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Intensions, Church’'s Thesis, and the
Formalization of Mathematics

NICOLAS D. GOODMAN*

1 Recently a number of authors have proposed including intensional no-
tions, notably epistemic notions, in the underlying logic of mathematics. (See
Goodman [6] as well as several of the essays in Shapiro [15]; and for a discus-
sion very close in spirit to the present essay, see Shapiro [14].) These authors
have made explicit just what intensional notions are needed for the analysis of
mathematical language and how they should be formalized. The present essay
is concerned not with those questions, but rather with trying to make the prior
case that intensional notions are genuinely needed for the formalization of clas-
sical mathematics.

Let us begin with an example of the use of intensional notions in informal
mathematical exposition:

The proof by Gerd Faltings [2] of the Mordell conjecture implies that, for
any fixed exponent, there are at most a finite number of counterexamples
to the Fermat conjecture for that exponent. That is, let &k be some fixed
large integer, say k = 9,437,512,798. Then there is some finite integer n
such that there are exactly » pairs of rational numbers p and g such that

pk+qk=1

If the Fermat conjecture for k is true, then n = 0. At the moment, how-
ever, the number » is not known. In fact, we do not even know how to
bound n. Nevertheless, there is some hope that bounds may be obtained.
For the first time, we seem to be in a position to make systematic progress
on this 350-year-old problem.

It is a remarkable fact that the main logical tradition, stemming from
Frege, holds that the last four sentences of the above discussion are not part of
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mathematics. Within the standard formalizations we can assert that, for any
exponent, there are at most a finite number of counterexamples to the Fermat
conjecture for that exponent. We can define the number k, and, from it, the
number n of counterexamples for k. We cannot, however, assert that n is
unknown. We cannot formulate the problem of finding a bound for 7, although
we can say that there is such a bound, and, if we knew a specific bound, we
could say that it was a bound. We cannot express what is scientifically the most
important point of the discussion —namely, the present problem situation. We
cannot distinguish what we know from what we do not know. We cannot say
what we take to be the problem needing to be solved. In general, we cannot for-
mulate those statements mathematicians make that have epistemic content.

Perhaps this is not a defect in the standard formalizations. Perhaps a
“canonical notation” for science (Quine [10]) is intended only to allow us to
express what we know, not to say what we want to find out. But then it clearly
will not suffice for scientific communication, even in principle. As Quine himself
says, it is not “that the idioms thus renounced are supposed to be unneeded in
the market place or in the laboratory. . . . The doctrine is only that such a
canonical idiom can be abstracted and then adhered to in the statement of one’s
scientific theory. The doctrine is that all traits of reality worthy of the name can
be set down in an idiom of this austere form if in any idiom” ([10], p. 228).

On its face, this is a reasonable doctrine. It has often been held that the
principal aim of science is the description of those features of reality which have
objective validity, independent of any particular observer or even of our par-
ticular scientific community. But it is no longer obvious that this goal makes
sense. Much of the effect of the new developments in physics at the beginning
of the present century was to undermine just this notion of objectivity. Not
many physicists today would hold that it is possible to describe the physical
world as it is, independently of any observer. It seems likely, therefore, that a
“canonical notation” for a science rich enough to include contemporary physics
would have to contain modal notions, including epistemic ones. Just what those
notions would look like, however, is far from clear.

Whatever the language needed for formalizing physics, it is widely held that
no nonextensional locutions are needed for formalizing mathematics. Mathemat-
ics is the most austerely objective of all the sciences. Moreover, “it is an empirical
fact that all of mathematics as presently known can be formalized within the
ZFC system” (Henson [7], p. 130). This system (Zermelo-Fraenkel set theory
including the axiom of choice) is formalized in first-order predicate calculus and
is a paradigm case of the sort of theory Quine approves of. From a logical point
of view, the theory is as austere as anyone could desire. It contains no modal
vocabulary to enable us to discuss anyone’s epistemic state. The only possible
conclusion, then, is that the discussion above of the current state of the Fermat
problem, while perhaps interesting to a mathematician, is not part of mathe-
matics.

No one should be surprised that there are discussions interesting to
mathematicians as mathematicians which are not part of mathematics. Consider,
for example, a discussion of salaries of mathematicians or of job opportunities
for mathematicians. It is the mathematician’s business to study abstract struc-
tures. Perhaps the term ‘mathematics’ should be restricted to those things
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mathematicians say which are intended as objective descriptions of abstract
structures. Such a restriction on our use of the term ‘mathematics’, however,
would at least appear to exclude some propositions which everyone agrees are
strictly mathematical. I have in mind the constructive or algorithmic parts of
mathematics. It is one thing to assert that a continuous real-valued function on
a closed interval which is negative at one end and positive at the other must take
on the value zero somewhere in the interior. This is a nonconstructive assertion
which can be formalized in purely extensional terms. It is quite another to assert
that we have an algorithm, such as bisection or Newton’s method, which, in
favorable cases, can actually be used to find a point in the interval where the
value of the function is as close as we like to zero. The latter assertion seems
to contain modal elements. It asserts something about what we can do. As such,
it seems to have intensional content which transcends the expressive power of
extensional theories like ZFC. It seems likely, nevertheless, that even Quine
would want to include discussion of such algorithms within the confines of math-
ematics, strictly so-called.

2 It is difficult to say in full generality what it is for a language to be exten-
sional. Using the conceptual apparatus in the philosophy of language derived
from Frege, we may say that a language is extensional if the truth-values of its
sentences are determined only by the denotations or referents of their terms, and
not by their connotations or senses. In practice, as Quine has emphasized, this
comes down to whether terms which have the same referent can be freely sub-
stituted for each other in all contexts of the language without changing the truth
value of any sentence. This will be true of ZFC, or of any theory whose under-
lying logic is the first-order predicate calculus. To show that mathematics cannot
be formalized in such a theory, then, it will suffice to show that the language
of mathematics contains oblique contexts which do not admit the free substi-
tutivity of coreferential terms. (For excellent discussions of the issues involving
this notion of oblique contexts, see Linsky [8] and [9].)

If we are willing to include the formulation of mathematical problems
within the bounds of strictly mathematical language, then it is easy to find
oblique mathematical contexts. Suppose, for example, that the Fermat conjec-
ture is as a matter of fact true. Then the number of counterexamples to the Fer-
mat conjecture for k is, as a matter of fact, zero. It is an open problem to prove
that the number of counterexamples to the Fermat conjecture for £ is zero. It
is not an open problem to prove that zero is zero, even though this problem may
be obtained from the previous one by replacing the singular term ‘the number
of counterexamples to the Fermat conjecture for k’ by the coreferential term
‘zero’. On the same assumption, the number of counterexamples to the Fermat
conjecture for k is equal to the smallest root of the equation x> — x = 0, even
though we do not know how to find the number of counterexamples to the Fer-
mat conjecture for k but do know how to find the smallest root of the equation
x2—x=0.

For an example of a rather different character, let f be the function given
by f(x) = x3 — 3, and let g be the function such that g(x) = 1 if x is rational,
g(x) = 2 if x is irrational but not the cube root of 3, and g(x) = 0 if x is the
cube root of 3. Then the unique zero of fis equal to the unique zero of g. Nev-
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ertheless, Newton’s method can be used to find the zero of f but not to find the
zero of g. This example is interesting in that the obliqueness of the context is
strongly dependent on the formulation in terms of the problem of finding the
zero of the function. After all, Newton’s method applied to f will generate a
sequence which converges to the zero of g. Perhaps we are wrong in thinking
that the sentence ‘Newton’s method can be used to find the zero of f” should be
analyzed as containing the singular term ‘the zero of f°. Even in that case,
though, it surely contains the singular term ‘/”. Let 4 be fif the Fermat conjec-
ture is true and g otherwise. Suppose that the Fermat conjecture is true. Exten-
sionally, then, fis h. Nevertheless, we cannot use Newton’s method to find the
zero of h since we cannot compute very many of its values or any of the val-
ues of its derivative.

3 One interesting approach to handling intensionality in mathematical lan-
guage which has been advocated recently by Feferman (see [3] and [4]) is to think
of mathematical language as elliptic. Mathematical objects should be thought
of as equipped with additional information that can be used to mitigate the non-
constructivities inherent in our more usual ways of talking. For example, a con-
tinuous real-valued function of a real variable should, in some contexts, be
thought of as being given together with a specific modulus of continuity. Again,
a computable function should, in some contexts, be thought of as being given
together with a Turing machine program to compute it. In our particular exam-
ple above, we may think of the sentence ‘Newton’s method can be used to find
the zero of f” as asserting that Newton’s method applied to an algorithm for
computing f will give an algorithm for computing the zero of f. On this view,
then, we should think of Newton’s method as an effective operation which takes
one program (the program for computing a function) to another program (a pro-
gram for computing a zero of the function). This characterization can be stated
in extensional language if we can express in such a language what a program is
for. Certainly we can say in set theory that if a program E computes a function
f, and if certain other conditions are satisfied, then the sequence of real num-
bers generated by Newton’s method from f using E will converge to a zero of
f. This is, as it were, the extensional content of the assertion that Newton’s
method can be used to find a zero of f. That is not all the content of the asser-
tion, nevertheless, since it also says something about the utility of this extensional
behavior of the algorithm. We may imagine a rather dull student who knows
the facts about the convergence of the sequences generated by Newton’s method
but to whom it has never occurred that these facts can be exploited to find the
zeros of functions whose zeros we do not already explicitly know. I do not see
how, on a view like Feferman’s, this additional information can be thought of
as part of mathematics. Nevertheless, it clearly is part of mathematics.

I think it is not possible to talk about mathematical problems in an exten-
sional language. But without talk about problems, it is hard to see how we can
capture what is essential to the constructive or algorithmic aspect of mathemat-
ics. The point of discussing a particular algorithm is usually that it solves some
problem that interests us. I conclude that extensional languages, such as the lan-
guage of set theory, are incapable of formalizing the whole of mathematics.
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4 The question of how to parse the constructive aspect of mathematics is
quite old. The first logician in the modern sense, Gottlob Frege, wrote as fol-
lows about Euclid’s distinction between axioms and postulates:

Postulates seem at first sight to be essentially different from axioms. In
Euclid we have the postulate ‘Let it be postulated that a straight line may be
drawn from any point to any other.’ This is obviously introduced with a view
to making constructions. The postulates, so it seems, present the simplest
procedures for making every construction, and postulate their possibility. At
first sight we might perhaps think that none of this is of any help in provid-
ing proofs, but only for solving problems. But this would be a mistake, for
sometimes an auxiliary line is needed for a proof, and sometimes an auxiliary
point, an auxiliary number — an auxiliary object of some kind. In the proof
of a theorem an auxiliary object is one of which nothing is said in the the-
orem, but which is required for the proof, so that this would collapse if there
were no such object. And if there is no such object, it seems that we must
be able to create one and we need a postulate to ensure that this is possible.
But what in actual fact is this drawing a line? It is not, at any rate, a line in
the geometrical sense that we are creating when we make a stroke with a pen-
cil. And how in this way are we to connect a point in the interior of Sirius
with a point in Rigel? Our postulate cannot refer to any such external pro-
cedure. It refers rather to something conceptual. But what is here in ques-
tion is not a subjective, psychological possibility, but an objective one. Surely
the truth of a theorem cannot really depend on something we do, when it
holds quite independently of us. So the only way of regarding the matter is
that by drawing a straight line we merely become ourselves aware of what
obtains independently of us. So the content of our postulate is essentially
this, that given any two points there is a straight line connecting them. So
a postulate is a truth as is an axiom, its only peculiarity being that it asserts
the existence of something with certain properties. From this it follows that
there is no real need to distinguish axioms and postulates. A postulate can
be regarded as a special case of an axiom. ([5], pp. 206-207)

I agree that mathematics has nothing to do with any “subjective, psycho-
logical possibility,” and that “the truth of a theorem cannot really depend on
something we do”. What is speaking here is Frege’s platonism. He holds, as do
I, that mathematics is about abstract objects which are neither physical nor men-
tal and that it enunciates truths about those objects whose truth in no way
depends on our activity or on our psychological state. It follows then, as Frege
asserts, that the possibility referred to by the postulate must be objective. It nev-
ertheless remains a possibility, not an actuality. When Hilbert gave a modern
axiomatization of geometry at the beginning of the present century, he asserted
the bald existence of the line. Euclid, however, also asserted that it can be con-
structed. The modality is not in any way refuted by Frege’s argument. It is
merely denied. In essence Frege argues for an extensional reading of Euclid by
denying the possibility of objective modalities. Such arguments are still common
today. Nevertheless, the natural way to read Euclid here is not extensional,
although more needs to be said about what kind of intensionality is involved and
about what kind of objective modal notions are required.

We may look at Frege’s argument somewhat differently. Frege holds that
the actual existence of the line is the ground for the possibility of our drawing
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the line. We cannot draw a line unless, conceptually, there is already a line there
to be drawn. But then Frege holds that the existence of the line is all that is
needed for the cogency of the proof in which that line is referred to. We may
as well drop the possibility of drawing the line from our considerations. Thus
on Frege’s view we may replace the constructive postulate by the nonconstruc-
tive existential axiom.

John Myhill has pointed out to me that some of Euclid’s constructions con-
tain what are prima facie nonconstructive steps. For example, the treatment of
the Euclidean algorithm in Book X, Proposition 3 begins with an unjustified use
of excluded middle. In this case, a justification is not very hard to supply: spe-
cifically, it suffices to prove Proposition 5 before Proposition 3. Nevertheless,
Euclid’s presentation indicates either that he is not aware of this nonconstruc-
tivity or that he is not concerned about it. In the latter case, Frege is probably
right that we should view Euclid’s constructions as mere existence proofs, even
though this conflicts with a literal reading of Euclid’s language.

Frege’s position concerning Euclid’s postulates is reductionistic. He claims
that we can reduce the intensional, modal, constructive aspect of Greek math-
ematics to its extensional, nonmodal, nonconstructive aspect. He can only do
this, however, if he is willing to give up all discussion of problems. He must
reduce every problem of the form “to construct a such-and-so” to the proposi-
tional form “to show that there is a such-and-so”.

5 Geometrical constructions are not central to contemporary mathematics.
Even geometry as practiced today is thoroughly algebraic or analytic. It treats
of actual space, if at all, only by way of the familiar correspondence between
points and triples of real numbers. Thus the problem Frege found in interpreting
Euclid is not urgent for the interpreter of modern mathematics. Nevertheless,
the difficulty remains that mathematics appears to have a modal component in
its constructive aspect. Large parts of mathematics, like numerical analysis, are
centrally concerned with the construction and analysis of algorithms for the
effective solution of problems whose nonconstructive solutions are well known.
To refer back to our example above, the nonconstructive mathematician may
be able to prove that a function has a zero, but the numerical analyst wants to
know how to find it. The nonconstructive mathematician may have a proof that
a particular matrix is nonsingular, but the numerical analyst wants to know how
to invert it. Every junior mathematics major can show that all matrices have
eigenvalues, but the literature contains many papers and entire books devoted
to the problem of how to find the eigenvalues.

Now it is true that the value of the zero of the function, the components
of the inverse matrix, or the eigenvalues of the matrix are rarely relevant to
proofs that the pure mathematician wants to construct. Their bare existence is
generally enough. The extent to which this is true may be seen from the fact that
the algorithms found in elementary textbooks are often not feasible in practice.
Some books on linear algebra, for example, suggest computing the eigenvalues
of a matrix by finding the characteristic polynomial directly from its determi-
nant and then factoring it. Others suggest finding the minimal polynomial and
factoring it. Neither of these approaches makes numerical sense for matrices of
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order larger than, say, four or five. Indeed, it is not possible in general to com-
pute the minimal polynomial even of a three by three matrix in a numerically
stable way. Presumably the authors of these textbooks have never had occasion
actually to compute eigenvalues in nontrivial cases. That is not their field.

Even if most pure mathematicians do not need to find the numbers they
discuss, the study of how to find them is surely still part of mathematics. Jour-
nals like The SIAM Journal of Numerical Analysis, Numerische Mathematik,
or The Mathematics of Computation find space on the shelves of our mathe-
matics libraries. Of course, much of this material is thought of as applied math-
ematics. In some circles there are still doubts as to the respectability or centrality
of such work. That we think of it as applied mathematics, however, is a socio-
logical fact rather than a fact about the nature of the work. Applied mathemat-
ics, strictly so called, is mathematical reasoning about nonmathematical objects
employing, in part, nonmathematical premises. Numerical analysis is applied in
that sense only when it descends to the nitty-gritty of how to implement the algo-
rithms being discussed on a specific machine. This occurs rarely in the literature.
Most of the content of journals like those mentioned above is quite pure. Nor
is the level of rigor in such journals lower than that in other mathematical jour-
nals. There are examples of computational mathematics, moreover, which are
not at all applied even in the weak sense that they might be of use to an engineer.
We may think, for example, of the recent use of computers to help solve the
four-color problem or to help in the classification of finite groups. It does not
seem plausible to exclude all such algorithmic work from mathematics.

If the search for better algorithms to find numbers we already know to exist
is part of mathematics, then a logician interested in the formalization of math-
ematics must make allowances for this work in his account of the foundations
of mathematics. If he holds, like Frege and almost every philosopher of math-
ematics since Frege, that mathematical language can be given a purely exten-
sional interpretation, then he must have some doctrine about how the apparently
intensional aspects of such talk about algorithms can be given an extensional
analysis. The core of such an analysis must presumably be a reductionistic thesis
which tells him how to reduce talk about algorithms and computation to talk
about numbers, functions, and sets. It is widely believed that Church’s thesis is
such a reductionistic thesis and that, since Church’s thesis is true, it solves the
problem of giving an extensional account of the constructive aspect of mathe-
matics. [ harbor no doubts about the truth of Church’s thesis. Nevertheless, it
is one of the main points of the present essay to argue that Church’s thesis is
not a reductionistic thesis and that it does nothing to support an extensional
reading of the logic of mathematics.

6 The practicing mathematician appears to deal with a wide variety of
objects. There are sets and functions, numbers and points, ordered pairs and
logical formulas. The set-theoretic reductionist proposes to replace this motley
by the monochrome universe of sets. That this can actually be carried out in any
reasonable sense is a tribute to the ingenuity of the set theorist and to the expres-
sive power and proof-theoretic strength of ZFC. Of course, the reduction has
its problems. No one would believe that the ordered pair of x and y is really the
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unordered pair, or doubleton, consisting of the singleton of x and the double-
ton of x and y. The latter construct, called the Wiener-Kuratowski ordered pair,
may be an acceptable substitute for the ordinary ordered pair in many contexts,
but it in no sense constitutes an analysis of the notion of ordered pair as it exists
in informal mathematical reasoning. There are many other constructs which
would serve just as well. As Quine puts it ([11], p. 58), “The fundamental law
demanded of ordered pairs is that (x,y) = {z, w) not whenever {x,y} = {z,w},
but only when x = z and y = w. Any definition of ‘{x, y)’, however arbitrary
and artificial, is to the purpose if it fulfills this fundamental law”.

It is worth emphasizing that in this respect set-theoretic reductionism differs
fundamentally from other scientific reductionisms. For example, consider the
claim that heat is really mean molecular kinetic energy. Within the context of
molecular physics and statistical mechanics, there is nothing arbitrary about this
choice. There is no other construct one could form within the framework of that
theory which would serve as well. Moreover, although mean molecular kinetic
energy is not a conceptual analysis of the concept of heat, it is a physical analysis
of heat as it actually is. To doubt that heat really is mean molecular kinetic
energy is to doubt the underlying theory. Any property of mean molecular
kinetic energy derivable from the relevant physics is ipso facto a property of
heat. If there were properties of mean molecular kinetic energy which were
plainly not properties of heat, that would constitute evidence disconfirming
the theory, or at least disconfirming the alleged reduction. On the other hand,
no one believes that x is really an element of an element of the ordered pair
of x and y. That is just an arbitrary feature of the reduction. To that extent,
then, the set-theoretic reductionist need not hold that ordered pairs are really
Wiener-Kuratowski ordered pairs, merely that they may be replaced by Wiener—
Kuratowski ordered pairs for all ordinary mathematical purposes. As Quine
characteristically puts it, ordered pairs may be dispensed with in favor of
Wiener-Kuratowski ordered pairs (see, for example, [12], p. 55).

The advantage of so dispensing with ordered pairs is the conceptual sim-
plicity and economy thereby effected. On one level, we might respond that any-
one who would be willing to countenance the universe of set theory, with its
ontological principle of plenitude, ought not to stick at anything. Having ac-
cepted more infinite cardinals than there are elements in any set, why should he
cavil at a few ordered pairs? From a technical point of view, however, there cer-
tainly is a genuine economy to be achieved by restricting the number of funda-
mental kinds. In the case of ordered pairs, in fact, there may be no offsetting
loss. In other cases, however, the situation is far worse.

Consider, for example, any of the reductions of arithmetic to set theory.
Numbers are identified with certain rather complicated sets. According to John
von Neumann, the number zero is the empty set. The number one is the single-
ton of the empty set. The number two is the doubleton of the numbers zero and
one. In general, each natural number is the set of its predecessors. Thus each
natural number is a set of its own cardinality. From a technical point of view,
this construction is very elegant because it makes the natural numbers fit together
smoothly with the infinite ordinals. From the point of view of pure mathematics,
moreover, this reduction probably does no harm. Its worst defect is its arbitrar-
iness.
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Natural numbers, however, also play a role in the lives of people who are
not pure mathematicians. Von Neumann’s finite ordinals cannot support these
other roles comfortably. For example, consider the child who learns that two
plus three make five by counting on her fingers. After making this experiment,
she knows that two plus three make five. That is, she knows a proposition about
natural numbers. Any account of what natural numbers are must ground her
knowledge. That is, it must make it comprehensible how she came to have this
knowledge by counting on her fingers.

The standard story about the connection between her fingers and the fact
that two plus three makes five is as follows. There is a one-to-one correspon-
dence between the set of her first two fingers and the von Neumann ordinal two.
Moreover, there is a one-to-one correspondence between the last three fingers
on her hand and the von Neumann ordinal three. These two sets of fingers are
disjoint. Hence the cardinality of their union must be the sum of their cardinal-
ities. When she counts them all, however, she establishes a one-to-one correspon-
dence between the set of all of the fingers on her hand and the elements of the
von Neumann ordinal five. The result that two plus three makes five follows.

The trouble with this account is that it says nothing about the child’s knowl-
edge. If ‘five’ is the name of the von Neumann ordinal, then to know something
about five it must be necessary somehow to have access to that von Neumann
ordinal. We would not ordinarily say that the small child knows that the positron
has the same mass as the electron, even if she has been taught to repeat this for-
mula, because the child knows nothing about the complex theory that gives this
statement its context, and even less about the experimental procedures and
equipment that give it its operational meaning. Nevertheless, I think the child
does know that two plus three make five, and that her experiment with her
fingers is an adequate proof of that fact. If I am right, then the standard story
above is irrelevant to the grounds of her knowledge, and therefore also irrele-
vant to the grounds of my knowledge that two plus three make five. From this,
in turn, it follows that ‘five’ is not the name of the von Neumann ordinal.

Difficulties of this general kind become even more striking when we con-
sider the case of geometry. The set-theoretic reductionist must claim that spa-
tial points are ordered triples of real numbers. (For a discussion of this view and
some references for the identification of points with triples of real numbers in
mathematical textbooks, see Goodman [6].) It is obvious that many people know
geometric facts who have never had a course in analytic geometry or calculus,
and who therefore do not know anything about the “geometric” properties of
triples of real numbers. In fact, when we teach analytic geometry, we usually
rely on the prior geometric knowledge of the students. The first thing taught in
such a course is the correspondence between points in the plane and ordered
pairs of real numbers. We are assuming that some of the students did not previ-
ously know that connection. Hence their previous geometric knowledge, if well
grounded, could not have been knowledge about triples of real numbers.

Again let us contrast this kind of case with that of the reduction of heat
to mean molecular kinetic energy. Children learn about the properties of heat
empirically, being burned by fires, warmed by sunshine, and chilled by cold
winds. Assuming that the kinetic theory is correct, these are all encounters with
mean molecular kinetic energy. Children also learn the properties of natural
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numbers empirically, but it is implausible to hold that counting on one’s fingers
is an encounter with the von Neumann numbers. Children also learn geomet-
ric facts empirically, as when they fold paper and see that a diagonal fold divides
the square sheet into congruent triangles. Again, it is implausible to hold that
this is an encounter with triples of real numbers, or sets of triples of real
numbers.

When we teach analytic geometry, as a matter of fact, we describe ourselves
as coordinatizing space —that is, as giving a correspondence between points and
triples of real numbers. We give no argument to the effect that points really are
triples of real numbers. At this stage of the student’s education, then, he is faced
with two sorts of things which are related. Later in his mathematical education,
one of these kinds of things drops out. We might hold, of course, that physi-
cal space and mathematical space are distinct, and that what we are relating are
these two kinds of space. But in that case the study of physical space, which was
surely Euclid’s subject, has somehow ceased being mathematics and become
physics. This divorce between pure and applied mathematics, which is forced
on us by set-theoretic reductionism, is very widely deplored just now. On its
face, nevertheless, this is not an implausible move in the geometric case. Are we
willing, however, to make the same move in the arithmetic case? Are there
physical natural numbers and mathematical natural numbers which are put in
one-to-one correspondence in the explanation of the von Neumann reduction?
This line of argument seems to lead far. In pure set theory one only considers
sets of sets of sets of sets of. . . . No individuals, or urelements, are coun-
tenanced. Perhaps this is merely a matter of technical convenience, and not a
matter of principle. Nevertheless, we might take it seriously and hold that the
real numbers and functions of the physicist, which are related to objects which
are not sets, are physical real numbers and functions, not mathematical real
numbers and functions. In that case, there would be a whole universe of physical
mathematical objects in addition to the universe of set theory. But then I urge
that we forget about the universe of set theory and go back to studying the phys-
ical mathematical objects. Those were the ones we were originally interested in
anyway.

Set-theoretic reductionism characteristically seeks to replace mathematical
objects which we do not naturally think of as sets by suitably chosen set-theoretic
constructs. These constructs are generally rather arbitrary, although there is
often considerable ingenuity involved in selecting them in such a way that they
will fulfill the purely mathematical uses of the objects they are intended to
replace. The question I now want to raise is whether Church’s thesis is in that
sense an example of mathematical reductionism. More specifically, the question
is whether we should think of Church’s thesis as grounding the replacement of
the informal mathematical notion of algorithm with the formal set-theoretic
notion of a Turing machine program.

7 An algorithm, in the informal mathematical sense, is a specific procedure
for solving a particular kind of mathematical problem. Examples are Euclid’s
algorithm for finding the greatest common divisor of two integers, Newton’s
method for finding the zeros of a differentiable function of a real variable, or
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Simpson’s rule for approximating the Riemann integral of a continuous func-
tion of a real variable. The specification of the algorithm is complete only if it
includes a statement of the problem it is intended to solve. That statement, how-
ever, is inherently intensional, as we saw above. In each case, moreover, the
algorithm is susceptible of many different implementations on many different
machines. To think of such an algorithm as a Turing machine program, or even
as a set of Turing machine programs, is to ignore much of its structure. For
example, the Turing machine program does not tell you what the program is for.
A Turing machine program which implemented Newton’s method with respect
to some representation of the real numbers and of functions on the real num-
bers would be enormously complicated and contain a great deal of irrelevant
arbitrariness. More important, it might be extremely difficult to determine from
the code that this was an implementation of Newton’s method. It is for this rea-
son that it is universally agreed that good programming practice requires ade-
quate documentation to explain what the program is for, how it is to be used,
how it works, what the different variables represent, and so forth. This docu-
mentation contains the intensional content which is missing from the bare
machine code (or even the bare higher level language code) and brings the pro-
gram closer to the algorithm which it is intended to implement.

Suppose a computing machine is running a program. There is no reduc-
tionism involved in describing that situation as consisting of this machine run-
ning this program. In fact, if we have access to the machine code, then there is
no reductionism involved in describing what is going on in terms of what bits
are going where. The system is already reduced. If we have access only to the
machine code and to the actual behavior of the machine, then there will gen-
erally be no other way to describe the process we are observing. What algorithm
the machine should be described as following or what data the machine should
be described as operating on depend on the coding of abstract objects as bit pat-
terns in the machine. This coding is arbitrary. It depends on the intentions or
interpretations of the user of the machine. The detailed behavior of the machine
can almost always be interpreted in more than one way if we are willing to
change our interpretation both of the data and of the algorithm. Thus the actual
behavior of the machine does not uniquely determine what problem the machine
is working on or even what algorithm, in the usual mathematical sense, the
machine is following.

This point is worth emphasizing. The fact that this computer is using Gauss-
ian elimination with partial pivoting to solve that system of linear equations is
a fact about the relationship between this piece of hardware and the human
being who is using this piece of hardware for his mathematical purposes. It is
intrinsic neither to the hardware nor to the machine code that the computer is
executing. Against this it is often urged that there may be no other way to make
sense of the behavior of the computer other than by understanding that it is
using Gaussian elimination with partial pivoting to solve that system of linear
equations. That may be so. But if it is so, then it is a fact about human beings
that we are able to comprehend very complex behavior only by imposing this
sort of purposive structure on it. We may imagine an extraterrestrial intelligence
with sufficient powers of concentration and sufficient combinatorial acumen that
it can directly see where all the bits are going and in this way predict the future
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behavior of the machine, based on the fact that it is executing this sequence of
machine instructions, without ever understanding that these bit sequences code
floating point numbers, let alone that the machine is solving a system of linear
equations. Such an intelligence might not feel any need for an additional, goal-
oriented account of the machine’s behavior, since for it there would be no
remaining mystery to explain. If we tell this intelligence that the machine is solv-
ing a system of linear equations, it may respond, “Yes, that is an amusing way
to look at it, but what is really going on, of course, is that . . .” followed by a
description of where all the bits are going.

The view I am opposing is sometimes put by saying that mental qualities
are emergent from the mindless bit-shuffling of the computer. Computers run-
ning sufficiently complex programs are said to know, to understand, and even
to intend. This kind of emergentism is closely related to the sort of reductionism
which holds that human beings who actually do know, understand, and intend
are, in some important sense, merely shuffling bits. More specifically, if the com-
puter as it stands and independently of any relation to its human programmer
can be said to be applying Gaussian elimination with partial pivoting to solve
a system of linear equations, then that makes it far more plausible that talk
about Gaussian elimination is just talk about the extensional behavior of physical
or abstract machines. Conversely, if the machine in and of itself cannot be said
to be carrying out an algorithm in the informal mathematical sense, then talk
about the algorithm is not merely talk about the behavior of a machine.

Except as a psychological observation about human beings, I think it is not
plausible to assert that the only way to understand the machine’s behavior is
by understanding that it is carrying out this or that algorithm. There is, how-
ever, another argument offered in favor of the emergentist view that the machine
is intrinsically carrying out some algorithm. That is namely the question as to
what else could be going on when a human being consciously executes the algo-
rithm which is not going on when the machine carries out the same steps. To
return for a moment to Frege’s formulation of the problem, the question is, what
else is involved in Euclid’s assertion that “a straight line may be drawn” which
is not captured by the nonconstructive fact of the conceptual existence of the
line.

Suppose that a student is successfully doing an exercise in a recursive func-
tion theory course which consists in implementing a certain Turing machine pro-
gram. There is then no reductionism involved in saying that he is carrying out
a Turing machine program. He intends to be carrying out a Turing machine pro-
gram. As I said above, the system is already reduced. Now suppose that,
unbeknownst to the student, the Turing machine program he is carrying out is
an implementation of the Euclidean algorithm. His instructor, looking at the
pages of more or less meaningless computations handed in by the student, can
tell from them that the greatest common divisor of 24 and 56 is 8. The student,
not knowing the purpose of the machine instructions he is carrying out, cannot
draw the same conclusion from his own work. I suggest that the instructor, but
not the student, should be described as carrying out the Euclidean algorithm.
(This is a version, adapted to my purposes, of Searle’s Chinese room argument.
See [13].) It seems to me, therefore, that we may answer the question as to what
else is involved by saying that it is the understanding of the purpose of the com-
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putations. This is, however, an intensional notion which is not expressible in an
extensional language like that of ZFC.

On the other hand, if a human being is carrying out some standard pro-
cedure in numerical analysis rather than consciously intending to follow a Turing
machine program, then there is a genuinely illicit reductionism involved in
describing his behavior as consisting in following a Turing machine program.
If the day comes when we can analyze human thought in neuronal terms, with-
out residue, then it may be that at that time we will be able to say unambigously
what machine program (though not Turing machine program) this student is car-
rying out when, this afternoon, he solves a system of three simultaneous linear
equations. The evidence available today, however, allows us to doubt that such
a complete reduction is possible. Even if such a complete reduction is performed,
moreover, it will not show that the carrying out of the algorithm consists merely
in the execution of some brain program. For, as I argued just now, carrying out
the algorithm has an additional intensional component which is not captured by
any analysis, no matter how complete, of the individual computational steps.

Let us concede for a moment that a complete reduction of mental behav-
ior to neurology is possible, and let us, for that same moment, ignore the inten-
sional component of the assertion that someone is following an algorithm. Even
with these concessions, it does not follow that mathematical talk about algo-
rithms can be replaced by talk about machine programs—even about human
brain programs. For consider the case in which an experienced teacher, an inex-
perienced student, and a suitably programmed microcomputer are all solving the
same system of three simultaneous equations by Gaussian elimination. We would
certainly normally say that they are all applying the same algorithm in the math-
ematical sense, since we just agreed to ignore the problems involved in saying
that the microcomputer is applying any algorithm at all. Nevertheless, there is
no reason to think that they are following similar machine programs. For exam-
ple, the student, unlike the teacher, frequently consults the textbook to make
sure of the rules of the procedure. The student and the teacher, unlike the
microcomputer, use paper and pencil to store intermediate results. This list of
differences could obviously be extended considerably. Thus even on these
premises, talk about mathematical algorithms in an extensional context like set
theory will require a notion of two machine programs being instances of the
same algorithm. Of course, this notion as it ordinarily occurs is quite vague.
That is not the main objection, however, since the mathematization of infor-
mal theories always involves the replacement of vague notions by precise ones
which can only be approximations to the notions they replace. The main objec-
tion, rather, is that, as I argued above, the question of whether two machine pro-
grams embody the same algorithm, or of what algorithm a particular machine
program implements, depends on the context. That is, we can know what algo-
rithm a particular machine program implements only if we know the intentions
and interpretations of the programmer. If that is right, then there is no hope of
giving an extensional account of the relation which holds between two machine
programs when they implement the same algorithm. Indeed, there is no such
relation. Two machine programs may implement the same algorithm in one con-
text and different algorithms in another context. (Here I think of a machine pro-
gram as a type, not as a token. Perhaps we should say that a specific token of
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a machine program will always embody only the algorithm which its program-
mer had in mind. But such tokens are not discussible in the usual abstract math-
ematical formalisms anyway.)

Earlier I argued that natural numbers cannot be von Neumann ordinals
because children learn propositions about natural numbers without ever encoun-
tering von Neumann ordinals and that points in space cannot be triples of real
numbers because children learn geometric facts without ever encountering tri-
ples of real numbers. It is interesting to ask whether we can make an analogous
argument here. Certainly grade school children have traditionally learned the
long division algorithm without being taught anything about Turing machines
or any other kind of computers. My opponent may argue, however, that the
child’s carrying out of the long division algorithm is precisely the implementa-
tion of some suitable program by the computer which is his brain. The child
learning the long division algorithm does encounter a machine program in the
sense that he is trying to get his own brain to carry out a suitable program. I
agree with this analysis, although I deny that that is all that is going on. Thus
it seems to me that, unlike the situation in most set-theoretic reductions, we are
dealing here with a genuine scientific reductionism. My objection, then, is only
that I think the proposed reduction of algorithms to Turing machine programs
is incorrect because it fails to capture the content of the mathematical talk it is
intended to reduce. It must fail because it is extensional and the mathematical
talk it attempts to analyze is intensional. The logic of the two discourses is
irreducibly different.

In particular, consider a physicalistic philosopher who holds that all of our
mentalistic vocabulary is either meaningless or else can be explained in exten-
sional terms by referring to the structural features of the programs our brains
implement. Such a philosopher must hold with Quine that the intensional use
of our verbs of propositional attitude, like ‘know’, is meaningless, at least in the
sense that it will not form part of the “canonical notation” of science. My claim
here, however, is that such a philosopher would have to exclude significant parts
of mathematics from science as well. That seems to me a strong argument
against such a physicalism.

8 I have argued that informal talk of mathematical algorithms and math-
ematical problem-solving cannot be replaced by more formal talk about machine
programs without essential loss. Church’s thesis, on the other hand, asserts that
talk about the existence of algorithms or the solvability of mathematical prob-
lems can be replaced by talk about the existence of machine programs. There
is no conflict here. Let us recall the precise wording of Church’s thesis.

In 1936 Alonzo Church wrote as follows:

We now define the notion, already discussed, of an effectively calculable
function of positive integers by identifying it with the notion of a recursive
function of positive integers (or of a A-definable function of positive in-
tegers). This definition is thought to be justified by the considerations which
follow, so far as positive justification can ever be obtained for the selection
of a formal definition to correspond to an intuitive notion. ([11, p. 100)
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This is Church’s thesis as originally formulated. In the terms we used
above, it asserts that any effectively calculable function is extensionally the same
as the function computed by some Turing machine program. Of course, it does
not assert that we can actually find this Turing machine program, or that the
Turing machine program is uniquely determined.

It is incorrect to think of Church’s thesis as providing an analysis of the
informal concept of algorithm. It at most provides a necessary condition for the
existence of an algorithm. That is, a problem which no Turing machine can solve
cannot be solved algorithmically. However, a Turing machine program without
additional explanation is not an algorithm, and an algorithm is not as it stands
a Turing machine program. Someone who wanted to argue against the truth of
Church’s thesis would presumably have to find some mechanism, or some effec-
tive procedure carried out by human beings, whose extensional behavior could
not be simulated by any Turing machine. I think that is impossible. My conten-
tion is rather that not all of the content of our informal intensional talk about
algorithms is captured by extensional talk about Turing machine programs.

From this point of view, then, there is nothing reductionistic about
Church’s thesis, since it does not assert that any previously known objects can
be eliminated in favor of any new objects. All of the usual apparatus of con-
structive mathematics is left intact by Church’s thesis. A numerical analyst, for
example, who fervently believed in Church’s thesis would still have to talk about
informal algorithms and their various machine implementations just as before.
As a matter of fact, such a numerical analyst would be almost indistinguishable
from the more usual kind who has never heard of Church’s thesis. Of course,
a number theorist who believes that natural numbers are really von Neumann
ordinals might also be indistinguishable from the more usual sort of number the-
orist. This is one of the peculiarities of some mathematical reductions—they
make no difference to anyone other than the logician or the philosopher. This
is in distinction to successful reductions in other parts of science. A thermal
physicist who comes to believe that heat is mean molecular kinetic energy may
well be led to new conclusions that he could not have arrived at before. The
reduction of genes to DNA has led to a revolution in genetics. Church’s thesis,
on the other hand, has had no effect on branches of mathematics like numeri-
cal analysis which are concerned with particular algorithms, rather than with the
possibility of algorithms. In general, mathematical reductions usually at least
bring about a change of language. Often they bring about changes in proof pro-
cedures. For example, the reduction by Cauchy and Weierstrass of talk about
infinitesimals to talk about epsilons and deltas produced a profound change in
the appearance of rigorous analysis. Even a number theorist who was committed
to the identity of natural numbers and von Neumann ordinals might at least
change his language. He might say, for example, that three is a member of five
where most of us would say that three is less than five. It is not evident just what
change even in language would come about for the numerical analyst who
accepted Church’s thesis.

The general adoption of Church’s thesis in the later 1930s did bring about
important mathematical consequences. The development of recursive function
theory, one of the richest and most highly developed parts of mathematical logic,
would have been quite unmotivated without Church’s thesis. But this is a the-
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ory of computability, not a theory of mathematical algorithms in the informal
sense. It replaces no intensional objects. It just gives new insight into what inten-
sional objects are possible.

It might appear, nevertheless, that Church’s thesis does perform a reduc-
tion along the lines of Frege’s proposed elimination of the modality involved in
Euclid’s constructive language. That is, someone might hold that the existence
of a Turing machine program for computing the values of a certain function f
can be used to explicate the possibility in principle of computing f. In many con-
texts that is correct. In particular, Church’s thesis is generally used to underpin
proofs that some function cannot be computed by showing that there is no Tur-
ing machine program for computing it. There are contexts, nevertheless, in
which modalities very close to this one cannot be eliminated by an appeal to
Church’s thesis. For example, suppose I assert that I know how to compute some
specific function f in whose values you are interested. Suppose you say, “Oh
good. I need to know the value of f(3). Please compute it for me”. And now
suppose that I reply, “Oh, I can’t actually compute any of the values. But I have
an elegant nonconstructive proof that f is recursive. Would you like to see it?”
Then it seems to me that you are justified in feeling misled. I do not really know
how to compute f.

To say that we can calculate the function fis to say more than that there
is an algorithm for computing f. It is also to say that we know such an algo-
rithm, call it E, and that we know that E actually computes f. But such epistemic
modalities are irreducibly intensional. They introduce oblique contexts that can-
not be eliminated. Thus the intensional epistemic component of a claim to be
able to compute a particular function cannot be eliminated by an appeal to
Church’s thesis. Even if we assume that the numerical analyst means Turing-
machine computability when he speaks of computability in principle, this
assumption will not enable us to express in extensional terms his claims to be
able to compute particular functions.

9 Mathematics is that human activity in which we come closest to perfect
objectivity. Here there are the fewest problems of bad communication, of per-
sonal bias, or of irrational belief. Here, of all the sciences, it is clearest what con-
stitutes correct argument, adequate evidence, precise definition. It is for these
reasons, I think, that we have come closest in mathematics to writing down a
Quinean “canonical notation” for the truths of the science. There is a sense,
indeed, in which it is plausible to hold that everything which is objectively true
about pure mathematical objects can be expressed in the language of set theory
and that everything we now know to be true about those objects can be proved
in ZFC. That is the sense in which Henson is right that all known mathemat-
ics can be formalized in ZFC. Even in mathematics, however, our objectivity
is not perfect. Mathematics is not just an abstract doctrine that is true. Math-
ematics is an activity that we engage in. That engagement brings with it an irre-
ducible intensionality in the language we use to talk about our activity. As the
geometer Felix Klein is said to have remarked, it is impossible to do mathematics
without a problem. But a problem cannot be formulated in purely extensional
terms, because it only exists as a problem in a certain epistemic situation. Thus
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there is also a sense in which Henson is wrong. Not all known mathematics can
be formalized in ZFC. Frege is right that “the truth of a theorem cannot really
depend on something we do”. But the essence of mathematics is solving math-
ematical problems, and that just is “something we do”.
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