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Decision Procedure for a Class
of (L, »)»-Types of T3 Spaces

JUAN CARLOS MARTINEZ

The (L., ),-types of T; spaces are introduced in [1]. An effective proce-
dure is then obtained to decide whether a type is satisfiable in some 73 space.
The expressibility of (L, ), for T; spaces is studied in [2]. For this purpose a
class of (L,,,),-types is introduced and in this way we obtain a characteriza-
tion of the (L,,,),-equivalence for a wide class of 73 spaces. In the present
paper, we prove that there is a decision procedure for this class of types.

1 Preliminaries Suppose that A is a T3 space and A* is a subset of A. The
n-move game G, (A*, A) between two players, I and II, is defined as follows.
In his i-th move (i = 1...n) player I chooses an arbitrary finite sequence
a,...,a, of points in A and then in his i-th move player II chooses a sequence
of r neighborhoods U, of a,,...,U, of a, in A. Let Uj,...,U), be all the
neighborhoods chosen by II during the game. Player I wins if A*C U{ U...U
Uj,; otherwise, player II wins. Then, A* is accessible (in the space A) if for
some n € w player I has a winning strategy in the game G, (A%, 4). With this
notion we can study the behavior of convergence. If @ € A we say that A* con-
verges to a, A* — a, if a is an accumulation point of 4*. If A* — a the follow-
ing two types of convergence are considered:

i A* S, 4, if for every neighborhood U of @ we have that A* N U is not
accessible.
(i) A* 3 a, if there is a neighborhood U of a with A* N U accessible.

The set S, of n-types is then defined by induction on #:

So = {*}, Spp1 =P < U e, N:a€S,) >

A=0,1

where P(X) denotes the power set of X.
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The n-type of a € A is defined inductively by:

so(a, A) =%, spui(a, A) = |J (@, N\): @ € S, and 4, > a},
A=0,1
where 4, = {a € A: 5,(a, A) = a}.

For m, n € w with m < n and o € S, the m-type («a),, is defined in a way
such that if A is a T3 space and a € A, s,(a, A) = (s,(a, A)),, (cf. [2]). So,
for m < n, the n-type of a determines the m-type of a.

By means of these types we obtain a characterization of the (L, ),
equivalence for the class of T; spaces of a-finite type. A space A is of a-finite
type if for some ny € w: sy, (a, A) = s,,(a’, A) implies s,(a, A) =s,(a’, A)
for all n > ngy, a, a’ € A. Two T; spaces A and B are a-type equivalent if for
every n-type o we have:

(i) A and B have the same number of points of n-type o
(i) A, is accessible iff B, is accessible.

Then, if A and B are T3 spaces of a-finite type we have: A and B are (L,,,,);-
equivalent iff A and B are a-type equivalent (cf. [2]).

An n-type « is satisfiable in A if there is an ¢ € A with s,(a, A) = «. The
set of satisfiable n-types in A4 is denoted by S,,(A4). In this paper, we find an
effective procedure to decide whether for a nonempty set S of n-types and f:
S — {0, 1} there exists a T3 space 4 such that S = S, (A4) and, for any a € S,
f(a) = 1iff A, is accessible.

Ziegler’s notion of an w-tree employed in [1] to find a decision procedure
for the (L, )-types of T; spaces will also be useful in our case. This notion can
be found in [1] and [2]. If (7, <) is an w-tree and o< is the topology induced
by =<, we say that (7, o<) is an w-fopological tree.

In the present paper, we presuppose acquaintance with [2] on the basic
properties of the accessible sets. We refer to that paper for examples and basic
ideas.

2 The decision procedure Suppose that A4 is a T3 space and A7, A3 are sub-
sets of A. If A} — a for every a € A%, we write AT - A3. If A% a for every
a € A%, we write AT A% (A =0, 1). The easy proof of the next lemma is left
to the reader.

Lemma 1 Suppose that A is a T; space, AT, A5, A* are subsets of A and
ac A. We have:

(@ IfA*SA%and A% —a, AT Sa.

() IfA*—> A%and A3 Sa, AT Sa.

() IfA*—A*, A* %4~

We say that (P, <, p, ) is an accessibility relation (in the sequel we shall
say a-relation) if P is a nonempty finite set, < is a transitive binary relation on
P {(p,q):p, g€ Pwithp <q} - {0,1} and u: P— {0, 1} are functions
such that the following three conditions hold (we write p = qif p < qorp =
q):
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(i) For every p € P:
p < p implies p(p, p) = 0.
(ii) Foreveryp, q,p’,q €EPwithp=p <q =gq:
o(p, q) = 1 implies p(p’, q') = 1.
(iii) For every p, g € P with p < g:
u(g) = 1 implies u(p) =1 and p(p, q) = 1.

We say that ¢ € P is minimal if there is no p € P with p < g.
If (P, <, p, u) is an a-relation, it is very easy to check:

(i) Forallp,q,re Pwithp=r=gqandp+#q:
o(p, q) = 1 implies r X r.

(ii) For all p, g € Pwith p = q:
w(gq) = 1 implies p X p.

Now suppose that A is an w-topological tree. Note that the following hold:

(i) Any infinite path of A is a nonaccessible set.
(ii) For a € A and n € w, the set of all the points of the paths of origin
a and length <n is accessible.

If a € A the set of immediate successors of a is denoted by N(a).

Lemma 2 Suppose that (P, <, p, u) is an a-relation. Then, there is an w-
topological tree A and a partition (Ap)pcp of A such that for every p, q € P the
following hold:

(@) A, — afor someaec A,implies A, — A,

b) A;~A,iffp<gq

) A,— A, implies A, 222 4,

(d) A, accessible iff p(p) = 1.

Proof: We are going to construct pairwise disjoint sets A, for p € Pand n €
w by induction on n.

If u(p) =1 and p is minimal, Ag is a nonempty finite set. If u(p) =1 and
p is not minimal, A% = @. If u(p) = 0, AJ is a denumerable infinite set.

Suppose that A} is defined for all p € P. Assume that p, g € P, p < g,
and a € Ap. If p(p, q) = 1, we consider a denumerable infinite set A7 ,. We
suppose that A7 , C N(a). If p(p, g) = 0 we consider a denumerable infinite
set AZ;’; for each k € w; then, the following are assumed:

() Az%CN(a)
(ii) For every b’ € AL %*! there is a b € A% % such that b’ € N(b)
(iii) For every b € AZ;’; there is only a b’ € A% %*! with b’ € N(b).

We put
Aga= U Aza.
k€w

For each g € P we set

Al = U {Aj 4 a € Apand p < g for some p}.
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Suppose that @ € Ap. If n = 1 and there are b and & such that a € A7 ;"%,
we consider the immediate successor @’ of @ in A%;"**! and set
N@={a}u U A4,V U 4z

p<q p<q
p(p,q)=1 p(p,q)=0

Otherwise,

N@= U A3,V U 4z
p<q p<q
p(p,g)=1 p(p,q)=0

Now we put 4, = (JAjand 4 = |J 4,.

nEw pPEP
If (B, <, p, ) is an a-relation and p € P we define the n-type of p in P,
s,(p, P), by induction on # as follows:
*
{(B, \g): (a) the set Jof all g € P with p < g and 5,(q, P) =

B is nonempty, and (b) g = 0 if there is a ¢ € J with p(p,
q) =0, \g = 1 otherwise}.

So(p, P) =
Sn+l(p, P) =

Proceeding by induction on # it is easy to prove the following lemma.

Lemma 3 Let (P, <, p, pn) be an a-relation. Suppose A is an w-topological
tree with a partition (Ap),cp satisfying (a)-(d) of Lemma 2. Then, for every
PE P a€ A,and n € w we have that s,(a, A) = s,(p, P).

Theorem Suppose that S is a nonempty set of n-types and f: S— {0,1}. The
following two conditions are equivalent:
(@) There is a T; space A with S = S,(A) and such that, for every v € S,
f(y) = 1iff A, is accessible.
(b) There is an a-relation (S’, <, p, p) such that:
i S'CSyiandS={(a),: €S’}
(i) o =8,41(c, S") forall x € S’
(iliy Foreachy € S: f(v) =1iff u(a) =1 for every a € S’ with (o), =7.

Proof: By using Lemma 3, it is easy to prove that (b) implies (a).
Conversely, let A be a T3 space with S = S, (A) and such that, for every
v €S, f(y) = 1iff A, is accessible. Put

S = 8p1(4).
We define the binary relation | on S’ by
ot Biff Az — a for some a € A,.

Let («y,...,0x) be a finite sequence of n + 1-types of S’ with kK = 2. We
say that (ay,...,ax) isachainif o; Fa; forl <i<k — 1.
If o F B8, we define p’ (a, 8) by

(a, B) = 0, if Ag % a for some a € A,.
P 1% B =11, otherwise.
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If w= (ay,...,a) is a chain, we define p’(w) by

0, if thereisan iwith 1 <=i< k — 1 and p’'(o;, a;41) = 0.
1, otherwise.

p'(w) = {

Now we introduce the transitive binary relation < on S’ as follows:

o < B iff one of the following two conditions holds:
(i) There is a chain w of the form (e,...,8) with p’(w) = 0.
(ii) There is a chain of the form («,...,3) and there is no chain
of the form (B,...,0).

If « < B we define p(«, 8) by

0, if there is a chain w of the form (a,...,8)
p(a, B) = with p’(w) = 0.
1, otherwise.

Suppose that « € S’ and v € S. We need the following four statements:

(1) Ifa<p, then Ap, — A,.

(2) IfA,—> A,, then thereis a 8 € S’ with (8),=+v and a < .

(3) IfA,5A,, then thereis a B € §" with (8), =7, « < B and p(a,
B) =0.

4 IfA, l>Aa, then for any 8 € S’ with (8), = v and a < 3 we have
that p(a, B8) = 1.

Clearly, if 8, 8’ € S’ and A g, — a for some a € Ag then 4, — Ag.
So, we obtain (1).

To verify (3), note that if 4, 9>Aa then for every a € A, thereisa € §’
with (), =y and A5 >a.

By Lemma 1 (a) and (b) we see that if « < 8 and p(a, 8) =0 then A g, >
A,. Therefore, (4) holds.

To prove (2), we may assume that A, l»Ac, (otherwise, it would be enough
to apply (3)). Consider

C={B €S’ (B), =1 and there is a chain of the form («,...,8)}.
It is easy to see that C # . Now we put
D={B€S" (B),=vand o < B}.

Suppose that D = &. Then we would have that for every 8 € C there is a chain
of the form (8,...,8). Thus, if 8 € C,

A, Ag.
Since A, > A, and there is a chain of the form («,...,8),
A, b Ag.
Therefore,
ﬁg/ Ag B Ag.

B =y
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Consequently,

U 45> U 4s,
gecC BecC
which contradicts Lemma 1 (c).
We define u: §” — {0, 1} as follows:

1, if A, is accessible and for any o’ < a A, is accessible and
pula) = pla’,a) =1
0, otherwise.
So, if a is minimal we have that u(a) = 1 iff A, is accessible.
Note that (S’, <, p, u) is an g-relation and S = {(a),: o« € S’}. By
(1) ... (4) we can prove by induction on mthatif m<n+1and a € S':

(&) = S, §7).
Hence,

o =Sp41(a, S’) for every o € S’
One can check that if y € S:
A, accessible iff p(a) =1 for all « € §” with (), = 7.

We immediately obtain from the theorem that there is an effective proce-
dure to decide whether a given n-type is satisfiable in some 73 space. This result
was announced in [2]. Note that, for any n-type «, if « is satisfiable in some 73
space then « is satisfiable in some 73 space of a-finite type.

Corollary There is an effective procedure to decide whether for S C Sy
U...US, withSNS,+ D (k<n)and f: S— {0,1)} there is a T; space A
such that:

SN Sy =8,(4) (k=n),

S (v) = 1iff A, accessible (v € S).

Proof: If such a space A exists, for kK < n we have:
i SNS={(a)e:ax€ESNS,}
(i) Ifyesns,
Sf(y) = 1iff f(a) =1 for every ¢ € SN S,, with (a)r = 7.

Remark: If 4 is a T space, E': S, » w U {oo] is defined in [2] by Ef («) =
number of a € A with s,(a, A) = a. By a method similar to the one we have
been using, we can find an effective procedure to decide whether for A: S, —
wU {ow} and f: {y € S,: A(y) # 0} - {0, 1} there is a T3 space A such that
h = Ej; and, for any y € S, with h(y) #0, f(y) = 1 iff A, is accessible. Then,
in the definition of the accessibility relation, we have to include a function H:
P— {n: n=1} U {o]} such that for every p € P:

p nonminimal implies H(p) = o
p minimal implies (H(p) = o iff u(p) = 0).
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