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Maximal p-Subgroups and the Axiom of Choice
PAUL E. HOWARD and MARY YORKE*

According to Sylow’s well-known theorem, if p is a prime any finite group
G has a Sylow p-subgroup, that is, a subgroup of order p* where p* is the
highest power of p which divides the order of G.

The notion of Sylow p-subgroups has been generalized to infinite groups
(see, for example, [S], p. 58; [2], Sections 54 and 85; and [6], Chapter 6) by the
following:

Definition A Sylow p-subgroup of G is a maximal p-subgroup of G.

With this definition, the generalization of the Sylow theorem (ST) to infinite
groups, i.e.,

ST If pis a prime, every group has a Sylow p-subgroup

is an easy consequence of Zorn’s lemma.

We show in Section 2 that ST is actually equivalent to Zorn’s lemma by
showing ST implies the axiom of choice.

Section 3 contains a weakened version of ST, and its relationship to the
axiom of choice for sets of finite sets is studied.

1 Definitions and preliminary results We will follow the usual convention
of denoting a group (G, °) by G when the choice of notation for the operation
on the group does not concern us. If y is a set, we will denote by S, the sym-
metric group on y. If o, 7 € §,, 07 is the permutation defined by (o°7)(¢) =
a(7(1)).

If t1, t5,...,t, €Yy, (;;...;t,) denotes the cycle o defined by

N — t,‘+1 ifl<i<n
olt) = {t, if i =n,

and o(t) = t otherwise.
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(The notation (¢y,...,¢,) is reserved for the sequence of length n.) If {G,:
Y € Y} is a set of groups, m,cyG, will denote the weak direct product of the
groups G,, y € Y. For each y, € Y, we denote by P, the projection map of
Tyey G, onto Gy,.

If G is a group and p is a prime, a p-subgroup of G is a subgroup of G
each of whose elements has order a power of p.

The following two theorems will be used in Sections 2 and 3:

Theorem 1.1 If H is a maximal p-subgroup of w,eyG,, then P,(H) is a
maximal p-subgroup of G, for each y € Y.

Theorem 1.2 If H, is a maximal p-subgroup of G, for each y € Y, then
TyeyH, is a maximal p-subgroup of ey G,.

We omit the proofs, which are straightforward and do not use the axiom of
choice.
We will use the following abbreviations:

S(p): Every group has a maximal p-subgroup.
S: (V¥p) (p is a prime —=S(p)).
SPF(p): If {G,: y € Y} is a set of finite groups, then 7,cy G, has a max-
imal p-subgroup.
SPF: (Vp) (p a prime =»SPF(p)).
SPS(p): If Y is a set of nonempty, finite sets, then 7,y S, has a max-
imal p-subgroup, where S, is the symmetric group on .
SPS: (vp) (p a prime =»SPS(p)).

We will also use the notation:

AC: The axiom of choice.
ACy,: If Y is a set of nonempty, finite sets, then Y has a choice
function.
AC,: If Y is a set of n-element sets, then Y has a choice function.

And finally, if K is an infinite subset of the natural numbers,

ACk: If Y is a set such that (vy € Y)(|y| € K) then Y has a choice
function.

2 S and AC In this section we will denote the finite sequence 7 =
(t1,...,1,) by t;...t, and L(?) will denote the length of 7. Further ¢7 will
denote the finite sequence (¢, ¢,...,t) of length q.

Our goal is to prove

Theorem 2.1 If p is any prime, then S(p) implies AC.

Proof: Let Y be a set of nonempty sets. For each y € Y, let (G,, *) be the
group defined as follows: G, is the set of all finite sequences of elements of y
such that no element of y occurs p consecutive times, that is, G, = {¢,...1,:
tieyforlsj<snand (Vk<n—p+1) (¢ # tgy1 OF b1 F L2 0L . . . OT
tk+p—2 # teip—1) ). is concatenation of sequences followed by d)eletions of sub-
sequences of p consecutive, identical elements of y; that is, if t =1¢,...¢, and
§=s,...50then*$=1,.. ;S . . .S, where
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(1) for some natural numbers i and d,, d,,...,d;
tj+1...t =rfi d.and
S Sm 1= rp dzrp dl 1, rlp_dl

and

@ t...t;Sy...5k€G, (1 ...t 0r5spy...5 may be the empty sequence).
We note

(3) L(#*3) < L(f) + L(3) implies ¢, = s,.

((G,, *) is isomorphic to the group with the generators {¢: ¢ € y} and relations
{t? = 1: t € y}, but the description given above is most convenient for our pur-
poses.)

We now apply S(p) to obtain a maximal p-subgroup H of 7,cyG,. By
Theorem 1.1, P,(H) is a maximal p-subgroup of G,, for each y € Y. Clearly
P,(H) # {1,} (1, is the identity of G,), since the sequence ¢ (of length 1) for
each ¢ € y has order p.

Lemma 22  Ifi=t,...t,isin P(H),n>0, then t; = t,.
Proof: Since P,(H) is a p-subgroup of G,, r=1ri*.. . *%f= 1, for some
—

. k factors>
finite k. If ¢, # ¢, then clearly the length of 7* will be k(L()) >0 = L(1,)a
contradiction.

Lemma 2.3 Ift=t,...tyand§=s5,...5; are in P,(H) then t; = s,.

Proof: Since P,(H) is a subgroup of Gy, f, € P,(H) implies *se P (H)
We consider two cases: Case 1. L(t 5) = L(t) + L(3). In this case, 7*§ =
.1y81...5¢ and by Lemma 2.2, ¢; = s, = 5. Case 2. L(7* 5) < L(7) + L(3).
By (3) t, = s, then by Lemma 2.2, ¢, = 5,. This completes the proof of
Lemma 2.3. We now define a choice function f for Y as follows:

For each y € ¥, f(y) = the unique element ¢ of y such that ¢,...¢7, €
PH)=1t =1t

3 SPF, SPS and ACy, Clearly SPF implies SPS and, for any prime p,
SPF(p) implies SPS(p). The fact that SPF(p) and SPS(p) are equivalent will
follow from the next two theorems.

Theorem 3.1 If p is a prime and K = {r € w: gcd(r, p) =1} then SPS(p) =
ACk.

Proof: Our proof will use the following:

Lemma 3.2 If p is a prime and H is a p-subgroup of S, (the symmetric
groupon {1,2,...,n}) and if 0 = (s1;...;5,) and 7= (t1;. . .;1p) are p cycles
in H, then either

{Sl,...,Sp} = {tl,---,tp}
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or
{Sl,. . .,Sp} N {tl" . .,tp} = .

Proof: Suppose the lemma is false and that 0 = (s1;...;5p) and 7= (¢;;...;%p)
are two p cycles such that o, 7 € H,

(4) {Sl,...,Sp}n{tl,...,tp}?&@
and

(5) {Sl,...,sp}¢{t1,...,tp}.

By (4) we may assume s; = #; and by (5) we assume #, & {sy,...,S,} (replacing
7 by a suitable power of 7 if necessary). If {sy,...,s,} N {¢,...,t,} =¢ then
To0=(1;825...38p) e (trs...58p) = (815 b5 . .31y 825 . . 38p) € H, contradict-
ing our assumption that H is a p-group.

We therefore assume #; € {sy,...,s,} for some k, 2 < k < p; say t; = s,
and that ¢; & {sy,...,s,} for 2 < j < k. Then since 6”~" (s,,) =$p, 0¥ Mo7T0
0 = (Sms Sps---)(S15 b5 tkm1s Smy liats - Lp) (S5 .58p) = (Sps fa;
t3;...;t—1) ° (some other disjoint cycles) € H. But the cycle (sp; f2;
t3;...;t_;) has length greater than 1 and less than p, again contradicting our
assumption that H is a p-group. This proves Lemma 3.2.

For each finite set y and p-subgroup H of S, we define the relation R(,
H) (also denoted by R, if H is fixed) by #;R,t, if and only if o(¢;) = ¢, for
some p-cycle, 0 € H.

As a consequence of Lemma 3.2 we have

Lemma 3.3 If H is a p-subgroup of S, then R(y, H) is an equivalence rela-
tion on y.

We also have

Lemma 3.4 If H is a Sylow p-subgroup of S, and |y| = kp + r where k and
r are natural numbers 0 < r < p then R(y, H) has k equivalence classes of cardi-
nality p and r equivalence classes of cardinality 1.

Proof: 1t suffices to prove the lemma for y = {1, 2,...,n} wheren=k-p +r,
0 < r < p. Let K be the subgroup of S, generated by the cycles o; = (1;
2,...5p),0=(@E+Lp+2;...2D),...,00=(k-Dp+ L, (k—1)p+
2;...;kp). Clearly K is a p-subgroup, therefore K is contained in a Sylow-p
subgroup H, of S,. By Lemma 3.2 the conclusion of Lemma 3.4 holds for H.
Using the fact that all Sylow-p subgroups of S, are conjugate in S, ([2], p. 59),
the conclusion of Lemma 3.4 for every Sylow p-subgroup of S, follows.

To complete the proof of Theorem 3.1 let Y’ be a set such that (vy €
Y')(|y] € K). If y € Y, then there is a least positive integer n, such that
|¥|-n, =1 mod p.

Let Y={yXxn,:y€Y andn,={0, 1,...,n, — 1} is the least positive
integer such that |y|-n, = 1 mod p}.

We will use SPS(p) to construct a choice function for Y which will give
a choice function for Y’ (see [4]). Let G = 7,y S,. By SPS(p), G has a max-
imal p-subgroup H. By Theorem 1.1, P,(H) is a Sylow p-subgroup of S, for
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each y € Y. By Lemma 3.4, R(y, P,(H)) has exactly one equivalence class of
cardinality 1. Therefore if we define for each y e Y

f(y) = the element of the unique equivalence class of R(y, P,(H)) with
cardinality 1

we get a choice function for Y.
This completes the proof of Theorem 3.1.

Theorem 3.5 If p is a prime and K = {r € w:r = 1 mod p}, then ACg
implies SPF(p).

Proof: Let {G,: y € Y} be a set of finite groups. For each y € ¥, let W(y) be
the set of Sylow p-subgroups of G,. By [5], p. 59, Theorem 4.9, |[W(y)| =1
mod p and, therefore, by ACx, {W(y): y € Y} has a choice function f. By
Theorem 1.2, ey f(W(y)) is a maximal p-subgroup of 7,eyG,.

Corollary 3.6 Let p be a prime and let K| = {r € w: gcd(r, p) = 1} and
K, = {r€ w: r=1mod p}. Then the following are equivalent:

(i) SPS(p)
(ii) ACk,
(iii) ACk,
(iv) SPF(p).
Corollary 3.7 If p\ # p, are primes, then SPS(p,) and SPS(p,) imply
ACg,.

(This follows from Theorem 3.1.)
We now strengthen Corollary 3.7 to

Theorem 3.8 If p is a prime then AC, and SPS(p) imply ACgy,.

Proof: Let Y be a set of nonempty finite sets. Define by induction

Yo = Y
Yori={z: @€ Y,)(z<y)} U {w: (3y €Y,) (wis a partition of y)}.

Let Y' = U,c,Y,, then Y’ has the properties
6) IfyeY andz< y thenze Y’
(7) Ify€ Y’ and wis a partition of y, then w € Y.

We will use AC, and SPS(p) to construct a choice function for Y and there-
fore, since Y € Y’, a choice function for Y.

First note that by Theorem 3.1, AC, and SPS(p) give us a choice function
Sofor {y € Y’: |y| =p}. Now a direct application of SPS(p) gives us a max-
imal p-subgroup H of m,cy'Sy. Define a choice function f on Y’ by induction
as follows:

Ifye Y and |y| <p, f(¥) =fo(¥). Suppose now that ye Y’, |y| =n>
p and that f(y’) has been defined for every y’ € Y such that |y’| < n. By The-
orem 1.1, P,(H) is a maximal p-subgroup of S,. Since |y| > p, Lemma 3.4
implies that R(y, P,(H)) has more than 1 and fewer than n-equivalence classes.
By the Induction assumption and (7), f(w) is defined and f(w) S y where w =
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{c: cis an R, equivalence class} and therefore by (6) f(f(w)) is defined and

S(f(w)) € y. We define f(y) = f(f(w)).
This completes the proof of Theorem 3.8.

Using Theorem 1.2 it is easy to see that ACy, = SPF. We therefore have

Corollary 3.9 If p, and p, are primes, and p, # p,, then the following are
equivalent

(i) AC,
(i) SPS(p) A SPS(p>)
(iii) AC,, and SPS(p,)
(iv) SPF
(v) SPS.

That Theorem 3.1 and Corollary 3.6 are, in some sense, the best possible results,
is shown by the following.

Theorem 3.10 If p is a prime SPS(p) # AC).

Proof: We show that no proof of AC, from SPS(p) is possible in ZFU
(Zermelo-Frankel set theory weakened to permit the existence of urelements) by
constructing a permutation model of ZFU in which SPS(p) is true and AC, is
false. We refer the reader to [1] for elementary facts about permutation models.

Finally we will indicate how the independence result can be transferred to
ZF.

Let M’ be a model of ZFU + AC and suppose the set of urelements U =
U,co4, where 4; N A; =D if i #jand |4 = p for i € w. Let y; be a
(fixed) permutation of A; which is a p cycle. Let G = {¢: ¢ is a permuta-
tion of U and (Vi € w)(¢|A; = ¥/ for some integer n) and (Ik € w)(Vj >
k)(Vt € A;)(¢(t) = 1)} (¢]|A; denotes the restriction of ¢ to A4;). Clearly ¢ €
G=¢”=1.

Note that ¢ € G can be extended uniquely to all of M’ by e-induction.
The extension is also denoted by ¢. If E € U, let fix (E) = {¢ € G: (Vt €
E)(#(¢) =t)} and let F be the filter of subgroups of G generated by { fix (E):
E c U and E is finite}. If x € M’ and there is some finite £ € U such that
¢ € fix(E) = ¢(x) = x we say E is a (finite) support of x.

Let M be the permutation model determined by F and G, that is, M con-
sists of those elements x € M’ such that x and each element of the transitive clo-
sure of x have finite support.

Claim 1 AC,, is false in M.

For Y= {A,: n € w} is a set of p-element sets in M (with support &). Suppose
fis a choice function for Y in M with finite support E. Since E is finite, there
is some A, € Y such that A, N E = ¢ and therefore ¢ defined by

_Jn() € A,
¢(?) _{ t otherwise

isin fix (E). ¢ fixes Y and A, but ¢(f(A,)) #f(A,) since f(A,) € A,. There-
fore E is not a support of f.
The proof of Theorem 3.10 is completed by showing
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Claim 2 SPS(p) is true in M.

Let Y be a collection of finite sets in M and let W = 7,y S,. We show W has
a maximal p-subgroup in M. Suppose Y has finite support E. Foreachy € Y
let OB(y) be the fix (E) orbit of y, i.e., OB(y) = {¢(y): ¢ E fix (E)} S Y.

Let F be a choice function for {OB(y): y € Y} (F'is in M’ but not nec-
essarily in M). Let X = {F(OB(y)): y € Y} and for each y € X, let L(y) be
a Sylow p-subgroup of S, containing the p-subgroup {¢|y: ¢ € fix (E) and
o(y) =y}

Lemma 3.11 Ifye X and ¢, Y € fix (E) and ¢(y) =y (»), then ¢(L(y)) =
Y(L(y)).

Proof: Assume the hypotheses, then ¥ ~!(¢(y)) =y and ¢ ' « ¢ € fix (E);
hence y ™' o ¢|y € L(y); therefore (¥ ™' e @) (L(¥)) = (¥ "o d[ )L ((¥ "
|»)™H) =L(»). So ¢(L(y)) = ¥(L(y)), proving the lemma. (We have used
the fact that if n and o are permutations, then n(o) =geooon~'.)

Hence T = {¢((y, L(»))): y € X and ¢ € fix (E)} is a function in M
with domain Y and for each y € Y, T(y) is a Sylow p-subgroup of S,. There-
fore by Theorem 1.2, 7, yT(y) is maximal p-subgroup of ,cyS, in M prov-
ing Claim 2.

To transfer the result to Zermelo-Frankel set theory we note that by Corol-
lary 3.6, ACk holds in M where K = {r € w: gcd(r, p) = 1}. By an argument
almost identical to the one in [1], p. 109, we can construct a model N of ZF from
M in which AC, fails and ACk holds. Therefore by Corollary 3.6 SPS(p) holds
in N.

As a final remark, we note that several negative results can be obtained
using the theorem of Levy [3]:

ZFU k (vn € w)(AC,) — AC,.
Let p be a prime. By Corollary 3.9, AC, and SPS(p) — ACy;,. Therefore
ZFU k (Vn € w)(AC,) - SPS(p).
Using Corollary 3.6, we also obtain
ZFU k (vVn € w)(AC,) — ACk,
and

ZFU k (Vn € w)(AC,) - ACk,.
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