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A System of Predicate Logic

with Trans-Atomic Units

RICHARD BUTRICK

Preliminary remarks The original idea of introducing trans-atomic units into
systems of formal logic was presented at the World Congress of Philosophy in
1983. Formal development of this concept at the truth-functional level was sub-
sequently investigated in this journal [1]. This paper extends the concept of trans-
atomic (TA) units to Predicate Logic (PL).

Motivation for investigating TA units The concept of TA units allows the
introduction of special connectives over and above the 16 limitation of standard
two-valued logic without leaving the confines of a two-valued system.

The one particular connective introduced in this paper has interesting pos-
sibilities as regards its use as a causal connective in the formulation of lawlike
generalizations. Briefly, the difficulties with the Philonian (material) conditional
in the formulation of lawlike generalizations concern its properties as regards
confirmation and support:

(x) (Fx -> Gx) is confirmed (totally) by
(1) (x)Gx (and consequently by the pair ((x)Gx,

(x)Fx) as well as the pair ((x)Gx, (x)~Fx))
(2) (x)~Fx.

is supported by
(1) Ga (and consequently by the pair (-Fa, Ga)
(2) -Fa.

There seems to be no escape from these difficulties. Even restricting evi-
dence or support to instances of the corresponding conjunction, i.e., Fa & Ga,
Fb & Gb, etc., is of no avail. Since (x) (Fx -• Gx) is logically equivalent to
(x) (~Gx -* -Fx) the latter would be supported by -Fa & -Ga and hence the
former also. The partial connective, *—c\ subsequently introduced avoids the
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above difficulties yet supports a type of modus ponens and modus tollens mak-
ing it an interesting connective as regards discussions of causality as a connective.

These remarks are not meant to be conclusive, but rather present some
introductory considerations for the study of partial connectives imbedded in TA
units. The purpose of this paper, moreover, is not to prove the utility of par-
tial connectives but to demonstrate their logical viability.

The system PLT The following system of predicate logic with trans-atomic
units {PLT) is an extension of the Fitch-Suppes type system of predicate logic
(PL) with predicate letters and individual constants but without function letters.

Trans-atomic units Atomic units such as sentence letters, predicate letters,
and individual constants are assigned an extension in an interpretation on an
arbitrary basis. Compound units, by contrast, are assigned an extension on the
basis of a determination (which could be an assignment) of the extension of its
component units. In this respect, TA units are partially compound and partially
atomic. In some cases assignment of an extension is purely arbitrary. In other
cases the assigned extension is dependent upon the assignment to its components.

Viewed from another perspective, TA units enable the introduction of a
total of 81 connectives (3 to the power 4) into two-valued systems of logic. This
total includes the 16 full truth-functional connectives with the remaining con-
nectives being partially truth-functional. It is to be emphasized that partially
truth-functional connectives are such that their truth-functionality is partially
determinate and otherwise arbitrary. It is not that such connectives have values
other than T,F as arguments.

Consider, for example, the connective '—c' (read 'connect') which is like
the material conditional in the second case (T,F) but which is otherwise atomic.
The atomic (arbitrary cases) can be indicated in truth-table fashion by repeat-
ing the case entry on the left:

P Q 1 (P-cQ)

T T T (As defined, all cases except the (T,F) case
T T F are arbitrarily T or F in a given interpreta-
T F F tion, as would be the case for an atomic
FT T sentence. The (T,F) case, by contrast, has a
FT F unique value and is determinate)
F F T
F F F

In order to get an intuitive grasp of'—c' several semantic consequences of
its characterization are given:

Entailments which hold Entailments which do not hold

1. P, (P — c Q) \= Q 1. ~P N (P — c Q) (Duns Scotus)
2. P , - Q ^ ( P - c 0 2. QV (P-cQ)
3. (P - c Q), ~Q N ~P 3. (P - c Q) N (~Q - c ~P)

4. Transitivity of —c



LOGIC WITH TRANS-ATOMIC UNITS 433

On the approach taken here, morphologically distinct TA units are seman-
tically independent much as morphologically distinct sentence letters are seman-
tically independent. Thus (P &P —c Q) does not entail (P —c Q). It is possible
to take a different approach and allow semantic relations between morpho-
logically distinct TA units; however, the penalty paid in semantic complexity
is considerable and such an approach will not be pursued in the metalogical
investigations which follow.

The introduction of TA units requires rethinking of the notion of a sentence
of a system X. This seemingly straightforward notion does not extend directly
to TA units. If Xis a set of sentences, say, {(x) (Fx-+ Gx), (3x)Mx, Fa], then
any sentence composed of the vocabulary of X({F, G, M, a}) is a sentence of
the system X, though, of course, not necessarily a thesis or theorem of X. This
approach will not do for TA units. Because of their hybrid nature (partially com-
pound and partially atomic) variations of TA units in a set of sentences X are
not necessarily sentences of X. At the truth-functional level, only TA units in
X are TA units of X. This total restriction must be relaxed at the PL level. Thus
if ^contains (x) (Fx —c Gx) and Fa, then the following would be sentences of
Λf without necessarily being in X: (Fa —c Ga), (Fy —c Gy), (z) (Fz —c Gz).

TA units

1. If 5, Γare (open/closed) sentences of PL, then (S —c T) is a TA unit
of PLT

2. S is a TA unit only by (1). Remark: (x) (Fx —c Gx) is not a TA unit
but a generalization of a TA unit.

Sentences of PLT

1. Sentences (open/closed) of PL are sentences of PLT.
2. TA units and universal closures of TA units are sentences of PLT.
3. If S, Tare sentences of PLT then (S&T), (S-+T). ~S, (SvT) are

sentences of PLT. (Other connectives by definition.)
4. If S is not a TA unit and S is a sentence then (x)S, (3x)S are sentences

of PLT.

Examples

Sentences Non-sentences

1. (x)(Sx-+ (Px— cDx)) 1. (x)(Hx— c (Gx — c Hx))
2. (x) ((Ey)Hxy — c Gx) 2. (lx)(Sx—cRx)
3. ~ (x) (Fx — c Gx) 3. (x) ~ (Sx—cRx)

Inference system for PL

1. Affirming the Antecedent (modus ponens)
2. Denying the Consequent (modus tollens)
3. Conditional Proof: If S occurs on a line then (Q -• S) may be entered

on a subsequent line. The premise dependencies of the new line are the
premise dependencies of the previous line with the exception of the
premise dependencies of the line on which Q occurs.
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4. Interchange: The following forms of sentences are / interchangeable:
(1) (R v S)/(~R -> S); (2) (R & Q)/~ (R -* ~Q); (3) ~~Λ/Λ.

5. Universal Specification: From (Λ:)S to derive S(t), where ί is any term
which does not contain a variable which is subject to capture.

6. Universal Generalization: From S to derive (x)S, provided x is not
flagged. A variable free in a premise is flagged and remains flagged in
any line in which it is free and depends upon the premise.

Inference system for PLT

1. Rules of PL
2. Connect Denial: (S —c T) Derived Rule (S —c T)

π (Connect Affirm) e

— 1 o

V ~S V T

Possible extensions Alternative systems might find the following inference
principles useful. The inference rules depend on the concept of derivability in
PL.

1. (S—cT) 2. (S—cT) 3. (S—cT)

\-PL(S^T) ~ (R^Q) \-PL(R^S) hpL(T^R)

h (R-cQ). h (R-cT) h (S—cR)

A system X A system X of PLT is any set of closed sentences of PLT. In
some treatments a deductive system or theory is held to be semantically closed,
i.e., closed with respect to the relation of semantic entailment. This approach
is not followed here.

Sentence of a system X Not every sentence of PLT built up from the predi-
cates and individual constants which are components of elements of X is a sen-
tence of X. Let X = [Fa, (x) (Fx —c Gx)}. Even though (x) (~Fx -• Gx) is a
sentence of X, (x) (-Fx —c Gx) is not a sentence of X.

Define

C(X) = {z: z is a constant which is a component of an element of X]
P(X) = [z: z is a predicate which is a component of an element of

X]
TA (X) = [z: z is a TA unit which is a component of an element of X]

MTA {X) = The master TA set of X
= Π{z: (s)(se TA(X) -+sez) & (u)(υ)(uez& (Cυuv

SPvu) -+vEz)}; where Cυu iff υ is a universal closure of u
and SPvu iff v is a specification u (which, if constants are
used, uses only constants of C(X)). Informally, MTA(X)
contains the TA units which are components of elements of
X and closures and specifications of elements.

S(X) = The symbol set of X
= C(X) U P(X) U MTA (X)
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SS (X) = The sentence set of X
= {z: z is a sentence of PLT based on S(X)}.

Interpretation M of a PLT system X Define M - (A, D) where D is a
nonempty set and A: S(X) - D U P(£>) U P(D2)... U P(£>") such that

1. If zGC(X) then / l ( z ) G i ) .
2. If z E P(ΛQ and * is of degree n then A(z) E P (£>").
3. If z E TA(X) and the prototype of z (/?ro(z)) is of degree n then

i4(/vτo(z)) G P ( D Λ ) .

Explanation of terms: The prototype of a TA S is the TA S' obtained from
S by replacing each free variable and constant in S with a new variable from a
standard sequence of variables.

Examples: Let the standard sequence be (u, v, w, x9 y, z>, then

1. pro((Fx —c Gxaa)) = (Fu —c Gvwx)
2. pro ((Fa — c (ly)Gay)) - (Fu —c (ly)Gvy)
3. pro((Fa—c (lu)Gau)) = (Fv — c (3u)Gwu).

The degree of a prototype TA is the number of free variables in the TA. The
degree of (1) above is 4 and the degree of (2) is 2.

Remark: Not every TA is assigned an extension in an interpretation. Only TA's
which are prototypes are assigned an extension.

M |= S(d): M models S at d (d satisfies S with respect to M)

Let (1) X = a system of PLT sentences and S GX
(2) M={A,D)
(3) VC = the set of variables of PLT and elements of C(X)
(4) Pn be a predicate letter of degree n which is an element of P(X)
(5) tj be any variable or constant which is an element of VC.

Define d: VC -> D such that if c is a constant then <i(c) = A (c).
M \= S(d) defined: If S is of the form

1. Pntx... tn then M\=S(d) iff <d(tx)9... ,</(*„)> Ev4(P")
2. (£>-•/?), (Q&R), (QvR), ~R, standard.
3. (#)Q and v is a variable E VC then M |= S(GO iff M |= Q(tf') for every

d' which differs at most from d only at v (dr = v rf).
4. (/? —c Q) and t\,..., tn are the terms of S in order of occurrence then

M N S(rf) iff <£/(*!>,... ,</(/„)> E ^ (pro(z)).

M V S:Mmodels S (S is true in M) M N S iff M N S(rf) for all tf.
Observation 1: If d (υ) = d/(c) and #is the one free variable in S(υ) then

M | = % ) ( ί / ) iff MVS(c).
Observation 2: If S is closed then M N S iff (ld)M \=S(d).
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M\=X M\=Xiff

(1) if S E X then M V S, for all S. (Distributive Requirement)
(2) if M V R — c Q then ~ (3d)M hPL (R & ~Q)(d). (Collective)

Comment: It is at this point that MPLT appeals to MPL.

It is also to be noted that if M models X distributively it does not thereby
follow that M models X collectively, i.e., that M (= X. If M V (R — c 0 , R,
~Q, then - (M (= {(R —c 0 , i?, ~Q}). The appeal to M P L is quite legitimate
since every MPLT defines uniquely an MPL for sentences of X which do not con-
tain TA units and R, Q cannot be TA units if they are components of a TA unit.

Saturation lemma (based on Lindenbaum 's Lemma) If X is a consistent sys-
tem of sentences of PLT then there is a consistent saturated extension of X. A
system X of sentences is said to be saturated iff for every closed sentence S of
X either SEX or -SEX. Note that every saturated system is complete but not
vice versa. The system X = [P, (P-+ Q)} of SL is complete but not saturated
since neither Q nor ~ Q are elements of X. However, if X is closed under \- and
complete then X is saturated. Let A\,... ,An,... be an enumeration of all
closed sentences of X. Define a sequence of systems Xo,... 9Xn,... such that
Xo = X and Xn+ι =XnΌ {An+ι} if ~ (Xn h ~An+x); otherwise XΛ+1 = * „ U
{~An+ι}. Define JGf= U { ^ : /i e N}.

Consistency of XX Since Jf0 = ^C -̂ o is consistent by hypothesis. By
hypothesis of induction (HI) Xn is consistent. Assume — (Xn+i cons). Assume
Xn+i = Xn U MΛ+i}. Then, by the construction of Xn+U ~(Xn h ~Λi+i)
But by assumption, A^ U {An+ι} \-R & ~R. In which case Xn \- An+Ϊ -+ (R &
—R) and Xn/~An+χ which contradicts the construction of Xn+\. Assume
Xn+\ = Xn U {— An+χ}. Then, by construction of Xn+\, Xn V ~An+\. But if
Xn is consistent and Xn \- ~An+χ then Xn+\ cons, contradicting the main
assumption.

The Godel-Henkin theorem for PLT (GH)

Theorem X cons -• (3M)M N X.

Proof: Let A\ (&\),... , y 4 n ( ^ ) , . . . be an enumeration of sentences of X with
one free variable. Let B = [b\, . . . , & „ , . . . } be a denumerable set of individual
constants not in C ( ^ ) .

Definition Sk = - (»k)A (»k) -> - ^ ( W
^0 = ^ 0 {Fc v ~Fc: F E P(X) & c E B}. Comment: This

merely extends the symbol set of Xo such that S(X0) =
S(X) U B.

Xn+ι=XnU [Sn+l]
X* = U{Xn: nEN]

Theorem X* is consistent.

Proof: 0: Xo is consistent since X is consistent and adding tautologies to a con-
sistent system does not affect the system.
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n + 1: By hypothesis of induction Xn is consistent. Assume Xn+ι is incon-
sistent. Then

1. XnΌ [Sn+λ\ \-R&~R
2. Xn h ~S n + i
3. Xn h (»n+ι)An+i(»n+ι) (From (2), denial of a conditional)
4. Xn h v4Λ + 1(6A 2 + 1) (From (2), denial of a conditional)
5. Xn\-An+ι(x)

Since 6 Λ + 1 occurs in no sentence of Xn, bn+\ does not occur in the
premises Xn of the derivation D of An+χ(bn+ι). Choose a variable x
which does not occur in D. Construct D* by replacing occurrences of
bn+\ with x. Then Z>* is a derivation of ^4Λ+i (x) from Xn.

6. XΛ h (x)An+γ(x) Since Λ: is not a flagged variable (x does not occur
free in the premises of D*).

7. (6) contradicts (3).

Construction of XX By the Saturation Lemma, let XX be a consistent satu-
rated extension of X*.

Interpretation M of XX

1. M = (A,D>
2. D = C(X)
3. Λ(c) = c
4. >1 ( F Λ ) = {<c l f . . . ,cΛ>: F Λ d ...cneXX]
5. A(pro(R — c Q)) = {<cu.. .,cn): pro(R —c Q)d/#ι.. .cn/»n e

XX}. Where pro(R — c ζ ? ) ^ / ^ . . .cn/vn is the result of substituting
C/ for vj in pro(R —c Q) which is of degree n.

Theorem S E XX iffM\=S (distributive result).

Proof: By induction on the length of 5.
0: S has no connectives. S is of the form FkCχ.. .ck. By definition M |=

Fkcx ...ck iff < c l f . . . ,c*> G « c i , . . . ,c*>: F Λ d . . . c , G f f | iff Fkcx ...ckG
XX.

n + 1: Cύr ĵ1 7-¥: S is of the form ~ β or (i? v β) or (i? & β) or (R -•
β ) : standard.

Cί75̂  5; S is of the form (υ)Q. Let β be Rk(vk). Assume » = t^, as other-
wise Rk(vk) is closed and Case 5 reduces to the previous cases. Assume S E
XXand ~(Aί h S). Then (3d) ~(Af h (*)/?*(*) (rf)) and for some d' =vd~
(M\=Rk(v)(d)). Suppose cT(#) = c, then d'(υ) = d'(c), since d(c) = c for
all d. By observation 1, ~M N Rk(c)> By hypothesis of induction ~ (Rk(c) E
XY). But from the assumption XY|- Rk(c) by Universal Specification. Assume
M N 5 and - (5 E XX). By the saturation of XX, ~S E XX By the construc-
tion of XX, (~S-+ ~Rk(bk)) E XX Hence, ~Rk(bk) E XX By the hypoth-
esis of induction -(M\=Rk(bk)). ButifMN (»)Rk(v)(=S) thenM\=Rk(bk).
Proof of Case 5 is also standard.

Case 6: S is of the form (R —c β ) , where R, Q are both closed. By defi-
nition M\= (R—c Q) iff (3d) M N (R — c β ) (tf). Also by definition M (= (R
—c β ) (d) iff < d ( / i ) , . . . ,d(/Λ)> E ^ (/7ro(i? —c β ) ) , assuming / l f . . . ,ίπ are
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the terms of (R - c Q). But <d(tx)9... ,d(tn)> = {d(cx)9... ,rf(cΛ)> =
<c1,...,c r t>. HenceMN (# —c Q)(d) iff <c1,...,cn> eΛ(/;ro(/? —c Q)).
Since A(pro(R —c Q)) = {(CΊ. ,.cn):pro(R —c Q ) ^ / * ! .. .cΛ/vπ E XX] 9

and pro(i? —c Q ) ^ / ^ .. .cΛ/*Λ = (i? —c Q), M N (i? —c Q) iff (Λ —c
Q) e XX.

Theorem If MY (Q —c R) then ~(3d)M \=PL (Q & ~R) (d) (collective
result).

Proof: Assume MY (Q —c R) and that (Q —c R) is closed. Assume further
(ld)MYPL (Q&~R)(d),i.e.9MYQ(d) and MY~R(d) for some d. Since
MPL is a restriction of M(MPLT), MY Q(d) and MY ~R(d). Since in general,
if S is closed, M Y S iff (arf)M N S(tf), M N Q and M Y ~R. By the Distribu-
tive Result, Q, — R, (Q —c R) are elements of XX. This contradicts the con-
sistency of XX.

Theorem If XX is cons then (3M)M Y XX.

Proof: This follows by definition from the Distributive and Collective Results.

Theorem If X cons then (3M)M Y X (the Gόdel-Henkin theorem).

Proof: Since there is an M for every XX such that M Y XX and XX is a super-
set of X, there is an M for every X such that M Y X, given X and XX con-
sistent.

Theorem XY S only ifXYS (completeness).

Proof: It may be assumed that X is consistent (otherwise completeness is trivial).
Assume ~(X\- S). By Lindenbaum's Lemma X U {—5} is consistent. By GH
XU {~S} has a model M. Mis also a model of X From the hypothesis it fol-
lows that every model of X is a model of S. This leads to the absurdity that
MYS, ~S.
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