for the general principles of tableaux construction. However, it should be no-
ticed that there is an important difference: in classical logic, the truth of a for-
mula A is equivalent to nontruth of -ιA. In our semantics, ύ 1= A does not
imply u ¥ -ι^4, and this causes the necessity of marking each formula in the
tableau with " 1 " or "0", as explained above. We detail only the cases concern-
ing the most novel operators, | and ® . (The number(s) preceding each case re-
fer to the corresponding sequent rule(s). A fully detailed proof can be found in
Barba [2].) If <C,/> is:

10. (A IB, 1 >: Add the nodes (A, 1> and (B, 1>.
11. (A j B90): Divide the branch putting (A,0) in a new branch and

<£,0> in the other.
12. <-π(,4|£),/> ( / = 1,0): Add the node (A\ ^B,i).
17. <(-• )A, />, where A is an atomic formula and / = 1,0: Add the node

18. <(-0(x)/Pci . cΛ,l>: Add successively the nodes <®/Ci = C\,i)...
(®iCn = cn,l).

19. <-«(8)/C = c',l>: Add <®, c = c,l> and <®;c' = c',l>.
19,20. <(x)/c0 = ci , l>: First of all, add the nodes <®/C0 = co,l> and

<®/C! = Ci,l>, if they are not in the branch. Then, for each node
<®/Ci = c2,1> in the branch add <®/C2 = c0,1> (if it does not appear
previously in the branch). Finally, repeat <®/C0 = ^ , 1 ) .

21. <-ι®, c = c',0>: Check whether <®,c = c,l> and <(x);c' = c',l> both
appear in the branch. If so, add <(x)/C = c\ 1>. Otherwise, repeat
<-π®/c = c/,0>.

Then add /?π+1 to the branch. This finishes the n + 1-th step.

A branch closes iff it contains a group of nodes of one of the following
forms:

1. C4,l>, O4,0>
2. <® /c = c/,l>, <-i®/c = c/,l>
3. «&•*! = 5 1 , 1 > . . . < ® / ^ = ^ , 1 > , <(-•)/*!.. ./Λ,l>, <(-«)®/fti...$„,()>.

(Notice that the described tree has the finite branching property.)

Lemma 2 //*#// the branches of a tree for <Σ,Ω> close, then there are finite
sets Γ c ζ Δ c β such that Γ h Δ «Γ, Δ> is provable).
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Proof: For each branch b there is a set of closing nodes (A, z> which determine
it to be closed. Let Cbiϊ be the set of closing nodes with / = 1, and Cbf0 the set
of closing nodes with / = 0. Obviously, Cbf\ f- Cbf0 is an axiom. Take now the
sets

Σb= [A: (A, I) appears in the branch b] and

Qb = [A : (Af0) appears in the branch b].

Σb h Qb can be proven from the axiom above by Rule W. So for each branch b
we have a provable sequent (Σb,Ωb). Every wff in Σb(Ώb) is either: (a) a for-
mula in Γ (Δ) or (b) a formula B such that (B, 1 > « # , 0 » was introduced in the
tree in the z-th step, according to the form of the z-th node in the branch (for
some /). Our task is to show that a sequent <Σ,Ω> in which every formula of type
(b) has been eliminated can be proven. The proof of such sequent is the inverse
image of the tree: the latest formulas introduced in the tree are eliminated first.
Suppose the largest branch in the tree has n steps. We can prove that for each
branch b and eachy < nf there is a provable sequent (Σbj,ίlbj) in which every
formula of type (b) in Σbj or in Qbj has been introduced in the tree before the
i-th step. The proof is by induction on n - z. If n - i = 0, the desired sequent
is just the above-mentioned (ΣbiΩb). For n — / > 0, if the length of b is less than
n — z, there is nothing to prove. Otherwise, by induction hypothesis, we assume
that we have a provable sequent in which every formula of type (b) has been in-
troduced before the / + 1-th step, so we must only show how to obtain a prov-
able sequent in which the formulas introduced in the z-th step have disappeared.
We shall consider (as examples) only the cases corresponding to some of the in-
structions for tableaux construction detailed above, namely those numbered 11,
19,20, and 21. The remaining cases are similar and left to the reader.

Suppose the z-th node in the tree was {A \ B,0). According to Rule 11, the
tree branches, and we can assume that we have two provable sequents (ΣuQλ)
and <Σ2,Ω2>. The new pairs introduced in the tree are (A,0) and <5,0>, one
in each new branch, so suppose that A E Q\ and B G Ω2 (otherwise, apply
Rule W). By induction hypothesis, A and B are the only formulas of type (b)
in these sequents, as they are the only ones introduced in the z-th step. Let ΩJ =
Ωι - [A] and Ω2 = Ω2 - {B}. We can assume that Q[ = Ω2, and Σ{ = Σ2 (oth-
erwise, apply Rule W to obtain sequents with this property). Thus we have
Σx \-Ω'uA 3indΣι \-Ω'uB, and by Rule 11 we obtain Σ{ h O ί , ^ | A A\B was in-
troduced in the tree before the z-th step, so the sequent (ΣUΩ\ U {^ |5}) is
provable and contains no formula of type (b) introduced in the z-th step or later,
as wished.

Suppose now that the z-th node in the tree was <®/C0 = cγ, 1>. By induction
hypothesis, we have a provable sequent <Σ,Ω>. According to instruction 19,20,
both <(x)/C0 = c0,1> and <(x)/C! = cλ, 1> have been introduced in the branch, so
let Σ' = Σ — {®/C0 = c 0, ®/C! = C\}. From Σ V Ω we can easily prove Σ',®/C0 =
c{ h Ω by two applications of Rule 19. Σ' may still contain some formula (x)/C2 =
c 0. If so, we know that there was a node {®jCt = c2,1> in the branch introduced
before the z-th step. Thus, let Σ" = Σ' - {®/C2 = c0}. From Σ' h Ω, applying
Rule 20, we prove Σ", ®/C0 = cu ®jCx = c 2 h Ω. In this sequent, the formula
introduced in the z-th step (®/C2 = c0) has been replaced by two formulas which
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were introduced in the tree before the /-th step. Iterating this procedure, we prove
a sequent in which every formula of type (b) was introduced in the tree before
the /-th step, as desired.

Finally, consider the case in which the /-th node is < ~i(x)/C = c',0>. If some
new formula has been added, it has been in a node <(x)/C = cr, 1>, and provided
that there were nodes <®/C = c, 1> and <(x)/c' = c', 1> previously introduced in
the branch. Thus we can suppose to have a proof of Σ,®;^ = c' h Ω, from
which we prove Σ,®/C = c9(g)jC' = c' Y -i®/C = c',Ω by Rule 20. Iterating this
procedure, every formula introduced in the /-th step has been replaced by for-
mulas introduced earlier in the tree.

It should be noticed that in every sequent above, each formula A appears on
the left or right part of the sequent depending on whether the corresponding node
in the tree is (A,\) or (A,0). This remark finishes the induction step and our
summary of the proof of Lemma 2. The remaining cases and details are routine
and tedious.

Lemma 3 If a tree for <Σ,Ω> has an open branch, there is a model Mand an
ω-tuple u in M such that ύ,uo\=A and u, u0 ^ B for each A E Σ and each B E
Ω. I.e., if the tree is not closed, Σ ψ Ω.

Proof: Consider an open branch. Let Ctes be the set of all constants c occur-
ring in the branch. Define the relation ~ in Ctes as follows:

a. c ~ c, for every c E Ctes.
b. if c Ψ c', c ~ c' iff <®,c — c',\) appears in the branch for some /.

It can be checked that « is an equivalence relation. For each c E Ctes, let \c\ be
the equivalence class to which c belongs.

We can now define a model M = < W, U, D, [[ ]], S) in the following way:

W- {Ui\ ®i occurs in the branch)

U= i\c\:ceCtes]

D(Uj) = {\c\ : <(x)/C = c,l> appears in the branch)

II<?ί = | c | for each c E Ctes. [ c j takes any arbitrary value in (/whenever
c £ Ctes.

S(Uj) = {P\cι\ . . . \cn\:(0iPc{. . .cn,l) appears in the branch) U
{-ιP|ci | . . . \cn\ : {-^®iPc\.. .cn,\) appears in the branch).

Instruction 18 ensures that whenever <(-ι)®/Pc!. . .c n ,\) appears in the branch,
so do <®/C/ = 9,1X1 <j < n), so that if P | c i | . . . \cn\ E S(Uj), then \c{\ . . .
\cn\ GD(Ui).

Let ύ = < u0... un ... >. For those / such that (x); does not occur in the
branch, let w, be any member of W. Then, M, ύ support Σ and reject Ω. This
can be established using the following claim:

Claim For every node {A, k) in the branch,
a. ifk= 1, u,uo\=A
b. ifk = 0, ίi,uo#A.
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Proof of the claim: Induction on the complexity of A. However, the induction
is slightly more complicated than usual: first of all, the claim must be proved for
atomic formulas and its negations and for atomic formulas preceded by <g), and
its negations. Then, in the induction step, it can be proven for more complex for-
mulas. We omit details here.

Now, as the branch is open, every /zz E H has been introduced in it (in the
/-th step). So, for every A E Σ, {A, 1> appears in the branch and, by our claim
above, u, u0 \= A. Similarly, <2?,0> appears in the branch for each B E Ω, and
w, u0 # B. Then M, ύ support Σ and reject Ω, and the lemma is proven.

We can now establish our completeness theorem:

Theorem 4 (Completeness of S^) For any two sets of wffs Σ, Ω, Σ t= Ω only
if there are finite sets Γ c Σ , A c ( ] such that Γ h Δ.

Proof: Consider a tree for <Σ,Ω>. The tree closes, because otherwise Σ ̂  Ω, ac-
cording to Lemma 3. But then, by Lemma 2, there are finite sets Γ ς Σ , Δ c O
such that Γ h Δ.

Corollary 5 Σ N Ω iff Γ h Δ, for some Γ ς Σ and A ς Ω ,

Proof: Follows immediately from soundness and completeness theorems.

Theorem 6 (Compactness theorem) Let Σ,Ω be two sets of wffs, Σ 1= Ω iff
there are finite sets Γ c Σ, Δ g Ω such that Γ t= Δ.

Proof: One direction is trivial. For the converse, suppose that Σ 1= Ω. By the
completeness theorem, there are sets Γ QΣ and A c β such that Γ h Δ. Apply-
ing the soundness theorem, Γ 1= Δ.

2 A system for actual situations

Semantics and language for actual situations In Barwise and Perry [3], the
authors present structures called "situation structures". From their point of view,
reality must not be conceived as a completely determined whole (a world), but
as a collection of situations, each of which represents a part of reality. These
structures are not models for situation semantics (because situation semantics
needs nonactual situations). They are a way of representing reality.

Now we are going to extend our system in such a way that we can deal with
actuality. First, we must introduce actual situations in our models. Our new mod-
els are similar to the old ones but contain a new element: a subset A of W, to
be considered as the set of actual situations in the model. Models have the fol-
lowing form: M = < W, U, A I J, S, A>. W, U, D, I ] , and S are as before,
while A satisfies the following conditions:

1. AQW.
2. If ai E A, then there is no (/-formula A such that A,-^A E 5(aι).
3. If ai0, aii E A, then there is some ai2 E A such that aι0 <Ξ ai2 and &χ <Ξ a2.
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The relation πi between elements of W appearing in Clause 3 is defined as
follows: For any w, v E W, u c v iff D(u) c D(v) and 5(w) c S(v). Clause 2
says simply that every actual situation is coherent, and Clause 3 says that any
two actual situations are included in a greater one. This agrees with the condi-
tions imposed by Barwise and Perry on their situation structures. Barwise and
Perry include in their structures a collection of factual situations. We have not
included such a set because it is obviously superfluous: the collection of factual
situations, as defined in Barwise and Perry [3], contains exactly those situations
which are included in some actual situation. So once we have fixed a collection
of actual situations, the collection of factual ones is completely determined. No-
tice that A is a set, not a collection. Our models include also sets (not collec-
tions) of individuals and situations. At this point, we are following the usual
practice in model-theoretic semantics, despite Barwise and Perry's opinions.

Observe that A may not contain any maximal element (that is, any ai* such
that a [Ξ a* for every a E A).

We extend our language L with a new operator @, obtaining a new language
L(@). The set of wffs is defined as that for L, adding a new clause: if A is a
wff, so is @A.

t= and H are defined according to the clauses given in Section 1 plus the fol-
lowing ones:

ύ, u 1= @A iff iϊ(a), ai V A, for some a E A.

ύ, u =1 @A iff z?(a), ai H A, for every a E A.

(Given an ω-tuple u in Wand v E W, by ύ(υ) we mean (v, ux... un . . . >;
i.e., u0 has been dropped and replaced by υ.)

Our operator @ behaves, relative to A, like an S5 modal possibility oper-
ator, and its dual -ι@-ι, like the corresponding necessity operator. It can be eas-
ily checked that

u,uY -i@-i./4 iff for every a E A, u(a), a NA.

u,uΛ -i@-υ4 iff for some a E A, w(a), a ΛA.

However, the intuitive meaning of @ is more akin to that of the "Actually" op-
erator considered in Davies and Humberstone [4] and Hodes [6] (from which the
symbol "@" has been borrowed).

The notion of constraint employed by Barwise and Perry [3] can be captured
in L(@) using formulas of the form

v*! . . . vxniyx... iym(@A -> @B),

where xx...xn are all the variables free in A> and y\...ym are all the variables
free in B but not free in A.

We define Σ N Ω, supporting and rejecting just as we did for L.
We shall now consider a set of indexed operators of the form @e, where

eGE and E is the set of nonempty finite subsets of natural numbers. By E' we
mean the subset of E which contains all and only the indices [n}, for every nat-
ural number n. Indices are introduced only for auxiliary purposes, in order to
present a deductive system and a completeness proof. Our use of indices is an
adaptation of the ideas contained in Fitting [5], Smullyan [10] and Marraud [7,8].
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Substituting indexed operators for some occurrences of @ in wffs, we obtain in-
dexed wffs.

Given a model M, an index reading in Mis a function/ from E to A such
that:

For any d,e£E,ifd^e then f(d) ^f(e).

When dealing with indexed wffs, we shall use the relations 1=/ and =1/ (rela-
tive to an index reading/), which are defined by the same clauses as ί= and =1
(with the obvious modifications) plus two new ones:

u,u Vf@eA iff u{f(e))J(e) Yf A.

w,iH/ @eA iff u(f(e))9f(e) Λf A,

Let Γ, Δ be two sets of indexed wffs. <Γ, Δ> is supported by u in M iff for
every index reading /

if w, w0 ty A for every A E Γ, then w, UQ N/ B, for some B E Δ.

Otherwise, <Γ,Δ> is rejected by ύ in M. Observe that if Γ,Δ contain no in-
dexed operator @e9 f is superfluous, and this definition is just the standard one
for L(@). <Γ, Δ> is valid in Miff it is supported by any u in M, and it is valid
iff it is valid in any M. Thus, if <Γ, Δ> is not valid, there are M, u, and/ such
that for every A E Γ, ύ \=/A, while for every B E Δ, ύ ¥f B. Then we say that
M, uj refute <Γ,Δ>.

The sequent system S^{@) S^{@) is the result of adding to S^ the fol-
lowing axiom schemes and rules:

Axiom schemes

4. @eA, @e->A\-, for any atomic wff A.

5. @etχ =Sι...@etn=Sn9 @e(->)Ptl - tn\- @e(-^)PSl - "Sn-

Rules:

22 Γ ' @ ^ h Δ

W 23 Γ h @ ^ ' Δ

T,@A \-A Γ \-@A,Δ

(*) eΓ\d= 0, for any din Γ,Δ,A

Γ,-.@^ hΔ Γh~i@^,Δ

(*)eΠύf=0, for any rfinΓ,Δ,^.

26a Γ ' @ ^ h Δ 26b Γ h @ ^ ' Δ

Γ,@e-i-ι^ h Δ Γ t- @ei-iy4, Δ

Γ,@e^HΔ ΓH@e-υ4,Δ

Γ,-i@βylhΔ Γ|--i@β^,Δ
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2 9 a ΓΛ^)(@eA°@eB)\-A 2 9 f e Γ \-(->)(@eA ° @eB),A

Γ,@e(-i)(A»B)\rΔ. Γ\-@e(-i){A«B),A

where <> is any binary operator.

3 0 Γ , @ e Λ(c)hΔ Γh@ eΛ(c),Δ

T9@eVxA{x) hΔ Γ h @eVxA{x)9A

3 2 Γ,@e-»Λ(c)hΔ 3 3 Γh@ e^4(c),Δ

T,@e-i\/xA(x) hΔ Γ h@e-iVJC (̂Λ:),Δ

(**) c is a constant not occurring in Γ,Δ, or yiiA(x).

3 4 a Γ,(-.)@ehΔ ΓH-0@e,Δ

3 5 a r , ( ^ h A ΓK-.)®M,A
Γ,@β(-i)®,^l-Δ Γ|-@e(--)®M,Δ

(*) y4 is an atomic formula and / Φ 0.

3 6 a Γ , f t h M h A 3 6 b Γ h @ e h M , A

Γ,@e(^)®o^4HΔ Γ ha @e(^)<x)0Λ,Δ

(**) A is an atomic formula.

37 Γ - @ - u ^ h Δ (•) 38 Γ h @ ^ Δ (*)

Γ,@,^hΔ Γ h @ e U ^ , Δ

(*) A is an atomic formula or its negation.

3 9 T,@et = t\-A 4 0 Γ,@ g r = r h Δ

Γ , @ β ( - . ) P . . . / . . . h Δ Γ,@ β (- . ) ί = ί ' h Δ

4 1 Γ > ^ 1 / 2 = / 0 h Δ

Γ , op{t0 = t u op2tx = t2V A

where opj is either @β or (x),, fory = 1,2.

4 2 Γ,@^Q = ^ hΔ

Γ@^o = *o, @^i = î h @e^t0 = tuA'

Notice that ®i@eA is equivalent to @eA (and ®j@A is equivalent to
@v4), so we can add to our set of rules II the following ones:

Γ,C(@gΛ)hΔ Γ h C ( M ) , A

Γ, C«8>/@e^) h Δ Γ h C(®/@^), Δ

Γ,C(@yl)hΔ ΓhC(@v4),Δ
C E, C«8)/@i4) h Δ Γ h C«g>/@Λ), Δ '

According to these rules and to our former observation about the set of rules
II, there is no loss of generality in considering only wffs in which each opera-
tor (x)/ has under its scope only atomic formulas. We shall do so in the sequel.

The following theorem can be easily proven:
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Theorem 7 (Soundness theorem for SJL(@)) Γ h Δ only ifY ¥ Δ.

Proof: Soundness can be easily checked, keeping in mind the definition of in-
dex reading and the provisos added to the Sχ(@) rules. We shall give the details
for Rules 22 and 23 only.

For Rule 22: Suppose the lower sequent is not valid, i.e., there are M,u,f
refuting it. Then we have u, u0 (=/ @A9 so that there is some aι G A such that
w(a), a EfA. Define a new index reading g satisfying g(d) =f(d) for every d
such that there is some index d' in Γ, A, A such that dΠd' Φ 0 , and g(e) = a,
while for any other index g takes any suitable value. As the rule establishes that
e Π d' — 0 , for every d' in Γ,A,A9 there is an index reading g satisfying the
required conditions. Thus, u(a), ai \=g A, so that u, u0 \=g @eA. As g takes the
same values as / relative to indices in Γ and Δ, M, u, and g refute the upper se-
quent.

For Rule 23: Suppose again that the lower sequent is refuted by M,ύ9f
Then u9u0 ψf @A9 and w(aι),a Vy A9 for every a E A, and, particularly, for
@ =f(e). Thus, ύ9 u0 ¥f @eA.

Completeness of S^{@) Completeness of S^(@) is proved exactly in the
same way that completeness of S^ has been proved. We add to the instructions
for the construction of a tree some new ones relative to the new forms that for-
mulas can have. The new instructions are these (we omit instruction correspond-
ing to Rules 26 to 36, as they are straightforward):

22. (@A9 1>: Add the node (@eA91>, for the first eEE' not occur-
ring in the branch. (We suppose a fixed enumeration of E.)

23. (@A90): Add all nodes {@eA90) not appearing in the branch
before such that e G E occurs in the branch, and then repeat
<@Λ,0>.

24. <-i@A, 1>: For each e G E in the branch, add <@e^A, 1> (if it
does not appear in the branch) and then repeat <—>@y4,1>.

25. <-i@v4,0>: Add <-»@ê 4,0>, for the first eEE' not appearing
in the branch.

37-39. (@e(^)Pc\ -. .cΛ,l>: Add the following nodes: (a)<@eC/ = C/,l>,
for each /, 1 < / < n, if it does not appear in the branch before,
(b) {@eOd(^)Pc\... cn91> for every d G E in the branch, if it
does not appear in the branch before, (c) Repeat {@e{^)Pcχ...

cΛ,l>.
38. <@ê 4,0>,^4is (-^)Pcι... cn or c = c'\ Add every node <<§></, ̂ 4,0>

not previously in the branch such that d^e.
38-42. (@e~ic = c',0>: (a) Add every node <@ί/~ c = c',0> not previ-

ously in the branch such that d <Ξ e, and (b) if both {@ec = c, 1>
and (@ec' = c',l> appear in the branch, add (@ec = c',l>, and
otherwise repeat (@e-*c = c ',()>.

40. <@e->c = c',l>: Add (@ec = c,l> and (@ec
f = c',l>.

40-41-37. (@ec0 = C!,l>: (a) Add <@ec0 = co,l> and (@ec{ = cul).
(b) For each node (opcλ = c2,1> in the branch (where op is @j
or (g), ) add <@ec2 = c0,1>, if it does not appear in the branch, (c)
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Add every pair <@eurfco = C\Λ) not previously in the branch
such that d G E appears in the branch, (d) Repeat @ec0 = c{, 1>.

19-41. <(x)/C0 = C!,l>: (a) Add <®/C0 = co,l> and <(x)/Ci = c l 5 l ) , if
they do not appear previously in the branch, (b) For each node
(opcχ = c2,1> (op is either @e or <g), ) in the branch, add <(x)/C2 =
co,l> (if it does not appear in the branch before), (c) Repeat
<®/^o = Ci,l>. (This clause must be substituted for the former
19,20.)

A branch closes iff it contains a set of nodes of one of the Forms 1-3 con-
sidered for SJL or of one of the following forms:

4. <@eA,l>, <@e^A,l).
5. {@etx =Sul)...(@etn = JΛ>1>, <@e(^)Pti...tn,l>9 <@e(-")PJi . . .

SnΛ>.

Lemma 8 If a tree constructed for <Σ,Ω> closes, then there are finite sets
Γ c Σ , A ς Ω such that Γ h Δ.

Proof: The structure of the proof is exactly the same as that of Lemma 2. It is
enough to consider the cases corresponding to the new rules and new instructions
for tableaux construction. In the most complex cases (those concerning Rules 37
to 42) indexed operators @e are handled in almost the same way as operators ®,
in the proof of Lemma 2 (notice that Rule 41 does not distinguish between these
operators), and the proofs are similar to those concerning Rules 19-20 and 21
in the proof of Lemma 2. It is not difficult (but boring) to reconstruct the whole
proof from the tableaux constructing instructions above, keeping in mind that
the numbers preceding each instruction indicate the rules needed to prove the cor-
responding sequent, as explained in the proof of Lemma 2. The conditions im-
posed on indices ensure that the provisos of the rules are satisfied in every case.

Suppose we have constructed a tree for <Σ,Ω> which contains an open
branch. From that open branch we can construct the following model M =
<W,U,D9l 1,5, A>:

A = {a)e: @e occurs in the branch)

W - [Uji (x)/ occurs in the branch) U A.

Define Ctes and « as before, substituting opj for (x), in the definition of « (opj
stands for (x)z or @e). As before, « is an equivalence relation. Define | c | , U,
D(Ui), [ c j , and S(Uj) just as in the former case, but

D(ae) = [\c\ : (@ec = c, 1> appears in the branch),

and

S(®e) = {(—>)JP|CI I . . . \cn\ :((-<)@ePc\ " cnΛ) appears in the branch).

We can check that the conditions imposed on A in our definition of model
are satisfied by M:
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1. Obviously, A ς F ,
2. It is not the case that A,-^A G S(ae), for any A. If this were the case,

both (@eA, 1> and (@e~^A,1> should appear in the branch, which would
close.

3. If ae,ad E A, there is some a in A such that ae E a , a r f c a. This is the
case for a = adUe:
a. D(ae) g ^(a^ue)-* Let r e X>(ae). Then r = | c | , and <@ec = c,l>

appears in the branch. Then, by Instruction 40-41-37, so does
(@duec = c,l> (as d must occur in the branch), and so \c\ = r E
£>(aduβ). Similarly, Z>(a<,) c £>(atfUe).

b. S(ae) c 5(a^ U e ): Suppose that Prx...rn£ S(ae). Then <@ePc!...
crt, 1 > belongs to the branch, for some C\... cn such that r, = | c, | (1 <
/ < n). Then, by 37-39, (@d\JePc\ . cπ,l> appears in the branch,
and so Prx.. .rnG S(ad\je)- The same can be proved for -ιPrχ... rn.

Define an index reading f as follows: for each index e in the branch,/(e) = ae,
and for any other e, f(e) takes any adequate value in A. It can be easily
checked that this definition is sound.

Finally, define the ω-tuple u exactly as we did in the completeness proof for
5JL. We can prove the following lemma:

Lemma 9 Suppose α tree constructed for <Σ,Ω> which contains an open
branch, and let M, u9fbe as above. For any (A, k) in the branch,

ifk= 1, then u,uo^A

ifk = 0, then u,uo#A.

Proof: Induction on the logical complexity of A.

Corollary 10 If a tree for <Σ,Ω> contains an open branch, then ΣΨQ.

Proof: M, ύ,f as defined above support Σ and reject Ω, according to Lemma 9.

Obviously, if Σ,Ω contain no index, the index reading/ is superfluous. We
can now establish our completeness theorem:

Theorem 11 (Completeness theorem for S^(@)) Let Σ,Ω be sets of wffs of
L(@). Σ N Ω iff there are finite sets Γ c Σ, Δ c Ω such that Γ h Δ.

Proof: Let Σ t= Ω. A tree for <Σ,Ω> must close, according to Corollary 10.
Then, by Lemma 8 there are finite sets Γ c Σ, Δ c Ω such that Γ h Δ.

We can prove a compactness theorem as well:

Theorem 12 (Compactness theorem) Let Σ,Ω be two sets of wffs o/L(@).
ΣtQiff there are finite sets Γ g Σ, Δ g Ω such that Γ \= A.

Proof: Similar to that of Theorem 6.

Some possible modifications We could change the semantic clauses for @
in such a way that, for any M, u, and v, either u, v 1= @A or u, v H @A. For
this purpose, we should stipulate that

ύ, u H @A iff i?(a),a ψ A for every a E A.
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The system S^(@) should be modified substituting the Rules 24' and 25' below
for the original Rules 24 and 25:

2 4 , T\-@A9A 2 5 , T,@A \-A

Γ,->@^hΔ Γh-i@.4,Δ

(with the same proviso).

The resulting system would be sound and complete, as can be checked introduc-
ing some obvious changes in the proofs.

A more interesting change would be to stipulate that A should contain a
maximal element, that is, some ai* such that for every ai E A, ai EΞ en*. In this
case, the index set E would be E=[n: n is a natural number) U {ω}. Index read-
ings should satisfy the following conditions:

f(e) E A, for every e E E, and

f(ω) = a*.

The proviso added to Rules 22 and 25 should be:

e Φ ω, e does not occur in Γ, A, A,

and 37' and 38' would substitute for the old Rules 37 and 38:

3 ? / Γ,@ωAhA 3 g / Th@eA,A

Γ,@eA \-A Γ\-@ωA,A

with the same conditions on A.

Instructions 37 and 38 for the construction of the tree should be modified in or-
der to ensure that whenever a node (@eA, 1> is in a branch, so is (@ωA, 1>, and
whenever <@ωv4,0> is in a branch, so is (@eA,0) for each e occurring in it, for
A as stipulated in 37 and 38. When constructing the model M we should define
an element a* E A corresponding to the index ω. a* is the maximal element
of A: whenever (@ec = c, 1> appears in the branch, so does <@ωc = c, 1>, and
so if \c\ E D(ae) then \c\ E D(a*), for any ae E A. Moreover, if (@eA,\y
belongs to the branch (where A is (-i)Pcι.. ,cn), so does (@ωA,l) and so
S(aie) ^ ιS(ai*). Thus, ae !Ξ a*, for every ae E A, and a* is the required element.

This maximal element of A is not a world in the sense in which Barwise
and Perry use this word because we have not required that for any A of the form
Prx.. .rn either A E a* or ~^A E ai*. We could modify our semantics, rules,
and proofs in order to meet such a requirement. However, this task is left to the
reader.
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