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Quantified Modal Logic and Self-Reference

C. SMORYNSKI

The propositional modal logic of provability, which I denote PrL for Prov-
ability Logic, has proven to be a useful tool in studying self-reference in Peano
Arithmetic, PA. The three chief results about PrL are: (i) Solovay’s Complete-
ness Theorems, (ii) the de Jongh-Sambin Theorem, and (iii) the Uniqueness The-
orem. Solovay’s First Completeness Theorem asserts that PrL is the modal logic
of provability in PA, i.e., it axiomatizes those schemata in the language of O
which are provable in PA. Solovay’s Second Completeness Theorem tells what
schemata are always true assertions when interpreted in the language of arith-
metic. These results are not only aesthetically pleasing, but they, particularly the
Second Theorem, are extremely useful in establishing incompleteness results —the
prototypical applications of self-reference. The de Jongh-Sambin Theorem and
the Uniqueness Theorem, although they do not help in establishing the results
obtained by self-reference, do tell us something more about self-reference itself:
According to the de Jongh-Sambin Theorem, for all reasonable modal formulas
A(p), there is a modal formula D not containing p and such that PrL | D -
A (D); the Uniqueness Theorem, due independently to Bernardi, de Jongh, and
Sambin, asserts that the fixed point to A (p) is unique.

Whenever one decides to expand the context of the discussion, the first
question one asks is whether or not these three results carry over. Thus, for
example, in their analysis of Rosser sentences, Guaspari and Solovay expanded
the language of PrL to accommodate the Rosser trick of comparing witnesses
to provability assertions, added a few axioms about these comparisons, proved
the completeness of their system with respect to arithmetic interpretations, and
then applied this result to show the failure of the Uniqueness Theorem and to
make a few observations on definability. In studying multimodal logics and their
interpretations, one finds the same results: Suppose, e.g., one has two modal
operators [] and A to be interpreted as provability in PA and ZF, respectively.
Carlson has proven three completeness theorems for axiomatizing the schemata
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provable in PA, the schemata provable in ZF, and the true schemata, respec-
tively, and the author has generalized the de Jongh-Sambin Theorem and the
Uniqueness Theorem to this context. Finally, I cite Montagna’s work on the
modal logic QGL obtained by adding the predicate calculus to PrL, i.e., expand-
ing PrL from propositional modal logic to quantified modal logic. Montagna
proved the incompleteness of QGL with respect to arithmetic interpretations and
the failure of the analogue to the de Jongh-Sambin Theorem; but he did obtain
one positive result: The Uniqueness Theorem holds.

The reasons for testing the analogues to the three fundamental results may
or may not be good. A completeness theorem shows that one has made a cor-
rect analysis of the concept involved. It is not a priori necessary to have a com-
plete analysis of the concept to obtain positive results. Thus, for example, the
author’s generalization of the uniqueness and explicit definability of fixed points
in O and A, cited above, is actually given in a weak multimodal theory and
applies to a variety of settings, including some to be discussed in the present
paper. On the other hand, negative results can require a completeness theorem:
Guaspari and Solovay proved their arithmetic completeness theorem to show
that the nonuniqueness result in their modal system had arithmetic significance.
Similarly, one of the goals of the present paper is to prove that Montagna’s non-
definability result in QGL yields a nondefinability result in PA. This is accom-
plished by mimicking the completeness proof of Solovay.

The status of the uniqueness and explicit definability theorems is different:
These are not normative results, but were surprises to the experts. The explicit
definability and uniqueness results are very special and can be viewed as
manifestations of the limited expressibility of the propositional modal language,
and their failure in a given context can thus, perhaps, be interpreted as a sign
of some minimal expressive power. Counterexamples are to be expected —
perhaps even sought. One of the goals of the present paper is to clarify, how-
ever slightly, the extent of these two theorems. We shall see that an axiomatic
analysis of their proofs yields a very general result and that more general results
usually are not possible. (Actually, half of this has already been done by the
author and will merely be cited.)

The plan of this paper is as follows: In Section 1 I will describe, without
proof, the result of my multimodal analysis of the de Jongh-Sambin Theorem.
This will give us some idea of the extent of the de Jongh-Sambin Theorem and
the Uniqueness Theorem, leaving us with the task of showing the conditions
cited to be best possible —a task not completely performed. The result will also
be applied directly in the sequel. Section 2 reviews QGL and Montagna’s un-
definability result. The perspective obtained from the result of the previous
section suggests that Montagna’s formula, albeit quite simple, is logically too
complex and a simplification is obtained, still using Montagna’s delightful proof.
These counterexamples cease to be counterexamples if the Barcan Schema is
added to QGL, and I thus give an example of the undefinability of a fixed
point when BS is added to QGL. The Barcan Schema fails generally under the
arithmetic interpretation and one might question the arithmetic significance of
QGL + BS. Although I cannot really answer such a question satisfactorily, in
the next section I adapt a proof of Solovay’s First Completeness Theorem to this
counterexample and thereby obtain an undefinability result in PA.
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1 The multi-modal analysis of self-reference The proof of the de Jongh-
Sambin Theorem has two parts. The first, crucial, part consists of deriving
OC(t) « OC[OC(#)] in PrL. Once one has this, a fairly algebraic argument
using only the Substitution Lemma yields the general result. We get some idea
of the general scope of validity of the Theorem by introducing a new operator
Vp = OC(p) and asking what properties of V are needed in the derivation of
the equivalence cited. As I pointed out already in [6], we use the completeness
schema,

VA - OVA.
The Substitution Lemma in PrL also yields the schema,
O(A « B)—> .VA - VB.

It turns out that this is enough—in a sense I will shortly make precise.

Definition SR~ is the system of bimodal logic with language, axioms, and
rules of inference as follows:

Language:

Propositional variables: p, g, r,. ..
Truth values: ¢, f

Propositional connectives: ~, A, v, —
Modal operators: (1, V.

Axioms:

A1l All (Boolean) tautologies
A2 0OAA0OA->B)- OB
A3nq OA-004

Ad O(OA->A)-0OA

A5 [O(A4 ~ B)—-.VA - VB

Rules:
Rl A4, A- B/B
R2 A/0OA.

If we ignore V, Axioms A1-A4 and Rules R1-R2 are just the axioms and
rules of PrL. Axiom schema A3 is a substitutivity schema. It is the minimal
axiom needed for the general Substitution Lemma.

Substitution lemma Let A(p) be given.
(i) SRT}FB(B«~C)—.A(B) - A(C)
(i) SR™+OMB~C)->0O[A(B) - A(C)],

where [8) is the so-called strong box, defined by 81D = D A OD.

The Substitution Lemma, the Formalized Lob’s Theorem for [J (A4), and
the following notion are all that are necessary to prove the Uniqueness Theorem.

Definition Let A(p) be a formula of the language of SR™. We say p is
modalized in A (p) if every occurrence of p in 4 (p) is inside the scope of one
of the modal operators.
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Uniqueness theorem Let p be modalized in A(p).
i) SRTFB[poADIAB[g-A@]—>pegq
(i) SR™+O[p~AP]Arllg - A(g)) >0O(p < q).

As I noted earlier, the generalization of the de Jongh-Sambin Theorem
needs an extra assumption on V.

Definition SR is the modal system extending SR~ by the addition of the
axiom schema, A3y: VA4 - OV A.

Explicit definability theorem Let p be modalized in A(p). There is a sen-
tence D of the bimodal language possessing only those atoms of A (p) other than
p and such that

SR+ D -~ A(D).

I do not propose to prove these results here. The proofs can be found in
Chapter 4 of [7]. I note merely that the proof of the Uniqueness Theorem in
SR~ adapts Bernardi’s proof from [1] for PrL and the proof of the Explicit
Definability Theorem requires an adaptation of Sambin’s Extension of L6b’s
Theorem from [5].

As noted in the introduction, one of the goals of this paper is to see to what
extent the above results are best possible. Before attempting this, let me quickly
note an easy improvement: Instead of adding a single new operator ¥ to PrL
and appropriate axioms to obtain SR~ and SR, add » new operators V,,...-
,V,, and axiom schemata

A3v' V,-A—»DViA,i:l,...,n
AS; O(A e B)-».ViA e VB i=1,...,n,

as appropriate to obtain SR, and SR,. The Explicit Definability and Unique-
ness Theorems carry over to these extended theories.

To see to what extent SR~ and SR (or, SR;, and SR,) are arithmetically
best possible, we must consider arithmetic interpretations of the bimodal (or,
multimodal) language. An arithmetic interpretation * is inductively defined by
first choosing arithmetic sentences p; for propositional atoms p; and then
extending the map by: t*is 0 =0, f*is 0 = I, (~A)* is ~(A4%), (OA)* is
Prps("A*"), (A°B)*is A*<B*for- € {A, v, =}, and (VA)* will be p("A4*")
for an appropriate formula p. What makes p appropriate? Well, according to
application, the axioms of SR~ and/or SR ought to be provable schemata
in PA.

Definition A formula p(v) of the language of arithmetic, with only the free
variable indicated, is substitutable if, for all sentences ¢, ,

PAF Prpa("¢p =y ") > .0(Td™) = p("Y).

Noting that the class of substitutable formulas is closed under the usual
logical operations and application of Prp,4 and p, the full content of the Unique-
ness Theorem is the uniqueness of the single fixed point p < Vp. Arithmeti-
cally, this yields:
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Arithmetic uniqueness theorem Let p(v) be substitutable. For any sentences

é, ¥,
PAL¢ < p("¢")&PALY = p("y )= PAL$ « y.
Proof: Observe,
(*) SR™FB[p <~ VplaBlg - Vg]->.p-aq
Let ¢, ¢ be fixed points of p:
PAF¢ «p("9"), PAFYy«-p("Y").
Then
PALF Prpa("¢ = p("¢™")™"),  PAFPrea("y = p("y M),

and, letting p* = ¢, ¢* = ¥, we have proven the premise of the interpretation
of (*¥) in PA. Thus, PA proves the conclusion: (p < q)*; i.e., PA} ¢ < .

The question of the generality of the derivation of the Uniqueness Theorem
in SR~ can now be viewed as asking if the Arithmetic Uniqueness Theorem is
the best possible; i.e., can the condition of the substitutability of p be weakened?
Modally, substitutability seems natural enough. Arithmetically, it appears more
a proof-generated concept. More natural would be extensionality:

Definition A formula p (v) of the language of arithmetic, with only the free
variable indicated, is extensional if, for all sentences ¢, ¥,

PAt¢ = y=>PALp("¢") = p("Y").
Midway between extensionality and substitutability is provable extension-

ality:

Definition A formula p (v) of the language of arithmetic, with only the free
variable indicated, is provably extensional if, for all sentences ¢, ¥,

PAFPr("¢ =y )= Pr("p("¢") «p("y ).

Does the Arithmetic Uniqueness Theorem hold for arbitrary extensional
or provably extensional formulas? The answer is no.

Counterexample By the Orey Compactness Theorem, there is a formula
Trp(v) that offers within PA the truth definition for a model of PA. Now, it
happens that

PA ¥ Yu(Prps(v) = Trp(v)),
but (as pointed out by the referee and not immediately obvious),
PA | YU(Prpa(v) = Prpa("Trp(v) ).
From this, provable extensionality follows easily: For any ¢, ¢,

PAVFPrps("¢ =y ") > Prps("Trye("¢p = ¢ )
FPrpa("¢ = 7)) = Pros("Tra (") = Tra("¢ )7,
by the fact that Tr,, is a truth definition. But now let ¢ be any theorem of PA
and observe
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PAL¢=PAFTry (") Ao

> PAF¢ < Try("¢7], 0))
= PAF~¢ = ~Tryy("67)
= PA}F~¢ = Try("~¢7), @

again since 77, is a truth definition for some model. By (1) and (2), ¢ and ~¢
are fixed points to 7ry,(v), and they clearly cannot be proven equivalent.

And what about explicit definability? First, what is the arithmetic mean-
ing of my Explicit Definability Theorem for SR? Again, Axiom schema AS
requires p (v) to be substitutable. Schema A3 requires

PAFp("¢) > Prps("p(Tod ™)),

for all sentences ¢. Now, the most general condition on p guaranteeing this
derivability assertion is that p be Z;.

Arithmetic explicit definability theorem Let p be a substitutable I;-formula
with only v free and specify that V is to be interpreted by p under arithmetic
interpretations *. Let p be modalized in A (p). There is a sentence D in the
bimodal language such that, for all ¥, PA + D* — A (D)*.

Proof: For some D, SR | D —« A (D). By choice of p, one has
SR+ B= PA} B*
for all *. In particular, PA | D* —~ A(D)*.

We can now ask ourselves if this can be improved. In purely modal terms,
this means: Can we weaken SR and still derive the modal form of the Explicit
Definability Theorem? In arithmetic terms, this means: Can we weaken the
assumption that p be a substitutable I;-formula and still derive the Arithmetic
Definability Theorem? An affirmative answer to the former question yields an
affirmative answer to the later; a negative answer to the latter yields a negative
answer to the former.

Of course, if p is a substitutable IT;-formula, ~p is a substitutable L;-
formula and the Arithmetic Explicit Definability Theorem will hold for p.

The question arises: Does the Arithmetic Explicit Definability Theorem
hold for arbitrary substitutable p? The answer is no, as we shall see in the sequel.
It follows that we cannot drop axiom A3y and derive the Explicit Definability
Theorem in SR™.

And what about substitutability? Can it be dropped as an assumption?
The only negative result that comes to mind concerns the Rosser sentence. In
[3], Guaspari and Solovay extended the language of PrL by a witness compar-
ison, <. The formula

Vp=0Op<O~p
has the intended interpretation

p(v): 3vg[Prov(vg,v) A Yuy < vy ~Prov(vy,neg(v))l,
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where neg("¢ ') = "~¢ . In their modal logic, they show
D~ N~D

cannot be derived for any sentence D not mentioning p. Their arithmetic com-
pleteness result, by which we expect a counterexample to the Arithmetic Explicit
Definability Theorem for this p, doesn’t quite yield what we want. They replace
Prov by Der, where

PA \ Yu[3vyProv(vy,v) < 3vyDer(vy,v)];

i.e., their arithmetic interpretations of ¥V vary p as well as the variables. This
is enough to show that, if we drop the substitutability condition on p, we do not
get the uncited uniformity of the Arithmetic Explicit Definability Theorem,
whence the modal Explicit Definability Theorem cannot be derived if we drop
axiom schema A5 from SR.

How far does this example take us? Another thing Guaspari and Solovay’s
analysis shows is that V is not extensional: One can fail to derive even Vp <
V (p A p), even though p « p A p is derivable. Hence, many of the interpreta-
tions p must fail to be extensional. Thus, we can ask:

Question Does the Arithmetic Explicit Definability Theorem hold for all
L -formulas p (v) with only v free?

We have already seen the answer is no if we want some modal uniformity
to the definition. If we ask about weakening, instead of dropping, substitut-
ability, the question becomes:

Question Does the Arithmetic Explicit Definability Theorem hold for exten-
sional, X;-formulas p (v)? provably extensional, L;-formulas p(v)?

For uniform positive results, the obvious approach is to work modally:

Question Can one prove the modal Explicit Definability Theorem if one
replaces AS in SR by

A5 0O < B)-»0O(VA - VB),
or
R3 A4 < B/VA - VB?

These three questions have all been solved negatively by Albert Visser since
I posed them as open problems in the original draft of this paper. Here I give
the weaker counterexample: the Arithmetic Explicit Definability Theorem fails:
for logically complex p(v). This is done in Section 3, below. Like the example
of imitation Rosser sentences, it rests on a modal undefinability result, to which
we turn in Section 2.

2 Self-reference in quantified modal logic We begin with a definition:

Definition The system QGL is the system with language, axioms, and rules
of inference as follows:
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Language:

Individual variables: vy, vy, . ..
Propositional variables: p, g, r, . ..
Truth values: ¢, f

n-ary predicate symbols: R§, RY,. ..
Propositional connectives: ~, A, v, =
Quantifiers: v, 3

Modal operator: .

Axioms:

A1l All instances of axioms of the predicate calculus in this language
A2 OAA0OA->B)—-0OB

A3 OA-0O0OA

A4 O(OA- A)- OA.

Rules:
R1 A, A- B/B
R2 A/0OA.

Under Al is assumed some axiomatization of the predicate calculus requir-
ing only R1.

The reason for studying QGL is obscure to me, perhaps merely generaliza-
tion for generalization’s sake. Be that as it may, Montagna’s paper has shown
QOGL to be quite interesting. My favorite result of his paper, to which the present
paper is a response, is the following:

Counterexample 1 Let A(p) = vu3zvO (p — Ruv). There is no sentence D
in the language of QGL for which QGL | D < A (D).

Except for the usual problem involving the clash of free and bound vari-
ables, which problem vanishes if we adopt the simple device of using separate
free and bound variables, the Substitution Lemma holds in QGL and we may
deem A (p) (better: any arithmetic interpretation of A (p)) substitutable. My
intuition (or: confusion—not only are we not yet talking about arithmetic
interpretations, but QGL was demonstrated by Montagna to be incomplete with
respect to arithmetic interpretations) is that the block to the definability of any
fixed point to A (p) is the quantifier alternation vu3v. Now, [ implicitly has
an existential quantifier, whence 3v ought not to be really necessary:

Counterexample 2 Let A(p) = vull (p — Pu). There is no sentence D in
the language of QGL for which QGL + D « A (D).

Proof: The proof follows Montagna’s proof for his counterexample. It is done
by giving a Kripke model K = (K, R, D, |), where

i. K is a nonempty set of nodes «
ii. R € K X K is a partial ordering
ili. D is a map associating a nonempty set D, with each o € K it is
assumed that « R 3 = D, € Dg
iv. | is the forcing relation.
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Montagna’s paper presents a completeness proof for QGL with respect to those
models it is valid in. For us, the crucial thing is soundness: QGL is valid in any
Kripke model in which the converse to R is well-founded.

We prove the result by presenting one model K in which each equivalence
D < A (D) fails. For the domain K of the model, we take the set w of natural
numbers. R is the converse to the natural ordering of these numbers,

XRy iff y < x.
For the domains D,, we simply truncate the integers:
Di={x,x+1,...})=0—x

Finally, we define |- by
xFPyiffx=yory>x+ 1.

(All other predicates can be ignored or trivially interpreted.) Pictorially, we have:

0 {0,1,2,...} ~PI
l

1 ,2,...} ~P2
l

2 {2,...} ~P3
l

The key to the undefinability result is the utter simplicity of the structure.
Its components, the set K, the relation R, the relation x € D,, and the atomic
forcing relation x | Py, are all definable in the structure (v, =, <, S, 0). The
definability of forcing extends to all formulas of QGL via the clauses in the def-
inition of forcing:

Xk ~B: ~(x | B)

XFBC: (xFB)o(x]F C)foroe& {a, v, =}

x| OB: vy > x(y I B)

X IF YuBu: Yu = x(x | Bu)

X |F 3uBu: 3u = x(x | Bu).

The quantifier elimination for the theory of (w, =, <, S, 0) yields

Claim 1 For any sentence B in the language of QGL, {x: x | B} is either
finite or cofinite.

The undefinability result follows from this and one further
Claim 2 Assume p — A(p) is valid in the model K. Then: For all x € w,
x Ik p iff x is even.
Proof: By induction on x.

Basis: x =0 or x = 1. 0 |F p since 0 forces any boxed statement.
For x = 1, observe that 1 € D; and
1RO | p A ~P1,



MODAL LOGIC AND SELF-REFERENCE 365

whence 1 ¢ O(p— P1)
¥ vul(p — Pu).

Induction step: First observe that
2x |F OPy for all y = 2x + 1
and 2x I O(p = P2x)
since 2x—1Wp
and 2x — 1 is the only node above 2x failing to force P2x. Thus,
vy =2x(2x IF O(p - Py));
i.e., 2x F vul (p - Pu);
ie., 2x I p.
For the odd case, observe
2xkp&2xlH P2x+1)=2x+1F O(p—>P(2x+ 1))
=22x+ 1 vull(p — Pu)
=2x+1Jfp.

This completes the proof of the Claim and therewith that of the undefinability
result.

Given Montagna’s published proof, I need not have gone into as much
detail as I did, but I really am taken with the proof. I shall show more restraint
with my next counterexample.

Why do I need another counterexample? Well, as much as I like these
counterexamples, they are counterexamples in modal logic, not in arithmetic.
Since QGL is not complete with respect to arithmetic interpretations, this coun-
terexample merely makes it plausible that the Arithmetic Definability Theorem
fails for complex substitutable formulas o (v). The varying domains of K would
complicate the arithmetic simulation of the counterexample. Thus, I want a
counterexample to explicit definability in QGL using a model with constant
domains. This is readily obtained from the model already at hand. Let A (p) =
vu[Qu — O (P — Pu)]. The model will have w as its constant domain and Q will
single out the old domains. Before making a formal statement of the counterex-
ample, I digress to discuss a couple of related matters.

In quantified modal logic, the syntactic counterpart of models with con-
stant domains is the Barcan schema,

BS vulOAu — OVuAu,
and its converse,
OvuAdAu - vulO Au.

The converse is provable in QGL:

OGL + O(YuAu — Au) by Al, R2
F vull (VuAu — Au)
F vu(OvVuAdAu - OAu) by A2
F OvuAu - vulAu by predicate logic.

In a similar manner,

OGL } 3ul]Au — O3uAu.
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Thus, if A = Q,u; ... Qu, OB, with any string Q;, ..., O, of quantifiers,
OGL + BS | A - OA.

Because of this, the counterexamples to explicit definability fail to be counterex-
amples when BS is added to QGL (and R2 retained).

Counter-counterexample Let A(p) = Vudu, ... Qru 0 (p = Puy .. uy),
where k = 1 and the quantifiers alternate. Let D = A (¢) = Vu 3u, . .. Qpu -
Pu; . ..u;. Then:

OGL + BS+ D - A(D).
As we have just seen,
OGL + BS | A(p) —» OA(p).

Thus, we can interpret SR in QGL + BS by making Vp = A (p) and appeal to
the Explicit Definability Theorem to conclude the existence of D. The exact
form, D = V¢, is verified by looking at the actual proof of the Explicit Defin-
ability Theorem (for which cf. Chapter 4 of [7]).

This counter-counterexample generalizes the two counterexamples given for
QOGL. Interpreting SR, in QGL + BS, we see that no propositional combination
of formulas of the form Q,u, ... Qu, 0B will give us counterexamples in
OGL + BS. We need a counterexample in which the quantifiers cannot be
pushed against the box. This happens with the counterexample promised:

Counterexample 3 Let A(p) = Yu[Qu — O (p — Pu)]. There is no modal
sentence D in the language of QGL such that QGL + BS } D — A (D).

This doesn’t quite reduce to Counterexample 2 because Q was previously
ignored (or, trivially interpreted) and it now singles out the domains. Nonethe-
less, the proof is virtually identical, because the relation x | Q7 is also defin-
able in (w, =, <, S, 0). Let me simply describe the model K:

1 {0, 1,2,...} ~P1

2 {0, 1,2,...} ~P2, ~Q0

I have relabeled the nodes of K in preparation for the next section. Forcing of
the predicates P, Q is still definable:

xFPyiffy#x
xkQyiff x<y+2.

This model is not quite as nice as it could be. The fact that 0 is treated
differently from the other elements of the domain is inelegant. If we decide not
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to force PO at the top and slide all the other failures down, we get the more ele-
gant model:

. ~PD
2 - ~P1, ~Q0
3. ~P3, ~Q0, ~01

—

In this model, Qu is equivalent to [JPu. Thus, we can eliminate Q:

Counterexample 4 Let A(p) = vu[OOPu - O(p — Pu)]. There is no
modal sentence D in the language of QGL such that QGL + BS + D « A(D).

Once again, for any sentence B in the language of QGL, the set {x: x |F
B} is definable in the language of (w, =, <, S, 0), whence finite or cofinite.
And, once again, if we assume p — A (p) throughout K, p is forced at alternate
nodes —this time the odd-numbered ones. I leave the details to the reader.

Our next goal is to transform this latest counterexample from a modal to
an arithmetic one.

3 An arithmetic counterexample The goal of the present section is to prove
the following:

Theorem Let A(p) =vu[OOPu - O(p — Pu)]. There is no sentence D
in the language of QGL such that, for all arithmetic interpretations *, PA |
D* - A(D)*.

An arithmetic interpretation * of the language of QGL is defined by map-
ping propositional atoms p to sentences p* and predicates Pu; . . . u; to formu-
las P*u; ...u; = ou, . ..u,. Given this beginning, the rest of the interpretation
is automatic: t*is0 =0, f*is 0 = 1, (~A4)* = ~4*, (4 - B)* = A* - B*
for e € {A, v, =}, (QuAu)* = Qu(A*u) for Q € (v, 3} (HAu;...uy)" =
Prpg("A*u, .. .1 "), where we may relabel bound variables in 4*u if necessary
and where "¢u; ... ' denotes sub("¢uy ... uy ', num(u,),. .. ,num(uy)),
the code of the result of substituting the u;-th numeral for the variable u; in ¢,
e.g., sub("ouv’, "37, T4y = "¢(3,4)".

To prove the theorem, we will construct a single interpretation * by sim-
ulating the Kripke model K = ({1,2,...}, R, D, }) of Counterexample 4 of
the preceding section. This simulation is a straightforward application of the
method used by Solovay in proving the Arithmetic Completeness Theorem for
PrL.

We begin by setting ORx for all x € K. Then we define a function F via the
Recursion Theorem by

FO=0

¥, Provps(x + 1, "L # 7') & FxRy

Fix+ D= {Fx, otherwise (i.e., no such y exists),

where L = lim F(x): The formula L = v is 3ugVv; > vy (Fv, = v).

X—00
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The only difference between this function F and that used by Solovay is
that this F is trying (not) to grow through an infinite frame (KU {0}, R). This
frame is so close to being finite that all of Solovay’s results and proofs carry over
and I need only list the most relevant ones:

Lemma 1 PA } L exists; i.e., PA } 3vivgvv, > vo(Fvy = v).

Lemma 2

G PAFL=u>0AuRv— ~Prps("L#70")

() PAFL=u>0Au#vA~uRv— Prps("L+70")
(iii)y PAFL=u>0-Prp,("L+#ua")

iv) PAFL=0Av>0—>~Prp,("L#70").

Restated, Lemmas 2(i) and 2(iv) assert

) PAFL=u>0AuRv— Con(PA+ L =7)
(V) PAFL=0Av>0- Con(PA+L =1).

In particular, for any x > 0,

PAVFL=0-Con(PA+L=x).
Lemma 3 PAVFL=u>0- Prps("3v(@RvA L =0v)").
Lemma 4

G L =0is true
(ii) For any x> 0, PA + L = X is consistent.

These lemmas yield all the information we will need about F. The interested
reader can consult Solovay’s original paper [8] for the proofs.

We wish to use the limit L to simulate the model K within PA. To this end,
we first note that | is definable in the sublanguage of that of PA given by the
language of the structure (w, =, <, S, 0):

“ull Pv”: u + Sv
“u "_ ~B”: ~“u "_ B”
etc.

To simulate this, we define * by
P*v: L # 8v
(and any other predicate is trivially interpreted).

Lemma 5 For any formula B of the language of QGL,
() PAF“ulrB’Au>0- (L =u— B*)
(i) PAF“ul#B’Au>0- (L =u— ~B*).

Proof: By induction on the complexity of B.
Basis: For B = t, f (or having any atomic predicate other than P) the result is
trivial. For B = Pv, the implications (i) and (ii) are,

usrSvAau>0->(L=u-L # 8v)
u=8SvAnu>0-(L=u—-L=230),

respectively. But these are clearly derivable in PA.
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Induction step: The propositional cases, B=~C, CAD, Cv D, or C— D are
trivial.
Let B = [OC: This is not quite the same as in Solovay’s proof. Observe,

PAV“u-0OC’Au>0- vVu(uRv—-“viF C”)
— Yu(uRv — (L = v— C*)),

by induction hypothesis. Thus,

PAVF Prps("“a b OCAu>0-vVo(aRv—> (L=v—C*)")
FPrp ("4 OC” At >0") > Prps("Vv(iiRv - (L =v - C*) 7). (1)

Once again we use the quantifier-elimination for the language of (w, =, <, S,
0): “u | OC” is quantifier-free, whence

PAF“ur OC” > Prps("“a F OC7).
Similarly,
PAtu>0-Prp("u>0"),
whence (1) yields
PAF“ulrOC’Au>0- Prps("Vo(aRv— (L = v— C*) ). ?)
Now, Lemma 3 yields
PAFL=uAru>0- Prps("3v(RvAL =v)").
With (2) this yields

PAF“ulrOC’AL=unru>0- Prp,("C*")
Feu b OC? Au>0- (L =u- (OC)Y).

Next, observe

PAF“ult OC’Au>0-3v(uRvA“vIF C”Av>0)
— 30 (URV A Prp ("0 C?A0>07),

again using the fact that “v |t C” is quantifier-free. Thus,
PAF“ult OC’Au>0-30(uRvAPrps("L =0 — ~C*™),
by induction hypothesis, whence

PAF“ult OC’Au>0-30(uRvAPrps("C*—> L #07))
— W[uRV A (Prpg("C* ") > Prp ("L # 07))]. (%)

But now recall Lemma 2(i):
PAFL=unu>0AuRv—> ~Prps("L #707").
Together with (x) this yields
PAF“ulf OC’Au>0AL =u— ~Prps("C*);
i.e.,
PAF“ult OC’Au>0- (L =u->~(0OC)*).
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The remaining cases B = YvCv and B = 3vCv are complementary and we
need only show:

PA + “u | voCv” A u > Q—» (L = u - voC*v)
PAF“ulF30Cv” Au>0- (L =u—- 30C*).
For Q € {v, 3}, observe

PA}F“ulF QuCv” Au>0- Qu(“u | Cv” Au>0)
- Qu(L =u—- C*)
- (L =u- QuC*v).

We are now in position to prove the Theorem: Let D be in the language

of QGL. For some x > 0,
x ¥ D - A(D).
Thus “x ¥ D ~ A(D)” is true and, since it is quantifier-free,
PAL“xW¥ D -~ A(D)”.
By Lemma 5,
PA+FL=x-~(D - A(D)".

By Lemma 4(ii), PA + L = % is consistent. Thus, PA + ~(D <« A(D))" is

consistent; i.e.,
PA | D* -« A(D)".
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