297

Notre Dame Journal of Formal Logic
Volume 28, Number 3, July 1987

On the Equivalence of Proofs Involving Identity

GLEN HELMAN

In the following, we will consider relations of equivalence defined on nat-
ural deduction proofs for first-order logic with identity. Such equivalence rela-
tions can be derived from theories of normalization, and they are imposed in
applications of category-theory to proofs. Our main concern here will be with
principles of proof-equivalence for various choices of identity rules. Indepen-
dent treatments of identity are not common either in accounts of normalization
or in the relevant work in category-theory, and we will approach proof-equiv-
alence directly, with only passing comments on its connection with these two
fields.!

The discussion will center on two topics. First, we will develop a pair of
moderately strong relations for each of the two usual sets of rules for identity,
rules characterizing it as a congruence and as supporting replacement in all con-
texts. We will also consider two sets of rules for identity that are more analo-
gous to the introduction and elimination rules employed for other constants.
Each of these sets of rules suggests principles of proof-equivalence, but the
resulting relations prove to be different from those developed for the congruence
and replacement rules and are in some ways less satisfactory.

1 Derivations and proof equivalence This section is devoted to concepts and
notation for derivations, and to background assumptions concerning proof-
equivalence. We fix a first-order language whose nonlogical vocabulary may
include sentential, individual, predicate, and function constants. The primitive
logical constants are to be L, D, A, ¥, and =, with ¢ defined as ¢ D 1.2 It
is convenient to employ both predicate and function abstracts in our syntactic
analysis; as notation, we use “x.¢”, “x.t”, and the like. A universal formula vx¢
is understood as the application of the constant V to an abstract x.¢, and sub-
stitution is understood to be an operation which applies to an abstract x.¢ (or
x.u) and a term 7 to yield the substitution ¢ (¢/x) (or u(¢/x)). We will often use
the abbreviated notation “¢ (¢)” and “u(t)”, where “¢(—)” and “u(—)” can be
understood as notation for abstracts x.¢ and x.u with the abstracted variable

Received October 6, 1984, revised October 10, 1985

298 GLEN HELMAN

suppressed. We regard alphabetically variant (or congruent) abstracts as syntac-
tically identical. This enables us to assume, without loss of generality, that bound
variables are chosen so as to avoid clashes upon substitution; and such assump-
tions will not always be explicitly stated. It also enables us to present any pair
of abstracts using the same bound variable.

We will use boldface to abbreviate notation for sequences of various sorts
(e.g., “¢” for ty,...,t,). Certain related uses of boldface will be explained as
they arise. We usually assume that sequences are nonempty, and the exceptions
will be noted explicitly. When the empty sequence () is included, the expanded
notation “f,...,¢,” is understood to admit the case n = 0. The polyadic ab-
stracts x.¢ and x.f are to be the results of simultaneous abstraction, so the vari-
ables x must all be distinct. Simultaneous substitution applies to an abstract x.¢
or x.u and a sequence of terms ¢ of the right length.

The proofs we consider will be in tree-form, like Gentzen’s N-systems and
those of Prawitz [6] and [7]. We use “C”, “D”, and “E” for proofs, writing

D
¢

to display a conclusion. An assumption will be a pair consisting of a formula
and a natural number index, and we adapt Prawitz’s notation to write “[¢]” and
the like for assumptions, understanding the brackets (perhaps with primes or
subscripts) to stand for the index. Assumptions can thus appear in more than
one derivation, making them analogous to variables, and we will pursue this
analogy in much of our notation and terminology.

We distinguish the discharge or binding of an assumption from the appli-
cation of a rule like DI, writing

or D:¢

[]‘g] or [4].D

for an assumption abstract. The latter notation will sometimes be used even for
proofs in tree-form in order to indicate the abstract’s scope. On analogy with
our conventions for bound variables, we identify abstracts that are alphabetic
variants with respect to the indices of bound assumptions.3 The substitution of
a proof D:¢ for an assumption [¢] in a derivation E is written

D

[¢] or E(D/[¢])
E

with indication of the assumption sometimes suppressed in the latter. These
stand for the result of grafting D to the tips of branches at which [¢] has free
occurrences; the free assumptions of D are to remain free. In a polyadic abstract
[#].D, the assumptions [¢] must all be distinct though the formulas ¢ that are
assumed need not be.

We treat the proper parameters of rules like v/ in a similar way. A param-
eter is an ordinary individual variable, and generalization on it appears first in
an abstract

X
D or x.D

EQUIVALENCE OF PROOFS 299

which must satisfy the usual restriction on proper parameters: x may not have
free occurrences in any free assumption of D. Like other abstracts, parameter
abstracts are distinguished only up to alphabetic variance. Our notation for sub-
stitution is analogous to that used in other cases, but the restriction on abstrac-
tion here precludes a general analysis of substitution as an operation applying
to an abstract and a term. Still, we may look at substitution in this way in cases
where the abstract is defined. Substitution in proofs with discharged assump-
tions does not alter the locations at which top-formulas are discharged, though
it may alter the formulas appearing at these locations. For example, the substi-
tution of ¢ for a parameter x in the proof on the left below gives the proof on
the right

[¢] [&(2/x)]
D D (¢/x)
¥ v (t/x)
o1 —— >
dDY o (t/x) D Y (t/x)

where we assume that the index of [¢] is distinctive in the sense of differing
from the indices of all assumptions free in [¢].D (so that any assumption
[¢(2/x)]’ already appearing free in [¢].D has an index different from that of
[o(2/x)]).

Although successive abstraction of assumptions and parameters could come
in any order, we will be mainly concerned with proofs and abstracts of the gen-
eral form

x.[6]1.D=x;...xp.[¢1]1... [¢,]1,.D,

where x and [¢] may each be the empty sequence; we call these derivations.
When the proof D has a conclusion y, the derivation x.[¢].D has the type
x.¢ — x.y; the sequence x.¢ is its domain and the length of x is its dimension.
The proof D itself is a derivation with type —y, domain (), and dimension 0.
A derivation of type x.¢ — x.y can be understood to show that the intersection
of the relations expressed by the abstracts x.¢; is included in the relation
expressed by x.y.

The systems of proof we consider differ only in their rules for identity. All
will include the usual introduction and elimination rules for D, A, and V as well
as classical indirect proof (IP)

[—¢]
D
L
IP

¢

The result of applying a rule will sometimes be written in linear form —“&I(D,
E)” for example. Except for one of the rules of Section 3, the application of any
of those we consider will fit the pattern

Rule(x,.[¢].Dy,...,x,.[¢],.Dy),
where n may be 0.

300 GLEN HELMAN

We take an instance of a rule to be identified not by its figure but rather
by the rule (or a label for it) together with the various parameters (such as com-
ponent expressions) which combine to determine the instance. Thus we distin-
guish the various instances of VE by the abstract and term which combine to
determine the conclusion, and this is true even when the abstract is vacuous so
the term does not appear in the figure. Similarly, we distinguish the various
instances of &E by the components of the conjunction and whether the first or
second is concluded. In linear notation, such determinants of the instance of a
rule will sometimes be displayed as subscripts (e.g., “VE, 4 ,” or “&E; 4 ,”).

1.1 Definition Given a system of proof all of whose rules take the form
indicated above and which includes the usual rules for D, A, and v, as well as
IP, a proof-equivalence for the system is a dyadic relation ~ holding between
proofs of the same conclusion which satisfies the following:

(1) ~ is an equivalence relation
(2) for each rule of the system, we have

Rule (xl'[¢]l'Dl, ey Xpe [¢]n'Dn) -~ RUIe(xl-[¢]1-Dl,’ .. ’xn'[¢]n-Dl,t)

if D; ~D/ forall 1 <i=<n*
(3)if D ~ D’, then D(E/[¢]) ~ D’ (E/[¢]) for any [¢] and E:¢ and
D(t/x) ~ D’(t/x) for any ¢ and x
(4) (@ DE(DI[¢].D, E) ~ D(E/[¢])
(b) DI[¢]. D E(D, [¢]) ~ D provided that [¢] is not free in D
() AE;(AI(Dy, Dy))~D;fori=1,2
(d) AL(AE(D), AE3(D)) ~ D
() VE,(VIx.D) ~ D(t/x)
(f) VIx.vE,D ~ D provided that x is not free in D
5)

D

[—o] é

SE—T—
IP[-¢]. —;5- ~ 1; provided that [—¢] is not free in D.

A proof-equivalence extends to all derivations by the stipulation that x.[¢].D ~
x.[¢].D’ if and only if D ~ D’.

By an obvious induction on the structure of derivations, clause (2) implies
a strong replacement principle for ~. If D ~ D’, then (...D...)~(...D"...)
when both are defined, where (...—...) may be a context which binds free
assumptions or parameters of D or D’. Clause (3) is included primarily for ease
of reference. It holds without special assumption for the specific proof-
equivalences we will define later, and its first part follows in any case from
clauses (2) and (4)(a).

In (4), AE; is an instance of A-elimination which derives ¢; from ¢, & ¢,,
and VE; is an instance of V-elimination which derives ¢ (#/x) from vx¢. Parts
(a), (c), and (e) correspond to the “immediate reductions” of Prawitz [7] while
(b), (d), and (f) (read right to left) correspond to his “immediate expansions”.
There is also an analogy between the first group and the principle of -

EQUIVALENCE OF PROOFS 301

conversion in the A-calculus and between the second group and the principle of
n-conversion. Because of this, we will refer to the two groups as 8-principles and
n-principles, respectively. The analogy with the A-calculus carries over to the pos-
sibility of replacing any %-principle in this context by a kind of extensionality
principle. For example, the alternative {-principle for D (again adapting Curry’s
terminology) says that proofs D, D’: ¢ D y are equivalent if DE(D, [¢]) ~
DE(D’, [¢]) for [¢] not free in either D or D’.

Clause (5) should be compared to (4)(b). It is a plausible and consistent
principle specific to negation. One consequence of it is the {-principle that
derivations D, D’:¢ are equivalent if DE([—¢], D) ~ DE([—¢], D’) for
[—¢] not free in either D or D’. This is equivalent (in this context) to saying
that = —I(D) ~ 7 =I(D’) only if D ~ D’ (where =1 is a derived rule defined
by =~I(D) = DI[—¢]. DE([—¢], D) for any [¢] not free in D). These con-
sequences of (5) do not mention IP and imply (5) only in the presence of an
appropriate @-principle; however, such a principle must be foresworn on pain
of rendering equivalent any two derivations of the same conclusion.’

The significance of principles of proof-equivalence is often clearest when
they are stated as properties of the structure of derivations modulo ~. It fol-
lows from Definition 1.1(2) that each rule (instance) induces an operation
Rule/~ defined on equivalence classes of derivations of certain types. The prin-
ciples 1.1(4) and 1.1(5) state algebraic properties of these operations. The 3-
principles of Definition 1.1(4) characterize the operation DI/~, Al/~, and
vI/~ as injections with left inverses given by

D/~ [¢]. DE(D, [¢])/~ for [¢] not freein D: ¢ D ¢,
D/~ » (AE|(D)/~, AE,(D)/~), and
D/~ ~ x.VE,(D)/~ for x not free in D.

The n-principles say that the latter operations are also right inverses for the
former, implying that both are bijections. The alternate {-principles say instead
that the operations of the second group are injections, which has the same impli-
cation. The principle (5) says that an operation IP/~ has the right inverse

D/~ [1¢]. D E([-¢], D)/~ for [7¢] not free in D:¢,

so the latter is an injection (as is the operation - —1/~ which results from com-
posing it with DI/ ~).

There is a still richer structure that is most economically described using
the concepts of category theory. Of the possible approaches, we will consider
one that is close to the constructions of [3], [4], and [8]. Beginning with se-
quences of equivalence classes of derivations, it is possible to construct for each
n = 0 a category DER#n (with finite products) whose objects are the sequences
x.¢ where x has length n and whose morphisms f: x.¢ — x.¢ are the sequences
(x.[¢]1.D;/~)1<i<k, Where D;:y; for each 1 =i < k (and k may be 0). These
morphisms represent abstract demonstrations of inclusion between the inter-
sections of the n-adic relations expressed by the sequences of abstracts x.¢ and
x.y, respectively. The rule vI can be used to define a bijection from each set
hom(xy.¢, xy.¥) (={f|f: xy.¢ — xy.¢}), where y is not free in ¢, to the set
hom(x.¢, x.vyy) (where Vyy is the sequence of formulas Vyy;). This bijection

302 GLEN HELMAN

constitutes an adjunction of functors, one of which (from DER~ to DER#n +
1) corresponds to an increase of dimension by vacuous abstraction and the other
of which (from DER~#n + 1 to DER~#) corresponds to a decrease by universal
quantification. The rules for D and A also determine adjunctions which give
each category DER~# exponentials and a second sort of product. We might gener-
alize the situation here to say that, from the point of view of proof-equivalence,
the defining characteristic of true introduction and elimination rules is the exis-
tence of an appropriate adjunction. The rules for identity considered in the next
section do not take this form, but the rules to be considered in Section 3 do.

2 Congruence and replacement In this section, we will consider proof-
equivalence relations for two common choices of identity rules. Two relations
will be defined for each of the systems, a “basic” and a “groupoid” equivalence.
Our main result will be that natural interpretations of each system within the
other by way of derived rules determines an isomorphism between the equiva-
lence classes modulo each pair of corresponding relations. That is, we will see
how to regard the congruence and replacement rules as alternatives not only with
respect to provability but also with respect to the equivalence of proofs.

2.1 Definition The congruence system has (in addition to the basic rules
required by Definition 1.1) identity rules of transitivity, reflexivity, symmetry,
congruence for function symbols, and congruence for (nonlogical) predicates.
Their figures are as follows:

u=v t=u t=u
Trn ——M8M8M8— Rfl — Sym
t=v =t u=t
h=u...t,=u, h=u...t, =u, Pt
FC PC >
ft=fu Pu

where fis an n-place function symbol and P is an n-place predicate.

2.2 Definition The replacement system has, as identity rules, Rfl and a rule
which licenses both direct and inverse replacement

=u ¢(1) u=t ¢(t)

Rpl
o (u) o (u)

in which the abstract ¢ (—) may be vacuous (i.e., of the form x.¢ for x not free
in ¢).

We will define proof equivalences for each of these systems by adding to
the principles of Definition 1.1 a group of basic principles for the identity rules
and a further “groupoid assumption”.

2.3 Definition The basic equivalence for the congruence system is the least
proof-equivalence satisfying (1)-(5) below; the groupoid equivalence is the least
proof-equivalence satisfying (1)-(6).°

EQUIVALENCE OF PROOFS

303
(1) D E C D
t=u s=t u=v t=u
C Trn Trn
u=uv S=u t=v s=1
Trn ~ Trn
S=v S=v
(2) Rfl D D Rfl ——
u=u t=u t=u t=
Trn ~ D ~ Tm
t=u t=u t=u
3) () D E E D
u=v t=u t=u u="v
Trn Sym Sym
t=v u=t v=u
Sym ~ Trn
v=t v=t
(b) Rfl — © D
t=1t t=u
Sym —— ~ Rfl —— Sym
t=t t= u=t
Sym ~ D
t=u r=u
@) (a) D E D E
Uu=v t=u u=v t=u
Trn FC FC
t=v Ju = fv ft=fu
FC ~ Trn
Jt=fo ft=fo
(b) Rfl — (© D D
t= t= t=u
FC ~ Rfl Sym FC
ft=ft ft=ft u=t ft=fu
FC ~ Sym
Ju=ft Ju = ft
5) (@ C D D E
u=v t=u t=u Pt
Trn E C PC
t=v Pt u=v Pu
PC ~ PC
Pv Pv
(b) Rl —— D
t=t Pt
PC—— ~ D

Pt Pt

304 GLEN HELMAN

(6) (Groupoid assumption)

D
t=u
Sym D
u=t t=u
Tp—or-o —— ~ Rff——
t=t =1

(Here and in the following we extend the boldface notation by use of ¢ = u for
a sequence of equations #; = u;, use of Trn(D, E) for a sequence of derivations
Trn(D;, E;), and other similar abbreviations.)

As with the principles of Definition 1.1, these conditions can be understood
to state properties of the operations Rule/~. Thus (1) describes Trn/~ as
associative and (2) says that the various Rfl/~ are identities. Together they tell
us that these rules provide the composition operation and identities for a cate-
gory EQ whose objects are terms and whose morphisms are equivalence classes
D/~ of proofs D: ¢ = u. In this category-theoretic vocabulary, (3) describes
Sym/~ as a contravariant function from EQ to EQ which is its own inverse.
And (4) describes FC/~ for each n-place f as a covariant functor from the prod-
uct category EQ” to EQ which commutes with Sym/~. Similarly, (5) enables
us to define, for each n-place P, a functor

Dy/~,...,.D,/~~ [Pt] . PC(D,,...,.D,, [Pt])/~

(where [P#] is not free in D) from EQ” to the category DER0O mentioned in the
first section. Alternatively, the structure EQ can be thought of as a many-sorted
monoid with an added operation Sym/~. For n-place f and P, FC/~ and PC/~
are then an n-place homomorphism and n-place action, respectively, in the senses
appropriate for such a structure. Finally, the groupoid assumption tells us that
the operations Sym/~ are inverses with respect to Trn/~ and Rfl/~, making
EQ into a many-sorted group, or a category whose morphisms are all invertible —
in short, a “groupoid” (on one usage of that term). Clauses (3)(a)~(c) and (4)(b)
and (c) then become redundant. Although the groupoid assumption simplifies
the structure of proofs under ~ without trivialization, it has been kept separate
because it rules out some natural representations of the structure of EQ.’
The principles for the replacement system can be stated most compactly by
introducing some new notation. Let =, be = and let =, be its converse (so that
t =, uis u=1t). We use “=;”, etc., as variables ranging over these two, en-
abling us to capture both direct and inverse replacement with a single figure,
e.g.,
t=;u o)
Rpl —mM8M8 —.
o (u)

2.4 Definition The basic equivalence for the replacement system is the least
proof-equivalence satisfying (1)-(4) below; and the groupoid equivalence is the
least proof-equivalence satisfying (1)-(5).

0]

@

3

O]

EQUIVALENCE OF PROOFS 305
(@ Rfl — D (b) D Rfl ——
t=t ¢(1) t=;u t=t
Rpl— ~ D Rpl ~ D
(1) (1) t=;u t=;u
(a) D E
t=,' u d)(t/x)
Rpl ——— ~ E if x is not free in ¢
¢ (u/x) ¢
(b) D E
t=; t,t
D E D Rpl “ e
= , =; >
o (u, u) o(u, u)
(a) D E C E
s=;t (s, u) u=;v o(s, u)
C Rpl D Rpl
u=;v d)(t’ u) N =j t d)(sa U)
Rpl ~
(L, v) (L, v)
(b) D E C D
s=;t(u) &) u=;v s=;t(u)
C p Rpl
u=;v o (t(u)) s =; t(v) o (s)
Rpl ~ Rpl
o (1(v)) ¢ (£(v))
©) D E D C
c Rpl u=;v o¢(s(u)) u=;v s(v)=;t
s(v)=;t o (s(v) s(u) =t & (s(u))
Rpl ~ Rpl
o (1) (1)
(@) D
t=iu [o(u)]
[¢(2)]
E D E
V(1) t=; ¢
D Dll¢(t)]. —8 — Rpl——u—M
t=;u é(2) DY (1) Y(u)
Rpl ~ Dl¢(u)]. ————
¢ (u) D y(u) é(u) Dy (u)

306 GLEN HELMAN

(b) D E C D C E
t t t=; t t=; t
c AI¢>() ¥ () Rpl u ¢(1) Rpl u Y(r)
t=;u & (1) Ay (1) o (u) V(u)
Rpl ~ Al
o (u) AY(u) o (u) Ay (u)
() E D E
(1, x) t=;u ¢(x)
vix, —m8M8— Rpl —M8M8M8 —
t=;u Vxo (2, x) ¢ (u, x)
Rpl ~ VIx. ——
vxo (U, X) vxé (u, x)

(5) (Groupoid assumption)
E

D
t=,~u ¢(t)
D Rpl —
t=,'u ¢'(u)
Rpl ~
(7) &(2)

where, in (4)(a), the index of [¢(#)] is chosen distinct from those free in D or
[¢(8)].E and, in (4)(c), the parameter x is chosen not to be free in D. It should
also be noted that these principles are stated only for instances of the rules which
are associated with the displayed figures in the natural way (which should be
clear in each case).®

The basic and groupoid equivalences defined here will shortly prove to
induce a structure on derivations comparable to that described above in motivat-
ing the definitions of these relations for the congruence system. However, the
most direct motivation of Definition 2.4 follows other lines. First, we can com-
pare (1)(a) and (b) to the principles of Definition 1.1(4). Lacking a true intro-
duction rule for =, the analogy cannot be exact; but (1)(a) can be thought of
as a S-principle for introductions by Rfl (with the natural attempt to general-
ize it leading us to the indiscernibility system of Section 3). And (1)(b) bears
some resemblance to y-principles. It licenses a way of expanding any proof of
an equation (albeit not to the result of applying an introduction rule), and it is
equivalent to a kind of extensionality principle. Using (3)(b) or (c) and (1)(a),
any replacement by the left side of (1)(b) can be restated as a replacement by
the right side. So (1)(b) is equivalent in this context to the principle that D, D”:
t; = I, are equivalent whenever Rpl, 4(D,[#(#,)]) ~ Rpl, 4(D’, [¢(#;)]) for i =
1, 2, each abstract x.¢, and [¢(#;)] not free in D or D’.

However, the principles of (1) are too weak in isolation to provide an ade-
quate theory of proof equivalence. The further basic principles adopted derive
from consideration of normalization for proofs with identity. Those of (2) enable
us to restrict all replacements to a single occurrence of a term, eliminating vacu-
ous replacements by (2)(a) and separating multiple replacements by (2)(b). The
principles of (3) license the transformations “switch” and “shift” of Statman [9]
(comparable transformations are applied to sequent proofs in LifSic [5]). Such

EQUIVALENCE OF PROOFS 307

transformations may be used to minimize the complexity of terms appearing in
a proof. To see how, first note the following principle, which can be used to
reduce the complexity of certain instances of Rfl:

D Rfl ——Mm— D Rfl

u=;v t(u) =t(u) u=;v t(v) =t(v)
Rpl ~ Rpl

t(u) = t(v) t(u) = t(v)

(This can be shown by using (1)(a) and (b), respectively, to reduce the left and
right sides of an instance of (3)(c).) Now consider the following adaptation of
one of Lif§ic’s examples ([5], p. 17):

F G
a=fa a=fa
E Rpl
a=fa a=f%a
Rpl ; Rfl ; ;
a=f"a a=f"a
D Rpl S S
a=fa 3a=a
Rpl S f
fla=a

(where powers are used to abbreviate iterated applications of f). This proof can
be reduced to

G Rfl
a = fa a=a
F Rpl £
a=fa fa=a
E Rpl .
= fa ffa=a
D RptZ=S 3
a=fa ffa=a
Rpl
ffa=a

by the principle above and two uses of (3)(b) (run right to left), and thence
reduced to

by (3)(b) (run left to right). The result contains no term more complex than those
appearing in the assumptions and the final conclusion.

308 GLEN HELMAN

The principles of (4) license permutation of Rpl with introduction rules for
the constants D, A, and V; and appropriate permutation principles for their
elimination rules follow by Definition 1.1(4). In the congruence system, prin-
ciples like these will be consequences of the definition of replacement for com-
pound formulas. In the present case too, they can be thought of as imposing a
relation between replacement in compounds and replacement in their compo-
nents (recalling that by the y-principles of Definition 1.1(4) any proof of a com-
pound can be restated as a proof by its introduction rule). A principle licensing
permutation with IP is of some interest for normalization, but it would not fol-
low from the definition of replacement in the congruence system and (as will be
noted in Section 3), it has trivializing consequences in the presence of the group-
oid assumption.

The principle (5) expresses the groupoid assumption for the replacement
system. It renders the operations of direct and inverse replacement by a given
proof D: ¢ = u genuine inverses modulo ~. As in the congruence system, this
assumption permits a simpler statement of the principles of proof equivalence.
The groupoid equivalence for the replacement system can be characterized as
the least proof-equivalence which satisfies the cases of (1)(a) and (b), (2)(a), and
the permutation principles (4) for direct replacement alone (eliminating inverse
replacement from the right of (4)(a) along the lines of (*) below) as well as satis-
fying two further principles, a characterization of inverse replacement in terms
of direct replacement

D Rfl
u=t Uu==u
D E Rpl
=1t ¢(1) t=u (1)
(*) Rpl ———— ~ Rpl
o (u) o (u)

and the following principle for permutation of direct replacement with itself

D E
s(u)=t(u) é(s(u), u)
C Rpl
u=v o(2(u), u)
Rpl
¢ (1(v), v)
C D C E
_ Rplu =v s(u)=t(u) R lu =v o(s(u), u)
s(v) = t(v) o (s(v), v)
Rpl

o (t(v), v)

The use of () alone would enable us to simplify the definition of the basic
equivalence by dropping (3)(c) and eliminating most cases for inverse replace-
ment (apparent exceptions being (1)(b), and (3)(b) for j = 2).

We wish to show that the basic and groupoid equivalences defined in Defi-
nitions 2.3 and 2.4 yield the same abstract structure for equivalence classes of

EQUIVALENCE OF PROOFS 309

derivations. The first step is to show that the special identity rules at each sys-
tem are derived rules of the other. There is nothing new here, but particular defi-
nitions will be noted for reference in later arguments. Both systems may be
extended so that they have a common set of identity rules—Trn, Rfl, Sym, a
general congruence rule for function abstracts, and a polyadic replacement rule

Uy = Vy...U, = Uy Uy =;Vy...U,=; v, ¢(u)
TC Rpl .
t(u) = t(v) o (v)

These will be defined so that TC generalizes FC and Rpl generalizes both PC
and monadic replacement.

2.5 Definition We define derived rules TC and Rpl in the congruence sys-
tem, doing this in the case of TC and direct replacement by recursion on the
structure of the abstract in question. (Subscripts are used to distinguish direct
and inverse replacement, so that Rpl; has the figure exhibited above, and they
are also used to indicate certain other determinants of the instances of rules.)

(1) (@ TC,. (D) =Rfl, iftisa constant or variable not among x
(b). TC, (D) =D;
(¢) TCi (D) =FC(TCy (D), ..., TCy (D))

(2) (@) Rpl,4(D, E)=E if ¢ is a sentential constant

(®) Rply x. (D, E) = PCp(TCy., (D), .., TC, ,,(D), E)

(©) Rply ;5= (D, E) = Tr(TC, (D), Trn(E, Sym(TC, (D))))

(d Rply x454(D, E) = DI[¢(v)].Rply (D, DE(E, Rpl, 4(Sym(D,),
....Sym(D,), [¢(v)]))) where D: u = v for some u and [¢ (v)] is
chosen not to be free in D or E

(©) Rl x40y (D, E) = AI(Rply 4 (D, AE(E)), Rply.y (D, AE;(E)))

(f) Rply x.vye (D, E) = VvIy.Rpl, (D, VE,(E)) where y is chosen distinct
from x and the free parameters of D and E

() Rplz x4 (D, E) = Rpl; x4(Sym(Dy), .. ., Sym(D,), E).

2.6 Definition We define derived rules Trn, Sym, polyadic Rpl, and TC in
the replacement system as follows:

(1) Trn(D, E) = Rply , ;—x(D, E) where E has the conclusion ¢ = u for some
u and x is not free in ¢

(2) Sym(D) = Rpl . x=,(D, Rfl,) where D has the conclusion u = v for
some v and x is not free in u

3) Rpli,xy.:ﬁ(cy D,E) = Rpli,x‘d:(v/y)(c’ Rpli,y.¢(s/x) (D, E)) where C and D
have the conclusions s = ¢ and u = v for some ¢ and u, x is not free in v,
and y are not free in s

@) TCy (D) =Rply x.r(ux)=t(D, Rfl;(u/xy) where D have conclusions u =
v for some v, and x are not free in u.

(Here (3) is the inductive clause of a definition by recursion on the length of the
replaced sequence.)

310 GLEN HELMAN

Since we can regard FC and PC as special cases of TC and Rpl for the
abstracts x.fx and x. Px, the two systems thus extended have a common set of
rules. Next we show that they are identical also in their structure modulo proof-
equivalence (both basic and groupoid). Specifically, we show, for each system
and each relation, both the principles defining the corresponding relation of the
other system and the definitions of derived rules in the latter (stated as equiva-
lences). We show this for the two systems in turn, in each case following a pre-
liminary lemma.

2.7 Lemma The following hold for both proof-equivalences of the con-
gruence system:
(1) (a) a generalization of Definition 2.3(4) to TC
(b) generalizations of Definition 2.3(5)(b) to Rpl; and of Definition 2.3(5)(a)
to Rpl; as well as the following analogue for Rpl,:

D C D E
u=1t v=u u=t ¢(t)
Tm ———— E C Rpl———

v=t ¢ (1) v=u ¢ (u)
—_— Rpl

p
¢ (v) ¢(v)

(2) (a) an equivalence generalizing Definition 2.5(1)(a) to each vacuous abstract
x.t
(b) an equivalence generalizing Definition 2.5(2)(a) to each vacuous abstract
x.¢
(3) (a) an equivalence generalizing Definition 2.5(1)(c) from FC to TC for each
function abstract
(b) an equivalence generalizing Definition 2.5(2)(b) from PC to Rpl; for
each predicate abstract
4) (@) TC,y,(C, D) ~ Trn(TCy 4 (p/y) (C), TC,, 4(s/x) (D)) where C and D have
conclusions s = s’ and u = v for some s’ and u, x is not free in v, and
y are not free in s
(b) an equivalence for Rpl; analogous to Definition 2.6(3).

Proof: The arguments for parts (a) and the cases of parts (b) for Rpl; are
straightforward inductions on the structure of the abstracts in which replacement
is made. The cases for Rpl, are immediate consequences or follow by simple
calculation.

2.8 Proposition Clauses (1)-(4) of Definition 2.4 and all clauses of Defini-
tion 2.6 (written as equivalences) hold for both equivalence relations of the con-
gruence system. Clause (5) of Definition 2.4 holds for the groupoid equivalence.

Proof: All arguments are by calculation, and we will only look at examples.
Using Definitions 2.5(3) and 2.7(4)(b), 2.4(2)(b) and (3)(a) can be reduced to
principles in which each side consists of a single direct replacement; the latter
follow from Definition 2.7(3)(b) for appropriate choices of the abstracts x.¢;.
As an example of the arguments used for Definition 2.4(3)(b) and (c), we con-
sider the case of (c) where i = j = 1. By Definition 2.7(3)(b), this follows from

EQUIVALENCE OF PROOFS 311

D
u=1uv
TC E
s(u) =s(v) o(s(u))
C pl
s(v) =t o (s(v))
Rpl
(1)
D
Uu=1v
TC C
s(u)y=s(v) s(v)y=t
Rpl
s(u) =t o (s(u))
Rpl .
(1)

And this follows in full generality from the special case where the abstract s(—)
is the identity. For that case, expansion of the right by Definitions 2.5(2)(c) and
(3) and reduction by Definitions 2.3(2) and (3)(c) gives

D E C D
= =1 =
v=t ¢ (v) u=t ¢ (u)
Rpl ~ Rpl
@ (1) é (1)

which is a consequence of Definition 2.7(1)(b).

2.9 Lemma Clauses (1)(a) and (2)-(4) of Definition 2.4 generalize to poly-
adic replacement.

Proof: The arguments are all straightforward inductions on the length of the
sequence of replacements (using the generalization of (3)(a) for a number of the
others).

2.10 Proposition Clauses (1)-(5) of Definition 2.3 and all clauses of Defi-
nition 2.5 (stated as equivalences) hold for both equivalence relations of the
replacement system. Clause (6) of Definition 2.3 holds for the groupoid equiva-
lence.

Proof: The arguments are all calculations using Definitions 1.1, 2.4 as gener-
alized in 2.9, and the definitions of 2.6. It is also convenient to use a general-
ized form of the principle (*) noted in the discussion of Definition 2.4. We
consider only the case of Definition 2.3(4)(c) for a monadic function (the gen-
eral case being only notationally different). Using 2.4(1)(a) to expand the left
of this principle for an inverse replacement by ft = ft and 2.4(1)(b) to expand
its right to a direct replacement in fu = fu and then eliminating TC and Sym by
definition, we get

312 GLEN HELMAN

D Rfl——
t=u =t
Rpl Rfl
u=t Sfu=fu
Rfl Rpl ;
1 = ft u=jft
Rm2f J S
fu=ft
D Rfl
t=u ft=pt
Rpl Rfl
Jt=fu Jt=ft
Rpl R
fu=ft SJu = fu
~ Rpl .
Ju=ft

Applying (*), run right to left, to each side gives

D Rfl
t=u Ju=fu
Rfl Rpl

ft=1t Su=ft
Ju=ft

Rplz

D Rfl

t=u ft=ft
Rpl Rfl

lft=fu Sfu = fu
Ju=ji

and this is a case of 2.4(3)(c) (where i = j = 2 and s(—), ¢, u, and v are x.fx,
ft, u, and ¢, respectively).

Propositions 2.8 and 2.10 can be understood to show that, as theories of
either the basic or groupoid equivalence, the congruence and replacement sys-
tems have a common definitional extension, the extended system, whose iden-
tity rules are Trn, Rfl, Sym, TC, and polyadic Rpl.° We can regard Definitions
2.5 and 2.6 as defining translations D — D° from the extended system to the
congruence system and D ~ D* from the extended system to the replacement
system. And a straightforward argument from 2.8 and 2.10 shows that D? ~
D ~ D* in the extended system. This enables us to complete the task of this
section.

2.11 Theorem There is a translation D — Dt from the replacement system
to the congruence system which induces a bijection D/~ ~ D1/~ on abstract

Droofs.

Proofs: Let ()1 be the restriction of ()° to derivations of the replacement sys-
tem. If D ~ E in the replacement system, we have Dt = D° ~ D ~ E ~ Et in
the extended system. So Dt ~ E¥ in the congruence system since the extended

EQUIVALENCE OF PROOFS 313

system is a definitional and hence conservative extension of it. On the other
hand, if Df ~ Et in the congruence system, then D ~ Dt ~ Et ~ E in the
extended system, so D ~ E in the replacement system. Further, given D in the
congruence system, we have D ~ D* ~ D*? = D*t in the extended system, so
D ~ D*ft in the congruence system.

Although Theorem 2.11 claims the existence of a bijection only in the case
of 0-dimensional abstract proofs with domain (), bijections are easily defined
on this basis for abstract deviations of all types.

3 Indiscernibility and reflexivity In this section, we will consider two ways
of looking at identity which, unlike the concepts of congruence and replacement,
motivate introduction and elimination rules whose natural principles of equiva-
lence are analogous to the 8- and n-principles of Definition 1.1(4). However, nei-
ther approach gives abstract proofs the structure provided by the congruence and
replacement systems (for either the basic or groupoid equivalence), and the struc-
tures these new systems do provide are in some ways unsatisfactory. The first
approach is an adaptation of the usual second-order definition of identity as a
relation that holds between objects which have all their properties in common.
This suggests an introduction rule to pair with replacement, but the resulting
structure of abstract proofs has features that make it seem impossible to cap-
ture by congruence rules. The second approach derives from a category-theoretic
representation of identity suggested by Lawvere. It provides an elimination rule
to pair with Rfl by presenting identity as the narrowest reflexive relation. How-
ever, the natural principles of equivalence for these rules reduce the variety of
nonequivalent derivations in ways that seem unacceptable.!?

To accommodate the first approach, we enlarge the first-order language to
include monadic predicate variables (our notation is “X”), but we do not intro-
duce second-order quantifiers. The rules of proof of the replacement system have
natural extensions to this language and remain complete (assuming predicate
variables are treated in the same way as constants when defining semantic con-
sequence). We recognize abstracts X.¢ and X.D of formulas and derivations by
predicate variables (with restrictions and conventions entirely analogous to those
for individual variables) as well as substitution of monadic predicate abstracts
for them (defining X7(x.¢/X) as ¢ (¢/x) and extending this in the usual way).
Clauses (2) and (3) of Definition 1.1 are easily modified to take account of
abstraction by and substitution for predicate variables, as is the discussion of
the structure of abstract derivations which 1.1 imposes. Within this framework,
we consider the following system of proof:

3.1 Definition The indiscernibility system has, in addition to basic rules,
identity rules of direct replacement (only) and identity of indiscernibles (I1I)

X
[Xt]
D

Xu
II

t=u

314 GLEN HELMAN

The indiscernibility equivalence is the least proof equivalence for the derivations
of this system which satisfies the following:

) X
[Xt]
D
Pl E E
t=u ¢(t/x) [¢(2/%)]
Rpl ———— ~ D(x.¢/X)
o (u/x) o (u/x)

where the index of [Xt] is chosen distinct from those of any other free
assumptions of D;

)] D
t=u [Xt]
Rpl —M8M8M8—

Xu

II X.[Xt].
t=u t=u

provided that X (and thus [X?]) is not free in D.

With respect to provability, the indiscernibility system is equivalent to the
replacement system. We can define a derived rule of reflexivity in the former by

Rfl, = I X.[Xt].[X¢],

defining inverse replacement from this and direct replacement along the lines of
the equivalence (*) of Section 2. And we can introduce II in the replacement sys-
tem by

X
[Xt]
D Rfl
Xu [t=1]
I = D(x.t =x/X)
t=u I=u

where the index of [X?] is chosen distinct from those of all other free assump-
tions of D. With II defined in this way, the y-principle 3.1(2) holds in the
replacement system by Definition 2.4(1)(b). However, the B-principle (1) does
not hold, and we will see shortly that adding it would trivialize the account of
proof equivalence.

As a first indication of the character of the indiscernibility system, note that
by choosing E in 3.1(1) identical to the assumption [X?], we can see that any
derivation D:Xu which has no occurrences of X in assumptions other than [X?]
is equivalent to a replacement of ¢ by u in X¢. Consequently, principles of
equivalence that relate replacement by the same equation in varying contexts (like
those of Definition 2.4(4)) imply constraints relating the various instances

EQUIVALENCE OF PROOFS 315

D (x.¢/X) of the derivation D. Such constraints impose a degree of uniformity
on the operation

x.¢~ [¢(D].D(x.¢/X)/~,

which assigns a derivation of type ¢ (#) — ¢ (1) to each abstract x.¢. For exam-
ple, letting f be such an operation, 2.4(4)(b) implies that

f(x.0 A Y)(C/~) = (A/~)E(x.0) (AE,C/~), f(x.¥)(AE,C/~))

for each C:¢ (1) A ¢ (¢) (defining application for abstract derivations by way of
substitution of representatives).

The full range of constraints on replacement present in the equivalences of
the last section can appear along with 3.1(1) only on pain of trivializing proof-
equivalence by rendering all proofs of the same conclusion equivalent. The prob-
lem arises for derivations D which can be abbreviated using a rule of ex falso
quodlibet (EFQ) defined as follows:

[—¢]
C C
1 1
EFQ— = [P—
®
for [—¢] not free in C.
3.2 Proposition Let ~ be a proof equivalence for the rules of the indiscer-

nibility systems which obeys 3.1(1) and 2.4(2)(a) (for direct replacement.) Then
E ~ E’ for any E and E’ with the same conclusion.

Proof: In 3.1(1) choose D as EFQy, ([L]’) and let the abstract x.¢ be vacuous.
Then, applying 2.4(2)(a) to the left side, we get

(L)
E
5 EFQ—¢—

for any E:¢. So any E, E’:¢ are equivalent.

Now 2.4(2)(a) is a rather degenerate analogue to the principles of 2.4(4),
and vacuous replacement itself is dispensible. However, the same problem arises
with other uniformity constraints, like the following:

E
é nY(1)
E D AE——
= t
b e AE¢/\¢(1) Rplt u v(1)
t=u ¢ry(l) o) ¥(u)
Rpl ~ Al

¢ Ay (u) ¢ Ay (u)

316 GLEN HELMAN

which we would expect to hold for any definition of Rpl on the basis of con-
gruence rules. Consequently, it is hard to see how the principle 3.1(1) could be
satisfied by a nontrivial proof-equivalence for the congruence system.

The second approach to introduction and elimination rules for identity
derives from the representation of quantifiers in Lawvere [3]. Quantifiers appear
as special cases of two general operators, with the one corresponding to 3 of
interest here. In the present context, it can be thought of as a logical constant
¥ which applies to a sequence x.t = x.¢{,. . .,x.t,, of k-adic function abstracts
and a sequence x.¢ = x.¢y,...,X.¢, of k-adic predicate abstracts to yield an m-
adic predicate whose application, (X (x.t) (x.¢))u, is intended to capture the
content of 3x;...3Ix (D1 (X) Ao A Dp(X) AE(X) = U AL A Ep(X) = Uy)
(where we assume that x are not free in u); we allow any of k, m, and n to be
0. If m = 0, the operator I produces a formula X(x.¢) and, when k =n =1,
this is the ordinary existential 3x¢. Indeed, the rules and equivalences for I that
correspond to Lawvere’s characterization of it as a certain sort of adjoint functor
are natural generalizations of the usual rules for 3 together with equivalences
analogous to those for D, A, and v of Definition 1.1(4).

Lawvere [4] considers the treatment of = as the special case L (x.x, x.x)—
that is, as the case for k = 1, m = 2, and n = 0 where xt, and xt, are both the
identity x.x. When the rules and equivalences for I are specialized for this case
we get the following system:

3.3 Definition The reflexivity system has as identity rules Rfl and mini-
mality

x
D E
é(x, x) t=u (wherexisnot free in ¢(—, —)).
M——_—
o (¢, u)

And the reflexivity equivalence is the least proof equivalence for the resulting
derivations which obeys the following:

(1)
X
D Rfl—
, t=t
Md)(x *) ~ D(t/x)
o4, 1) o(t, 1)
)
X
Rfl ———
[x = x]
D(x,x) E : E ,
g t = t=u
2O =r n

¢ (t, u) ¢ (t, u)

EQUIVALENCE OF PROOFS 317

provided x is not free in the abstract yz.[y = z].D of which [x = x].D(x,
x) and (¢ =u].D(¢, u) are instances (where we assume that the index of
[y = z] is chosen distinct from that of any other free assumption of D).

This system may be motivated by the concept of identity as the minimal
reflexive relation. The introduction rule Rfl shows us that identity is reflexive
and the elimination rule M implies that it is included in any reflexive relation.
According to the By-principles (1) and (2), M induces a bijection from abstract
derivations of type — x.¢ (x, x) to those of type yz.y =z - yz7.¢ (¥, z) (where
X, ¥, and z are not free in ¢ (—, —)), with an inverse constructed by diagonali-
zation and application to Rfl. Derivations of the first type can be thought of as
demonstrations of reflexivity and those of the second as showing that identity
is included in the relation expressed by yz.¢(y, z).

It was noted in Section 1 that the »-principles for D, A, and Vv could be
replaced by ¢-principles. Here the analogous substitute is the following:

Let yz.[y =z].D and yz.[y = z.].D’ be abstracts with a distinctive index
chosen for [y = z] and without free occurrences of x. Then, if D(x,
x) (Rfly) ~ D’ (x, x) (Rfl,), we have D (¢, u) (E) ~ D’ (¢, u) (E) for any
t,u,and E: t = u.

Since there is no mention of M, this principle can also be considered for the sys-
tems of Section 2. In both contexts it tells us that the abstract x.Rfl, is initial
in the category-theoretic sense in a certain category whose objects are abstracts
with types of the form — x.¢ (x, x) (for x not free in ¢ (—, —)) and whose mor-
phisms are abstracts whose types have the form yz.¢ — yz.y. Accordingly, we
will refer to the principle above as the assumption of initiality for Rfl and refer
to the least proof equivalence for the replacement system which satisfies it along
with Definition 2.4(1)(a) as the initiality equivalence.

3.4 Proposition The initiality equivalence for the replacement system
extends the groupoid equivalence. Furthermore, the replacement system under
the initiality equivalence and the reflexivity system under its natural equivalence
have a common definitional extension.

Proof: First, we remark that the assumption of initiality for Rfl can be strength-
ened to apply in cases where y and z have free occurrences in assumptions of
D or D’ other than [y = z]. For we can apply initiality as stated to the results
of discharging such assumptions with DI, recovering D (¢, u) (E) and D’(¢,
u) (E) from the result by way of the B-principle for the D-rules. So, given this
assumption, we can show that two derivations are equivalent by regarding them
as instances D (¢, #)(E) and D’ (¢, u)(E) of a pair of derivations D(y, z)([y =
z]) and D’ (y, z)([¥ = z]) (where [y = z] has a distinctive index) that have
equivalent instances D (x, x)(Rfl,) and D’ (x, x)(Rfl,) for a new variable x. All
the principles of 2.4, including the groupoid assumption, follow easily from this
extended principle and 2.4(1)(a).

To establish the second part of the proposition, we use the following defi-
nitions of M in terms of Rpl and vice versa:

318 GLEN HELMAN

X
D E E D (t/x)
o(x,x) t=u t=u ¢(1)
- = Rpl——
o (t, u) o (t, u)
[¢(x)]
[¢(x)]
x>l —m
D E M¢>(X)D¢>(X) t=;u E
t=;u ¢(1) o (1) D d(u) (1)
Rpl ———— = DE
o (u) o (u)

When the replacement system under the initiality equivalence is extended by the
first, we can derive the principles 3.3(1) and (2) as well as the second definition
above as an equivalence. And, when the reflexivity system is extended by the sec-
ond definition, we can derive the assumption of initiality for Rfl, 2.4(1)(a), and
the second of the definitions as an equivalence.

The ease with which the initiality assumption enables us to prove a vari-
ety of principles of proof equivalence suggests that the reflexivity system is rather
strong. This is confirmed by the following alternative characterization of the
initiality equivalence for the replacement system.!!

3.5 Proposition The initiality equivalence is the least proof equivalence for
the replacement system which satisfies Definition 2.4(1)(a) and the following:
(1) foranyD,D’:t=u,D ~D’

(2) forany D, D’: ¢, if D(t/x) ~ D’ (t/x) for some x and t, then D ~ D’.

Proof: To see that the initiality assumption follows from (1) and (2), suppose
that D (x, x) (Rfl,) ~ D’(x, x) (Rfl,). By (1), Rfl, ~ [x = x] so D(x, x) ~
D’(x, x). And thus D ~ D’ by (2), so D(¢, u) (E) ~ D’ (¢, u) (E) by Definition
1.1(3).

The argument in the other direction is somewhat longer. We first derive the
principle (1) from the initiality assumption in two steps. Putting the strength-
ened form of the initiality assumption noted in the proof of Proposition 3.4
together with Definition 2.4(1)(a), we can establish the following permutation
principle for Rpl and IP:

D
- t=;u QU
[¢l>3(r)] Rol [—é(u)]
N [=6 (1)]
D IP E
t=;u (1) 1
Rpl ~ IP[~o(u)]. ——
o (u) o (u)

Now take a case of this where i = 1, ¢ (—) is x.v = x (with x not free in v), and
Eis [L1]. We get Trn(D, EFQ,—,([L 1)) ~ EFQ,—,(I L]). Applying Trn to each
side along with Sym(EFQ,_,([L])), the left side reduces to D (using a number

EQUIVALENCE OF PROOFS 319

of principles including the groupoid assumption), rendering D equivalent to
Trn(EFQ,—, ([L]), Sym(EFQ,_,([L1))). Since D can be chosen arbitrarily, the
trivialization principle (1) follows.!?

In the case of the second principle, note first that

E [Vwy=w]
[V = =
y=z y=y
Trn D(y/x)
Rply—z o(y) ~ D)
¢ (z) 6 (z)

by the initiality assumption since the left side reduces to a replacement by Rfl
(using the groupoid assumption) when x is substituted for both y and z. The
equivalence above is preserved if we substitute ¢ for y and x for z, and thus (2)
follows.

Given Proposition 3.4, the principles 3.5(1) and (2) hold for the reflexivity
system and indicate the difficulties with that approach to identity. There are no
nonequivalent proofs of the same equation, and we can have nonequivalent
proofs of the same formula in other cases only when any substitution of terms
leaves them nonequivalent.

The proof of 3.5, like that of 3.2, involves reference to derivations contain-
ing free assumptions of formulas like 1 or vw y = w in the course of showing
the equivalence of derivations in which such assumptions do not appear. It might
be hoped that we could avoid the trivialization results of 3.2 and 3.5 by restrict-
ing the transitivity of ~ in some way to preclude such arguments. This may be
true if the notion of a proof-equivalence is otherwise weakened, but a limita-
tion on transitivity alone would not be enough. This can be shown without devel-
oping an alternative to transitivity in any detail by exhibiting ways of avoiding
its more dubious uses.

Suppose that we have shown that D ~ D’ by way of a derivation E whose
equivalence to each is shown in unproblematic ways but which contains a free
assumption [1] not appearing in D or D’ (and clearly all free assumptions of
E not in D or D’ could be replaced by some one [L]). Now even with a restric-
tion on transitivity we could expect to show the equivalence of DI[L].D and
DI[L].D’ by way of the equivalence of each to DI[L].E since the assumption
[1] is no longer free. By the B-principle for the D-rules we have

D C
¢ (o] ¢
)| DE
L1D¢ L
D)
DE[—'qS] ¢ DE[—'<¢>] ¢

320 GLEN HELMAN

and a similar equivalence for D’ where in both cases [—¢] is not free in D
or D’ and C is any proof of ¢. The right sides of the two cases are equi-
valent by assumption so we can abstract [~¢] and apply DI to the left sides to
get 7 I(D) ~ = —I(D’). And thus D ~ D’ by the {-principle that follows from
Definition 1.1(5). Without that principle, we might not be able to prove D and
D’ equivalent, but a trick like that used above would enable us to replace one
by the other in any proof of a negation (and like replacement by ~, this extends
to cases where assumptions or parameters of D and D’ are bound).

NOTES

1. For issues relevant to normalization, see [2], [5], and [9]. Lawvere [4] suggests a way
of construing identity by way of an adjoint functor comparable to those employed
in category-theoretic treatments of other logical constants.

2. The omission of v and 3 is not entirely trivial since the principles of proof equiva-
lence that would be implied by their usual definitions are not dual to those for A
and vV —and thus arguably not the right ones. However, it is not hard to add v and
3 as further primitives whose rules obey the dual principles.

3. As a result, our abuse of Prawitz’s notation appears only with free assumptions;
all we know of a bound assumption is the set of locations at which it appears.

4. Recall here that the conventions governing the identity of abstracts enable us to
choose identical abstraction prefixes for any two derivations with the same domain
and dimension.

5. See [1] for an argument that applies here and see [10], Chapter 10, for a similar
argument concerning a different set of background assumptions. In both cases, the
trivialization rests on features of classical logic that appear in the present context
with the admission of vacuous abstracts [¢].D. It is avoidable in comparable treat-
ments of relevance logics (see [11]).

6. This is essentially the relation ~g of [1].

7. For example, as a product C X C° of a category and its opposite, with Sym/
appearing as the functor which reverses pairs.

8. So (2)(a) applies only to instances of Rpl determined by a vacuous abstract and thus
does not subsume all cases of (1)(a). There need be no equivalence of a nonvacu-
ous replacement Rpl(D, E) with E when D: ¢ = ¢ is not an instance of Rfl.

9. There are a number of ways of presenting the accounts of proof-equivalence as
first-order theories with ~ as a primitive predicate. What is important for the fol-
lowing is only the obvious point that the extended system constitutes a conserva-
tive extension in its account of ~ (beginning with either the basic or groupoid
principles).

10. It follows from the models constructed in [1] that the systems of the preceding sec-
tion avoid this problem.

11. The construction mentioned in note 10 can be modified to show that the triviali-
zation is limited to obvious consequences of the principles (1) and (2) of Proposi-
tion 3.5.

EQUIVALENCE OF PROOFS 321

12. Note that the same argument would apply if we were to add this permutation prin-
ciple to those of Definition 1.1(4) in the presence of the groupoid assumption. (We
leave open the question of its consequences without the groupoid assumption.)

REFERENCES

[1] Helman, G., “An interpretation of classical proofs,” Journal of Philosophical
Logic, vol. 12 (1983), pp. 39-71.

[2] Kanger, S., “A simplified proof method for elementary logic,” pp. 87-94 in Com-
puter Programming and Formal Systems, eds. P. Braffort and D. Hirschberg,
North-Holland Publishing Company, Amsterdam, 1963.

[3] Lawvere, F. W., “Adjointness in foundations,” Dialectica, vol. 23 (1969), pp. 281-
296.

[4] Lawvere, F. W., “Equality in hyperdoctrines and comprehension schema as an
adjoint functor,” pp. 1-14 in Applications of Categorical Algebra, Proceedings of
Symposia in Pure Mathematics, vol. 17, ed. A. Heller, American Mathematical
Society, Providence, Rhode Island, 1970.

[5] LifSic, V. A., “Specialization of the form of deduction in the predicate calculus
with equality and function symbols, 1,” Proceedings of the Steklov Institute of
Mathematics, vol. 98 (1968), pp. 1-23.

[6] Prawitz, D., Natural Deduction, Almqvist & Wiksell, Stockholm, 1965.

[7]1 Prawitz, D., “Ideas and results in proof theory,” pp. 235-307 in Proceedings of
the Second Scandinavian Logic Symposium, ed. J. E. Fenstad, North-Holland
Publishing Company, Amsterdam, 1971.

[8] Seely, R. A. G., “Hyperdoctrines and the proof theory of first order logic,” The
Journal of Symbolic Logic, vol. 42 (1977), pp. 470-471.

[9] Statman, R., “Herbrand’s theorem and Gentzen’s notion of a direct proof,” pp.
897-912 in Handbook of Mathematical Logic, ed. J. Barwise, North-Holland Pub-
lishing Company, Amsterdam, 1977.

[10] Szabo, M. E., Algebra of Proofs, North-Holland Publishing Company, Amster-
dam, 1978.

[11] Szabo, M. E., “The continuous realizability of entailment,” Zeitschrift fiir math-
ematische Logik und Grundlagen der Mathematik, vol. 29 (1983), pp. 219-233.

Department of Philosophy
Wabash College
Crawfordsville, Indiana 47933

