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Pure Second-Order Logic

NICHOLAS DENYER

Abstract Pure second-order predicate calculus is a predicate calculus where
the only variables are predicate variables. In it, logical truth is decidable, and
semantic consequence is compact. Pure second-order functional calculus is
a functional calculus where the only variables are function variables. In it,
semantic consequence is not compact, and there is no complete proof pro-
cedure for logical truth.

The language of the pure second-order predicate calculus consists of those
formulas of the second-order predicate calculus whose only variables are pred-
icate variables. A statement of its semantics will help to elucidate my notational
conventions.

A model I is a pair (D, R, where D is a domain of individuals, and % is
a function such that:

1. for any name n, R(n) € D;
2. for any k-adic function sign f, ®(f) is a k-adic operation on D;
3. for any k-adic predicate F, R(F) S D*.

Let an S be a function such that for each k-adic predicate variable ¢, S(¢) S
D, Let S¢s/¢) be just like S, save that S(s/¢) assigns s, a subset of DX, to ¢.
For each S, let S[ ] be such that:

1. for any name n, S{n] = R(n);

2. for any function sign f, S[f(¢1,...,4)] = R(OS[H], ..., S[LD;
3. for any predicate F, S[F] = R(F);

4. for any predicate variable ¢, S[¢] = S(¢).

We say that in It S satisfies:

1. an atomic formula f¢,. .., t; iff (S[t;],...,S[#]> € S[i];
2.1. A iff S does not satisfy A;
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2.2. A & B iff S satisfies A and S satisfies B; and so on in the obvious way
for other truth-functional connectives;

3.1. 3¢A iff for some s, S(s/¢) satisfies A4;

3.2. V@A iff for any s, S(s/¢) satisfies A.

A is true in I iff A is a closed formula satisfied in I by every S. And A is a
logical truth iff A4 is true in every I.

Theorem Logical truth for the pure second-order predicate calculus is
decidable.

Proof: For any A, M = (D, R), and S, we give the following definitions of
MA = (D4, %) and S4, the A-condensations of 9t and of S:

1. a€ D4iff for some singular term ¢ used in 4, a = S[¢];

2.1. if n is a proper name used in A, then R4 (n) = R(n);

2.2. if f is a k-adic function sign, then R4(f) = (D)1 N R(Sf).
2.3. if Fis a k-adic predicate, then R4 (F) = (D4)* N R(F).

3. if ¢ is a k-adic predicate variable, then S4(¢) = (D4)* N S(4).

We can now give an inductive proof that S satisfies 4 in I iff S satisfies
A in M4, In virtue of the definitions of M and S4, this obviously holds for
atomic A. As for the inductive step, it may be instructive to give some details for
two of the cases.

Case &. Suppose that B & C is satisfied in I® by S. Then B too is satisfied in
M by S. Hence B is satisfied in IM? by SZ. But since any terms that occur in B
occur also in B & C, M? and S? are the B-condensations not only of 9 and S
but also of MB4C and SB4C. Hence B is satisfied in B4 by SB4C, By similar
reasoning, so is C. Hence if B & C is satisfied in 9t by S, it is satisfied in IBEC
by SB4C. To show the converse is now easy.

Case 3. Suppose that 3¢B is satisfied in I by S, and that ¢ is k-adic. Then for
some s, s € D and B is satisfied in 9 by S¢s/¢). Then B is satisfied in MZ by
S¢s/¢YE. But ME = M358, and S(s/¢)? = S(s/¢)**E. So B is satisfied in M?*8
by S(s/¢Y**2. So for some s, namely s N (D¥*F)%, B is satisfied in M7 by
S3%B(s'/¢). Therefore 3¢B is satisfied in M**E by $3%B. Suppose now that 3¢B
is satisfied in M3**® by S?*2. Then for some s, s S (D?**F)¥ and B is satisfied in
1398 by S3*B(s/¢). But IM**E = ME. And S?B(s/¢) = S(s/$)**Z = S(s/p)E.
So B is satisfied in M2 by S(s/¢)5. So B is satisfied in M by S¢s/¢). Therefore
3¢B is satisfied in IM by S.

The reader can now be left to complete the inductive proof and infer that if
A is false in a model, it is false in the A-condensation of that model. Now the
A-condensation of a model has a domain with no more individuals than there
are singular terms used in A. Thus by counting the finite number of singular
terms used in A, we can determine a finite set of finite models such that, if 4
is false in any model at all, it is false in one of them. Thus given any formula,
we can institute a systematic search, and finitely far into our search we will reach
a stage at which we know that if we have not already found a model in which
the formula is false, the formula is true in all models. Logical truth for the pure
second-order predicate calculus is therefore decidable.
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Theorem If each finite subset of v has a model, then + is a subset of some
maximal set T' which has a model.

Proof: Expand the language of v by adding, for each k, as many new k-adic
predicates as there are finite sets of ordered k-tuples of singular terms in the lan-
guage of . Let an n be an ordered k-tuple of singular terms; if m is the k-tuple
of singular terms a,...,a;, and n is b;,..., b, let m = n be the formula
a, =by &...& a; = b;. For each finite set of ordered k-tuples of singular terms
used in the language of v, take a distinct k-adic predicate, F, from those that we
have just added to the language of +y. If that finite set of ordered k-tuples is
empty, form for every n the formula —Fn. If on the other hand that finite set
of ordered k-tuples is {m;, . .., n;}, then form the formula Fn; & . .. & Fn;, and
for each m which is not in {m;, ..., n;}, form the formula Fm= (m=n; v...v
m = n;). Let all the formulas we thus form from our new vocabulary be added
to v and call the result I'o. .

Now assume that each finite subset of v has a model. It follows that the same
is true of T'o. For suppose some finite subset of I'o has no model. Then that sub-
set will have in turn a subset § such that 6 has no model and such that every
proper subset of 6 does have a model. Suppose that one of our new predicates —
let it be F—is used in 8. Let 67 be those formulas in & that use F; and let —&6”
be the negation of the conjunction of the members of 67. Now —&4” will have
either the form —(—-Fm, &...& —Fm,) or the form = [{Fn; &...& Fn;} &
{(Fmg= (my=nv...vmy=m)) &...} & {Fm,= (m,=n; v...vm, =
n;)}]; or some form which results from this by omitting one or two of the sub-
formulas enclosed by { }. Whatever its precise form, &4 is evidently contin-
gent. Yet 6 — 6F F —&6%; and F is not used in 6 — 6F. Hence 6 — 6 can have no
model. But it does have a model. Hence § cannot contain any of our new pred-
icates. Hence 6 would have to be a subset of y; which it cannot be, since each
finite subset of v has a model. Hence every finite subset of I'o has a model af-
ter all.

I'o may be expanded into I' by the following procedure. Let the closed sen-

tences in the language of I'o be well-ordered as py, p», . ... For each n > 0, let:
I'm= U I'mU {p,},
m<n

if for some finite subset P of U,,<, I'm, P E p,; otherwise, let:

I'm= |J I'mU {—-p,}.

m<n

We now let:
r=Q I'm.

m=0
The reader can verify, by transfinite induction if need be, that I" is maximal and
that each finite subset of it has a model.

Now consider the model M. For each singular term ¢ used in T', let ¢’ be the
equivalence class such that ¢/ = ¢, iff ¢; = ¢, €. Let D consist of those equiv-
alence classes. For each name n, let #(n) = n’; for each function sign f, let
Lo =R, ..., ) iff to = f(¢,...,t) €T; and for each predicate F, let
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{t],...,t) €ER(F) iff Fty,. .., €. Now a sentence is true in I iff that sen-
tence € I'. This can be shown by induction on the complexity of sentences. It ob-
viously holds for atomic sentences. And where we consider truth-functional
connectives, the reasoning for the inductive step is trivial. So let us consider the
existential quantifier, and show that if every formula with fewer quantifiers than
3¢A is true in I iff it belongs to I', then the same applies to 3¢A itself. We will
assume that ¢ is k-adic.

Let I be the conjunction of every formula in I that is either an identity using
two terms that occur in 3¢A4, or the negation of such an identity. Now we have
so constructed I' that, for each set j of ordered k-tuples of the terms that occur
in 3¢A, there is at least one predicate F; such that if n is an ordered k-tuple of
the terms that occur in 3¢A, then I' contains F;n if for some m € j, I[Fm = n,
and I' contains —F;n if for no m € j, I Fm = n. For each set j of ordered k-
tuples of the terms that occur in 3¢A4, choose one such predicate. Let P; be the
conjunction of those sentences in I' that use only that predicate and terms in 3¢A4
and are either atoms or the negations of atoms; and let A; be the result of re-
placing with that predicate all free occurrences of ¢ in A. Let P be the conjunc-
tion of each P;; and let A be the disjunction of each 4;.

(I & P) = (304 © A) is a logical truth. For if it were false in a model, it
would be false in the A-condensation of that model. Now since A = 3¢A is any
case a logical truth, (I & P) = (3¢A4 © A) could be false only if I, P, and 364
were all true, while A was false. But if I and P were true in the A-condensation,
then each k-adic property in the A-condensation would be the interpretation of
some predicate in P. So whatever property a sequence assigns to ¢, if the se-
quence satisfies A4, it will satisfy one of the disjuncts in A. So if in the 4-con-
densation 3¢A were true, A would be true too.

Now since (I & P) = (3¢A4 & A) is a logical truth, it will both belong to T’
and be true in M. But I & P also belongs to I'; and, since it contains fewer quan-
tifiers than 3¢A, it is true in . Thus 3¢A4 < A both belongs to I' and is true
in . Suppose now that 3¢.A belongs to I'. Then so does A; and so does some
disjunct of A. But, since it contains fewer quantifiers than 3¢A, that disjunct
of A will be true in . Hence 3¢ A will also be true in J?. Suppose instead that
3¢A is true in M. Then A is true in IN; and so is some disjunct of A. But, since
it contains fewer quantifiers than 3¢.A4, that disjunct will belong to I'. And 3¢A4
follows from each such disjunct. Hence 3¢A4 will belong to I" too.

The reasoning for universally quantified formulas is similar enough for the
reader to be left to complete the proof.

A formula is a formula of the pure second-order functional calculus if and
only if it is a formula of the second-order functional calculus and its only vari-
ables are function variables. Pure second-order functional calculus could not dif-
fer more from pure second-order predicate calculus, since:

Theorem In the pure second-order functional calculus, semantic consequence
is not compact, nor is logical truth decidable, nor is there even a complete proof
procedure for logical truth.

Proof: 1t is possible to simulate first-order quantification by quantifying func-
tion variables: for each individual variable v, take a distinct monadic function
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variable f; replace all occurrences of Vv by Vf, and of 3v by 3f; then replace all
remaining occurrences of v by f(0). For any formula A4, let A* be its translation
according to this scheme. Let C be the conjunction of the standard axioms for
succession, addition, and multiplication, together with this version of the second-
order induction axiom: Vf(Vxf(x) = f(s(x))) = Vx f(x) = f(0). Now C* is true
in a model iff that model is isomorphic to the standard model of arithmetic. Thus
the infinite set of formulas {C*,n # 0, n # s(0), n # s(s(0)),...} has no
model; but any finite subset of it has a model, formed from the standard model
of arithmetic by extending it to have the name » denote some number whose nu-
meral is not used in our finite subset. Semantic consequence is therefore not com-
pact. Moreover, A is true in the standard model of first-order arithmetic iff
(C = A)* is a logical truth of the pure second-order functional calculus. Thus
if we could have a decision procedure for logical truth in the pure second-order
functional calculus, we could also have a decision procedure for first-order arith-
metical truth, and likewise a complete proof procedure for the former would also
be a complete proof procedure for the latter. But there can be no complete proof
procedure, and a fortiori no decision procedure, for first-order arithmetical truth.
Hence there can be no such things for logical truth in the pure second-order func-
tional calculus either.

Acknowledgment Thanks are due to Timothy Smiley and to an anonymous referee.

Trinity College
Cambridge

CB2 ITQ
United Kingdom





