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Unary Interpretability Logic
MAARTEN de RIJKE*

Abstract Let T be an arithmetical theory. We introduce a unary modal
operator ‘I’ to be interpreted arithmetically as the unary interpretability pred-
icate over 7. We present complete axiomatizations of the (unary) interpreta-
bility principles underlying two important classes of theories. We also prove
some basic modal results about these new axiomatizations.

1 Introduction The language £() of propositional modal logic consists
of a countable set of proposition letters pg, p1,. .., and connectives -, A, and
0. £(O,) is the langauge of (binary) interpretability logic, and extends £ ()
with a binary operator ‘>’. (‘4 > B’ is read: ‘A interprets B’.) The provability
logic L is propositional logic plus the axiom schemas [1(A4 —» B) —» (A — OB),
0OA - 0O0OA, and O(0OA - A) » OA, and the rules Modus Ponens (FA4,+FA4 -
B = B) and Necessitation (A = FOA). The binary interpretability logic IL is
obtained from L by adding the axioms

(J1) OA->B)-A>B

(J2) (A B)A(B>C)—» (AD> C)
J3) A CO)AB>C)»(AVvB)>C
(J49) A B- (CA- OB)

(J5) OAp> A,

where ¢ = —[O-. IL is taken as the base system; extensions of IL with one or
more of the following schemas have also been studied:

(F) A 904A-0-A4

(W) A B-Ap (BAO-A)

My) A B—- (OAAOC)> (BAOC)
(P)y A B-0O(A> B)

M) A B-(AAOC)> (BAOO).
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We use ILX to denote the system IL + X, where X is the name of some axiom
schema. ILMP denotes the system IL + M + P plus the additional axiom A >
B—>AA(Cr> D)> BA (Cr D). Let ILS be one of the systems introduced
above; the system ILS“ has as axioms all theorems of ILS plus all instances of
the schema of reflection: (A — A. Its sole rule of inference is Modus Ponens.

Recall that an L-frame is a pair (W, R) with R € W? transitive and con-
versely well-founded, and that an L-model is given by an L-frame T together
with a forcing relation |l that satisfies the usual clauses for - and A, while
ulF OA iff vo(uRv = viF A). A (Veltman-) frame for IL is a triple (W, R, S,
where (W, R) is an L-frame, and S = {S,,: w € W} is a collection of binary re-
lations on W satisfying

1. S,, is a relation on wR (={v:wRv})
2. S, is reflexive and transitive
3. if w,w” € wR, and w/'Rw” then w’'S, w”.

An IL-model is given by a Veltman-frame F for /L together with a forcing re-
lation |F that satisfies the above clauses for =, A, and (0, where

ultA> Bo vv(uRvand viF A = aw(vS,w and w I+ B)).

An JILP-model is an IL-model that satisfies the extra condition: if wRw’RuS,, v
then uS,, v. An ILM-model is an IL-model satisfying the extra condition: if
uS,,vRz then uRz. A model is an ILMP-model if it is both an ILM- and an ILP-
model, and it also satisfies the condition: if xRyS,zRuS,v then uS,v.

In the sequel, T denotes a theory which has a reasonable notion of natural
numbers and finite sequences. The theories we consider are either Z%-sound es-
sentially reflexive theories (like PA), or £¢-sound finitely axiomatized sequen-
tial theories (like GB).

An arithmetical interpretation (-)T of £(0,>) in the language of T is a
map which assigns to every proposition letter p a sentence p” in the language of
T, and which is defined on other modal formulas as follows:

1. (.L)Tis ‘=1

2. (+)T commutes with = and A;

3. (OA)7 is a formalization of ‘T (A4)7?;

4. (A > B)T is a formalization of ‘T + (A)7 interprets T + (B)”.

So the operator > is interpreted arithmetically as the binary interpretability pred-
icate over T. Interpretability over 7 may also be studied as a unary predicate on
finite extensions of 7. Obviously, the modal analysis of the unary interpretability
predicate in the spirit of Solovay’s analysis of provability has to be undertaken
using a unary modal operator. It was Craig Smorynski who first introduced an
operator to be interpreted as the unary interpretability predicate. (The present
investigations were inspired by questions of his.) Svejdar was subsequently the
first one to introduce a binary operator to be interpreted as the binary interpreta-
bility relation.

It is clear that interpretability as a binary relation is the more basic notion,
since unary interpretability is reducible to it; moreover, in the sequel it will be-
come clear that the modal language with > is more expressive in important ways
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than its unary reduct. On the modal side the reduction of unary to binary inter-
pretability leads to the following definition:

Definition 1.1 Define in £(J, >) the unary interpretability operator ‘I’ by
I4 :=T > A, and let £(1,I) extend £() with I.

So x|F 1A iff vy(xRy — 3z(yS,z A zlF A)). And given a theory T, it follows
from the definition of an arithmetical interpretation that (I4)7 is a formaliza-
tion of ‘T + (A)7 is interpretable in 7”.

Definition 1.2 The unary interpretability logic il is obtained from the prov-
ability logic L by adding the axioms

Jayn 101

(I2) O(A- B)- (14 —~1B)
I3) L(AvOA)~1A4

(I8 TAAOT - OA.

Several axioms have special names:

(f) IOT->0OL
(m) TA->I(AADOL)
(p) 14 - OIA.

We use ilm to denote the system i/ + m, and ilp to denote il + p. For other
axiom schemas S we will simply refer to ILS N £(,1) as ils. Let ils be one of
the systems i/, ilm or ilp. The system ils® has as axioms all theorems of ils plus
all instances of the schema of reflection: (JA — A. Its sole rule of inference is
Modus Ponens.

In Section 2 we prove that il = IL N £(O,I), ilm = ILM N £(4,I), and
ilp =ILP N £(0O,I) —thereby establishing that ilp is the unary interpretability
logic of all finitely axiomatized sequential theories that extend IA, + SupExp,
and that ilm is the unary interpretability logic of all essentially reflexive theories.
It will turn out that i/m is in fact the unary interpretability logic of all “reason-
able” arithmetical theories. We end Section 2 with some remarks on the hierar-
chy of extensions of il.

Next, in Section 3 we study the closed fragment of £(,I) and investigate
the modalities in this language. We then state and prove Interpolation Theorems
for il, ilm, and ilp. From these we obtain Fixed Point Theorems for these logics
in a standard way.

We end this section with two useful propositions. Let ils be one of the sys-
tems i, ilm, or ilp, and let ILS be the corresponding binary system. We first show
that ils € ILS N L£(,I):

Proposition 1.3 Let Ae £(O,0). Ifilst A then ILS \- A.

Proof: It suffices to show that for S = T, P, M, we have ILS | ils. We only
show that IL | I'1 and that ILM + m.
By J1, J5, and J3 we have

ILHF(OLvOoOL)>O1. (1)
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Furthermore
ILFO(T>(TAOL)VO(TAOL)=ILFO(T-0Lvo01)
=>JLFT>(OLvOOL), by J1
=L+ T> 01, by J2and (1).

To prove that ILM + m, we use the fact that in ILM we can derive A > B —
A > BAO-A (cf. Visser [11]). Therefore ILM + m.

Here are some theorems and a derived rule of the unary systems:

Proposition 1.4

(@) If il - A then il - LA. In particular, il FIT.
(b) il FOA - 1A.

) IFIA->T(AAORA).

) il +f<ilmcilp.

Proof: Items (a), (b), and (c) are left to the reader. To prove (d), note
ilpF14A - 0OIA
- 0O(0T - 0A4), byl4
>O0AAO-A->AAOL)
S>I(AAO-A)AOAAO-A—>AAOL), by(c).
-I(AAOL), byl2.

That is, ilp - m. This establishes the inclusion ilm < ilp. The inclusion i/ + f <
ilm is immediate.

Assuming that i/ does indeed axiomatize IL N £(,I), we find that FH[A4 =
F A is not a derived rule of i/: we have i/ FIO L, but # ¥ O L because IL ¥ O L.

2 Completeness In this section we prove i/ to be modally complete with re-
spect to finite /L-models. We also prove modal and arithmetical completeness
results for ilm and ilp. To prove the arithmetical completeness of ilm (ilp) we
first show that i/m (ilp) is modally complete with respect to ILM- (ILP)-models;
after that we appeal to the existing arithmetical completeness results for LM
(ILP).

2.1 Preliminaries Our modal completeness proofs use infinite maximal con-
sistent sets instead of the finite ones used, for example, to prove L or IL complete
(in Smorynski [8] and de Jongh and Veltman [2], respectively). Our approach has
the advantage that it can do without the large adequate sets employed there. In
this subsection we establish some results that will provide us with the building
blocks for constructing countermodels in our modal completeness proofs.

We start with some definitions. For the remainder of this subsection let ils
denote il, ilm, or ilp.
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Definition 2.1 Let I', A be two maximal ils-consistent sets:

1. Ais called a successor of T'(I" < A) if
(@) A€ Aforeach A €T
(b) OA € A for some A ¢T
2. Ais called a C-critical successor of T'(T' <. A) if
(@ I'<A
(b) IC&T
() -~C, O-CeEA.

Note that if I' <c A< A then I' <o A and if ' < A then I <, A.

Definition 2.2 A set of formulas ® is adequate if

1. if B€ ®, and C is a subformula of B, then C € &
2. if B € ®, and B is no negation, then =B € .

Let ® be an adequate set. Then we say that a formula OB is almost in ®, if
OBedorIBedorB=T.

Proposition 2.3 Let T' be a maximal ils-consistent set such that OC € T'.
Then there is a maximal ils-consistent A > T with C, O—-C € A.

Proof: Well-known (or cf. [8]).

Proposition 2.4 Let T be a maximal ils-consistent set with ~1C € T'. Then
there is a maximal ils-consistent A withT' <c A and O L € A.

Proof: Let A be a maximal cox’lsistent extension of
{D:0ODeT}U {(=C, O0-C}U {OL}.
Note that if such a A exists, it must be a C-critical successor of I': since
{D:ODeT}U{OL}cA

it is a successor of I'; and because { ~C, (J-C} S A it is also C-critical.

We have only to prove {D: OD €T} U {—~C} — {01} consistent, since OJ L
implies (01— C. Now suppose that this set is inconsistent. Then there are Dy, ...,
D,, such that D,,...,D,,,nC, 0L F 1. Then

Dy,....D,+t0L->C=0D,...,0D,+FO(OL->C)
= 0OD,,...,0D,, FIC, by I1 and I3.
So I' FIC. This contradicts the consistency of T'.
Proposition 2.5 Assume that IC € T, and that A is a maximal ils-consistent

set with I' <g A. Then there is a maximal ils-consistent set A’ withT' <g A’ such
that C, O-C € A.

Proof: Assume that there is no such A’. Then there are OD,,...,0D, €T
such that

D,,...,D,,~E,0O-ECO-CF| 1,
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SO
Dy,...,D,FCAO-C—-EvVOE
ODy,..., 0D, FO(CAO-C— EvOE)
rFO(CAO-C—-EvOE). ?2)

Since IC €T, it follows from 1.4 that I(CA O~C) €T. By (2) and I2 it follows
that I' F I(E v OF), which, by I3, implies T - IE and I1E € ' —but this contra-
dicts the fact that IE & T' by the existence of an E-critical successor of T'.

2.2 Modal completeness of il Given some (infinite) maximal i/-consistent
set I and a finite adequate set ®, we define the structure (¥4, R), which con-
sists of pairs (A, 7). Here, the maximal consistent sets A are needed to handle
the truth definition for formulas in I' N ®. And the sequences of (pairs of) for-
mulas 7 are used to carefully index the pairs we add to Wr. In this way we make
sure that (Wr, R) will be a finite tree.

For the time being, let I" be an infinite maximal i/-consistent set, and let &
be a finite adequate set. We use w, 7, . . . to denote pairs (A, 7). If W = (A, 7),
then (W) = A, (W), = 7. We write ¢ S 7 for ¢ is an initial segment of 7, and
o C 7if ¢ is a proper initial segment of 7. Finally, (w#),” (), denotes the con-
catenation of (W), and (7);.

Definition 2.6 Define Wr to be a minimal set of pairs (A, 7) such that:

1. (T, W € Wp

2. if (A, 7)Y € Wy, OB € A is almost in ® and C € ®, and if there is a
maximal il-consistent set A’ with A <. A’ and B,(1-B € A/, then (A,
77 B, CY) € Wr for one such A'.

Define R on Wr by putting wR#o iff (W), C (7). Define S on Wr by putting
Sy iff for some B, B’, C, 7, and o:

(0)1 = (W);” KB, C)» " 7and (#); = (W);” (B, C» 0.

Remark 2.7 In 2.6 the pairs (B, C) code the following: if (A, 7~ (B, C €
Wr, then for some (A,7) € Wp, A’ is a C-critical successor of A, and
(A, 77 (B, CY» was added to Wt because OB € A is almost in ®.

Proposition 2.8

(a) Wr is finite.

(b) If(W)l = (17)1 then w = .

(c) If WRD then (W) < (D)o.

(d) (Wr,R) is a tree.

(e) <Wr,R,S) isan IL-frame.

() If (A, 1) € Wr and E occurs as the second component in some pair in 7,
then —E, O-E € A.

Proof: (a) Since |®| = m for some finite m, it follows that for some finite n,
[{OB €T :OBis almost in ®}| = n. So T gives rise to adding at most n-m new
elements to Wr. Now each of these new elements contains at most # — 1 formu-
las of the form OB, where OB is almost in ®. Hence, each such element will give
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rise to adding at most (n — 1) -m new elements to Wr. Continuing in this way
we see that |Wp| < 1+ 11750 (n —i)-m) < w.

(b) Induction on lh((Ww);) = Ih((D),).

(c) Fix w arbitrarily and prove the claim by induction on lh(#) where WR®.

(d) To prove that {¥Wr, R) is a tree, note first that transitivity and asymme-
try are straightforward, so we prove only that for each W € Wit the set of its
R-predecessors is finite and linear. Finiteness is immediate by (a). To prove
linearity, assume that ZRw and oRw. Then (&), C (W), and (?); C (W),, so
(1)1 € (D), or (D), € (ir),. If (&), = (D), then &z = ¥ by (b), and we are done.
If (&), # (¥), then either (&); € (), or (D), C (&), that is: #Rs or ORu.

(e) Left to the reader.

(f) Induction on the construction of Wr.

Theorem 2.9 Let A € £(O,I). Then il - A iff for all finite IL-models /M
we have M F A.

Proof: Proving soundness is left to the reader. To prove completeness, assume
that il ¥ A. We want to produce an IL-model that refutes A. Let ® be a finite
adequate set containing —.A4, and let I' be a maximal i/-consistent set containing
=1A. Construct {Wr, R, S) as in 2.6. We complete the proof by putting w I p
iff p € (W) and by proving that for all F € & and w € Wt we have w |- F iff
F € (w)y. The proof is by induction on . We only consider the cases F = OB
and F=IC.

If F= OB € (W), we have to show that 30(WRo A B € (0)o). Note first
that OB is almost in &, and that L € ®. By 2.3 there is a successor A of (W),
with B, 0B € A. Moreover, A is a L-critical successor of (#)y. Put 7 :=
{A,(W);” (B, L. Then we may assume that o € Wr. It is clear that wRo and
B € (1) as required.

If F= OB ¢ (W), then OB € (W)y, and we have to show that Vi (WRD —
B € (D)g). But this is obvious from the definitions.

Assume IC & (W),. Then —IC € (W)g, and O T € (W),. By the induction
hypothesis we have to show that 30 (WRD A Vit (0S5 — —C € (i1)g)). Apply 2.4,
with I' = (W), to obtain a A with (w)y <c A, and define ¥ :=(A,(W); " (T, CH.
Since O T € (W), is almost in &, we may assume that o € Wr. Furthermore,
if 8Si@ then C occurs as the second component in some pair in (i);, hence
-C € (it)g, by 2.8(e).

Assume IC € (w),. By the induction hypothesis we have to show that
VU (WRD — 3 (0Syit A C € (it)g)). So let # € WR. Then (7)o > (W) by 2.8(c),
so OT € (W)y, and therefore OC € (W), by Axiom I4. By construction (o) is
E-critical for some E € ®. Now, apply 2.5, with I = (W#)q, A = ()0, to obtain
a A’ with (W), <g A’ that contains C, (1~ C. Since OC is almost in ¢, we may
assume that # = (A, (W);” «C, E)) € Wr. Clearly, u does the job.

Proposition 2.10 Let A€ £(O,I). Then ILF A iff il A.
Proof: By [2] we have for all 4 € £(,>), IL | A iff for all finite /L-models
M, M E A. From this and 2.9 the proposition follows.

2.3 Modal and arithmetical completeness of ilm To prove the modal com-
pleteness of ilm we need to adapt the construction used in proving i/ complete
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somewhat. The countermodel we will construct in the completeness proof will
consist of pairs (A, 7), where A is a maximal i/m-consistent set, and 7 is a se-
quence of triples of formulas.

For the time being we fix a maximal i/m-consistent set I' and a finite adequate
set ®.

Definition 2.11 Define Wt to be a minimal set of pairs (A, 7) such that

1. (T, » € Wr.

2. If A, 7Y E WL, OBE AN (2 U {OTY)), CE P and if there exists a max-
imal ilm-consistent set A’ with A <o A’ and B, O~ B € A’ then for one
such A, (A, 77 «B, 1L, C») € Wr.

3. If (A, 7) €E W, IBE AN ®, C € ® and if there exists a maximal ilm-
consistent set A’ with A <cA’and B, 01 € A', then{A, 7~ (L,B,CH €
Wt, for one such A

Define R on Wt by putting wRD if (w); C (7);. Define S on Wt by putting
Syu iff for some B, B’, E, E’, C, 0 and ¢’

(0)y = (W) " «B,E,C) "o and (), = (W), " KB,E,C) "0’
and
if B=1thenB' =1,
and
ifE'=1thenB’'=B, E'=FEando<So"

Remark 2.12 In 2.11 the triples (B, E, C) code the following: if (A’
77 «B, E, CY) € Wr, then there is some (A, 7) € Wr such that A’ is a C-critical
successor of A, and if B = 1 then (A, 77 (B, E, C))» was added to Wt because
OBEAN(PU{OT));if B= L then E# L and (A, 7~ (B, E, C))) was added
to Wr because IEE AN &.

Proposition 2.13

(@) Wr is finite.

(b) If (9); = (W)~ KB, E,C)) "o then either B= L or E= L (but not both);
and if B= 1 then 0L € (D)gand o = ).

(c) If (W), = (D), then w = 0.

(d) If WR© then (W)o < (D)o.

(e) {Wr,R,S) is an ILM-frame.

(f) If 9 =(A, 7Y € Wy and C occurs as the third component in some triple in
7 then ~C, O C € A.

Proof: Items (a), (b), (), (d), and (f) are left to the reader. Let us check that
{Wr, R, S) satisfies all the conditions to be an /LM-frame:

e it is easily seen that R is transitive and irreflexive —so by (a) it is also con-
versely well-founded;

* S; € WR X WR is immediate;

e to show that Sy is reflexive and transitive, use (b);

e to show that WRORi# implies 0Syit, use (b);
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¢ finally, we have to show that 0S;#RZ implies 7RZ; so assume that 0Sy.
By definition there are B, B, B”, E, E', E”, C, C”, 0, ¢’, and ¢” such that

(D)1= (W) " KB,E,C» 0o

(#); = (W), (BLE,C» "o’

(2)1 = (W), KBLE,C)» "0’ "B E",C") "a".
Obviously, B’ # 1, for otherwise, by (b), 01 € (it)y, and, by (d) L €

(2)o. Therefore, by (b), E‘’= L —butthen B=B,E=E’,ando <S¢’ In
other words: (¥); C (Z);, which means that RZ.

Theorem 2.14 Let A € £(0O,1). Then ilm \ A iff for all finite ILM-models
M we have M F A.

Proof: As before we prove only completeness. Assume ilm i+ A. Let ® be a
finite adequate set that contains -4, and let I" be a maximal i/m-consistent set
with =4 € I". Construct (W, R, S) as in 2.11. Define a forcing relation |- on
{Wr, R, S) by putting Wl p iff p € (W),. As before, we prove by induction on
Fthat for all F€ (® U {OT}) and w € W we have w Ik F iff F € (w),. We
consider only the case F = IB. (The case F = OB is similar to the correspond-
ing case in the proof of 2.9.)

The case that F = 1B ¢ (W), is entirely analogous to the corresponding case
in the proof of 2.9.

Assume that F = IB € (w),. By the induction hypothesis we have to
show that VO (WRD — 3u(0Szit A B € (i1)y)). So assume that o € WR. Then
(D), = (W), " KB, E’,C)» "o for some B’, E’, C, and ¢. By 2.13(f), (0)¢ is C-
critical. Now 1B € (W), implies I(BA O 1) € (W)y, by Axiom m. Apply 2.5 to
find a A’ with (W)g <c A" and B, O L € A'. Since IB € (w)o N $, we may assume
that & := (A, (W)~ L, B, C») € Wr. Obviously, we have 0S5 and B € (i1),
as required.

Proposition 2.15 Let A€ £(O,1). Then ILM | A iff ilm | A.

Proof: By [2] we have for all 4 € £(O,>), ILM | A iff for all finite ILM-
models M, ;M F A. From this and 2.14 the result follows.

Theorem 2.16 Let A € £(0O,1), and let T be a 9-sound essentially reflex-
ive theory. Then ilm + A iff for all interpretations (-)T of £(03,1) in the lan-
guage of T, T+ (A)7.

Proof: By Berarducci ([1], Theorem 3.8) we have forallA € £(O,>), ILMt A
iff for all interpretations (-)7 of £(O,>) in the language of 7, T I (A4)T.
From this and 2.15 the result follows.

Proposition 2.17 Let A € £(0,1). Then the following are equivalent:
(a) ilm“ I A

(b) ILM“}+ A

() ilmt (/\DBESub(A)(DB_’B) A OT) - A.

Proof: The implication (a) = (b) is trivial. By the proof of [1], Theorem 6.5,
ILM*® | A implies
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ILMF( A (OB—-B) A A (C—»OC)) - A.
OB&Sub(A) C>DeSub(A4)

Since A € £(O,I) this implies

ILM|—< A (DB—»B)AOT) - A.
OB&Sub(A)
Together with 2.15 this yields the implication (b) = (c). The implication (c) = (a)
is straightforward since i/m® t OB — B for all B € £(O,I), so in particular
imetFOL > 1, ie., ilm°FOT.

Theorem 2.18 Let A € £(0,1), and let T be a X9 sound essentially reflex-
ive theory. Then ilm*® \ A iff for all interpretations (-)T of £(0,1) in the lan-
guage of T, (A)T is true in the standard model.

Proof: By [1], Theorem 6.5, we have ILM* | A iff for all interpretations ()7
of £(O,>) in the language of T, (A)7 is true in the standard model. By 2.17
this implies the theorem.

Proposition 2.19 Let A€ £(0,1). Then ILW \- A iff ilm - A.

Proof: Since m is a substitution instance of the axiom W, the direction from
right to left is immediate from 2.10. Conversely, if ilm ¥ A, then ILM ¥ A by
2.15. Recall from the proof of 1.3 that ILM + W, i.e. that ILM 2 ILW. 1t fol-
lows that ILW It A.

Let us call an arithmetical theory a reasonable theory if it is sequential, L{-
sound, R -axiomatized, and its natural numbers satisfy 1A, + Q; (cf. Visser [10]
for details and motivation).

Theorem 2.20 The system ilm is the unary interpretability logic of all reason-
able arithmetical theories.

Proof: In Visser [10], Section 6.2, it is shown that IL W is valid for arithmetic
interpretations in all reasonable arithmetical theories, hence by 2.19 the same
holds for ilm. Therefore, the unary interpretability logic of all reasonable arith-
metics contains i/m. Since, by 2.16, ilm is the unary interpretability logic of PA,
the converse inclusion holds as well.

2.4 Modal and arithmetical completeness of ilp Instead of proving ilp mo-
dally complete with respect to /LP-models we prove a stronger result, notably
the modal completeness of ilp with respect to ILMP-models. The proof of this
result is a slight variation on the modal completeness proof for ilm.

As before, we fix a maximal ilp-consistent set I" and a finite adequate set ®.

Definition 2.21 Define Wt to be a minimal set of pairs (A, 7) such that

L (T, » € pr.

2. fCA,7YE WL, OBEAN (PU {OTY)), C e P, and if there exists a max-
imal ilp-consistent set A’ with A < A’ and B, 0B € A/, then for one
such A, (A, 77 (B, L,C) € Wr.
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3. If <A, 7y e Wr, IBEe AN P, C e P, and if there exists a maximal ilp-
consistent set A’ with A <o A’and B, 0L € A, then<A, 7" (L,B,CH €
Wr, for one such A'.

Define R on Wr by putting wRo iff (Ww)y C (0)o. Define S on Wr by putting
Syt iff for some B, B, E, E’, C, 7, and ¢

(0)1 = (W), " 7" KB,E,C)) and (#); = (W), "7~ (BLE,C) "0
and
if B=1thenB =1
and
if E’=1thenB'=B,E'=E.

Proposition 2.22

(a) Wt is finite.

(b) If (D)= (W) "7~ KB, E,C) "o theneither B= 1 or E= 1 (but not both);
and if B= 1 then 0L € (D)gand 0 = ).

(C) If(W)l = (l_))l then w = 0.

(e) {(Wr,R) is a tree.

) {(Wr,R,S) is an ILMP-frame.

(g) If 1 = (A, 1) € Wr and C occurs as the third component in some triple in
7, then - C, O~ C € A.

Proof: We prove only (f). The proof that (W;, R, S) is an ILM-frame is simi-
lar to the proof of 2.13(e); to prove that (W, R, S) is also an ILP-frame, we
have to show that WRw’R&iS;; U implies &S U —but this is immediate. So it re-
mains to be proved that xRyS, zRuS, v implies S, v. Reasoning as in 2.13(e) we
find that xRyS, zRu implies xRyRzRu. Now, if y = z then we trivially have uS,v,
and if yRz then we have uS,v because (W, R, S) is an ILP-frame.

Theorem 2.23 Let A € £(O,1). Then ilp \- A iff for all finite ILMP-models
M we have M F A.

Proof: As before we prove only completeness. Assume that ilp It A. Let ® be
a finite adequate set that contains —A, and let I" be a maximal i/p-consistent set
with =4 € I'. Construct (W, R, S) as in 2.21. Define a forcing relation |- on
{Wr, R, S) by putting w |- p iff p € (Ww)y. As before, we prove by induction on
Fthat forall FE® U {OT} and w € Wy we have wlF Fiff F € (W),. The case
F = OB is similar to the corresponding case in the proof of 2.9. So we consider
only the case F = IB.

The case that F = IB & (W), is entirely analogous to the corresponding case
in the proof of 2.9.

Assume that F = IB € (w),. By the induction hypothesis we have to show
that Vo (WRD — 3a(0Syi A B € (i1)y)). So assume that o € wR. Since {Wr, R)
is a tree, we can find a unique immediate R-predecessor w’ of . By Axiom p
we must have IB € (W#')g, and so by Axiom m, I(BAOL) € (W’)y. By con-
struction there are B’, E’, C’ € & such that (7); = (W’);” B’ E’, C’), that is:
(Ww')o <c (0)o. By 2.5 there exists a A with (#w’)g <¢- A and B, 0L € A. Since
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IBe (w')yN®, and C’ € & we may assume that &7 := (A, (W’); " «L,B,C'ME
Wr. Obviously, we have 0S# and B € (i1), as required.

Proposition 2.24 Let A e £(O,I). The ILMPV A iffilp + A.

Proof: If ilp - A then by 1.3 ILP I A, and hence ILMP I A. Conversely, if
ILMP | A, then for all (finite) ILMP-models M, ;M F A. So by 2.23, ilp - A.

Proposition 2.25 Let A€ £(0O,I). Then ILPF A iffilp & A.

Proof: The direction from right to left follows from 1.3. To prove the other di-
rection, note that ilp ¥ A implies ILMP It A, by the previous proposition, and
this in turn implies ILP I} A.

Theorem 2.26 Let A € £(0,1) and let T be a £9-sound finitely axiomatized
sequential theory that extends 1A, + SupExp. Then ilp - A iff for all interpre-
tations (-)T of £(O,1) in the language of T, T + (A)7.

Proof: By 2.25wehaveilpt Aiff ILP} A, for all A € £(O,I). By [11], The-
orem 8.2, this is equivalent to: for all interpretations ()7 of £(J,r>) in the lan-
guage of T, T+ (A)7. This implies the theorem.

Proposition 2.27 Let A € £(O,1). Then the following are equivalent:
(a) ilp“+ A

(b) ILP°F A

(© ilpF (Aosesuwa)(OB—>B)AOT)— A.

Proof: The implications (a) = (b) and (c) = (a) are trivial. The implication
(b) = (c) follows from 2.25.

Theorem 2.28 Let A € £(0O,]), and let T be a A,-sound finitely axioma-
tized sequential theory that extends 1Ay + SupExp. Then ilp® - A iff for all
interpretations (-)T of £(0,1) in the language of T, (A)7 is true in the standard
model.

Proof: By de Rijke [5], Theorem 3.2, we have ILP“ |- A iff for all interpreta-
tions (-)7 of £(0O,>) in the language of T, (A4)7 is true in the standard model.
By 2.27 this yields the theorem.

2.5 On the hierarchy of extensions of il In [2], [10], and [11] the follow-
ing extensions of IL in £(O,>) are considered:

ILP
ILCILFCILW C ILWM, ILMP.
C C C 0 C ILM C
(All inclusions are proper.)
As a corollary to 2.19 and 2.24 we find that this hierarchy partly collapses
when we only consider formulas A € £(1,I):

il Cilf Cilw = ilwmgy=ilm C ilp = ilmp.

(Recall that ilx = ILX N £([O,I).) To see that there is no total collapse we prove
the following result:
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Proposition 2.29
(@) ilm +ilp
(b) ilf #ilm

(o) il #ilf.

Proof: Parts (a) and (c) may be proved using two simple models. To prove (b)
we use a construction due to Svejdar (cf. [9]). It suffices to show that ILF i m.
Consider Figure 1 below. We claim that wlk F, i.e., that witA > 04 > O-A4,
for all A € £(O3,I). Suppose that wlF A > OA. Then

(a) if blFAthenalFA

(b) d It A—otherwise d I OA, which is impossible
(c) for each B,alF Biff clF B

(d) clt A—otherwise ¢ I A, which is impossible
(e) alt A, by (c) and (d)

) bt A, by (a) and (e)

(g) wiFO-A4, by (b), (d), (), and (f).

On the other hand, w it 1A — I(A A O1), for we have w |- Ip while w IFf
I(p AOL1), since b has no S,,-successor at which p A 0L holds.

a0
I ;
P b»o cO--—0d

’

w O
Figure 1.

(Plain arrows denote R-links; dashed arrows denote S,,-links; reflexive S-links
and S-links induced by R-links have been left out.)

3 Answers to some standard questions In this section we answer some
questions that come naturally with any extension of L. Notably, what are the
closed formulas and the modalities in £ (I) and £(J,I)? We also prove inter-
polation and fixed point theorems for i/, ilm, and ilp.

3.1 Closed formulas and modalities As usual we start with some defini-
tions. A formula C is called closed if it does not contain any proposition letters.
Let F be a frame. Define the depth d(w) of w € F by d(w) = sup{d(v) + 1:
wRv}.

Proposition 3.1 Let w, v be two points (not necessarily in the same model).
Ifd(w) =d(v) then wlF Ciff vIF C for all closed formulas C € £(0O).

Proof: This is by induction on d(w) = d(v).
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Proposition 3.2 Let w* be the natural numbers with the ordering reversed,
i.e., w* ={N,>). Let C be a closed formula in £(). Then L - C iff C is valid
on w*. (Le., iff for every w € w* and every I on w*, wl- C.)

Proof: The direction from left to right is obvious. To prove the other one, as-
sume that L ¥ C; then for some finite L-model ;M with root w, wilf C. Let n =
d(w), and let [ be any forcing relation on w*. It is clear that, in w*, the ele-
ment » has depth #n. So by the previous proposition, n I¥ C.

Proposition 3.3 Let C be a closed formula in £(). Then L+ (Cv 0C) &
Ok, for some k € w U {w}. (Here, 0T = 1.)

Proof: By the previous proposition it suffices to show that for all closed for-
mulas C in £(0J), there is some k € w U {w} such that (Cv ¢C) & O¥T is valid
on w*. This is left to the reader.

Proposition 3.4 Let X be a logic that extends il + f. Then every closed for-
mula in £(1) is, provably in X, equivalent to one of ¢ T, 0L, L1, or T. Hence,
every closed formula in £(0O,1) is equivalent, over X, to a closed formula in
£(d).

Proof: This is by induction on the closed formula C. The only nontrivial case
is C = 1B, where B is a closed formula in £(I). Now by the induction hypoth-
esis, B is a closed formula in £(0). Furthermore, il FIB « I(Bv OB). So, il
IB - I0KT, forsome k€ wU {w}. If k=0, then IO*T =IT,and XFIBo T.
If Kk = w, then IOKT =11, and

HFIL-> (20T VvOL),byl3
- (OLvoOl)
-0l
—-1IL1,byl.4.
So X+FC+ OLl. If 0 < k < w, then
X FIOKT - IO T, by Axiom 04 —» 0OOA
— [O.1, by Axiom f
- O0%T
- 10%T, by 1.4
So XFCe-OL.

By the Normal Form Theorem for closed formulas in £([0), it follows from
3.4 that in extensions of i/ + f every closed formula in £(,I) is equivalent to
a Boolean combination of formulas of the form (0" L, for some n € w U {w}.

Below il + f the situation is more complicated. Note for example that there
are infinitely many pairwise nonequivalent closed £(1,I)-formulas, none of
which is equivalent to a (closed) formula in £(0). To see this, let 4; :=10T,
Api1 = O (A, A 0" T), and consider the Veltman-frame F depicted in Fig-
ure 2. Let I be any forcing relation on F with, for alli € w U {—1}, q; I p iff
b; Ik p; then for all B € £(0), a; |+ Biff b; I B. On the other hand, we have for



UNARY INTERPRETABILITY LOGIC 263

alli € w\ {0}, a; It A; and b; I+ A;. This shows that none of the A; is equivalent
to an £(0O)-formula. To see that il i A; & A;, if i # j, note that for all /, and
allj > i, bi ”‘A,’/\ _lAj.

..... O O O O O

----- O O @) o.-_-0O
bs b, b, by Sp, b_y
Figure 2.

It is still open whether there exist reasonable normal forms for closed formulas
in subsystems of i/ + f.

We now examine the modalities in £ (I) and £ (J,I). (Recall that a modal-
ity is nothing but a sequence consisting of modal operators and/or dual versions
of these operators.) We say that two modalities o and (8 are equivalent over ils
if forall A € £(3,1), ils F oA & BA. A modality « is called a constant modal-
ity (over ils) if there is a closed formula C such that for all A,ils F a4 & C
@.e., if for all 4, B, ils F «A < aB). We use I as an abbreviation for —1-.

We start with the modalities over extensions of i/. Unlike modalities in more
traditional modal languages, almost all modalities in &£ (I) are constant. For ex-
ample:

Proposition 3.5 Let A € £(0O,I). Then
(@ ilFHMAo T

b) ilFHIA & L

) iIFIOAe T

d ilFICA o 1.

Proposition 3.6 Let A€ £(O,1). Then il FIIA « I T (o I0T).
Proof: One direction is almost immediate:

iFIIIA - HIT
—1IIT, since il F OIT « T).

To prove the other one, we show that i/ F TITA - IIT:

JFIHAA-IOL > IOT AT
SIOT ATIOT, since il FOAT & OT)
SIOTALIOT - 00T), by Axiom 74.

Now i/ FIOT AI(OT = 00T) - 1, by 1.4, and il + IO L « ILL. Therefore
AFIIA-TIL.
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As a corollary we find the following result:

Proposition 3.7 Let X be a logic that extends il. Then B o
(a) every ch_ial_ity in £(I) is equivalent (over X) to one of ¢ ), I, L, IL, I, II,

II, 1L, I, 111, or III; o )
(b) if X is il then the only nonconstant modalities in £(I) are ¢ ), L, 1, I, and I1.

Proof: Note first that if «, 3 are one of the modalities mentioned in (a), and
if « # G, then « and B are not equivalent over il. Let o be a modality in £(I).
Then either « € {¢ ), I, LIL, II}, and we are done, or for some «’ we have
a € (o, la’,Io’, o, I, ITa’}. In the latter case an application of 3.5
or 3.6 yields (a).

To prove (b), note first that ¢ ), I, I, I, and II are indeed nonconstant mo-
dalities; that they are the only such modalities in £(I) is immediate from 3.5,
3.6, and (a).

Proposition 3.8 Let X be a logic that extends il. Then every modality in
£(0O,1) is equivalent (over X) to a modality of the form a8, . . .a,8,, where
the o;s are modalities in £(O) and for 1 <i<n, 8; € « Y, L1111}, while
B, € « L LILIL I, I, ITL, I, I11, 1)

We continue with a somewhat simpler case: the modalities over extensions
of ilm. Here there are even fewer nonconstant modalities in £ (I). For a start,
we have the following stronger version of 3.6.

Proposition 3.9  Let A,Be £(0O,I). Then ilm FIIA & O L.

Proof: Since ilm 01 - OIA, we have ilm 0 L > 114, by 1.4. To prove the
converse, note that i/m + O (IAADOL - 1).So since ilm F 1A — I(I4AADOL),
by Axiom m, we have ilm IIA - 1L, by Axiom /2. Thus ilm F 1A - O L.

Proposition 3.10 Let X be a logic that extends ilm. Then every modality in
L) is equivalent (over X) to one of ), L, L, 1L, 11, 11, or I1. Moreover, if X
is ilm or ilp then the only nonconstant modalities in £(I) are { ), 1, and 1.

Proof: Immediate from 3.5 and 3.9.

Proposition 3.11 Let A € £(0O,1). Then
@ imFICA & O,
(b) iimFIOA < OT.

Proposition 3.12 Let X be a logic that extends ilm. Then

(a) every modality in £(O,]) is equivalent (over X) to a modality of the J‘:ort_n
o, where o is a ( possibly empty) modality in £(O), and 8 € {{ ),I,LII,
ILIL I);

(b) if X is ilm or ilp, t_hen the only nonconstant modalities in £(0,1I) are O,
O, O*1, and O*1.

Proof: Let v be a nonempty modality in £(3,I). If y is in fact a modality in
£(I), then we are done by 3.10. So assume that vy = o where « is the largest
prefix of v that is still a modality in £(O) (so « may be empty). Then, again by
3.10, B is equivalent to one of ¢ ), 18’, I8’, 113/, 11B’, IIB’, or I18’, where B’ is
either empty or a modality with a nonempty prefix in £(0). In the first case we
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are done; in the latter case we can use 3.5, 3.9, and 3.11 to check all cases, and
see that (3 is (equivalent to) a modality of the desired form.

Next, to prove (b) let y be a nonconstant modality in £(3,1); by (a) we may
assume that y = o3, with o as described in (a). Since v is assumed to be non-
constant 8 € {{ ,I,1}. Moreover since (0¢ and O are constant we may as-
sume that a = 0K, or « = O*, for some k.

If 8= ), then y = Ok or y = O%; in both cases v is nonconstant for all k.

If B =1, then y = 0¥ or y = DXL Since ilm |- 014 & O T, we have that
O*1 is constant for all k = 1; on the other hand, for any k, 01 is nonconstant,
as the reader may verify.

Similarly, if 8 = I, then v is nonconstant iff y = O*1.

For the remainder of this section let 7 be a LY-sound essentially reflexive
theory. (Modulo some obvious changes most of the remarks in the sequel hold
equally well for ¢-sound finitely axiomatized sequential theories that extend
IAg + SupExp.) Let O be a formalization (in the language of T') of provabil-
ity in T; Or¢ is short for 07— ¢; I is a formalization (in the language of T')
of the unary interpretability predicate over T.

Assume that ¢ is a sentence in the language of 7 that is not of the form
(=)Iry or (—)0Ory. We want to know what the theory 7T can say about sen-
tences of the form B¢, where (8 is (the arithmetical version of) a nonempty mo-
dality of the form (—)IB". By 3.12(a) we have to consider only 6 cases.

Note first that no formula of the form —I¢ can be provable in 7, for we
have ilm F O-1I4A -> O4L forall 4 € £(O,I). So T+ Ol - O7(0=1),
for all sentences ¢ in the language of 7. Therefore if T+ —I;¢ then T
O7(0 = 1). Since T is assumed to be L?-sound, this implies that for no ¢, T F
—I¢. Similarly, since ilm F ILA & 01, we cannot have T | I;17¢ for any
sentence ¢. Moreover, we do have for all sentences ¢, T - I717¢, because ilm -
I1A. The only remaining case, then, is 3 = I. Here we have the following pos-
sibilities:

Tt e, and then T+17o, THIrp
Tt =, and then TH Iy, TFIrg
TWHeo, THpand TFIre, THIre
THe, THpand Tt1re, THIre
TV‘ﬂD, T il and TI?‘ITga, T"IT_NP
TH'(p, TV 4 and TH'ITgD, TI?LIT—IQO.

.O\'QII-BUJN»—-

By our previous remarks, no strengthening of this classification is possible by
replacing ‘T ¥’ by ‘T | =’ somewhere.

We leave it to the reader to supply examples of cases 1 and 2; the sentence
O+(0 = 1) is a sentence that satisfies case 4, and its negation satisfies case 5; be-
low we will provide examples of sentences that satisfy cases 3 and 6. Recall that
an Orey sentence for T is a sentence y such that both i and —y are interpret-
able in 7. So a sentence satisfying case 3 is an example of a sentence that is prov-
ably in T an Orey sentence for 7. Our example below of a sentence satisfying
case 6 is an example of a sentence that is —unprovably in T—an Orey sentence
for T.
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Example 3.13 There is a sentence ¢ that satisfies case 3.

Proof: Put A = -0Op A ~0O-p A Olp A O0—-p. We prove that ilm“ it ~A;
then, by 2.18, there is an interpretation (-)” of £(0,I) in the language of T
such that (-.A4)7is false in the standard model. Hence (A4)7 is true. Put ¢ = (p)7
and we are done.

Now, to prove that ilm“ ¥ - A we show that

ilm b‘< A (OB—-B) A A OT) - 4. QA3)

OB€Sub(—A4) IDESub(—~A4)

Define JM as in Figure 3.

p S, -p
O +~—-~==-=0
b -p
O - — = -~ & O o)
w O w O
Figure 3. Figure 4.

We leave it to the reader to check that w I Apesub(-4)® T and that w I
N oBesub(-4) (OB = B); from this and w |- A we obtain (3).

Example 3.14 There is a sentence ¢ that satisfies case 6 and such that ¢ is,
unprovably in T, an Orey sentence for T.

Proof: Put A= -OpA-0O-pa-0OIpA-OI-pAlpAl-p. We have to show
only that ilm® I = A, then we find an interpretation (-)7 of £(3,I) in the lan-
guage of T such that (4)7 is true. Put ¢ = (p)7 and we are done.

We leave it to the reader to check that the model depicted in Figure 4 shows
that ilm® it 2 A.

Note that the model used in 3.14 is not an ILP-model. Therefore the sentence
¢ given there works only for essentially reflexive theories 7. We leave it to the
reader to find a ¢ that satisfies case 6 if T'is a L%-sound finitely axiomatized the-
ory that extends 1A, + SupExp. He or she will not be able to find a sentence ¢
that satisfies 3.14 for such 7. For, let T be such a theory, and assume that
T it Ir¢ while T + ¢ is interpretable in 7. Then w F Ir¢. Hence, w F O7lre
(since w EIr¢ — O7l7¢), and so T F Ir¢—a contradiction.

An inspection of the arithmetical completeness proof of ILM shows that the
sentences ¢ found in 3.13 and 3.14 may be taken to be L9-sentences.
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3.2 Interpolation and fixed point theorems Our proof of the interpolation
theorem for i/, ilm, and ilp extends Smorynski’s proof of the interpolation the-
orem for L (cf. [7]).

Definition 3.15 Let A € £(0,I). Then £4 is the sublanguage of £(0O,I)
consisting of all formulas having only proposition letters occurring in 4. (So
T,L € £,4, for any A.) A set X € £, is maximal ils-consistent in £, if for all
Cce Ly, either Ce £L40r "CE L4.

A pair (X, Y) with X € £,4, Y € £; is called separable if for some C €
L4NLg, CeXand "CeY. If (X, Y) is not separable it is inseparable.

A pair (X, Y) with X € £,4, Y € £ is called a complete pair if

1. (X, Y) is inseparable
2. X is maximal ils-consistent in £,4
3. Y is maximal ils-consistent in £p.

Our proof of the interpolation theorem for i/ (ilm, ilp) is in fact nothing but
another modal completeness proof for i/ (ilm, ilp) —using complete pairs instead
of plain maximal i/ (ilm, ilp)-consistent sets. The construction of a countermodel
is entirely analogous to the constructions in 2.6, 2.11, and 2.21. The main dif-
ference is the result that supplies us with the input for our construction. That is:
2.3, 2.4, and 2.5 have to be restated and reproved for complete pairs.

Definition 3.16 Let (X, Y),{(X’, Y’') be complete pairs.

1. (X, Y)< (X, Y'Y (X, Y’)is a successor of (X, YV)) if
(@ AeX'UY foralOAeXUY
b)) 04Ae X' UY forsome OAE XUY
2. (X', Y’)is called a C-critical successor of {X,Y) (X, Y) <c<(X,Y"))if
(@ (X,Y)<<X,Y")
b)) ICEXUY
(c) ~C,0-CeX'UY"

Proposition 3.17 Let Xy € £4, Yy S £p be such that {(X,, Yy) is an in-
separable pair. Then there exists a complete pair (X, Y) with X, € X € £,4 and
YoS YC £p.

Proof: See [7], Lemma 1.1.

Proposition 3.18 Let (X, Y) be a complete pair such that OC € XU Y. Then
there exists a complete pair (X', Y'Y >(X,Y) with C, O~Ce X' U Y".

Proof: See [7], Lemma 1.2.

Proposition 3.19 Let (X, Y) be a complete pair such that IC & XU Y. Then
there exists a critical complete pair (X', Y'Y with (X, Y) <c (X', Y'Y and
OLeXx’'uy.

Proof: Assume that no such (X", Y’) exists. We distinguish three cases. In each
case we argue that X and Y are separable after all. We prove only one case in
detail.
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Case 1. IC € £,\Lp. Then by 3.17 and compactness there are OF),...,
OF,, € X, O0Gy,...,0G, € Y, and D € £4 N £p such that
F,...,F,,~C,0-C,0L+FD )
Gi,...,G,, 01 F~D. )
By (4) we have OF,,...,0F, FO(0OL1L - (°D—- Cv 0C)). Now
ir-ICAO@ML > (-D->CvOQC)-»-0O(0OL > D).

So X F-~0O(OL - D). On the other hand, (5) yields Y+ O(O1L — D). So
X and Y are separable—a contradiction.

Case 2. IC € £5\ L. Similar to Case 1.

Case 3. IC € £4 N £p. By 3.17 and compactness one can see that, using for-
mulas OF;, OG; as in Case 1, one obtains that for some D € £4 N £z we have
XF-O@L->(D->CviC)and YFHO(OL » (D> Cv<OC)). Hence X
and Y are separable —a contradiction.

Proposition 3.20 Let {X,Y) be a complete pair with -1C € X U Y and
IE € XU Y. Then there exists a complete pair (X', Y'Y with(X,Y) <c(X,Y")
and E,O0-Ee€ X'UY"

Proof: Assume that no such (X', Y’) exists. We distinguish nine cases. As be-
fore, in each case we argue that X and Y are separable after all; we consider only
one case in some detail.

Case 1. 1E € £,\Lp, IC € £4\Lp. By 3.17 and compactness there exist

oF,...,0F,€ X, OG,,...,0G,€ Y, and D € £4 N £ such that
F,...,F,,~C,0~C,E,0-E}FD 6)
Gy,...,G, F~D. ™

Now (6) yields
oF,...,0F,,0-DFO(EAOE—-CvOC0)
oFf,...,0F,,0-DFI(EAO-E)->I(CvOC), by Axiom I2
arF,...,0F,,0-DFIE-IC, by l.4(c)and Axiom I3
aF,...,0F, FIEA-IC—> -0O-D
XF-0O-D.

On the other hand (7) yields Y F O-D. So X and Y are separable—a contra-
diction.

Case 2. 1IE€ £\ L, IC € £\ L,4. Then by 3.17 and compactness one can see
that, using formulas OF;, (JG; as in Case 1, one obtains that for some D €
£4N Lpwe have X FID and Y -ID, so X and Y are separable.

Case3. IE€ £\ Lp, IC € £, N L£p. Reasoning as in Case 1, one finds a for-
mulaDe £4N Lpsuchthat XF-O0(D->CvOC)and YO (D—-CvOC0).
Again, this means that X and Y are separable —a contradiction.
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Case 4. 1E € £3\L 4, IC € L5\ L,4. Similar to Case 1.
Case 5. 1E € £3\£,4, IC € £4\ L. Similar to Case 2.
Case 6. IE € £\ L4, IC € £4 N L£p. Similar to Case 3.

Case7. IE€ £,N Lp, IC € £4\ L. Reasoning as in Case 1, one can find a
formula D € £4 N £ such that X F ~O(EAO-E— —-D)and Y+ O(E A
O-E— —D). So X and Y are separable—a contradiction.

Case8. IE€ £4N £, IC € L5\ L. Similar to Case 7.

Case 9. IE€ £, N Lp, IC € £4 N L. Reasoning as in Case 1, one can find
a formula D € £4 N Lz such that X+ "O(EAO-E— (D - Cv 0C)) and
YFO(EAO-E—- (D—- Cv<{QC)). So, again, X and Y are separable—a con-
tradiction.

Theorem 3.21 (Interpolation Theorem) Let ils be one of il, ilm, or ilp. If
ils - A > B, then there is a formula C having only proposition letters occurring
in both A and B such that ilst+ A — C and ils - C - B.

Proof: The proof is by contraposition. Fix 4 and B and assume that no inter-
polant exists. We will show that ils ¥ A — B by constructing a countermodel to
the implication.

Note that the assumption that no interpolant exists between 4 and B means:
{A} and { ~B} are separable. So by 3.17 there exists a complete pair (X, Y) with
{Alc Xc Lyand {"B}c Y < £p.

Put I' := (X, Y) and construct Wt as in 2.6 (or 2.11 if ils = ilm, and 2.21
if ils = ilp) —starting with (I',{{ »» and adding pairs (A, 7) consisting of com-
plete pairs A and sequences 7 df pairs (or triples) of formulas. Using 3.18, 3.19,
and 3.20 one can then mimic the proof of 2.9 (or 2.14 or 2.23) to find a coun-
termodel to the implication A — B.

To state Beth’s Theorem and the Fixed Point Theorem for i/, ilm, and ilp,
we first introduce some notation and terminology. We use 4 (p) for a formula
in which p possibly occurs; p is said to occur modalized in A( p) if p occurs only
in the scope of a O or a I. A(C) denotes the result of substituting C for p in
A(p).

Theorem 3.22 (Beth’s Theorem) Let A(r) € £(0O,1) contain neither propo-
sition letter p nor q. If ils - A(p) A A(q) = (p < q) then, for some C €
Lan\lr}, st A(p) - (p o O).

Proof: The theorem may be derived from 3.21 in a standard way (cf. [7]).

Proposition 3.23
(@ iF0O(A4 o B)—> (14 « 1B);
® dFOY(Be C)— (A(B) o A(C)).

If p occurs modalized in A (p) and B is a conjunction of formulas of the form
OFE and OYE then

(¢) FO(Ce D) (A(C) » A(D));

(d) il FB-> (OA — A) implies il B— A;

() IO (po A(p)AO* (g A@Q) > (P q).
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Theorem 3.24 (Explicit Definability of Fixed Points) Let p occur modalized
in A(p). Then there is a formula B with only those proposition letters of A other
than p and such that il + B & A(B).

Proof: The theorem may be derived from 3.22 and 3.23 in a standard way

(f. [7D).

Remark 3.25 Admittedly, our proof of the Fixed Point Theorem does not
yield explicit information on what the fixed point of a given formula looks like.
To find an explicit calculation of fixed paints one may appeal to de Jongh and
Visser’s proof of the Fixed Point Theorem for /L and other binary interpretability
logics in [3]. Using our conservation results 2.10, 2.15, and 2.25, their calcula-
tions can easily be carried over to the unary systems: the fixed point of a formula
1A (p) turns out to be IA(OL).

4 Concluding remarks In [8] the bi-modal provability logic PRL, is de-
fined in a modal language £(O,, d,) with two provability operators. Besides
modus ponens it has as a rule of inference necessitation for [I,; its axioms are
the usual L-axioms for (J; plus O,(A — B) —» (0,4 —» O,B), 0,4 — 0,4, and
0,4 — O,0,A. Define a translation (-)* : £(O,I) - £(O,;,0,) by

p'=p
(nA) = A
(AAB) :=A'AB’'
(OA) = 0,0,A4°
(LAY := 0O, (05T — 0,47).

Using Visser’s alternative semantics for ZILP (cf. [11]) one may then show that
forall A € £(O,I), ilp + A iff PRL, - A",

This much about a connection of (one of) our new logics with a previously
known one. Let us look in the opposite direction now, and consider an exten-
sion of the language £(J,I). Montagna and Hajek [4] show that /LM is the
logic of IT%-conservativity in the following sense: given a Z%-sound extension T
of IL,, define the interpretation (A > B)* of a formula A > B in the language
of Tto be ‘T + B* is II{-conservative over T + A*’; then ILM | A iff for all
such (-)*, T+ A™ It is well known that in essentially reflexive theories like PA,
relative interpretability and IT19-conservativity (in the above sense) are provably
extensionally equivalent. However in finitely axiomatized theories like IX; the
two notions no longer coincide. So it is natural to extend £(O,>) with an op-
erator t>,, to be interpreted arithmetically as I1{-conservativity. (It is convenient
in this context to write > p instead of > for the ‘old’ operator t>.) As axioms we
take the usual L-axioms and rules plus the /LM-axioms for t>,,, and the /LP-
axioms for >p. In addition we have the following ‘mixed’ axiom: A >, B —
AA(CppD) >y BA(Cr>pD). The resulting system is called JLM/P. The rel-
evant models are tuples (W, R, SM™, SP |-y where (W, R, SM ) is an ILM-
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model, (W, R, ST ) is an ILP-model, where the following extra condition
holds: if xRyS}zRuS} v then uSFv. It is still open whether ILM/P is modally
complete with respect to such /LM/P-models. The unary counterpart ilm/p of
ILM/P is defined in a language £(,I,,Ip) with two unary interpretability op-
erators; its axioms and rules are those of L plus the i/m-axioms for I, and the
ilp-axioms for Ip; ilm/p has no ‘mixed’ axioms. It has been shown by the
present author that ilm/p is modally complete with respect to ILM/P-models (cf.
de Rijke [6]).

We end with a remark on the method used here to prove modal complete-
ness results for the unary logics. Recall that it employs infinite maximal consis-
tent sets and a ‘small’ adequate set instead of finite maximal consistent sets that
are contained in a ‘large’ adequate set (as used, for example, in [8] and [2]). Our
method has also been used to prove the modal completeness of several of the bi-
nary interpretability logics mentioned in this paper (cf. [S]).
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