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Reduced Models for Relevant Logics Without WI

JOHN K. SLANEY

A major motivating concern of the relevant logics has been to devise a
decent theory of the logical behavior of the operation of implication, expressed
in the object language by ‘=’ and corresponding to the relation of implication
which is naturally expressed in the metalanguage. That being so, it should be
expected that

p—q
be true if and only if p implies g, and more generally that the conditional be true
in model m iff p implies g according to m. A conditional is true in m iff it holds
at the base world (the real world) in m, and its antecedent implies its consequent
according to m iff the consequent holds in m at every world at which the antece-
dent holds. The motivationally natural thought just sketched emerges in the

Routley-Meyer semantics as the requirement that the base world O should sat-
isfy, for all @ and b,

a < b iff ROab.

A frame in which this requirement is met is said to be reduced. Note that a
reduced frame satisfies in particular

ROOO,

whence the fruth in any model in such a frame is closed under detachment for
the arrow as one might expect. It is well known that the system R is characterized
by reduced frames (see [9] for example). What is less well known is the scan-
dal that the arguments establishing reduced modelings for R and its close rela-
tives do not extend to the weaker systems, lacking the theorem scheme WI

(A—-B)& A— B,

supported as insightful by such as Brady [2], Priest [7], Routley [8,10], and the
author. The object of the present paper is to prove a reduced modeling theorem
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for a good range of logics which previously escaped. It employs techniques previ-
ously used by Meyer in [4] to show material detachment admissible for R and
by the author in [11] to show the primeness of three systems weaker than R.!

The sentential logic B has the connectives &, v, —, ~. It may be axioma-
tized with the following axiom and rule schemes:

(A1) A-A4

(A2) A&B-A

(A3) A&B-B

(Ad) (A->B)&(A-C)-».A->B&C
(A5) A-AVB

(A6) B—->AVBHB

A7) A-C)&(B—->C)-. AvB->C
(A8) A& (BvC)—»(A&B)vC

A9) ~~4-A4

(R1) A-B A=B

R2) A,B=A&B

RI}) A-B,C->-D=B->C—-.A-D
R4 A->~B=B-~A.

For much more information on B, including variant axiom sets, see [10]. We
may consider adding postulates to B to produce stronger relevant and irrelevant
logics. Of importance in what follows are the postulates:

(A10) A->~B—->.B—~A

(A1) A-B—->.C—->A—->.C—-B
(A12) A-B—->.B->C—-. A-C
(A13) (A->B)&(B—-C)—>. A-C
(Al4) A->. A A

(A15) A—-.B—- A

(A16) (A-BvVC)& (A&B—-C)—». A-C
(A1) A-.A~B—-B

(A18) (A—-»>.B-»C)—».B—>. A-C
(A19) (A->B)&A—-B

R5) A=B—-A

R6) A=A-B-B

Some of the logics produced in this way are:

DW B + (A10)

TW  DW + (All) + (A12)

DJ DW + (A13)

T3 TW + (A13)

EW TW + (R6)

RW  DW + (Al8) or TW + (A17)
R RW + (A19) or RW + (A13)
BCK RW + (Al5) or RW + (RS)
RM R+ (Al4).

An M1 logic is any system axiomatizable as B plus zero or more of (A10)
through (A16) with or without (R5). An M2 Jogic is one axiomatizable as B plus
(R6) plus any selection from (A10), (All), (A12), (A14), (A15), (A17), (A18),
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(RS). This paper will provide sensible reduced modelings for all M1 logics and
all M2 logics. Most, though not quite all, weaker relevant logics in which there
has been recent interest fall into one of the two groups.

Where L is a logic containing B, an L theory T is a set of sentences in the
language of L satisfying, for all A and B:

(i) fAeTand BE Tthen A & B T.
(ii)) ift;A—->Band A€ TthenBeT.

Furthermore, T is:

regular iff whenever ; A, A€ T
detached iff whenever A - BeTand A€ T,BeT
affixed iff whenever A > B€ TbothC—-A-». C->BeT

and B-C—-». A-CeT
transpositive  iff whenever A - B€ T, ~ B>~ A€ T

consistent iff whenever ~A € T, A& T

prime iff whenever AvB €€ T, either A€ TorBe T
stable iff detached, affixed and transpositive

ordinary iff regular and stable

normal iff ordinary, prime and consistent

A-consistent  iff A & T.

The main lemma to be proved below is that where L is any M1 or M2 logic, if
A is a nontheorem of L then there is a normal 4-consistent L theory. This theory
is moreover “large” in an intuitively reasonable sense.

Before deriving any lemmas we need more definitions. A frame is a struc-
ture (K, P, O, R, *) where K is a set (of “worlds”), P is a subset of K, O is a
member of P, R is a ternary relation defined on K and * a unary function
defined on K, such that for all members q, b, ¢, d of K.

(D1) a<b=43x(x € P& Rxab)

(D2) R%abed =45 3x(Rabx & Rxcd)
(D3)  R%*a(bc)d =4 3x(Rbex & Raxd)

®Pl) a=<a
(P2) For all x in P, if R?xabc or R?a(xb)c or R?>x(ab)c then Rabc
P3) a*=a

(P4) If a < bthen b* < a*.
Routley and Brady give (p2) in the form
For all x in P, if R?>xabc then Rabc

and claim that its other parts (which do not affect the stock of theorems) are
“optional extras”. I agree that they are extras.

Let SL be the set of sentential letters. A model is a pair {F, v) where F is
a frame and v is a total function from SL X K into {T, L} such that for all p
inSL and alla, bin Kif a < b and v(p, a) = T then v(p, b) = T. Each model
determines an interpretation I in accordance with the following conditions:

any I(p, a) =v(p, a)

M2) I(A&B,a)=TifbothI(A,a)=Tand I(B,a)=T
I(A & B, a) = L otherwise
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(I3) I(AvB,a)=Tifeither I(A,a)=TorI(B,a)=T
I(A v B, a) = L otherwise
) I(~A,a)=TifI(A,a*) =1L
I(~A, a) = L otherwise
(I5) I(A — B, a) = T if for all b, ¢ such that Rabc,
if I(A, b) =T thenI(B,¢c)=T
I(A - B, a) = L otherwise.

A is true in (F, v) iff I(A, O) = T. That is, to be true is to hold at the real
world, which is unsurprising. A set X of sentences implies A in {F, v) iff there
is no ¢ in K such that I(B,a) = T for all Bin X but I(A, a) = L. X entails A
on a set S of frames iff X implies 4 in every model in every frame in S. Finally,
A holds strongly in a model iff its interpretation is T at every member of P in
that model.

Where L is a logic as before, an L frame is a frame F such that in every
model in F

(i) every theorem of L holds strongly;
(ii) every primitive rule of L preserves strong holding.

Often, and usually in logics of the type specified above and encountered in the
relevant logical literature, L frames are defined by stipulating conditions, mainly
on the relation R, which they meet only if they yield strong L matrices.? The
reader is referred to [10], Chapter 4, for details.

A frame (K, P, O, R, *) is reduced iff P = {0}. In reduced frames strong
holding amounts simply to truth, and it is easy to show that A implies B in a
reduced model iff A — B is true therein. As suggested in the opening remarks,
it is motivationally desirable that relevant logics should be characterized by their
reduced frames, so that they may deliver on the claim that the arrow not merely
indicates but actually expresses implication.

We now approach the main theorems by way of some observations for
which let L be a supersystem of B and let 7 be an ordinary prime L theory. Let
Pt be the set of prime L theories U closed under 7-implication: whenever
A—->BeTand A € U, B € U. Let the relation Ry be defined on Ptr:

Ry (U, V, W) iff forall A, Bif A»>B& Uand A € Vthen B& W.
Define the operation *; on Ptr:
(U)*r = {A: ~A € U).

Then
Observation 1 (Pty, {T}, T, Ry, *7) is an L frame.

Proof: See [10], Chapter 4. It is necessary that T be detached, to ensure that 7
is in Ptr, and that it be transpositive for (P4).

Observation 2 There is an interpretation in the frame just defined such that
forall Aand U, I(A, U) =T iff A € U.

Proof: As for Observation 1. That T be affixed is necessary here to ensure that
(I5) is satisfied.
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Observation 3 Let T be an A-consistent ordinary prime L theory. Then there
is a reduced L model falsifying A.

Proof: Immediate from Observations 1 and 2.

Observation 4 Let A be a nontheorem of L. Then there is a regular prime
A-consistent L theory.

Proof: By a version of Lindenbaum’s construction.

Let (B;...B,...) be an enumeration of the formulas of L. Define the
sets 7; of formulas:

T, = (B: }.B).

If for some conjunction C of members of T}, };Bi;; & C — A then
T4y = T;. Otherwise Tpyy = T; U {Biyy). T= |J (T).

Four things are to be shown: T is (a) regular, (b) prime, (c) an L theory,
(d) A-consistent. Of these, (a) and (d) are trivial, and (c) is straightforward by
familiar moves. For (b) note that if neither C nor D is in 7, then there is some
E in T such that both £ & C — A and E & D — A are L theorems. But then quite
easily (Cv D) & E— A is an L theorem, so CvDisnotin T.

Observations 3 and 4 are true of all logics containing B, but they imply
reduced modeling only for systems all of whose regular theories are stable and
therefore ordinary. Clearly a sufficient condition for the stability of all L the-
ories is that L have as theorems all instances of (A10), (Al11), (A12), and (A19).
Many of the standard logics in the relevant family, including 7, E, R, RM, and
classical logic, are thus characterized by reduced models.> Where L is an M1 or
an M2 logic, lacking in particular WI, there may be extraordinary regular prime
L theories produced by the Lindenbaum construction. In such a case, we can
still define Ptr, of course, but there will be no guarantee that T is itself one of
the “worlds” in the resultant putative frame.

The first step toward improving matters is to rework the Lindenbaum
lemma using a fairly orthodox notion of ‘derivation’. There are five cases of
immediate consequence:

A & B is an immediate consequence of A and B.

B is an immediate consequence of A and A — B.

~B — ~A is an immediate consequence of A — B.

C - A —». C - B is an immediate consequence of 4 — B.
B — C —. A— Cis an immediate consequence of A — B.

A derivation of formula A4 from set X in logic L is a finite sequence of formulas,
the last of which is A and each of which is either a member of X, a theorem of
L, or an immediate consequence of earlier ones. Now define some more sets:

T = 2.

If there is a derivation in L of A from T}/ U {B;;} then T/,; = T/. Other-
wise T/yp = T/ U {Biy1}.

T = ().

1
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It is easy enough to establish that 7"’ is an L theory, that it is regular and sta-
ble, and that A is not in it. Thus

Observation 5 Let L be a superlogic of B and let A be a nontheorem of L.
Then there is an ordinary A-consistent L theory.

Proof: As usual.

Even Observation 5, however, does not yet give a reduced modeling the-
orem, for the theory 7’ may fail to be prime. To see how this might happen,
note that without WI and its cognates we may have derivations of A from B and
from C without having a derivation of 4 from B v C, despite the availability of
(A7). The reason is that in the derivations of A from B and from C it may have
been necessary to assume one of the premises more than once for detachment
purposes. The reader who sensed familiar ground underfoot when derivations
were defined in the last paragraph is permitted a double take at this point. Why
is the number of uses of a premise of any significance? The answer is bound up
with the delicate forms taken by the deduction theorem in logics without WI and
was explored somewhat in [6]. Briefly, where there are L theorems

B-D
B—-.D- A,

there are also

B—-.D& (D— A)
B —. B- A;

but without WI there will not in general be a theorem
B— A.

Uses of detachment in the derivation are reflected in the repetitions of the antece-
dent of the L-provable conditional corresponding to it. Even if the numbers of
detachments in the two derivations were the same it would not in general be pos-
sible to amalgamate them, for logics without WI do not usually admit the rule

B> B—-A,C>.C->A=BvC—-.BvC—A.

The problem is ineradicable.

If the problem of nonprimeness cannot be eradicated, perhaps it can be cir-
cumvented. We may suitably begin by considering a justly famous solution to
an analogous problem besetting more familiar relevant logics such as R. We have
seen that R is characterized by its reduced frames; but is it characterized by its
normal frames—i.e., by reduced ones in which 0 < 0*? The key theorem entail-
ing a positive answer is the

Normalization Theorem for R Let A be a nontheorem of R. Then there is
a normal A-consistent R theory.

Proof (Meyer): By metavaluation. By observation 3 there is an ordinary prime
A-consistent R theory T. Define a set MT:

Forpin SL,pe MT iff pe T.
B & C e MTiff Be MT and C € MT.



REDUCED MODELS 401

Bv Ce MTiff BE MT or C € MT.
~Be MTiff ~B€ T and B & MT.
B—-> Ce MTiff B-» C¢& Tand if B€ MT then C € MT.

MT < T as shown by easy induction on the complexity of formulas. Therefore
MT is A-consistent. Obviously MT is prime, consistent, and closed under
adjunction and detachment. To show that MT is the required normal theory,
then, it suffices that we show every axiom of R is in MT. This is done in two
stages. First (by induction on complexity again) if B & MT then ~B € T. The
effect of this lemma is to ensure that ~B € MT iff B & MT, so that the dou-
ble negation Axiom (A9) presents no problem. Then the proof is completed by
going through the axiom schemes case by case. Details are omitted here as the
result is well known.

It is worth pausing to examine the strategy of Meyer’s proof. The Linden-
baum construction yields too large a theory —in particular it is inconsistent —
because the closure condition, based on the logic, is weak enough to be toler-
ant of theories with such excess content. A metavaluation (a kind of forcing)
is therefore used to trim the edges of 7, cutting it back to normality. Much the
same problem faces the attempt to find reduced frames for M1 and M2 logics:
because of the weakness of the logics the Lindenbaum theories tend to be too
big, often allowing in disjunctions without their disjuncts. Can we therefore rec-
tify matters by applying a metavaluation to 7’? It turns out that we can, but
to do so requires an extension of the technique. The simple metavaluation used
by Meyer in the normalization theorem for R will not work, for the lemma that
if B¢& MT’ then ~B € T’ is false (e.g., let the nontheorem be p v ~p and let
B be p).

What does work is a pair of metavaluations intended to correspond to the
worlds 0 and 0* is the frame they determine. The definitions for the M1 and the
M2 cases are slightly different.

Let T be a set of sentences. Define m; T, m,T, m; T and m5 T as follows:

ForpinSL,pe mTiffpe T PEmMTIiffpe T
A& BemTiff A€ mT and A & B e m,Tiff A € myT and

BemT Be m,T
AvBemTiff Ae mTor AvBemTiff A€ myT or
BemT Be m,T
~A € mTiff A& mT and ~A € myTiff A ¢ m,T and
A¢miTand ~A €T AgmsTand ~A €T
A-BemTiff A-B&€Tand A-Bem,Tiff A—» Be€ T and
if A € m;T then if A € m,T then
BEmlT Besz
and if A € m] T then and if A € m5 T then
BemT BemiT
pemiTiffpeTor~p& T peEm;TiffpeTor~p& T
A & Be miTiff A € miT and A& BemiTiff A€ miT and
BemT BemiT
AvBe miTiff A€ miTor AvBe miTiff A€ m5T or

BemT Bem;T
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~AemTiff A¢ mT ~A e msTiff A & m,T
A — B € m} T whatever happens A->Be m;Tiffif A € m,T,
BemsT

Note that the only difference between the sets of definitions in the two cases is
in the last line: A — B is in m} T if anything is the case, while it is in m3 T only
on a specific condition. Note also how the negation clauses relate the starred
definitions to the plain ones. As in Myer’s normalization proof we begin by
establishing some inclusions between various of the sets.

Lemma 1 Where T is a B theory, miT < T and m,T < T.

Proof: Induction on the complexity of A, showing that if A € m;T or A € m,T
then A € T. Base case and Cases A = ~B and A = B — C are trivial.
Case A=B&C. If A€ mTthen B€ m;T and C € m,T, so by induc-
tion hypothesis B € T and C € T whence B & C € T. Similarly for A € m,T.
Case A = Bv C. If A € mT (respectively m,T) then either B € m;T
(myT) or C€ mT (m,T), so by induction hypothesis either B€ Tor C€ T.
So A € T by (A5) or (A6) and a little B logic.

Lemma 2 For any set T of sentences, m;T € m}T and m,T < m>T.
Proof: Induction on complexity again. Omitted as too trivial.
Lemma 3 Where T is a B theory, if A &€ mT then ~A € T.

Proof: By induction again. Base case trivial, as is Case A = B — C.

Case A = B & C. Suppose A & miT. Then either B& miTor C¢& miT.
By hypothesis, then, either ~B € T or ~C € T, whence ~(B & C) € T by
DeMorgan lattice logic and the closure of 7.

Case A = B v C. Dual of last case.

Case A = ~B. Suppose A & m}T. Then B€ m;T, so B€ T by Lemma 1,
so ~~B € T by easy moves in the logic B.

Corollary to Lemmas 2 and 3 Let T be any B theory and let m\T be as
above. Then ~A € mTiff A& miT.

Lemma 4 Where T is a stable B theory closed under (R6), if A & m5T then
~A€eT

Proof: Exactly as for Lemma 3 except for the case A = B — C. Suppose B —
Cem;T Then B€E myTand* C& m3T. So BE Tby Lemma 1, and ~C€ T
by the induction hypothesis. But then B— C— C € T by the closure of 7 under
(R6), so ~A € T by transposition and detachment moves licensed by the sta-
bility of T.

Corollary to Lemmas 2 and 4 Where T is a stable B theory closed under
R6), ~A e m,Tiff A& m5T.

Lemma 5 Where L is an M1 logic and T is an ordinary L theory, m\T is a
normal L theory.

Proof: Trivially, m, T is prime, consistent, detached, and closed under adjunc-
tion. It remains to show it transpositive, affixed, regular, and an L theory. For
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transposition, suppose A - B & m;T. Then A > B &€ T by Lemma 1, so ~B—
~A € T by the ordinariness of 7. Moreover, if B ¢ m,T (respectively m] T)
then A € m,T (m}T), which is to say if ~B & m]T (m;T) then ~A € miT
(mT). In sum, ~B - ~A € m;T. Closure under affixing is shown similarly.
Suppose A - B € m;T. We want to show that C—> 4 —». C—> B € m T, the
argument for suffixing is analogous. Well, A - B € T by Lemma 1, whence by
T’s ordinariness C—» A —». C— B € T; and if A € mT (respectively m} T') then
B € m,T (respectively m} T). Further suppose C—» A4 € m;T. Then C~>A € T,
soC—-»BeT;andif Ce€ mT (miT)then A € m;T (miT), whence, by af-
fixing in the metalogic, if C € mT (miT) then B € mT (miT). Thus C —
B € m,T. Discharging the further assumption, then, if C > A € m;T then C -
B € mT. Trivially if C—> A € miT then C—> B € miT. Hence C > A4 —.
C — B € mT as required.

To show m; T regular and an L theory it now suffices that we show every
axiom of L to be in m,7, since we already have closure under all the rules of
inference. Each axiom is of the form 4 — B, so three things are to be shown in
each case: that A - B € T (which is trivial and will be left unstated), that if
A € m;T then B € m;T, and that if A € m} T then B € m}T. In cases where B
is of the form C — D the last of these is trivial and will again be left unstated.

For (A1) If A€ mTthen A € mT, and if A € miT then A € miT.
Therefore A - A € m;T. Notice that the metalogical reasoning
uses exactly the principle involved.

For (A2) If A& Be mT (imiT) then A € m;T (miT) and B € mT
miT), so A € m;T (miT) in that case by metalogical (A2).

For (A3) Similar.

For (A4) Suppose (A - B) & (A - C) € m;T. Then A - B € m;T and
A-CemT,soif A€ mT (miT)then both B mT (miT)
and C € m;T (miT), whichistosay B& C€ m;T (miT).

For (AS5) Dual of case for (A2).

For (A6) Similar.

For (A7) Dual of case for (A4).

For (A8) Suppose A & (Bv C) e m;T (miT). Then A € m;T (m]T) and
either B€ m;T (miT) or C € m;T (miT). By meta-(A8) then
either A € mT (miT) and B€ m;T (imiT) or C€ m,T (miT),
which is to say (A & B)yvC € m,T (miT).

For (A9) Suppose ~~A € m;T. Then ~A ¢ miT, so A € m,;T. Suppose
~~A € miT. Then ~A & m,T, so by the corollary to Lemmas 2
and 3, A € miT.

For (A10) Suppose A > ~B € m,T. Then if ~B & m,T (miT) then A ¢
mT (miT), which is to say if B€ m{T (m;T) then ~A € miT
(mlT).

For (Al11) Trivial because m; T is affixed.

For (A12) Similar.

For (A13) Suppose (A - B) & (B— C) € m;T. Then if A € m;T (miT)
then B € mT (miT), and if so then C € m;T (miT).

For (A14) Suppose A € m;T. Then (by meta-(Al14)) if A € m;T then A €
m,T; and since m;T < m] T by Lemma 2, if A € mjTthen A €
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miT (by meta-(A14) again). This finesse is just in case any
mingle-loving relevantist should worry; the rest of you have a nice
day.

For (A15) Similar, using (A15) in the metalogic.

For (A16) Suppose (A->BvC)& (A& B—-C)emT Thenif AemT
(m3iT) then either B€ m;T (miT) or C€ m,T (miT), and if
both A € mT (miT) and B € mT (miT) then C € mT
(miT). Soif A € m;T (mi{T) then C€ m;T (miT). So A -
Ce m; T. ,

For (R5) As for (A15) but without the need for (A15) to be in T.

M1 Normalization Theorem Let L be any M1 logic and let A be a non-
theorem of L. Then there is a normal A-consistent L theory.

Proof: Immediate from Observation 5, Lemma 1, and Lemma 5.

M1 Reduced Frame Theroem Every M1 logic is characterized by its reduced
frames.

-

Proof: Observation 3 and the M1 normalization theorem.

Lemma 6 Where L is an M2 logic and T is an ordinary L theory m,T is a
normal L theory.

Proof: Much of the proof of Lemma 5 carries over, mutatis mutandis. For clo-
sure under affixing we need to show that if A - B€ m,Tthenif C—» A € m5T
then C —» B € m3T. Suppose the antecedents. Then if A € m3 T then B € m5T,
and if C € m,T then A € m3T, whence if C € m,T then B € m3 7T, i.e, C -
B € m3 T. The other significant changes are to various cases of the axioms. The
proofs for (Al), (A2), (A3), (AS), (A6), (A8), (A9), and (R5) are much as
before.

For (A4) First part as for Lemma 5.
Suppose (A — B) & (A — C) € m5T. Then if A € m,T then both
BemiTand CemiT,;s0 A->B& Ce m;T.

For (A7) Dual of case for (A4).

For (A10) First supposition as for Lemma 5.
Suppose A > ~B € m3 T. That is, if A € m,T then B & m,T. By
(A10) in the metalogic then if B € m,T then A & m,T which is to
say B—> ~4 e m;T.

For (A11) We need to show that m3 T is affixed. Suppose A - B € m5T.
That is, if A € m,T then B € m3T. Further suppose C » 4 €
m,T. Then if C € m,T, A € m,T. So if C € m,T then B € m5T,
which is to say C — B € m3 T. Discharging the further assump-
tion, if C—> A € myT then C> B € m5T; ie., C> A —->. C—
B € m5T as required.

For (A12)  Similar.

For (A14) As for Lemma 5, except that to show if A € m3 T then if A €
m,T then A € m3 T seems to require a second appeal to Lem-
ma 2.

For (A15)  Similar.



REDUCED MODELS 405

For (A17) Suppose A € m,T. Then if A - B € m,T then B € m,T, and if
A - B € m3T then B € m5T, both by meta-(A17); so A > B—
Be sz
Suppose A € m3T. Then if A > B € m,T then B € m5 T, which
istosay4 > B—>Be m;,T.
For (A18) Suppose A ». B— C € m,T. Then
(i) if A € myT then B— C € m,T.
(i) ifA€emsTthenB—> Ce m5T.
(iii) if A € myT then if B € m,T then C € my,T  (from (i)
(iv) if B € m,yT then if A € myT then C € m,T  (from (iii))
(v) if A€ m5Tthenif B€ myTthen C€ m3T (from (ii))
(vi) if B€ myTthenif A € m5T then C€ m5T (from (v))
(vii) if BeEmyTthenA->C€T (Lemma 1, etc.)
(viii) if B€ myTthen A - C € m,T (from (iv), (vi), (vii))
(ix) if A € myT then if B€ m5T then C € m5T  (from (i)
x) if BeE m5T thenif A € myTthen C € m5T (from (ix))

(xi) ifBEm3TthenA—->Cem>T (from (x))
i) A—-.B->CeT (Lemma 1)
i) B=-.A-CeT (closure of T)
xiv) B—->. A->Ce& m,T (from viii, ix, xiii).

Suppose A —». B— C m3T. That is, if A € myT then B—> C €
m3 T, which is to say if A € m,T then if B € m,T then C € m; T.
Permuting, if B € m,T then if A € m,T then C € m3 T, i.e., B —.
A-CmsT.

For (R6) As for (A17), without the need for (A17) to be in T.

M2 Normalization Theorem Let L be an M2 logic and let A be a non-
theorem of L. Then there is a normal A-consistent L theory.

Proof: Immediate from Observation 5, Lemma 1, and Lemma 6.

M2 Reduced Frame Theorem Every M2 logic is characterized by its reduced
‘frames.

Proof: Observation 3 and the M2 normalization theorem.

Corollary 1 to the Normalization Theorems Every M1 logic and every M2
logic admits the rule () of material detachment.

Corollary 2 to the Normalization Theorems Every M1 logic and every M2
logic is prime. That is, the set of theorems of L is a normal (ordinary, prime,
consistent) theory.

Corollary 3 to the M1 Normalization Theorem No M1 logic has any the-
orem of the form ~(A — B).

In the light of Corollary 2 it may be wondered what was the point of prov-
ing Lemmas 5 and 6 in such generality. After all, if logic itself is a normal theory
in which all nontheorems fail together, what need of any more elaborate con-
structions? Well, one point was to provide normal theories which somewhat
resemble the real world. The normality of the canonical frame, based on the Lin-
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denbaum algebra of the logic, is a sort of happy accident, good and useful but
rather silly. Even with due allowance made for logicians’ hubris, no one really
expects the logical truths to be the only truths. It is splendid that the main con-
tractionless relevant systems allow the possibility of models in which there are
no contingent truths, for logic is in a way impure when it claims there are truths
about matters which are not its business; but it is also desirable that there be
models looking like reality, in which there are many truths beyond what is given
by Pure Reason. It is accordingly gratifying, and reassuring, to find logics with-
out WI characterized by sets of models in which the truth is large. The concept
of largeness here is a little obscure, though presumably lightly trimmed relatives
of maximal A-consistent theories will count as large by any reckoning. Note at
least that selection of suitable sets of irrelevant sentential letters to go into 7 can
assure uncountably many normal A-consistent L theories, so some of them must
be large enough to allow a fair degree of freedom in the construction.

Finally, lest it be thought that we have proved everything, note (what was
already known to the authors of [10]) that there is no reduced modeling theorem
for any system between B + X and TJ + (R6) + X where X is the “excluded mid-
dle” scheme

(A20) Av ~A.

The reason is that all reduced frames for such systems validate
(A-B)&ADB

which is invalid in the following TJ + (R6) + X frame:

K =1{0,1}. P=1{0,1}. 0* =0. 1" =1
R ={1,0,0),<1,1, H}.

NOTES

1. These techniques have a longer history, going back at least to Harrop’s [3] of 1956.
Rasiowa, Fine, Dwyer and Meyer seem to be among those who have independently
rediscovered the concept of metavaluation. See [5] for some more comments.

2. ‘Only if’ is deliberate here, as the converse ‘if” is not always true. The general defi-
nition of the present paper is more liberal than some of the system-specific ones to
be found elsewhere. For example, the Anderson-Belnap system E is usually modeled
by a set of frames (“E model structures”) excluding many important E frames. See
Note 3.

3. Note that the reduced frames needed here may not in general be of the canonical
kinds usually specified as “7T model structures”, “E model structures”, etc. E, in par-
ticular, is known to resist reduced modeling on the usual definition of what counts
as an E model. So much the worse for that definition.

4. Note for the deeply initiated: this ‘and’ and the next are fusions if the metalogic is
to be formalized relevantly. Innocent readers are not to worry about it.
Metavaluational arguments do seem to be extremely sensitive to the choice of
metalogic, and while the arguments of this paper are in stilted English, not in any
formal system, they are so couched as to suggest the resources needed for their for-
mal reconstruction. Far more than pure logic is needed for any such reconstruction
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project, of course—a theory of sets or other collections being a start. No strong
claims on such matters are being entered here, but the issue of the “relevant valid-
ity” of relevant metatheory is in the air just now, so that those of us who have lost
our innocence should try to be aware of the problem in our informal proofs. The
point to be noted even by the innocent is that the metalogical reasoning closely mir-
rors, without bad circularity, the properties being established for the object systems.
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