
184

Notre Dame Journal of Formal Logic
Volume 32, Number 2, Spring 1992

Approximations and Logic

JEAN-PIERRE MARQUIS

Abstract Scientists work with approximations almost all the time and have
to reason with these approximations. Therefore, it is very natural to wonder
if approximations influence logical deduction and if so, how. Our goal in this
paper is to present a class of lattices which captures some intuitions concern-
ing propositions expressing numerical approximations and consider how they
relate to classical logic.

/ Basic assumptions Our starting point is the relation between approxima-
tions and truth values. We assume that a proposition which expresses an approx-
imation to a correct value receives a specific truth value reflecting the accuracy
of this approximation. (We have proposed a formalization of this assumption
in [8].) This is equivalent to saying that the notion of a partially true proposi-
tion makes sense. The next step in this framework consists in extending this at-
tribution of partial truth-values to logically complex propositions. Formally, we
want to construct a valuation function from propositions to a multivalent truth
structure. In fact, we will do something more general. We will present a whole
family of algebraic structures that we believe capture intuitively correct properties
of partially true propositions the same way that the class of Boolean algebras cap-
tures essential properties of totally true (or false) propositions.

Let us first present an informal motivation that will lead us naturally to a
valuation system proposed by Bunge [2]. (A subvaluation system of this system
was first presented independently and in a different context by Slupecki [15]. See
also Weston [18,19] for some of the results with different proofs and a differ-
ent point of view.)

The originality and interest of Bunge's valuation system comes from his views
about the (semantic) concept of negation (and implication, but the peculiarity
of the latter is a consequence of the peculiarity of the former). There are different
ways to extend the classical Boolean matrix for negation. After all, for a formal
logical operation to qualify as a representation of the concept of negation, it has
to satisfy two requirements:
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(i) it has to be a unary operator;
(ii) it has to agree with classical negation in the "extreme" cases, i.e. when

a proposition is totally true or totally false.

Many of the extensions of the concept have taken the following algebraic
form: if we denote the truth value of a proposition p by V(p), where the valu-
ation function Fhas as target the real unit interval [0, 1], and the negation op-
erator by *-»', then V(-.p) = 1 - V(p), where T denotes the complete truth.
The major advantage of this definition is algebraic. For the equation V( -;—/?) =
V(p) is an immediate consequence of it. In other words, truth and falsity are
symmetrical. This seems at first reasonable. But is it fair to put a proposition and
its negation on a par? If the truth value of a proposition is 0.5, why would the
negation also have to be 0.5? It is well known that a negated proposition most
of the time "says" less than a nonnegated one and, hence, it is more secure. It
is hard to find a nonalgebraic way to justify the above definition. It does not
seem to reflect all of our uses of negation. Bunge himself, after having accepted
it in [2], [3] and [4], rejected it in [5] and [6], He suggests that we consider
negated propositions in a different way.

Johnny turns 10 years old. His friend Peter believes Johnny to be 11, whereas
his friend Jane suspects that he must be 9. Both are in error but not by much:
their relative error is 1 in 10, so the truth value of each of their beliefs about
Johnny's age can be taken to be 1.0-0.1 = 0.9. Charlie, a third friend of
Johnny's, is uncertain about his age and, being a very cautious person, avoids
any risky estimates and states "Johnny in not 9 years old". He is of course right,
and would also be right if Johnny were 8 or 11, 7 or 12, and so on. So, it is a
bad mistake to assign his statement the truth value 1.0 — 0.9 = 0.1, (Bunge
[5], p. 88)

In fact, the truth value of Charlie's statement should be 1, i.e. he is totally
right. Clearly, most scientific propositions we are concerned with, namely, prop-
ositions expressing numerical approximations, behave the same way. Given the
error involved in all verifiable propositions, we can safely claim that their nega-
tion is true. Thus, it is easier to hit on the truth with a negatively charged pro-
jectile than with a positive one. The only time a negated proposition is false is
when the proposition is totally true. As soon as we move away from the truth,
negation brings us right back to it.

This is in a way the most relaxed reading of the negation operator. Notice
immediately that even though the above situation seems to be natural in the case
of factual propositions, a more restricted reading of negation seems more nat-
ural in some areas of mathematics. Indeed, when one claims that a recursive
function is not computable, one has to give a proof in the same way as one would
have to give a proof, which would undoubtedly look different than the previous
one, that the given function is computable. Hence, to establish the truth value
of this kind of negated proposition is as hard as establishing the truth value of
a positive proposition. This seems to indicate that there might conceivably be
many different kinds of negations, as Wittgenstein has already suggested. More-
over, the "strong" interpretation of negation we have just mentioned might be
also justifiable in terms of approximations. A topos of sheaves can be thought
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of as capturing an approximation of a "part-whole" type. We will explore this
possibility elsewhere.

We will now translate the above intuition concerning the behavior of the con-
cept of negation in factual propositions in the following way. First, we will con-
struct a valuation function from a set of propositions to the unit interval [0,1].
This valuation function will attribute to the atomic propositions an arbitrary
value in the interval. This is the given (relative) truth value of the propositions.
Then, a negated proposition is equal to 1, i.e. true if and only if the truth value
of the proposition is strictly less than 1. When the proposition is fully true, then
its negation is false. We will now formalize these facts.

2 First formalization: The unit interval Following Rasiowa and Sikorski
[13] and Rasiowa [12], we define classical propositional logic in a purely syntac-
tic way.

Let L denote the structure L = <{/?,-:/ E N),-•, V,Λ,->>, where the last four
symbols are the usual symbols for the propositional connectives and {/?, : / G N j
is a denumerable set of propositional variables. The formulas of L are defined
inductively as usual.

Then L = <L,h£> with the usual axioms is the classical propositional logic,
where *\-L' is the classical consequence or deducibility relation with its usual
properties.

Define TL = [A : h ^ } , the set of theorems of L and Ά9 is a metavariable
denoting well-formed formulas of L.

This is all we need as far as the logic is concerned.
Following McKinsey and Tar ski [10], we define a valuation system Mas an

n + 2 tuple <M, A/i» >/«>> where Mis a nonempty set with at least two el-
ements, D is a subset of M with at least one element (usually called the 'desig-
nated elements'), and them's are functions from M | ( / / ) to M, where \(ft) is the
arity of/}.

Let MB be defined by <[0, 1 ], {1 j,max,min,->,-»>, where

(i) [0, 1] is the real unit interval;
(ii) max and min are the usual binary functions defined on [0, 1 ]

(iii) i : [0,1] - {0,1} is defined by

fo iffJC = 1
-.(*) = \

[l iff JC< 1,

where x is an element of the real unit interval;

(iv) -•: [0, I ] 2 -> [0, 1] is defined by

[y i f f x = l

\ l iffx< 1.

We should point out that the functions -ι and -• are inter definable. Indeed,
-ι(jt) can be defined as -*(x,0) and -+(x,y) can be defined by max(-*(x),y).

The following two functions give us the relationship between L and MB. Let
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7r = [Pi'.i in N] and π* <Ξ TΓ (remember that our evaluation function is a par-
tial function).

Definitions

(i) The function/: TΓ* -> [0,1] is called an assignment function from proposi-
tional variables to elements of the unit interval,

(ii) / induces a valuation iy: WFFS -> [0,1 ] as follows: Let A9 B9 C,.. . denote
wffs of L, then
(1) if A is atomic, i.e. A = pj for some /, then vf(A) =f(A) E [0, 1];
(2) iy(i^) = i(iyM));

(3) vf (A A B) = min(vf (A), pf(B));
(4) iy(Λv£) = max(iy(Λ),iy(Λ));
(5) Vf(A-+B) = ^(vf(A)9Vf(B)).

At this point, we could start proving some facts about the relations between
L and the valuation system. However, we will take a step towards abstraction
and generalization, for the valuation system is a model of an abstract algebraic
system, and thus all the results can be established for a class of models instead
of a particular system.

3 Algebraic semantics: Brouwerian lattices and Bunge algebras In this
section, we will consider two classes of algebras which include Boolean algebras
and which behave "well" relative to classical logic, in the sense that every mem-
ber of this class is a model, under the appropriate interpretation, for the tautol-
ogies of classical propositional logic. Moreover, our structure above is a member
of these classes of algebras. The elements of the first class are essentially sup-
complemented distributive lattices with a unit and satisfying both De Morgan's
laws. They are the dual of Stone algebras. Because of their particular relation-
ship to classical logic, these algebras deserve a name of their own. We will call
them Bunge algebras. The second class consists of the standard Brouwerian lat-
tices.

In all the following, L = {\L\ ,U,Π> will denote a lattice, i.e. a set \L\ closed
under the operations U and Π and satisfying the standard axioms.

Definition 1
(i) An element c in \L\ is said to be the u-complement or the sup-complement

of an element a in \L\ if c is the least element such that aU c = 1 (i.e. if c
is the least element in the set of all x in \L\ such that a U c = 1 or, equiva-
lently, the U-complement of a is an element c such that
( l ) f f U c = l .
(2) i f*UΛ = l thenc<Z>).
Thus, the U-complement is the first or smallest element of the family of all
elements joined to a.

(ii) a distributive lattice L with a unit 1 such that for any a in L there exists the
U-complement, denoted by -ιa9 of a is called a Brouwerian lattice.

Note that in any Brouwerian lattice, the following de Morgan's identity holds:

(1) -i(flΠ6) = iflfUπ6.
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(See Ribenboim [14] for an axiomatization of Brouwerian lattices and a proof
of the identity.)

We will now prove a short lemma that will be useful later.

Lemma 1 In any Brouwerian lattice, the following inequality holds

-•(a U b) < -># Π -ιZ>.

Proof: By definition of U-complement, we have (α U b) U -ι (a U b) = 1. But
also (a U b) U -itf = 1, by associativity twice, commutativity, and definition.
Thus -i (a U b) < -i# and similarly -ι (# U 6) < -»& and we get the result by a
standard lattice-theoretic fact.

Definition 2 A distributive lattice L = <|L| ,U,(Ί> with a unit 1 is called a
Bunge algebra if the following properties hold:
(1) L is a Brouwerian lattice;
(2) ->(aUb) = -^aΠ ~^b.

Thus a Bunge algebra is a Brouwerian lattice for which the above inequal-
ity is a strict equality. Examples abound. Any finite distributive lattice is a Bunge
algebra. So is any Boolean algebra, with the Boolean complement being the sup-
complement. Of course, our valuation system is also a Bunge algebra, as is eas-
ily verified. In fact any linear lattice is a Bunge algebra.

Brouwerian lattices were used early in algebraic logic but with '0' as the des-
ignated value (see McKinsey and Tar ski [9]). We use T as the designated value.

We will now first show that the set of tautologies in an arbitrary Bunge al-
gebra is the same as the set of classical (Boolean) tautologies, provided we in-
terpret the connectives properly.

Definition 3
(i) A mapping/: TΓ* -> M from the set of propositional variables to the under-

lying set of a Bunge algebra B = <M,U,Π,-ι> is called an assignment
function;

(ii) a map vj: WFFS -> M is a valuation if
(1) if A is atomic, i.e. A =/?, for some /, then vf(A) =f(A) E M;

(2) iy(-.Λ) = -i(ιyG4));
(3) vf(AΛB) = vf(A)nvf(B);
(4) pf(AvB) = pf(A)Uvf(B);
(5) vf(A->B) = (i(iyM)) U vf(B);
where A, B, C,... denote wffs.

Definition 4
(i) A wff A is valid in a given Bunge algebra B under an assignment/ if vf(A) =

l i n B ;
(ii) A wff A is a tautology in a given Bunge algebra B if it is valid for all valu-

ations Vf in B;
(iii) A wff A is a tautology if it is a tautology in all Bunge algebras.

Notation: we will denote the class of valid formulas in a given Bunge algebra B
by 'Pβ' and the class of all tautologies defined above by '77^ ' and the class of
all classical tautologies by VCPL-

A crucial property of Bunge algebras is that we can define the notion of a
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conjunctive normal form for its polynomials. (See [13] or Balbes and Dwinger
[1] for definitions of polynomials in an arbitrary lattice.)

Definition 5 A Bunge polynomial/ is said to be in conjunctive normal form
if it is a meet of joins (i.e. a conjunction of disjunctions) of formulas which are
either atomic or negatomic or double negations of atomic formulas.

Lemma 2 Every Bunge polynomial is equal to a polynomial in a conjunctive
normal form.

Proof: The proof is exaclty as in the case of Boolean algebras, the only differ-
ence being that - i π α ^ α i n a Bunge algebra and hence we are not allowed to
eliminate double negations in front of atomic formulas.

We are now ready to prove our first important result.

Proposition Let B = <M, U, Π, -ι > be a Bunge algebra. Then, under the valu-
ation function vj defined above, VB = VCPLfor any f i.e. the set of valid for-
mulas over an arbitrary Bunge algebra is the same as the classical two-valued
tautologies.

Proof: Clearly, any formula in VB is in VCPL> for any Bunge algebra contains
at least one Boolean subalgebra, namely the subalgebra consisting of the unit and
zero elements and thus if the formula is valid for any Bungean valuation, it is
valid for any Boolean valuation. For the opposite direction, we will use conjunc-
tive normal forms. Let A be a classical tautology. If it is already in (Boolean)
conjunctive normal form, we do nothing. Since it is a classical tautology, every
disjunct contains an atomic variable together with its negatomic counterpart. By
Definitions 2 and 3, A will be valid in B. If A is not in (Boolean) c.n.f., we write
its Bunge c.n.f. Since, as we have indicated in the proof of the above lemma, the
only difference between a classical Boolean c.n.f. and its Bungean counterpart
is the presence of doubly negated formulas instead of atomic ones, every disjunct
contains either an atomic formula together with its negated counterpart or a
negated proposition together with a double-negated proposition and hence it is
valid in B.

Corollary TtBg = VCPL.

Proof: B was arbitrary in the above proposition.

For the record, we will exhibit a nonlinear Bunge algebra. Consider the fol-
lowing lattice with six elements.

• • &
0
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It is obvious from the diagram that -iff = 6, ->6 = rf, -*d= b, —ιc = 1. Now,
we claim that for all elements of the lattice, -ι (p U q) = -ip Π -x?. For instance,
-i(αUδ) = -il = 0 = &Πd=-if lΠ -16. The other cases are just as easy and
are left to the reader. Hence this lattice, when used as a valuation system for clas-
sical logic with the above valuation function, yields the classical tautologies.

Surprisingly enough, Bunge algebras happen to be related to a well-known
class of algebraic structures, namely the Stone algebras. Suffice it to mention here
that a Bunge algebra is the dual of a Stone algebra. This follows from the fact
that a Bunge algebra is a dually pseudocomplemented distributive lattice, i.e. a
Brouwerian lattice B satisfying the identity:

παΠ -i-ι# = 0.

However, in a Stone algebra one considers inf-complementation instead of
sup-complementation, and therefore not all tautologies of classical logic are equal
to the unit of the algebra in this case. The simple formula -7? Up is not always
equal to the unit. Thus, even though Stone algebras and Bunge algebras are struc-
turally dual, it makes a difference which one chooses to work with.

It is natural to wonder whether the condition characterizing Bunge algebras,
that is the distributivity of negation over disjunction, is necessary for the above
result in hold. In fact, it is not! Instead of considering a Bunge algebra, we can
consider a Brouwerian lattice.

Proposition Let Br = <N, U, Π, -1 > be a Brouwerian lattice. Then, under the
valuation function nj defined above (same definition), VBr = VCPLfor any/, i.e.
the set of valid formulas over an arbitrary Brouwerian lattice is the same as the
classical two-valued tautologies.

Proof: Clearly, VBr C VCPL9 by the same argument as above. To show the con-
verse, we argue as follows. Let A be a classical tautology. If it is in c.n.f., then
it will be valid in Br, by definition of a Brouwerian lattice and the definition of
our valuation function. If it is not in c.n.f., then we are no longer in a position
to transform it, for now -1 (a U b) < -iff Π -*b. However, this is the only thing
which might turn out wrong: the Bungean c.n.f. equal to A might be valid whereas
A is less than the maximal element in a Brouwerian lattice. So what we have to
show is that whenever -iff Π -16 = 1, which happens when A is a classical tau-
tology, then -i(αUft) was already equal to the unit. Suppose -1 (a U b) Φ 1, say
-«(ff U b) = c < 1. By definition we have

(ff U b) U i(ff U b) = (ff U b) U c = 1.

So, (ff U b) U c = ff U (b U c) = b U (a U c) = 1, by associativity and commuta-
tivity and thus {b U c) > -iff = 1 and (ff U c) > -16 = 1, by definition of the U-
complement again and the fact that -ifffΊ-ιZ> = l i f f - i f f = l and -16 = 1.
Therefore (b U c) = 1 and (ff U c) = 1 and hence, once more, 1 = -iff = -*b < c
and so c = 1, a contradiction.

One last but crucial remark about the interpretation of classical logic in
Bunge algebras and Brouwerian lattices: even though we are able to preserve the
set of classical tautologies, we do lose many things. Firstly, the set of contradic-
tions is not the same. For instance, the formula -*A A A is not a contradiction
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in general. Secondly, we also lose many classical equivalences. This is a conse-
quence of the interplay between the negation operator and the other operators.
Here is a sample of formulas which are no longer equivalent in this setup: AΛB
and -ι(-υ4 v -*B); A vB and —t(—1>4 Λ ->2?); A ->i?and -ι/?-> -ιA; -ι-ιA and
A. Many authors (for instance Weston [18], [19] and Tobar-Arbulu [16]), believe
that this is a serious drawback. It is not so clear to us. We will turn to this ques-
tion after we have considered a crucial modification of our interpretations in
Bunge algebras and Brouwerian lattices.

4 Bunge algebras, Brouwerian lattices and implication Our definition of
the implication operator above is a normal extension of the classical Boolean def-
inition. It has the advantage of preserving all classical tautologies. However, we
have not at any point given an intuitive justification of this definition. The fact
that it is a natural extension of the Boolean definition seems to support it. But
there are other ways to define the implication operator, one of which does qual-
ify as being as natural, if not more so, than the one we have presented. More-
over, the alternative fits more closely the semantics, is closer to our intuition of
how an implication operator should be formalized, and is now standard in the
literature. We will now present this alternative, indicate some of its logical con-
sequences, and briefly discuss its value. We will come back to the question of the
choice between the definitions in the next section.

In a Heyting algebra, the implication operation is best defined as a functor,
more precisely as the right adjoint to the product functor, which is simply the
join operation in a lattice. Formally, this amounts to the following:

($) a Π c < b if and only if c < a -> b.

Does this hold for Bunge algebras and Brouwerian lattices? In other words, is
a Bunge algebra, considered as a category, cartesian closed? Is a Brouwerian lat-
tice cartesian closed? In a Heyting algebra, the element a -+ b is defined as the
supremum of all elements c such that aΓ\c< b. This is well-defined since arbi-
trary suprema are allowed in a Heyting algebra. We can immediately see that the
definition we used in the previous section does not necessarily satisfy ($). For if
we set a -> b := -*a U b, then the left-hand side of the equivalence is not neces-
sarily satisfied, since a Π -iα is not necessarily equal to 0 in a Bunge algebra or
in a Brouwerian lattice. In fact, it is satisfied if and only if the algebra is Bool-
ean, as the reader can immediately check. Thus, it seems necessary to modify the
class of lattices considered in order to define the above operation. However, we
will take a short cut. Instead of considering Bunge algebras, we consider the in-
tersection of the class of Brouwerian lattices and Heyting algebras. This inter-
section is not empty, for it contains all Boolean algebras and at least all linear
lattices. In other words, it includes at least self-dual lattices. Let us first look at
linear lattices, e.g. the real unit interval, first. Given a linear lattice, the impli-
cation operator can be defined as follows:

fvf(B) if pf (A) > pf(B)
vΛA -* B) =«

[ 1 otherwise, i.e. vf(A) < vf(B).
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With this new definition (the other operators are defined as in the previous
section), not all theorems of classical logic are true. The most obvious, and prob-
ably the most disturbing, are

A -* -i -1̂ 4 and

(-υ4 -+B) -> ((-vl -• -π£) -+A).

The reason is clear: If vf(A) is strictly between 0 and 1, then iy( -i -L4) is equal
to 0 and therefore vf(A -> -ι-υ4) is also 0. However, if A is Boolean, that is if
it takes a Boolean value, which in the case of linear lattices are simply 0 and 1,
then A -> —ι —1̂4 is true. It is easy to see that the second formula is bound to
a similar fate. Let 0 < vf(B) < 1 and let vf(A) Φ 1, then vf((-*A -+ B) -•
((-\A -• ->i?) ->v4)) ^ 1; that is if B is not Boolean, then the formula is not true.
What is interesting is that the converse also holds. Thus, Pf((-*A -• B) ->
((-1̂ 4 -+ -ιB) -+A)) is true if and only if v/(B) is Boolean, as the reader can eas-
ily check. These remarks might seem trivial at first, but we believe on the con-
trary that they show that we have not lost as much as we thought. The formula
expressing the reductio argument might not hold for all possible values anymore,
but it still holds for the only operative values, for the foregoing observation
says that whenever we can derive a genuine contradiction (and in a Brouwerian
lattice this means that v/(B) is Boolean) from a negated premise then we can
derive the nonnegated premise. On the other hand, whenever v/(B) is not Bool-
ean, then vf (B) Π vf (~^B) is not a contradiction and therefore we cannot use the
reductio form. Thus it is tempting to modify the axioms of classical logic as
follows:

Ax(i) A->(B-+A)
Ax (ii) 04 -> (fi -* C)) -> ((A -+B)-+(A-+ C))
Ax (in) (~v4 -+ -i-iΛ) -> ({^A -> ̂ B) -+A),

since now we are guaranteed that ~^B will receive a Boolean value in the seman-
tics. But in practice it is enough to know that B does not express an approxima-
tion. Needless to say, the above axioms do not constitute a complete list of
axioms, since in an arbitrary Bunge algebra the logical connectives are not in-
ter definable, as should be clear from the previous section. We will give a sim-
ple proof of (ii), using the adjunction ($) and leave the remaining axioms to the
reader. First observe that by substituting a -» b for c in ($) above, we get

(!) a Π (a-*b) < b if and only if a-+ b < a-+ b.

Since the right-hand side is always true in a lattice, we get the left-hand side.
Now, we start from a true proposition in any lattice and apply the previous ob-
servation and the adjunction as follows:

(1) c(Λd <c is always true;
(2) (b Π (b -* c)) Π d < c by (!), (1), and transitivity
(3) ((a Π (a-+b))Π(b->c))(Ίd<c by (!) again
(4) ((a Γ\(a-+ b)) Π ((a Π(a^(b^ c))) Πd<c by (!) again
(5) (((a -+b) Πa) Π ({a Π (a^> (b-+ c))) Π d < c by commutativity of Π
(6) ((a -+b) Π (aΠa) Π (# -• (b-+ c))) Πd<c by associativity of Π
(7) (((a -+b)Πa)n(a^(b-+ c))) Πd<c by a Π a = a
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(8) ((a Π (a-+ b)) Π {a -+ (b -• c))) Γ)d<c by commutativity of Π
(9) a Π ((a -> b) Π (a -> (ft -> c)) Π c ί ) < c by associativity

(10) (a -» 6) Π (a -* (6 -* c)) Π rf < έjr -> c by ($)
(11) rf< (a-> (6->c))-> ((a-+b)-+ (α->c)) by ($) twice,

and since d is arbitrary, the right-hand side has to be the unit and we are done.
The observation preceding the proof immediately shows that modus ponens

also holds under this new definition. Furthermore, the deduction theorem also
holds in this framework. For now A -• B is a theorem if and only if A < B, so
we simply have to interpret the entailment relation as the order relation in the
lattices, as usual. Observe also that we can still prove the proposition -ι~vl ->A,
since its proof in classical logic depends on our Axiom (iii). However, we can-
not prove the converse A -> -ι -ιA9 since the proof depends on the Boolean ver-
sion of Axiom (iii). For similar reasons, the formula (->£ -» -~ιA) -> {A -> B)
cannot be proved in general but the converse (A-*B)-+ (-\B -• -vl) can. (See
Mendelson ([11], pp. 33-35) for standard proofs in classical propositional logic.)
We will close this section with a conjecture: if one defines the relation of logi-
cal equivalence in the standard way, that is A and B are logically equivalent if
and only if A -> B and B -»A are theorems of the system, then the Lindenbaum-
Tarski algebra of the system of axioms above is a Brouwerian lattice.1 If our
conjecture is correct, then a completeness proof becomes elementary, but we pre-
fer to ignore the last problem for the moment.

5 Concluding remarks We now seem to be facing an alternative: either we
pick the definitions which preserve all classical tautologies but destroy the clas-
sical logical equivalences in the semantics or we choose the definitions which al-
low what seems to be a reasonably good fit between the syntax and the semantics
but shrink the class of (genuine) tautologies. At this stage, we believe that the
second choice is preferable. Our argument is simple: we have not really lost any-
thing by moving to this new system. In fact, the new semantics might allow a
finer classification of propositions than the classical one. One might want to con-
sider quasi-tautologies, i.e., formulas that are tautologies if one of their variables
is Boolean. Similarly, we might consider quasi-contradictions. Be that as it may,
at the operative level, we are still working with a "full-blown" classical logic.

One last word about logical equivalence and the results of Section 3. We have
pointed out at the end of Section 3 that even though all classical tautologies are
valid in a Bunge algebra under the appropriate interpretation of the implication
operator, we lose many classical equivalences. Tobar-Arbulu [16] claimed that
these inequalities are contradictions. We have already replied to these claims and
therefore we will not go over this issue again (see Marquis [7] and Tobar-Arbulu's
reply in Tobar-Arbulu [17]. The real issue is whether or not this loss of equiva-
lence is crucial. According to Weston [18], who has independently established
the fact that the valuation system presented in the second section determines the
same tautologies as classical logic, it is essential. He even raises it to the level of
a principle and rejects the valuation system because it violates it. He formulates
his principle as follows:

(EP) If φ and ψ are logically equivalent, then \\φ\\ = \\ψ\\,



194 JEAN-PIERRE MARQUIS

I —1| denotes a valuation function from a deductive system to the unit interval
[0,1]. (We have to point out that this is one form of his principle. It is also enun-
ciated in terms of approximate truth. But the latter is more complex and is es-
sentially the same as the above.)

Should we accept this principle? If so, on what grounds?2 The motivation
behind the equivalence principle seems reasonable: "it is highly desirable to as-
sure that a statement's degree of accuracy does not depend on details of how it
is formulated" ([18], p. 206). The whole question here depends on the words "on
details of how it is formulated". Does it refer to details of the grammatical form?
The mathematical formulation? The logical formulation? It seems to us that what
is at stake here is the type of "linguistic" transformations allowed and the prop-
erties preserved by these transformations. It is not clear to us that the property
of "being logically equivalent" constitutes the correct set of transformations and
even less clear that "being classically logically equivalent" is appropriate. It might
be too general or simply insensitive to the degree of accuracy of a formula.

Notice that in some cases the way a proposition is formulated is crucial with
respect to some properties, particularly in the sciences.

. . . experimental accuracy depends not only upon the quality of the instrumen-
tal, e.g. the laboratory equipment, but also upon the mathematical form of the
formulas being checked—which form is to some extent conventional. A simple
example will suffice to make this point. Suppose the task is to check a theoret-
ical formula of the form "y = ax/(b + x)". This task is complicated by the fact
that a is the asymptotic value of y, To facilitate the task, one performs
the simple trick of transforming the given formula into a linear equation by
means of the variable changes x = \/u and y = 1/v, which ensues in "υ = (I/a) +
(b/a)u". Now a is the reciprocal of the ordinate value at the origin, usually an
accessible number. (Bunge [6], p. 127)

One way to justify the equivalence principle is as follows: if the meaning of
a proposition is given by the class of propositions which entail it and all prop-
ositions it entails, then two propositions which are deducible from one another
must mean the same thing. Therefore, they must always have the same truth
value and hence must be equivalent. In our framework, this cannot be accept-
able, for our valuation function is a partial function. Hence it is possible to have
logically equivalent formulas such that one of them will get a truth value while
the other or others will not.

Why should there be such a close relationship between the equivalence classes
induced by the deducibility relation and the equivalence classes induced by the
relation "having the same truth value"? The answer is well known: because the
consequence relation preserves truth values. Given a proposition P with truth
value /, if you deduce Q from P, then you can be sure that Q has also the truth
value /. It is the very essence of the consequence relation to do that. We even de-
fine the consequence relation in this way: "a proposition follows from a set of
propositions" means that if the premises are true then the conclusion is neces-
sarily true. Therefore, when there is only one premise and moreover when this
premise can be deduced from the conclusion alone, we see that in a bivalent con-
text both propositions have to have the same truth value. It is still not entirely
clear to us that this has to be extended to the nonbivalent case.
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One last word about the relations between truth and logic. It seems to us rea-
sonable to assume that scientists do in fact use classical logic. This is reasonable
since they use classical mathematics all the time, and classical logic is built into
it. Moreover, when a scientist reasons, she does not know all the truth values of
the propositions she uses in her reasonings. In some cases, she does not know
the truth value of any of the propositions involved, e.g. when she is investigat-
ing a new theory and trying to deduce a verifiable consequence. When she does
that, we can presume that she assumes her premises to be fully true. In other
words, the actual truth value of a proposition is irrelevant in logic. The standard
definition of the consequence relation is almost a count erf actual: in some cases
we do know the truth value of the propositions involved, but in many cases, at
least in the factual sciences, we do not have the faintest idea of the actual truth
value of the propositions. But when we assume that a proposition is true, we sim-
ply fall back in the classical Boolean territory.
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NOTES

1. Two points have to be made. Firstly, how does the logical system have to be modi-
fied such that the resulting Lindenbaum-Tarski is a Bunge algebra? Secondly, this
opens a possibility which might be interesting. In some toposes, the subobject clas-
sifier is such that we can define a "nonstandard" negation, namely the dual of the
standard morphism. We then get a new logic. The question is then obvious: How does
this "new" logic influence the kind of mathematics which can be done in such a
framework? We will consider this question elsewhere.

2. We have to point out that Weston does come up with a new logical system. But his
system is at odds with scientific practice, since it does not preserve modus ponens.
We find this hard to accept.
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