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The Modal Logic of ‘All and Only’
I. L. HUMBERSTONE®

1 The modal logics of ‘All’ and ‘Only’ We work with the customary lan-
guage of modal propositional logic, in which formulas are built in the usual way
by application of some functionally complete set of truth-functional primitive
connectives alongside the singulary connective ‘[J°, from a stock of sentence let-
ters (or ‘propositional variables’), of which there are taken to be countably many.
For further background and terminology not explained here, see [6]. This lan-
guage is interpreted by means of frames (W, R) and models (W, R, V') thereon,
with various options being open for the definition of truth of a formula A at
a point x in such a model, notated ‘M k, A’ (where I = (W, R, V) and x €
W). We consider only variations on the clause governing [J-formulas in the
otherwise standard inductive definition of the E-relation. The contrast between
the following pair of clauses, of which the first figures in the standard defini-
tion, is quite interesting:

[Alll I E, A iff for all y € W, if xRy then M k, A
[Only] I k. OA iff for all y € W, if M F, A then xRy

The weakest logic on the ‘all’ semantics —the system, that is, which is determined
by the class of all frames when truth at a point in a model is as dictated by
[All] —is of course the system K, while the logic occupying a similarly minimal
position when the ‘only’ semantics is in force is the system of Karmo in [4],
called Anti-K. Recapitulating the details relevant to our present purposes, we
recall that K may be axiomatized by closing the class of substitution instances
of nonmodal tautologies under modus ponens and the rule:

K] (Ajn...NA,)> B
(D04, A ... A04,)-»0OB’
while for Anti-K this rule is replaced by:

[Anti-K] A—>(BV...VB)
(OB A ... AOB,) > 0A"

*] would like to thank Tom Karmo for assistance with some trouble spots in earlier ver-
sions of the arguments presented here, as well as a referee for this Journal who corrected
a serious flaw in the penultimate draft.
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In these schematic presentations of the rules, n = 0; for the n = 0 case, we note
that an implication with an empty conjunction as antecedent is identified with
its consequent, and one with an empty disjunction as consequent, with the nega-
tion of its antecedent. (At most, one of these cases arises for any given impli-
cation in the application of the above rules.) Evidently the rules preserve the
property of being valid on a given frame when truth is defined with [All] or
[Only] respectively, from which the soundness part of the above determination
claims follows. Completeness is proved by a consideration of the ‘canonical’
model (W, R, V) for the system in question, whose W consists of all maximal
consistent (for the given system) sets of formulas and whose R is defined in
the case of the completeness proof for K with respect to (w.r.t.) the ‘all’ seman-
tics by:

(1) xRy iff forall OBex, BEy
and for Anti-K w.r.t. the ‘only’ semantics by:
(2) xRy iff for some OB € x, BE y.

The valuation V'is then defined so as to secure that for atomic A we have (W,
R, V) k. A iff A € x, a property which extends automatically upward through
the various modes of truth-functional composition (thanks to x’s being maximal
consistent w.r.t. a system extending truth-functional logic) leaving the inductive
step for ‘CJ” which is handled in the ‘membership-to-truth’ direction via definition
(1) for K and (2) for anti-K (together with the inductive hypothesis), and in the
‘truth-to-membership’ definition by an appeal to the distinguishing rule in the
above axiomatizations of the two systems. The credit, incidentally, for the key
novelty here —the definition of R by (2) for the canonical model for Anti-K —
should go to Vander Nat, who put it to a somewhat similar use at p. 634 of [7].

What interest, the reader may wonder, attaches to deriving the complete-
ness result for Anti-K as above, with a construction parallelling that involved
for the canonical model completeness proof for K, when the result could be
obtained instead by reducing the case of Anti-K to that of K? The obvious
reduction proceeds by considering the variation on the clause [All] got by replac-
ing ‘xRy’ on its right-hand side with ‘not xRy’. Call this: [All]. What is the min-
imal system on the [AIl] semantics? Clearly none other than X itself, since the
complement of a binary relation is again a binary relation, and every binary rela-
tion is the complement of some binary relation. (Evaluation at x in (W, R, V)
by [All] is equivalent to evaluation at x in (W, R, V) by [All], where the over-
lining indicates complementation. The fact that R = R is not needed for this
argument.) To digress for a moment: although [All] thus brings by itself no new
logic, some interest may attach to the question of the weakest logic (or indeed
its extensions) in a bimodal language whose two operators are interpreted, one
with the aid of [All], the other with [All], since axiomatic account must then be
taken of their interaction. This topic was treated in [2], where the operators con-
cerned were written as (1 and M respectively. In what follows, however, we shall
be concerned with the monomodal language, though we shall have occasion, in
Section 2, to reach for bimodal frames for its interpretation. Digression over.
To resume our discussion of reducing the completeness question for Anti-K to
that for K, we now observe that if a formula [1~A is evaluated in accordance
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with [All], the effect is precisely the same as if []A4 were evaluated in accordance
with [Only], so that (since the weakest logic for [All] is K) the class of formulas
valid under [Only] is that consisting of K-theorems with ‘]’ replaced everywhere
by ‘00~". (This is why the rule [Anti-K] has the form it has: think of its appli-
cation as the result of contraposing, De-Morganing, and then applying the rule
[K] but attaching ‘]~ instead of ‘C1’. This ‘reduction’ theme is taken up in [4]
with Karmo’s discussion of the translation *; see also the top of p. 347 in [2].)
Now, apart from the fact that this urge to reduce the one case to the other (as
opposed to merely relating the two) seems incorrectly to suggest a conceptual
priority of [All] over [Only], as well as to require (as noted in [4]) for its exe-
cution the presence of negation in the language, and so not to adapt to more
expressively austere settings in which the direct canonical model proof is quite
at home, the interest for us of what I have just called the direct approach (using
definition (2), etc.) is that it provides the ingredients for the solution of another
completeness question, and one that will occupy us for the remainder of this
article.

Our purpose, taking up a matter raised in note 2 of [2], will be to find the
weakest logic for a clause on ‘0]’ which is something of a composite version of
[All] and [Only]. While they required, for the truth of a [(J-formula at a point,
that the immediate subformula be true at all accessible points, or at only acces-
sible points, respectively, we now consider the requirement of truth at precisely
the accessible points:

[All-&-Only] It k, DA iff for all y e W, I k, A iff xRy.

We work our way toward this end, achieved in Section 4, via two weaker logics
in Sections 2 and 3, the second an extension of the first and a subsystem of the
final system. Of course, in the language of [2], as described above, we can get
the force of such an operator by writing instead ‘C]A A l~A’. But it is another
matter to provide a complete axiomatization in the present monomodal lan-
guage, in which what is thus conjunctively represented is taken as an indissoluble
unit. While on the subject of such possibilities of definition, it may be worth
noting that if the standard modal language (with the [All] semantics), whose
primitive modal operator I shall here write ‘L’ to avoid confusion with ‘(1 for
which the interpretation given by [All-&-Only] is intended, is equipped with
propositional quantifiers ranging over arbitrary sets of points in the models and
a propositional identity connective ‘=’ (with 4 = B true at a point if the truth-
sets of A and B in the given model coincide), then one could define (A4 by:
vq(Lg < (A = (A Aq))). The proposition expressed by A is being said by the
definition to be included in a proposition g iff the proposition g is necessary in
the usual (i.e., [All]) sense. It does not appear to be possible to effect such a def-
inition without recourse to propositional identity or something interdefinable
therewith. (This connective ‘=’ is of course itself definable in the language of
(2] by: O(A4 <« B) A (A -~ B).)

2 The system AO Our route toward the minimal logic for [All-&-Only] is
one which involves replacing that clause by something more general, because it
proves easier to examine the more general version and then re-specialize. We
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consider bimodal frames (W, R;, R,) even though only one modal operator is
present in the language (cf. [7]). Let 9% be a model on such a frame; put:

[All;-&-Only,] M k., OA iff for all y such that xRy, M k, A, and
for all y such that I k, A, xR, y.

The idea is that once we have the logic determined by the class of all such frames
with this definition of truth in force, the provision of which will be the main
business of the present section, we proceed to seek the extension thereof which
is determined by the class of all those frames (W, R, R,) satisfying the further
condition that R; = Rj;; clearly this is the minimal logic for the all-and-only
semantics introduced at the end of Section 1. The background provided in that
section enables us to despatch fairly promptly the question of the system deter-
mined by the class of all bimodal frames (no special conditions on the R;) with
the clause [All;-&-Only,] in place in the definition of E, as it will be for the
remainder of this article.

We axiomatize a system AO (for ‘All; and Only,’) as we axiomatized K
and anti-K in Section 1, except that instead of [K] or [Anti-K], the modal rule
is the following amalgamation of those two rules:

[AO] (BiA...AB,)»C C->(A4,v...VA)
(OA A ... A0OA4,A0OBA...AOB,)—>C

That this two-premise rule preserves validity on any frame according to the
semantics just introduced involves a check that may be left to the reader, set-
tling the matter of AO’s soundness (on this semantics) with respect to the class
of all frames. For completeness with respect to this same class, thereby qualify-
ing AO as the minimal logic in the present semantic setting, we use, not surpris-
ingly, a canonical model argument (close to that of [7], in fact). The canonical
model for AO is to be M = (W, Ry, R,, V), with W and V as usual, and R,
and R, defined by definitions (1) and (2), respectively, of R in Section 1. In
showing that truth and membership coincide, we find that these definitions ren-
der automatic the membership-to-truth direction for (J-formulas, as in the cases
discussed in Section 1. The converse implication is established by appeal to [AO].
In more detail: suppose MM k, COC. Then

(i) for all y € W, xR,y implies M k, C, and so implies (induction hy-
pothesis) C € y, for each such y. This, by the definition of R;, means
that the set {B: OOB € x} U {~C} is AO-inconsistent, so that for some
m, where the B; are drawn from the left-hand term of this union, the
formula (B; A ... A B,;) = C is provable in AO;

and also:

(ii) for all y € W, M k, C implies xR, y, and so (induction hypothesis)
C € y implies xR, y. This means, by the definition of R, that the set
{~A: 0A € x} U {C} is AO-inconsistent, so that for some n, where
the A; are drawn from the left term of this union, the formula C —
(A, v ... VvA,) is provable in AO.

The formulas we concluded under (i) and (ii) to be provable in AO then pro-
vide the premises for an application of the rule [AO], which gives as conclusion



ALL AND ONLY 181

the formula (DA, A ... AOA, A OBy A ... AOB,,) » OC, and since each
conjunct in the antecedent belongs to x, we infer that [JC € x also. This is as
much as needs to be given by way of proof for

Theorem 1 The system AQ is determined by the class of all frames (on the
[All,-&-Only,] semantics).

The remainder of this section will be taken up with adapting two familiar
results from the [All] tradition so that we can use them in subsequent sections,
as well as stating one novel lemma of little independent interest except that it
will be needed in Section 3. First, we consider generated models (cf. [6]).

Definition If (W, R, R,, V) is a model with x € W, then the submodel of
(W, R, R,, V) generated by x is to be the structure (W*, Rf, R3, V*) in
which W”* is the set of all points from W to which x bears the ancestral (=
reflexive transitive closure) of R; U R,; R, R} and V* are the restrictions to
W* of R, R, and V.

(Point to note here: although it is the restriction of R, itself that figures as the
second accessibility relation in the reduced structure, it is the complement of that
relation which is used (in union with R;) to generate from x the set of worlds
on which the reduced structure is based.)

Generation Lemma If W = (WX, R, R%, V*) is the submodel of M =
(W, Ry, R,, V) generated by some element x € W, then for all y € W*:

M* E, A iff M E, A, for all formulas A.
Proof: by induction on formula complexity.

The second technique to be adapted is taken from Sahlqgvist [5], and con-
sists in deriving from a generated model an equivalent (‘unravelled’) model with
certain convenient properties to be exploited below (Observation 1). Let It =
(W, R, Ry, V) be a model generated by x (that is, let it be the submodel gen-
erated by x of some model containing x):

Definition M = (W, R, R,, V) is the unravelling of I from x when:

W is the set of all (R, U R,)-chains from x, i.e., those sequences

(Uy,...,u,y, n =1, with u; = x and either u; R, u;,; or u;R,u;,;. We use
‘@’, ‘b’ as variables over such sequences, with ‘@’ to denote the last element
in a, and ‘a” «’ (u € W) for the sequence {u,,...,u,, u) where a =
(ul, .. .,u,,).

We define aR, b to hold iff for some u € W, b = a " u and d¢R,u, and
aR,b to hold iff for all u € W, if b=a " u, then 4R, u.

V(p)={aeW:aeV(p)}.
Then we have, as an induction on formula-complexity will again reveal, the

Unravelling Lemma With M and M as in the above definition, for all a €
w:

Mk, A iff M E 4 A, for all formulas A.
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The convenient feature of such unravelled models (or more accurately, the
frames thereof) to which we shall have occasion to appeal in Section 3 we state
here as:

Observation 1: In an unravelled model (W, R, R,, V) where S, T€ {R,, R,}
if both aSb and a’Th, then a = a’.

The final tool we shall need for our discussion of a special modal rule in Sec-
tion 3 involves a sequence of formulas.

Definition For any formula B we define the following sequence of formulas:

&,(B) = OB
®,.1(B) = 0(B < 2,(B)).

®-Sequence Lemma Let M= (W, R, R,, V) be a model generated by x €
W. Then I k., ®:(B) for all i € Nat iff forally € W, M F, OB.

n
Proof: Show by induction on n that It k, /X\ ®;(B) iff for all y such that
i=0

d(x, y) < n, M E, OB, where the ‘/\\’ notation is for iterated conjunction
and d(x, y) is the least k such that x(R; U R,)* y.

3 The condition R, < R, In this section, our quarry is the logic determined
by the condition on frames (W, R, R,) that R; € R,. The converse inclusion
will be added in Section 4, completing our task. To avoid undue proliferation
of subscripts, we shall call the following system AO,c, (deleting the ‘R’s, in
other words). We add then to the basis given for AO in Section 2 a rule some-
what in the style of Gabbay [1]:

[®-rule] A - ~(Po(g) A ... AD,(q))

~A Provided the variable g does
not appear in the formula A.

(Strictly, we have an infinite collection of rules here, one for each n € Nat.)
We devote this section to an extended proof, with some informal discus-
sion, of:

Theorem 2 The system AO,c, is determined by the class of all frames (W,
Ry, R,) in which R, € R,.

The idea behind the ®-rule can best be explained if we begin by noting the
following immediate consequence of the [All;-&-Only,] truth-definition:

Observation 2: For any model It (W, Ry, R,, V): Ry S R, if for each y €
W there is some formula B such that It F, OB.

From this observation, we could secure the completeness result we are seeking
if we could show that each AO,c,-consistent formula can be verified at a point
in a model each point of which verified some (J-formula. The ®-rule will enable
us to derive the 3v-form of this v3-statement: we pick a [J-formula, depend-
ing only on the form of the consistent formula in question, which formula will
be true at every point of some model housing a point at which the consistent for-
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mula is true. Elaborating this a little: suppose A4 is a formula whose negation
is unprovable in AO,c,, and q is a variable absent from A. We extend not sim-
ply {A} but rather the set {4, ®¢(q),...,2,(q),...} to a set which is maximal
consistent with respect to the system. But how do we know —as is presumed here
for the invoking of Lindenbaum —that this infinite set is consistent to begin
with? Because if it is not, then the ®-rule (for some choice of #) will apply to
give the conclusion that A’s negation was provable in the system, contradicting
the assumption we made about 4. Let x be a point in the canonical model for
the system that our infinite set, just seen to be consistent, maximally extends to,
and consider the submodel of that model generated by x. By the ®-Sequence
Lemma (‘only if’ direction) each point in the generated submodel verifies Cg,
so, by Observation 2, R} € R3, if we may so refer to the relations of the gen-
erated model. Since we have now shown how to verify an arbitrary AO-;c,-
consistent formula in a model on a frame meeting the inclusion condition figur-
ing in the title of this section, our proof of completeness is concluded.

The soundness half of the claim made by Theorem 2, however, requires
more attention than usual. To prove that the ®-rule preserves validity on each
frame (W, R, R,) in which R; € R, —and for brevity we refer to the class of
such frames as C —let us suppose otherwise, i.e., that we have some frame (W,
R, R,) € C on which a premise for some application of the rule is valid but
the conclusion is not, so that for some valuation V, and some x € W, (W, R,,
R,, V) E.A, even though for all V' and ally e W, {W, R, R;, V') F, A—
~(®o(g) A ... AD,(q)). Call the unravelling from x of the submodel of (W,
Ry, R,, V) generated by x, (W, R, R,, V). By the Generation and Unravel-
ling Lemmas, we have:

() A-—~(®(q)A ... A®,(q)) is valid on the frame (W, R, R,)
(ll) (Ws Rl’ RZ’ V> F(x) A.

Notice that if (as we are assuming) (W, R, R,) € C, the definitions of the pro-
cesses of generation and unravelling imply:

(i) (W, Ry, Ry) € C (i.e., R, S R,).

Now consider that valuation ¥’ which is like ¥ on each variable except for the
variable g featured here in the application of the ®-rule, and which is such that
V'(q) = {ve W: uR, v for some u € W}. Since q does not appear in the for-
mula A, we have (W, R,, R,, V') k, A, by (ii). We now claim that the for-
mula (g is true at every point in this new model. How could the formula be
false at a point w € W? One possibility would be because w bears R; to some
point z at which g is false: but this is ruled out by the way ¥ was defined. The
other possibility would be for w to fail to bear R, to a point z at which g is
true. But to have z € V’(g) there must be some point in W bearing R, to z, and
since we are in an unravelled model and do not have wR,z, this point can only
be w itself (Observation 1, from Section 2). This means w bears R, to z with-
out bearing R, to z, contradicting the fact (iii) that the frame of the model
belongs to C. (This is the only point at which the condition that R, € R, is
appealed to in the whole argument.) (g is, then, true at each point in the model
(W, Ry, R,, V', so by the ®-Sequence lemma (‘if’ direction) each of the for-
mulas ®4(q), . ..,®,(q) is true at x in (W, R,, R,, V’). Since the conjunction
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of these formulas is true at x at that point, and so also is the formula A, we have
reached a contradiction with (i).

Having now shown that the system AO,c, is determined by the class of all
frames in C, I must apologize for the heavy reliance on the somewhat unwieldy
&®-rule: it was the only way I could think of to get out the proof of complete-
ness. The possibility remains, nonetheless, that the systems AO and AO;c, do
not differ as to theorems, and that this rule can be shown to be admissible in
AO (like a Gabbay-style irreflexivity rule for the modal system K). I have no
further information on this subject, however.

4 The condition R; = R, It remains to extend the system considered in the
previous section to that determined by the class of all (W, R, R,) in which
R, = R,; as noted in Section 1, this will give us the weakest logic for the
[All-&-Only] (as opposed to [All;-&-Only,]) semantics. As in that section, the
axiomatization leaves something to be desired with respect to simplicity, though
a few abbreviated definitions will make the presentation of the proof-theory
rather less painful. We assume in giving these definitions that ¢4 is itself defined
in the usual way, as ~[J~A, the upshot for the truth-conditions of ¢-formulas
being that OA is true at a point iff either some R;-related point verifies A or
else some R,-unrelated point falsifies 4. We now introduce four binary connec-
tives by the definitions:

A V* B =4 0AAO(A— B)
AV~ B =4 OANO~(AVB)
AA* B =4, 0A-0(AAB)
AA B=4 OA-DO(Av~B).

With these four connectives, we shall be able to simulate, in a restricted
way, quantification over R,-related points as well as over R,-unrelated points.
While we cannot unrestrictedly express these concepts (e.g., find, for any given
formula B, a formula true at a point iff some point R;-related to that point has
B true at it), some pencil and paper checking will reveal that, for any formulas
A and B, if [JA is true at a point x in some model (W, R;, R,, V), then:

A V* B (A V™ B) is true at x iff B is true at some point R, -related
(R,-related) to x in the model.

And:

A AT B (A A~ B) is true at x iff B is true at all points R,-related
(R,-related) to x in the model.

These are the truth-conditions the formulas listed receive straight from the force
of [All;-&-Only,], without any special notice being taken of the conditions
R, € R, or R, = R, of the previous or the present section. Thus, they could
have been stated in Section 2, had there been any point in doing so. (I have
stated them here because they will be exploited in both halves of the proof of
Theorem 3.) Of course if attention is restricted to frames meeting the latter
condition —and, as we introduced ‘C’ for Section 3’s class of frames, we refer
to the collection of all such frames as C’ for brevity —then the truth-conditions
listed can be further simplified as the relations R; and R, need no longer be dis-
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tinguished. Before proceeding to the axiomatization, we make a further obser-
vation on the basis of the [All;-&-Only,] clause, as it applies in the R; = R,
setting:

Observation 3: In a model on a frame in C’, if JA A OB is true at any point,
then A and B are true at precisely the same points.

The reason is that the conjuncts say that the truth-set of A coincides with the
set of points related to the given point, and so does the truth-set of B. Note that
here we do not fuss about R;- vs. R,-relatedness, since the distinction has col-
lapsed. (And Observation 3, of course, holds for the original [All-&-Only]
semantics of Section 1.)

We now axiomatize the final system, to be called AO,_,, by extending the
basis given for AO,c, in Section 3 with all instances of the following schema:

(*) C; YV, (C, Y3 (... (Cp Yy (OA A TB))...)) » D; Ay (Dy By (...
(Dp b, (A~ B))...))

where each V; (4;) is either V* or V™ (either A* or A7).
Then we have:

Theorem 3 AO, -, is determined by C’.

Proof: We begin with a proof of soundness. To see that no instance of the
schema (%) is false at any point in a model on a frame in C’, note that the truth
of the antecedent at a point x requires there to be some (R; U R;)-chain of
length m from x to some point at which (JA A OB is true. As Observation 3
reminds us, this is a sufficient condition for 4 and B to have the same truth-
value at all points in the model, and so for 4 — B to be true at each point, and
therefore, in particular, true at each point reachable by an (R; U R,)-chain of
length n from x, which suffices for the truth (at x) of the consequent.
Turning to completeness, suppose A4 is a formula consistent with AO;_,.
We will show how to verify A at a point in a model on a frame in C’. We know
from Section 3 that we can form a generated submodel of the canonical model
for any extension of AO closed under the ®-rule in which the given consistent
formula A is true at the generating point, with the formula [lg true at every
point of the submodel for some atomic formula g not occurring in 4, and whose
relations R; and R, satisfy the condition R; € R, of that section. Accordingly,
let x be a point of the canonical model (the R; defined as in Section 2) for
AOQO;_, at which the formula A is true, and let the model generated by x, meet-
ing this inclusion condition and throughout which Clgq is true, be (W, Ry, R,,
V). Our proof will be complete if we can show that the converse inclusion,
R, € R, also holds for this model. So suppose otherwise: that there are points
y and z in W with yR,z and not yR;z. This means that there is a formula
[0A € y with A € z, and also a formula OB € y with B &z. Thus (i) A A
OB € y, and (ii) A — B €& z. Since we are in a model generated by the point
x, there are (R; U R,)-chains from x to all elements of W; we may take
{Ui,...,uy,y and (vy,...,v,) to be such chains with ¥; = v; = x and u,, = »,
v, = z. Now consider that instance of (¥) with C;=D;=qgforl<si<m, 1<
J = n, which chooses, in the antecedent, V; to be V* if u;R,u;,, and to be V™
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if u;R,u;,; (note that the possibilities are mutually exclusive), and in the con-
sequent, selects A; as A% if v;R,v;,,, and as A~ if v;R,v;,,. The location of
y as u,,, together with (i), forces the antecedent of this instance of (*) to belong
to x. Since x is a point taken from the canonical model for AO,.,, it contains
the instance in question of (), and therefore, the consequent belongs to x: but
this gives a contradiction in view of the location of z as v, and fact (ii).

It would be of interest if the schema (%) could be replaced by some schema
of the form:

(OAAOB) > oo

My original attempts at finding an axiomatization of the logic of ‘all and only’
aimed at a simpler schema of this form (perhaps as the sole axiom, to be sub-
joined to the smallest classical —or ‘congruential’—modal logic), but they were
unsuccessful. One possible filling for the . . . , if we were working in a richer
language, would be: A = B, where ‘=’ is the connective of propositional iden-
tity mentioned in Section 1. The closest one can come to this in the present lan-
guage would be:

(xx) (A AOB) - (C « C’) where C’ is any formula differing from C in
having zero or more occurrences of A4 in C replaced by B.

The idea would be to investigate the force of this axiom-schema in terms of the
semantic framework suggested by the fact that the background logic is the
smallest classical system (called E in [6]): neighborhood semantics. A special case
of (%) shows the sort of effect one can achieve:

(**%x) (OAAOB) - (A- B).

Here I have taken C to be just the formula A itself, and dropped the ‘=’ to a
‘>’ since that is really no weakening. The neighborhood-semantical character-
ization of the smallest classical logic containing all instances of (**#*) among its
theorems can be stated succintly if we permit ourselves the following terminol-
ogy. Recalling that a neighborhood model is a triple (W, N, V) in which N is
a function assigning to each x € W a collection of subsets of W (the so-called
neighborhoods of x), and a formula [0A is counted true at a point x in such a
model just in case the truth-set of 4 (in the model) belongs to N(x), let us
define a point y to be internal if y belongs to each set in N(y), and to be exter-
nal if y belongs to no set in N(»). (Strictly speaking these concepts should be
relativized to the frame (W, N) in question; note also that if N(y) is empty,
though not otherwise, y is both an external and an internal point.) Then it is eas-
ily seen that the (x*%)-logic alluded to is determined by the class of all neigh-
borhood frames in which each point is either external or internal. I have not,
on the other hand, obtained any similarly structural condition on frames appro-
priate for the full (*#) logic of which this is just a subsystem.

The significance of the above line of thought for the logic of ‘all and only’
lies in the intimate connection between a certain class of neighborhood models
and relational models under the [All-&-Only] truth-definition. Call a neighbor-
hood frame (W, N) with the property that for all x € W, N(x) contains just
one subset of W, a single-neighborhood frame. Then we may observe that every



ALL AND ONLY 187

model on single-neighborhood frame is pointwise equivalent to some model (with
the [All-&-Only] clause) on a relational frame, and conversely that each model
of the latter type is pointwise equivalent to a model of the former sort. For, in
the first case, given (W, N, V) with N(x) a singleton for each x, defining Rxy
to hold iff y belongs to the sole element of N(x), yields: (W, N, V) k, A iff
(W,R, V) k, A for all y € W and all formulas 4 (the second ‘F’ here being
taken in the [All-&-Only] sense); and in the second case, given (W, R, V) we
get the N of the equivalent single-neighborhood model by putting N(x) =
{R(x)}, where R(x) is itself understood as {y € W: xRy}. This gives the fol-
lowing corollary to Theorem 3: the system AO,;—, is determined by the class of
all single-neighborhood frames. I mention the neighborhood-semantic perspec-
tive here to justify the hope of success for the route up from E through some-
thing along the lines of (**), as an alternative to the route followed here via the
rule [AO].

The above digression on (**), brings out an additional point of interest
which the (*%*) system shares with AO,_,: Halldén-incompleteness. For note
the following truth-functional readjustment of (*%**):

(DAAA)—- (OB-B)

and in particular the following instance thereof (with different variables for the
schematic letters, and again, minor truth-functional manipulation):

(Op—-~p) v (Qdg—-q).

Neither disjunct is valid on every frame in the determining class, or indeed on
any one frame therein containing both internal points (allowing the first disjunct,
though not the second, to be falsified) and external points (at which the second
disjunct, though not the first, can be falsified). The same example will do for
AO,_,, since (¥*x*) is after all just the m = 0, n = 0 case of our schema (%),
though the diagnosis of the Halldén-incompleteness illustrated by the ‘unreason-
able’ disjunction above might here be re-phrased in the relational terminology
of the [All-&-Only] semantics, by describing the set of points at which the first
disjunct is unfalsifiable as those which do not bear R to themselves, and the set
of points at which the second is unfalsifiable as consisting of those which do bear
R to themselves.

As a final observation, I remark that the [All-&-Only] semantics guaran-
tees that for any formula A, if (1A is true at a point x in a model, then the truth
set of A in the model is precisely R(x): but we need the antecedent here —there
is no formula B with the property that for any point x in any model, the truth-set
of B in the model is precisely R(x). Indeed, this idea only makes sense if we
have somehow disallowed the possibility that R(x) # R(y) for x # y. But if we
could talk in terms of the truth set of a given formula, when considered from
the perspective of a given point in the model, then the above antecedent could
be removed. As the latter formulation suggests, such a possibility is opened up
in the semantic framework of two-dimensional modal logic, and for a prelim-
inary investigation of the use of sentential constants whose truth-set, relative to
a given world, is precisely the set of worlds R-related to that world, [3] may be
consulted.
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