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Maximal p-Subgroups and the Axiom of Choice

PAUL E. HOWARD and MARY YORKE*

According to Sylow's well-known theorem, if p is a prime any finite group
G has a Sylow /?-subgroup, that is, a subgroup of order pk where pk is the
highest power of p which divides the order of G.

The notion of Sylow /^-subgroups has been generalized to infinite groups
(see, for example, [5], p. 58; [2], Sections 54 and 85; and [6], Chapter 6) by the
following:

Definition A Sylow ^-subgroup of G is a maximal /?-subgrouρ of G.

With this definition, the generalization of the Sylow theorem (ST) to infinite
groups, i.e.,

ST If p is a prime, every group has a Sylow p-subgroup

is an easy consequence of Zorn's lemma.
We show in Section 2 that ST is actually equivalent to Zorn's lemma by

showing ST implies the axiom of choice.
Section 3 contains a weakened version of ST, and its relationship to the

axiom of choice for sets of finite sets is studied.

/ Definitions and preliminary results We will follow the usual convention
of denoting a group (G, °) by G when the choice of notation for the operation
on the group does not concern us. If y is a set, we will denote by Sy the sym-
metric group on y. If σ, τ G Syf σ ° τ is the permutation defined by (σ ° r) (t) =
σ(r(/)).

If tx, t2,>>.,tn€y, (tι . . . tn) denotes the cycle σ defined by

*(*,) = ft*1 V--i<n

\tχ if i = n,

and σ(t) = t otherwise.
•The results of this paper were presented at the 817th meeting of the American Math-
ematical Society and appeared in the Abstracts of the American Mathematical Society
number 84T-03-404.
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(The notation (tu... ,tn) is reserved for the sequence of length n.) If {Gy:
y G Y} is a set of groups, πyGYGy will denote the weak direct product of the
groups Gy9 y G Y For each y0 G Y, we denote by Pyo the projection map of
TΓyeyGy onto Gyo.

If G is a group and p is a prime, a p-subgroup of G is a subgroup of G
each of whose elements has order a power of p.

The following two theorems will be used in Sections 2 and 3:

Theorem 1.1 If H is a maximal p-subgroup of πyGγGy, then Py(H) is a
maximal p-subgroup of Gy for each y G Y

Theorem 1.2 If Hy is a maximal p-subgroup of Gyfor each y G Y, then
πy(ΞγHy is a maximal p-subgroup of πyeYGy.

We omit the proofs, which are straightforward and do not use the axiom of
choice.

We will use the following abbreviations:

S(p): Every group has a maximal p-subgroup.
5: (Vp) (p is a prime -+S(p)).

SPF(p): If {Gy: y G Y} is a set of finite groups, then πy(ΞγGy has a max-
imal p-subgroup.

SPF: (Vp) ( p a prime->SPJF(P)).

SPS(p): If Y is a set of nonempty, finite sets, then πyGYSy has a max-
imal p-subgroup, where Sy is the symmetric group on y.

SPS: (Vp) ( p a prime ->SPS(p)).

We will also use the notation:

AC: The axiom of choice.
ACβn: If Y is a set of nonempty, finite sets, then Y has a choice

function.
^4CΛ: If Y is a set of π-element sets, then Y has a choice function.

And finally, if K is an infinite subset of the natural numbers,

ACK: If Y is a set such that (Vy G ΓHM Ξ if) then r has a choice
function.

2 5 and AC In this section we will denote the finite sequence ϊ =
(tu... Jn) by t\... ίΛ and L(t) will denote the length of L Further tq will
denote the finite sequence (t, t,... ,t) of length q.

Our goal is to prove

Theorem 2.1 Ifp is any prime, then S(p) implies AC.

Proof: Let Y be a set of nonempty sets. For each y G Y, let (Gy, *) be the
group defined as follows: Gy is the set of all finite sequences of elements of y
such that no element of y occurs p consecutive times, that is, Gy = {tγ... tn:
tj G y f o r 1 < j < n a n d ( y k < n - p + 1) (tk Φ tk+ϊ o r tk+ϊ Φ tk+2 o r . . . o r

tk+p-2 ^ Â:+/7-i)} * is concatenation of sequences followed by deletions of sub-
sequences of p consecutive, identical elements of y; that is, if t = tx... tn and
5 = Si...5^ then t*s = t\... tjSm .. .sk where



278 PAUL E. HOWARD AND MARY YORKE

(1) for some natural numbers / and dx, d 2 , . . . ,rf,

tJ+ι...tn = rp...rf'Bnά

and

(2) tx... tjSm... sk E Gy (tx... tj or sm . . . sk may be the empty sequence).

We note

(3) L(i*s) <L{t)+ L(s) implies fπ = sx.

({Gy, *) is isomorphic to the group with the generators {t: t Gy} and relations
{tp = 1: t Gy}, but the description given above is most convenient for our pur-
poses.)

We now apply S(p) to obtain a maximal /7-subgroup H of πysγGy. By
Theorem 1.1, Py(H) is a maximal /7-subgroup of G ,̂ for each y GY. Clearly
Py(H) Φ {ly} (\y is the identity of Gy), since the sequence t (of length 1) for
each t E y has order p.

Lemma 2.2 Ift = tx...tn is in Py(H), n>0, then tx = tn.

Proof: Since Py(H) is a/7-subgroup of Gy, tk = t*t*t * . . , * ? = 1̂  for some

k factors
finite k. If tx Φ tn then clearly the length of tk will be k(L(t)) > 0 = L{\y) a
contradiction.

L e m m a 2 . 3 Ift = tx...tn a n d s = s x . . .sk are in Py(H) then tx — s x .

Proo/: Since Py(H) is a subgroup of Gy, t, s E Py(//) implies ί*l E P^//).
We consider two cases: Case 1. L(t*s) = L(i) + L(i). In this case, F*l =
/ i . . . / Λ 5 Ί . . . ^ and by Lemma 2.2, tx=sk = sx. Case 2. L(t*s) < L(t) + L(s).

By (3) tn= sx, then by Lemma 2.2, tx = sx. This completes the proof of
Lemma 2.3. We now define a choice function/for F a s follows:

For each y G Y, f(y) = the unique element t of y such that tx.. JnG
Py{H) **tX=t.

3 SPF, SPS and ACβn Clearly SPF implies SPS and, for any prime /?,
SPF(p) implies SPS(p). The fact that SPF(p) and SPS(/?) are equivalent will
follow from the next two theorems.

Theorem 3.1 If p is a prime and K = {rGω: gcd(r, p) = 1} then SPS(p) =>
ACK.

Proof: Our proof will use the following:

Lemma 3.2 If p is a prime and H is a p-subgroup of Sn (the symmetric
group on {1, 2,...,«}) andif σ= (sx;.. .;sp) and r = (^ . . . /̂ ) we/? cycles
in H, then either

{su...9sp} = {ti,...,tp}
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or

{sl9...,sp} Π {/!,...,tp} = 0.

Proof: Suppose the lemma is false and that σ = (sγ . . . ;sp) and r = (tι . . . tp)
are two /? cycles such that σ, τ E //,

(4) {5 1 , . . . ,5 p }Π{ί 1 , . . . , ( p }^0

and

(5) {Ji,...,Jp} *{*!,...,/,}.

By (4) we may assume Sγ = t{ and by (5) we assume t2 φ {s\,... ,s p} (replacing
r by a suitable power of r if necessary). If {s{,... ,sp} Π {^,... 9tp} — tx then
τ ff=(/i;ί2;- isp)o(tι;.. .\tp) = (^ /2; . ^ ^ ;^) £#> contradict-
ing our assumption that //is a/?-group.

We therefore assume tk E {sx,... ,5 }̂ for some k, 2 < k <p; say ^ = sw

and that tj £{su...,sp} for 2<j<k. Then since σp~m (5 m ) = 5 ,̂ σp~m o T o
σ = (sm; ^ .. . )(sx; r 2 ; . . . ^ - i ; ^ ^+1; tp)(sχ;... ;sp) = (^ ί2;
t3;...;tk_ι) o (some other disjoint cycles) E //. But the cycle (sp; t2\
t3;... tk-i) has length greater than 1 and less than/?, again contradicting our
assumption that //is a/?-group. This proves Lemma 3.2.

For each finite set y and ̂ -subgroup H of 5^ we define the relation R(y9

H) (also denoted by Ry if H is fixed) by tιRyt2 if and only if σ(tι) = t2 for
some /?-cycle, σ E //.

As a consequence of Lemma 3.2 we have

Lemma 3.3 If H is a p-subgroup of Sy then R(y, H) is an equivalence rela-
tion on y.

We also have

Lemma 3.4 If H is a Sylow p-subgroup ofSy and \y\ = kp + r where k and
r are natural numbers 0<r<p then R(y, H) has k equivalence classes of cardi-
nality p and r equivalence classes of cardinality 1.

Proof: It suffices to prove the lemma for y = {1, 2,...,/?} where n = k-p + r,
0 < r < p. Let K be the subgroup of Sy generated by the cycles σ{ = (1;
2;...;/7), σ2= (p + 1; p + 2; . . .2/7),... ,σk = ( ( * - \)p + 1; (* - 1)/? +
2 ; . . . ;£/?). Clearly AT is a p-subgroup, therefore K is contained in a Sylow-/?
subgroup Ho of Sy. By Lemma 3.2 the conclusion of Lemma 3.4 holds for Ho.
Using the fact that all Sylow-/? subgroups of Sy are conjugate in Sy ([2], p. 59),
the conclusion of Lemma 3.4 for every Sylow /?-subgroup of Sy follows.

To complete the proof of Theorem 3.1 let Y' be a set such that (Vy E
F ' H I J Ί E K). If y E Y\ then there is a least positive integer ny such that
\y\-ny 3 1 mod p.

Let y = {.y x ΛẐ : j G Γ and ̂  = {0, 1, . . . ,ny - 1} is the least positive
integer such that \y\>ny= 1 mod p}.

We will use SPS(p) to construct a choice function for Y which will give
a choice function for Y' (see [4]). Let G = πyGYSy. By SPS(p), G has a max-
imal /?-subgroup //. By Theorem 1.1, Py(H) is a Sylow /?-subgroup of S^ for
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each j> G Y By Lemma 3.4, R(y, Py(H)) has exactly one equivalence class of
cardinality 1. Therefore if we define for each y G Y

f(y) = the element of the unique equivalence class of R(y, Py(H)) with
cardinality 1

we get a choice function for Y.
This completes the proof of Theorem 3.1.

Theorem 3.5 If p is a prime and K = {r G ω:r = 1 mod p}, then ΛCK

implies SPF(p).

Proof: Let {Gy: y G Y} be a set of finite groups. For each y G Y, let W(y) be
the set of Sylow/7-subgroups of Gy. By [5], p. 59, Theorem 4.9, \W(y)\ s 1
modp and, therefore, by ACK, {W(y): y G Y} has a choice function/. By
Theorem 1.2, πy(Ξγf(W(y)) is a maximal/?-subgroup of πy(ΞYGy.

Corollary 3.6 Let p be a prime and let Kx - {r G ω: gcd(r, p) = 1} and
K2= {r E ω: r = 1 mod p}. Then the following are equivalent:

(i) SPS(p)
(ii) ACKι

(ϋi) ΛCKl

(iv) SPF(p).

Corollary 3.7 If P\ Φ Pi are primes, then SPS(p{) and SPS(p2) imply
ACβn.

(This follows from Theorem 3.1.)

We now strengthen Corollary 3.7 to

Theorem 3.8 Ifp is a prime then ΛCP and SPS(p) imply AC/in.

Proof: Let Y be a set of nonempty finite sets. Define by induction

Yo=Y

Yn+ι = {z: (3yG Yn)(zQy)}U{w: (lye Yn) (w is a partition of y)}.

Let Y' = Un^ωYn9 then Y' has the properties

(6) If y G Y' and zQy, then z G Y'

(7) If y G Y' and w is a partition of 7, then w G Y'.
We will use ^4CP and SPS(p) to construct a choice function for Y' and there-
fore, since Y<Ξ Y', a choice function for Y

First note that by Theorem 3.1, ΛCP and SPS(p) give us a choice function
/o for {y G Y': | j | </?}. Now a direct application of SPS(p) gives us a max-
imal/^-subgroup if of πyeySy. Define a choice function/on Y' by induction
as follows:

If j>G Y ' a n d \y\ <p9f(y) =fo(y). S u p p o s e n o w that y G Y',\y\=n>
p and that/(>Ό has been defined for every y'G Ysuch that \y'\ <n. By The-
orem 1.1, Py(H) is a maximal p-subgroup of Sy. Since \y\ > p, Lemma 3.4
implies that R(y, Py(H)) has more than 1 and fewer than ^-equivalence classes.
By the Induction assumption and (7),/(w) is defined and/(w) c y where w =
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{c: c is an Ry equivalence class} and therefore by (6)/(/(w)) is defined and
f(f(w))ey. We define/(j) = /(/(*>)).

This completes the proof of Theorem 3.8.

Using Theorem 1.2 it is easy to see that ΛCfin => SPF We therefore have

Corollary 3.9 Ifpγ and p2 are primes, and px Φp2, then the following are
equivalent

(i) ΛCfm

(ii) SPS(Pι) A SPS(p2)
(iii) ACPι and SPS(p{)
(iv) SPF
(v) SPS.

That Theorem 3.1 and Corollary 3.6 are, in some sense, the best possible results,
is shown by the following.

Theorem 3.10 Ifp is a prime SPS(p) Φ ACP.

Proof: We show that no proof of ΛCP from SPS(p) is possible in ZFU
(Zermelo-Frankel set theory weakened to permit the existence of urelements) by
constructing a permutation model of ZFU in which SPS(p) is true and ACP is
false. We refer the reader to [1] for elementary facts about permutation models.

Finally we will indicate how the independence result can be transferred to
ZF

Let Mr be a model of ZFU + AC and suppose the set of urelements U =
UnGωAn where At Π Aj = 0 if / Φ j and \At\ = p for i E ω. Let ψi be a
(fixed) permutation of At which is a p cycle. Let G = {φ: φ is a permuta-
tion of U and (Vι E ω)(φ\Ai = ψ" for some integer n) and (3£ E ω)(V/ >
λ:)(W E Aj)(φ(t) = t)} (φ\Ai denotes the restriction of φ to At). Clearly φ E
G=>φ/7 = 1.

Note that φ E G can be extended uniquely to all of Mf by e-induction.
The extension is also denoted by </>. If E c U, let //Λ: ί^1) = {</> E G: (V̂  E
E)(φ(t) = t)} and let Fbe the filter of subgroups of G generated by {fix (E):
E <Ξ U and I? is finite}. If x E M r and there is some finite E c= U such that
φ Gfix(E) =» φ(x) = x we say £" is a (finite) support of x.

Let M be the permutation model determined by F and G, that is, M con-
sists of those elements xE:M' such that x and each element of the transitive clo-
sure of x have finite support.

Claim 1 ACP is false in M.

For Y = {̂ 4Λ: « E ω} is a set of /^-element sets in M (with support 0). Suppose
/is a choice function for Fin M with finite support £*. Since E is finite, there
is some AnG Y such that AnΠE = φ and therefore φ defined by

φ{t)=[ΦM)teA
^ w [ t otherwise

is infix (E). φ fixes 7and .4,, but φ(f(An)) Φf(An) sincef(An) eAn. There-
fore E is not a support of/.

The proof of Theorem 3.10 is completed by showing
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Claim 2 SPS(p) is true in M.

Let Y be a collection of finite sets in M and let W = πyeYSy. We show W has
a maximal /^-subgroup in M. Suppose Y has finite support E. For each y G Y
let OB(y) be the//* (£) orbit of .y, i.e., OB(y) = {φ(j ): φ efix (E)} c K

Let jFbe a choice function for {OB(y): y E Y} (Fis in M' but not nec-
essarily in M). Let Λf = {F(O£(.y)).* j G F } and for eachyeX, let L(y) be
a Sylow /7-subgroup of Sy containing the /7-subgrouρ {φ\y: φ Gfix (E) and

Φ(y)=y}

Lemma 3.11 IfyeXandφ, ψefix(E) andφ(y) =ψ(y), then φ(L(y)) =

Φ(L(y)).

Proof: Assume the hypotheses, then ψ~ι(Φ(y)) = y and ψ~ι ° φ Gfix (E);
hence ψ~ι <>φ\y eL(y); therefore (φ~ι <>φ)(L(y)) = ((φ~ι oφ\y)L(y)((ψ-1

φ\y)~1)) = L(y). So φ(L(^)) = ψ(L(y)), proving the lemma. (We have used
the fact that if η and σ are permutations, then η(σ) =η °σ°η~ι.)

Hence T= {φ((y, L{y)))\ y e X and φ E//x (£)} is a function in M
with domain F and for each y G Y, T(y) is a Sylow /?-subgroup of Sy. There-
fore by Theorem 1.2, πyeYT(y) is maximal ^-subgroup of πy<EYSy in M prov-
ing Claim 2.

To transfer the result to Zermelo-Frankel set theory we note that by Corol-
lary 3.6, ΛCK holds in M where K = {r G ω: gcd(r, p) = 1}. By an argument
almost identical to the one in [1], p. 109, we can construct a model TV of ZF from
M i n which ACP fails and ,4C^ holds. Therefore by Corollary 3.6 SPS(p) holds
in N.

As a final remark, we note that several negative results can be obtained
using the theorem of Levy [3]:

ZFUk(Vn E ω)(ACn) -> ACfm.

Let p be a prime. By Corollary 3.9, ACP and SPS(/?) ->^4C///2. Therefore

ZFUk(VnGώ)(ACn)->SPS(p).

Using Corollary 3.6, we also obtain

ZFU h (V/i E ω) (i4CΛ) -> ̂ C ^

and

ZFC/|^ (v/i E ω)(,4CΛ) ->^1C^2.
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