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Introduction IR, short for ‘informal rigour’, is a venerable ideal in the broad
tradition of analysing precisely common notions or, as one sometime says,
notions implicit in common reasoning. CT, short for ‘Church’s thesis’, concerns
the common notion of effective computability, and is thus a candidate for IR.

As with other ideals and, more generally, with other aims there are two,
possibly alternating stages in work on IR: first, the possibilities of pursuing IR,
and secondly, of examining the pursuit, that is, its contribution to the broad area
of knowledge to which the notions in question belong. Part of the examination
consists in finding proper measures for the contribution, which, at least gener-
ally, are not given as part of the data.

There is a good deal of literature on these matters, including odd doctrines
about some kind of logical impossibility of pursuit or examination or both; but
also about their central place for knowledge. (What else do we have to start with
but common notions?) Such frustrated and frustrating antics are not uncommon
when there is simply nothing at all rewarding to be said at the level of gener-
ality at which the ideas involved are usually discussed. Being specific is no pan-
acea either since counterexamples are liable to evaporate with simple distinctions.

What, if anything, is to be done with such ideas? Occasionally they are best
relegated to those foolish things we must learn to forget. But often there is an
alternative that has been successful in the scientific tradition, at least when a
body of knowledge has accumulated that is, or can be, more or less closely
related to some of the ideas in question, and has enough consequences for judg-
ing its significance (in contrast to the ‘specific’ counterexamples alluded to
above). Experience shows that interpretations of such knowledge in terms of
those ideas occasionally reveal not only new aspects of it, but also more reward-
ing levels of generality for the ideas. A familiar directive for this kind of inves-
tigation is: dégager les hypotheses utiles. Since a lot of work has been done
around CT it is a candidate for use in examinations of IR too.

It may have escaped the reader’s notice that the last paragraph is less inno-
cent than it sounds.! For one thing the directive conflicts with the pious hope
that results will speak for themselves, that is, without any explicit formulation
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of conditions, the so-called hypotheses. On the other hand, at least as I under-
stand the directive here, it is a matter of experience to discover whether the liter-
ary forms of mathematical logic or other parts of mathematics provide more
effective formulations. Alternatives are metaphors, commentaries, or any of the
many other devices available for saying memorably what can be shown only
dimly, or vice versa. (Bon mots play here the role of theorems in mathematics.)
This appeal to experience in choosing the style of formulations is of course in
conflict with so-called empiricist doctrines of what ‘should’ be effective or, for
that matter, clear, precise, and what have you.

The material below is organized as follows. First, there are some simple
reminders about the master assumption of the tradition mentioned at the out-
set, and the malaise about it at different levels of sophistication. Readers
accustomed to formal expositions should think of those reminders as counter-
parts of generalities at the beginning of, say, group theory, about left hand and
right hand inverses. And if the reminders are a little longer, they are also not
quite so trivial as those generalities.

Secondly, there are (more detailed) reminders about CT, and especially
about IR applied within mainstream mathematics, serving as background to a
more thorough discussion of CT.

The following three sections concern three variants of CT under self-
explanatory headings, at opposite extremes as it were.

The final section reviews what has, I think properly, been called the cul-
tural value of work on CT. It is a particular case of a broad view on logical
foundations that seems widespread, even if it does not have a catchy name.

1 Background: the master assumption implicit in the undiluted logical tradi-
tion(s) concerning common notions that have been sanctified as ‘fundamen-
tal The assumption is that provided only such a notion can be made precise
without arbitrary conventions, the rest will follow automatically. The ‘rest’
includes the understanding needed to recognize whether and in what way the pre-
cise definitions of the notions in question contribute to solving problems that
present themselves in the area to which the notions belong. Viewed this way,
generality enhances a notion because it eliminates niggling worries about the
exact extent of that area.

As already mentioned, the notion of effective rule or, more exactly, in-
principle-effective rule, is regarded as fundamental in one tradition. But let there
be no mistake. The master assumption operates equally in would-be compet-
ing traditions; for example, when the separation P/NP replaces recursive/rec.
enumerable or, in a different vein, Kolmogorov’s (universal) machine replaces
Turing’s.

There is very widespread malaise about the logical tradition, sometimes
described as ‘prejudice against logic’. However, the malaise has been expressed
most unconvincingly; as somebody said, in barks and grunts.? Here are two
samples, of somewhat different flavour.

First, there is the superstition that no precise relation can be established
between mathematical and nonmathematical (common) notions. There are two
weaknesses. The trivial one is the obvious conflict with the 2000-year old tra-
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dition in mathematics of defining common geometric notions, from the circle
to convexity in the last century (and more besides; cf. the section on IR below).
Less obvious, but more consequential, is that by denying the very possibility of
correct and precise definitions, one draws attention away from the more de-
manding second part of the master assumption—in line with the truism that
dubious doubts obscure genuine problems.

Secondly, there is that particularly coarse vulgarity, called ‘pragmatism’,
‘identifying’ Truth and Use, preferably, in the social sphere. Almost the opposite
is at issue here:

Far from involving any such identification, the (genuine) problem about
the master assumption is whether mere truth is enough: enough for the addi-
tional understanding that, on the master assumption, comes for free with the
truth of those precisely formulated theses, dubbed ‘fundamental’ in the foun-
dational literature. More brashly, the worry is that, at least in general, it’s a sight
more difficult to find any use for (the truth of) such a thesis than to decide its
truth. This is meant in contrast to (hypo)theses in some mature branch of knowl-
edge, which have been established to be significant by consequences that one
wants to know about, in short, by uses; for example, the Riemann hypothesis
in number theory.

Viewed this way, the word ‘pragmatism’ could be used for the philosoph-
ical doubt above about the nature of the problems that are most prominent in
academic philosophy. The doubt is familiar from the contemporary philosoph-
ical literature (and not even particularly brash compared to expressions like
‘bewitchment’ or ‘mathematics without foundations’). The material below goes
further on two scores: First, exceptions, indicated by the words ‘in general’ in
the brash formulation above, are pinpointed. Secondly, it is examined to what
extent the formulation applies in a particular area —here, CT — when all avail-
able knowledge is taken into account.

2 Background (ctd.): preliminaries on CT, used here generically for various rela-
tions in the literature between the mathematical notion of recursiveness and the
common notion(s) of effective computability Originally, numerical compu-
tations were meant, now also on abstract (data) structures. More significantly,
the relations differ with respect to the idea(lization)s of the systems for which
the computation rules are to be effective.

The modern terminology ‘data processing’ is better than ‘computation’ since
it names the parameters that are neglected in CT, which is concerned with logical
(v3) aspects, and thus ignores specifics of the dafa processed, and the structure
of the processors. Among the latter are not only the digital or, equivalently, dis-
crete electronic kind, but also (at least, according to classical theory, generally
nondiscrete) analogue computers, and of course ourselves, the most familiar
computers (albeit without any convincing theory of the wetware, as the brain
is called in computer jargon). Presumably, our data processing involves both
discrete and other elements since some of the information processed is more
permanent, and attempts to follow mechanical rules are more prone to error
than would seem likely from wholly nondiscrete, respectively wholly discrete
processors.
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Remark: Accordingly, some of the (most satisfactory) work reported below is
better described by the old-fashioned idiom of computability in a finite num-
ber of blatantly unspecified sfeps than by the more usual ‘effective comput-
ability’.

There is a great deal of literature on the idea of the perfect digital com-
puter, which will therefore only be touched below. Instead, some neglected var-
iants of CT are gone over, mainly in Sections 4-6, naturally with frequent
reminders of problems which are or are not sensitive to the details of the proces-
sors considered.

Warnings of conflicts with the literature: Below, similarities between CT and
other work in the tradition of IR are stressed. Some of the most gushing pas-
sages in the subject do the opposite; for example, von Neumann saw the excep-
tional contribution of Go6del’s incompleteness theorem, obviously pertinent to
CT, in its allegedly unheard-of generality. Yet the humble idea of continuous
function of a real variable is not an iota less general, and useful to boot. An
exception to this raving is René Thom’s apercu about a single differential equa-
tion sometimes having more content than a general logical notion. This is neatly
illustrated by comparing Kleene’s familiar normal form U[u,T(e,x,y)] in
recursion theory with the manifold of solutions to, say, Laplace’s equation, espe-
cially when the parameters —domain and initial conditions —are restricted (only)
in the now usual ways.

In a different vein, the interest here in a few variants of CT conflicts with
a couple of cherished principles in the foundational literature, at opposite ends
of the scale as it were. Thus, the words ‘essence of computation’ are a directive
to look for one variant or, equivalently, to what is common to all those con-
sidered here. On the other hand, the familiar homily ‘it all depends’ (on situa-
tions, purposes, etc.) suggests the need for an endless array of variants,
illustrated for example in endless distinctions in certain parts of so-called ana-
lytic philosophy. Admittedly, there is apparently no guarantee that

relatively few variants could be adequate for relatively many situations

that present themselves. But experience in mathematics with relatively few so-
called basic structures—and even with privileged descriptions of them (in the
usual axioms)—is encouraging, tacitly provided discretion is exercised by remem-
bering exceptions.

3 Background (ctd.): the rise and decline of IR in mathematics As men-
tioned in the introduction, IR is involved in the 2000-year-old tradition of analys-
ing common notions in mathematical terms (current at a given time). In
particular, definitions and other properties of such notions are established in rig-
orous ways.’> When this way consists of inspection by the mind’s eye, one
speaks of ‘axioms’ in the old sense of this word, now called ‘informal’. When
this way consists of formal deduction from established knowledge, one speaks
of formal rigour.

Taken literally, the domain of notions that are ‘common’ varies in space
and time (and other dimensions). The idea is that there is a hard core; cf. the
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expression ‘natural language’ where, for example, literally most natural meta-
phors or kenningars are ignored. In any case, until about 50 years ago the tra-
dition in question flourished. Occasionally a new word was used for a common
notion, for example ‘Riemann integral’ for ‘area under the curve y = f(x)’ (at
least, if f(x) = 0 in the interval considered so that ‘under’ makes sense). Here
the properties monotonicity and additivity of the common notion of area are
established by the kind of inspection mentioned, and then formally shown to
determine the measure of this area (for suitable f).

In the 19th century this kind of rigour was cultivated in elegant, though by
now half-forgotten, representation theorems. Incidentally, not only geometric
notions were analysed with IR, but also those belonging to the aptly named sub-
ject of rational mechanics, with notions of uneven scientific value, including the
notoriously imperfect notion of perfect liquid.

During the last century this style receded, as a glance at the mathematical
literature shows. Instead of common words, tacitly with their common mean-
ings, like ‘convexity’, ‘dimension’, etc., neologisms were introduced like ‘homot-
opy’, or words without any meaning at all, like ‘well-behaved’. Certainly, for
this kind of word there can be no question of establishing definitions to be cor-
rect (in the sense of IR)! CT has the glitter of unheard-of originality (like the
generality at the end of Section 2), only if viewed against this recent background,
which became dominant just about the time when CT was formulated. It pays
to pause a moment, and review the literature in the light of what has just been
said, even if such matters are too much intertwined to speak of cause and effect.

If the possibility of establishing CT is discounted, and if, nevertheless, evi-
dence is to be provided for CT, it is perfectly fitting to have lax standards; recall
the curious ‘evidence’ allegedly provided by equivalences between various defi-
nitions, as if not every notion had many definitions. All the gushing about nat-
ural or simple definitions distracts from the new problem of evidence when IR
is rejected (or, more generally, no longer regarded as adequate):

To find evidence for the use of a notion or even of a particular definition
(= description) of it.

As already stressed in connection with the master assumption in Section 1, this
matter is much more demanding than mere IR.

The last 50 years of mathematics Put abstractly —and therefore simply, but
also superficially —work on previously dominant common notions turned out
to reach points of diminishing returns, at least in any directions remotely like
those that had been pursued. The tradition of IR may fail when its notions are
applied to uncommon areas or uncommon questions about familiar areas. Less
trivially, it fails when a simple question is discovered to be related to unfamiliar
matters. It fails, not because of lack of rigour, but because the common notions
considered are just not suited to all matters—phenomena in science, tasks in
technology —that have become topical.

Let there be no mistake about the loss involved. At least, without doc-
trinaire fetters of formal rigour, knowledge of common notions and formal
deduction can be combined to establish (new) mathematical properties. Perhaps
even more significantly, experience with common notions leads painlessly to
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(common) areas that we want to know about where those mathematical prop-
erties contribute to effective knowledge. In short, for these notions the master
assumption is satisfied: relative to our limited appetite for knowledge.

What next? As might be expected, when the ‘solid body’ of common
notions reaches points of diminishing returns the questions about these notions
at the beginning of this section become decisive. Among those of us who have
become familiar with a generally unfamiliar area, new notions become common,
sometimes long before they get a name, with an obvious extension to unfamiliar
questions about familiar objects. Certainly, thoughtful mathematicians see things
that way, for example, Manin at the beginning of [12] with quotations from
others. Admittedly, in his discussion he does not refer to the tradition of IR,
not only not to the name, but not to such literary forms as representation the-
orems, mentioned earlier, which seem to provide more efficient formulations of
knowledge about the new common notions than the current fashion.

Conflicts with the literature: in line with the refrain of this article about wide-
spread practice* contradicting abstractly innocent home truths Over the
years Godel attempted to draw attention to a new direction in set theory (over
and above formal deductions from knowledge codified in current axioms); or,
more to the point, to continuing the old direction that had established the exist-
ing axioms. He mentioned, innocently enough, familiarity with the subject; in
particular, for progress with unfamiliar questions about large cardinals of famil-
iar sets generated by transfinite iterations of the power set operation. There was
wide-spread scepticism long before he tried to ‘argue’ a case with mouthfuls like
‘platonism’ (and its touching association with belief in other abstract objects like
ghosts; cf. document 040411.5 of the Nachlass, on the modern development of
the foundations of mathematics in the light of philosophy, which Godel divides
into a right and a left wing tradition. The right wing includes both platonism
and spiritism, apparently in the hope that the association would make both more
credible).

Conclusions for CT As meant 50 years ago, CT belongs squarely to the tra-
dition of IR, which certainly allows distinctions within common notions, of the
kind made at the beginning of Section 2 concerning different systems for which
a program is to be effective. There is the separate question about the adequacy
of the common notion(s) considered for data processing. And, finally, there is
the possibility of discovering other areas, in pure mathematics or its applications,
where the mathematical equivalent, recursiveness, is suited to describing the
facts. As is (or should be) well known, the prototype of such a discovery is Hig-
man’s answer to the question: Which finitely generated groups can be embed-
ded in finitely presented groups? It is given in recursion-theoretic terms, and is
a model of evidence for the use of a notion to tell us what we want to know
about (groups); cf. also the end of Section 6 on new questions.

Additional comments on the early literature concerning CT For the tradi-
tion of IR the presentation by Church in [4] is not at all satisfactory, inciden-
tally, reflected in the malaise of some contemporaries; cf. footnote 18 on p. 356
of [4]. Today it is easy to elaborate.
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There is a whole arsenal of notions that are now known to satisfy the laws
of Church’s A-calculus. But no description of any one of them bears the hall-
marks of common notions, which are the target of IR. This simple fact is not
changed by the discovery that some elements of that arsenal seem to be quite
well suited to some areas of data processing by some processors. On the con-
trary this fact underlines the limitations of IR as knowledge expands.

In contrast, Turing’s description of computations, by the rules of his
universal machine, is so vivid that it would establish a common notion together
with its elementary properties even if it were not present before (and, as some-
body said, such distinctions between discovery and manufacture are difficult
because generally they make as little difference as here). This constituted essential
progress for IR, and, again, is not changed by the many defects of the notion
for understanding data processing. For example, quite often the particular list
of basic rules is an artifact, not only for computations in parallel on the latest
wonder in the field of hardware, but also for the familiar kind including wet
ware. Whole ‘subroutines’ can be realized by ‘units’, not only single basic steps.
Reminder: Banal as this observation may be, it puts in question a major part
of would-be applied (theoretical) computer science on so-called complexity the-
ory, where the number of basic steps is used as the measure of complexity. Of
course, all this is not new in the history of human civilization, being reminis-
cent of —impeccably precise! — Tripos problems on would-be applied mathemat-
ics such as the hydrodynamics of perfect fluids.

The topic above —of making some or avoiding any choice of rules —lends
itself to rewarding analysis in the tradition of IR, by use of a particularly modest
variant of CT, though usually not viewed in this way. It is the subject of the next
section.

4 Effective definability by equations: the priority of computability over com-
putation (rules) A prototype here is definition by recursion; for example,
exponentiation, n”, by use of the auxiliary functions of addition and multipli-
cation. The constants 0 and s are interpretecl as zero and successor. Below, finite
systems of equaﬁions are denoted by E(f, f,x) where f stands for the function
to be defined, f for the auxiliaries, and X is the sequence, say, xj,...xy of
variables (instead of n and m above). They range over the natural numbers.

As already mentioned, fis defined by E if it is the only function that satis-
fies afoE f, f;x). There is nothing effective or mechanical about this prop-
erty. Today this is clear from the fact that every hyperarithmetic function is
defined in this way by a suitable E. But even without such background knowl-
edge the nonmechanical character is clear from Eq(f, f;,x) below:

J1(0) =0, f(sx) = ssfi (x) for doubling; f(x) = f1 f(sx).

An argument is needed to see that only f: x |- 0 satisfies E, for all x. Specifi-
cally, if £(0) = p then f(p) = p/2”, and thus not integral unless p = 0. Alter-
natively, if one thinks of partial functions, E| is satisfied also if f is not defined
at all. Viewed this way, the noneffective character of the definition lies in the
fact that £(0) and, more generally, f(«) for other specific numerals «, are not
determined by (a finite number of) substitutions «; for x in E. This is in con-
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trast to the case of, say, f; where the value of fi(a): a = sa’, is determined by:
f1(0) =0, and f;(sB) = ssf1(B) for 3 =0, 8 =s0,...8 = «’. In symbols:

VALLA0) =0 AL fi(e) =ssfi(a’)] = fi(a) = 2a};

in fact, the value is unique: YxVf {([f1(0) =0 A...fi(a) =ssfi(a’)] Afi(a) =
X) = x =2a}.

Corresponding substitution instances of f(x) = f;[f(sx)] are satisfied by
all f such that, for 0 < x < a: f(x) = 2*F~*, with 8 = 0. The words ‘deter-
mined’ and ‘satisfied’ have here their common meaning: the variables range over
the natural numbers, respectively the set of all number-theoretic functions. So
the additional requirement is expressed by the common notion of f being finitely
determined by E. In symbols:

For each natural number « there is a unique 8 such that

(%) VfoHA(\E(ﬁf,ii)] > f(a) =ﬁ},

where, for some P,, 1 =i < P,, and each ¥; is a suitable numerical substitu-
tion for X.

(*) is not yet effective since (*) looks ‘transcendental’. But a little exer-
cise shows how, for any given «, B, and ¥, (*) can be decided; cf. [10],
improved in Statman’s contribution to [1] by better quantitative information.
The latter can be interpreted either as measuring the complexity of the decision
method or the range of functions (of finite support with bounds on their val-
ues) that form a so-called basis for (*).

In any case the decision procedure is recursive in the usual sense, for arbi-
trary E and numerical substitutions. As a corollary: if fis finitely determined
then fis recursive because, for any «, 3 can be found by trial and error, by try-
ing out all 8 and sequences ¥.

Bibliographical comments As is well known, for example from Kleene’s
exposition of recursion theory under the proprietory name ‘Herbrand-Godel’,
the general project of equational definability goes back to a suggestion by Her-
brand, improved by Godel, and published in his Princeton lectures in 1934. The
relevant correspondence, which is now available, provides a vivid picture of
bright ideas and false starts, red herrings and new directions that is by no means
valid only for the present parochial topic, let alone for the people involved.

Herbrand’s original letter, of 7 April 1931, has a crucial requirement (3)
on the equations to be used: intuitionistic proofs showing that it is possible to
compute the values of the functions (uniquely: eindeutig zu berechnen). Godel’s
reply of 25 July, the eve of Herbrand’s death, is, very understandably, preoc-
cupied with the scope of intuitionistic methods, but without a word on the means
of computation envisaged. As shown by the example f(x) = 2f(sx) above, an
intuitionistic proof that f is defined, and hence a means of computation from
the proof, does not ensure that f is finitely determined. Here it should be
remarked that the u-operator is defined by equations superficially similar to the
example above.

In his lectures at Princeton in 1934 Gddel simply avoided the question that
had preoccupied him, by presenting a particular calculus, later modified by
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Kleene (and thereby facilitating certain metamathematical arguments, for exam-
ple, by use of the normal form mentioned already). All this is very much in the
particular mathematical tradition of getting on with the job, which can disturb
even those who are not underprivileged; for example, Wittgenstein complained
of impatience in this connection, Goethe put it more poetically, and so forth.
‘Particular’ because there is the recent tradition of setting out elementary dis-
tinctions under the mildly affected heading ‘foundations’ of the subject at issue.
But read right it is often very good value. After this digression, we return to
equational definability, and Go6del’s calculus in 1934.

Simply no common notion in sight was even a candidate for being de-
scribed by that calculus; no more than for the A-calculus at the time, and
much less than now (cf. the end of the last section). In particular, there was no
idea(lization) of a system for which the calculus supplied the effective rules or
programs. Perhaps there was, and certainly there could be generated, a feeling
of confidence in its wide applicability, simply by remembering Godel’s own arith-
metization of formal deductions; not only, of course, the numbering of formal
objects, which Cantor knew too, but the arithmetic representation of relations
between such objects, for example, between the numbers of a derivation and the
derived formula. They were defined by equations. In other words, the ‘small-
minded’ preoccupation with unquestionably uninspiring equational rules is broad-
ened when the mind is allowed to roam over the unlimited possibilities of dif-
ferent interpretations of the equations.

This feeling is condensed as it were into a proposition by —Kleene’s proof
of —the equivalence to Turing computability. The proof is straightforward (by
use of arithmetization), but essential for IR: it provides access to the resources
of the common notion involved in Turing’s scheme. In other contexts the prop-
erties of Kleene’s calculus that are severe blemishes for the logical tradition,
in particular, its blatant incompleteness with respect to arbitrary E, are not
even defects. The calculus provides a new description, which, as Kleene showed,
is quite well suited for a number of problems about the common notion in
question.

As just mentioned, the calculus does not satisfy the demands of the logi-
cal tradition. If authors can judge such things themselves, Kreisel and Tait [10]
wanted to correct that blemish. By 1960 the strategy was clear. One needed a
so-called semantic notion, called ‘finite determination’ above, and then estab-
lished the completeness of a suitable calculus for a suitable class of formulas.
After 25 years I should stress a different aspect, touched on already at the end
of the last section, and summarized in the subtitle of the present section.

Not completeness or incompleteness of a particular calculus is the issue, but
the artifacts produced by the choice of any calculus; tacitly, of any universal cal-
culus (for the whole class of formulas considered). This is to be compared to
experience in ordinary logic where the word ‘provability’ obscures the assumption
that proofs or even certain rules of proof are primary. This is made explicit by
shifting attention to the common notion of validity. In the next section this mat-
ter will be taken up in a suitably broad context.

Diverse comments The last paragraph can be restated as a possible conflict
between classes of problems (here, wff in some logical language) that have
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rewarding qualitative solutions (formulated in terms of validity), and those that
lend themselves to algorithmic treatment. It is simply lack of scientific experi-
ence’ to assume that the former, being about the coarser notion of validity,
constitutes a first step, tacitly, in the right direction. Reculer pour mieux sauter
is a good warning, even if it does not tell us which direction among 180° to take.
As to complexity theory, the practical defects mentioned at the end of Section
3 constitute a philosophical contribution in the examination of logical ideals:
they are striking proofs of the conflict above; for example, for the choice of
classes of polynomial equations in real algebra or of linear diophantine equa-
tions (cf. footnote 2a to the review of [6]). Naturally, these conflicts do not
exclude the possibility of elaborate, of course coherent, theories, in line with the
truism that mere truth and, a fortiori, mere coherence, is not enough by a long
chalk.

About 15 years ago, in the unpublished part of his dissertation, H. P.
Barendregt elaborated what was then called ‘Church’s superthesis’ (for a brief
report, c.f. top of p. 43 in the 2nd edition of [1]). Not only the classes of func-
tions defined by the different familiar schemes are equal, but the definitions (=
terms) themselves match so as to preserve computation steps. More precisely,
this applies to those schemes that are felt to be natural, and not, for example,
to Kleene’s deterministic calculus (in contrast to his later rules S1-S9). Digres-
sion for specialists: A different project, but in a similar vein, has come to be
known under the heading ‘stability of E-theorems’, so to speak ‘super E-
theorems’ for the usual intuitionistic systems. Instead of stating only that, for
some numeral a, A[x/«] is a formal theorem if 3xA4 is one (and is closed), now
the terms «2: A[x/«] are associated to proofs w of 3xA; o refers to various
schemes of interpretation, realization, normalization, and so forth. Now the a?
for different 0 match up. Here a now no longer familiar exception is the scheme
implicit in Hilbert’s substitution method for arithmetic, which has a similar
flavour to Kleene’s deterministic calculus. Naturally, those totally absorbed in
pursuing such equivalences do not ask whether the schemes are all equally sen-
sible or equally silly. Less obviously, they do not ask whether the details that
are left out in the matching are significant; enough to make one scheme prac-
tically superior, at least occasionally.

IR and flexibility (of rules) It is, perhaps, no more than a pun to confront
formal or informal rigour and flexibility. But in the particular case of the com-
mon notion of rule, definiteness is simply part of the idea(l). It leaves open, to
repeat what cannot be repeated too often, the master assumption: to what extent
the ideal contributes in a particular area. Once an appropriate range of indef-
initeness is known it can, as always, be handled by use of various literary devices.
Different ranges are illustrated concretely, for example, on pp. 144-145 of [9].
They involve different normal forms or only selection from traditional compu-
tation procedures. Another digression (for the same specialists as in the last para-
graph): Contrary to a widespread superstition, nonconstructive proofs = of 3xA,
for quantifier-free A, possibly with parameters (in other words, for typical
algorithmic problems) also provide programs, but they are less definite. Specif-
ically, in classical logic we have a disjunction: A[(x/;], 1 < i < N,, with the
terms #; depending on ; in contrast, an intuitionistic proof provides a single #,.
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This looks good if one forgets that, generally, different ¢;, among those for
which A[x/t;] is correct, are efficient for different values of the parameters.
Intuitionistic idea(l)s force us to be inflexible by making a uniform, and there-
fore, for most values, inefficient choice.

5 Laws of thought: this side of the pale The last section belongs to what
the English used to call the ‘tame’ tradition, especially in mathematics. One
begins with the innocent notion of finite determination, dots the i’s and crosses
the t’s, and expands by means of novel interpretations; in other words, by dis-
covering relations between this notion and other things (from computer pro-
grams to finitely generated groups). One of the most glamorous disciplines in
this tradition is probability theory, which started with frivolous games of chance,
and became an integral part of some fundamental theories of nature.

Propositional algebra is a striking example of the opposite direction, espe-
cially if rules of inference are added to form a calculus. It was put on the map
by a book of Boole, actually with ‘Laws of Thought’ as (principal part of the)
title. Later in this section there will be a few general reminders on the kind of
steps that have brought progress to this tradition; evidently not by expansion,
but by cutting the original (cl)aims down to size as it were; again by novel,
though of course different, interpretations. As always, there are those rare excep-
tional disciplines, where one starts at what seems to be the top, and never looks
back.

Despite a lot of judicious wording, originally CT was intended and under-
stood in the sense of the second tradition. In terms of Section 2, effectiveness
for the ideal mathematician was meant. Thus recursive undecidability results
were advertized under the slogan: what mathematicians cannot do. This is an
impeccable subject for IR inasmuch as there is a common notion or idea(l) of
‘the mathematician’. Once again, it is a separate question whether this common
notion or norm is suited to the phenomena at issue. According to Section 1—
about dubious doubts obscuring genuine problems —the discussion below cer-
tainly removes doubts about the mere possibility of any analysis of the ideal
mathematician; in the first place, ideal according to the intuitionistic faith.

Remark on the superficially arbitrary choice of this ideal (for other nonbelievers;
cf. end of Section 4): In view of how little is known about the outer limits of
the mathematical imagination, CT in its original sense is simply beyond the pale.
If anything remotely like it is to be pursued, some shift of emphasis is required
(by the title of this section), and the intuitionistic variant presents itself at least
as a candidate, for the obvious reasons recalled in the next paragraph. What,
if anything, is gained by the pursuit is most efficiently considered after the facts
are in; cf. the Manifesto at the end of this section, and the last section.

Recursive realizability and other interpretations of formally intuitionistic sys-
tems The link with the common notion in question is the meaning of intui-
tionistic logic as originally explained by Brouwer and Heyting: in terms of mental
constructions (of the ideal mathematician). Viewed this way, the formal laws are
of course assertions about those constructions; in other words, about certain
aspects of thought-processes. Certainly the laws are not discovered, let alone
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justified, by referring to psychological or physiological, so-called inductive evi-
dence, but then the laws of perfect liquids are not discovered by poking around
in water or pitch either.

Given such formal systems there are straightforward, and by now very
familiar, ways of formulating CT; both when variables, say for (lawlike) func-
tions, are and are not present:

vf3evx3z[T(e,x,z) A f(x) = U(z)]
and
vx3ayA — 3evx3z{T(e,x,z) n A[y/U(2)]},

where T is Kleene’s T-predicate. For a convincing refutation of CT, proofs are
required of 3fVveaxvz— [T (e, x,2) A f(x) = U(z)], respectively, of both

vx3yA and of VYeaxvz{T(e,x,z) — "A[y/U(2)]},

because a mere formal negation is weak (in intuitionistic logic).

Recursive realizability is well known to exclude not only such refutations
of CT, but even weak ones, because the consistency of CT is established. (For
the record, other interpretations have been used t0o.) In a similar vein, formal
work has established what has come to be called Church’s rule: if vx3yA4 is a
formal theorem so is 3evx3z{7T (e, x,2) A A[y/U(2)]}. As in the digressions at
the end of the last section this work has been refined to establish the correspond-
ing ‘super rule’.

In the last 15 years the subject of recursive realizability has become a Dutch
garden, in which the answers to a great variety of formal questions can be seen
almost at a glance. So to a large extent my report on such matters in Part II of
[71 is now obsolete. But, as so often in such situations, the subject is not closed;
some of the most useful points loc. cit., at odds with later preoccupations, have
not become known, and some pertinent questions, incidentally in the tradition
of IR, were overlooked there. Here are a couple of samples.

First, there is the dilemma for refutations of CT: if a system has the (numer-
ical) E-property and is formal, there is a mechanical procedure, say ey, which
extracts, from any proof of ¥x3yA4 and any n, some m,, such that A[x/s"0, y/s™0]
is a formal theorem, with the usual refinements when the E-property is estab-
lished by restricted metamathematics for suitable parts of the formal system. It
is not a theoretical dilemma since sound systems need not have the E-property.
Specifically, if 3y4[x/s"0] is a formal theorem, 4 [x/s"0, y/s™0] must be prov-
able for some m, but not necessarily in the same (formal) system. And a restric-
tion to formal systems ‘on principle’ would be no less than a petitio principii
when the validity of CT is at issue. The dilemma is practical because there are
no rewarding candidates of systems in sight that can be established with IR to
hold for the constructions of the ideal mathematician, but do not have both the
two properties.

Secondly, and this is, I believe, much more central, and (therefore?) much
more widely neglected, the fanfares in the intuitionistic literature about taking
constructions or processes into account seem a sham. The logical laws use lit-
tle more of proofs or constructions than the relation between a proof and the
theorem proved, respectively, between a construction and its outcome. And
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when an attempt is made, as in Brouwer’s admittedly clumsy embellishments of
his bar theorem, to introduce more delicate aspects of the constructions involved
(definitions or proofs, no matter), later work soon suppressed the new elements.
History repeats itself here. Russell started off trying to make an inventory of
the mathematical zoo, but soon found himself analysing abstract notions ‘away’.

These developments were not merely a matter of weak backbone, even if
matters looked like that to Godel in his essay on Russell’s mathematical logic
(and in effect had similar results as the thoughtless cult of Ockham’s razor or,
in modern jargon, of black boxes). It is just objectively difficult to discover
rewarding elements inside those black boxes (as Godel himself had trouble find-
ing rewarding axioms of infinity). Common sense says: If you want to find out
about things, for example, processes, don’t hide them in black boxes! Try to
look at them. Specifically, in connection with a refutation of CT, don’t rely on
the off-chance of some process being grossly nonmechanical; so much that not
even its effects that strike the eye, the so-called output, can be computed
mechanically from the input. A formal counterpart of this view, of the crudity
of CT, is the

Conjecture: There are simple conditions, easily verified for current intuitionistic
systems, that imply easily the consistency of CT and closure under Church’s rule.

A proof would supersede current proofs, which are often laborious, and
would thereby merely embarrass the tame logician. But, philosophically, it would
be progress by confirming the suspicion above of the proposal to use the
intended interpretation of intuitionistic logic for the topic of CT. (It would show
that the project is an oversight, not a brave try, refutable only by detailed studies
like ingenious realizability interpretations.)

Reminders: On the, incidentally, fairly common view that the original interpre-
tation does not make sense, the project doesn’t either. Recursive realizability is
then taken to give sense to the formal machinery. (A much simpler alternative
is to ignore the latter altogether.) There are also other ideals of ‘the mathema-
tician’, for example, Godel’s, requiring a relentless search for new axioms of
infinity.

Bibliographical remarks on laws of thought The pioneers, in particular
Frege, had of course a lot to say about the distinction above between thought
processes and their results. He called the latter ‘objective’ thoughts, thereby
hanging his observations on pegs supplied by some hoary ‘isms’. He saw a prin-
cipal use of his objective analysis (ignoring subjective processes) in the greater
security it gave to common reasoning. But he never recognized the assumption
in supposing that security-in-principle, that is, security of principles, was a dom-
inant factor in the area (of mathematical certainty). An instructive example of
abstraction from processes that was rooted in experience, not in a dubious
assumption, goes back some 150 years, and is associated with Dirichlet.

The graph of a function neglects, that is, abstracts from, particular defi-
nitions and computation rules. It was a genuine discovery. For centuries, func-
tions had been thought of as rules. But the theorems actually stated about them
at the time depend only on their graphs. There were immediate mathematical
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payoffs. Moreover, in effect, if not on purpose, this led to philosophical progress
as follows.

When the fundamentalists, born-again with the grace of intensionality, gush
about those neglected elements they forget the difficulty of making a reward-
ing selection. For example, some of the popular parts of would-be applied com-
puter science already mentioned are presented as if half the battle were won by
looking inside black boxes at all; meaning here complexity measures inside
graphs of functions. The measures are expected to sound familiar and to be pre-
cise, but are rarely tested for adequacy (recall the end of Section 2 on Turing’s
basic rules). Sometimes the possibility of such tests is denied, and so it is not
realized how demanding a proper choice is, comparable to the situation with IR
earlier on. The tame tradition does better by adding extra structure to the graph
only if felt to be needed. Thus this tradition is more philosophical by paying
attention, automatically as it were, to a significant selection of such structures
(= useful ‘intensional’ elements).

Deeper waters: reflections on the old impression of a conflict between log-
ical and psychological (or other biological) matters such as thought processes.
More pedantically, the impression is that logical aspects, which are of course
present, are rather marginal for these phenomena. Accordingly, such character-
istic aims of the logical tradition as unity by reduction to a few primitives may
be misplaced here. Thoughtful biologists are sensitive to those aims, and tell us
that they are not compatible with the process of evolution. It selects from a mass
of random mutations those specific elements that are adapted to the surround-
ings in which they happen to be. Quite simply, the process doesn’t have a logi-
cal feel, and so the laws could not be expected to have such a feel either. At
most, somewhere on the molecular level the laws might satisfy the idea(l)s of the
logical tradition, though often they do not.® Neglected corollaries. First, given
that the genetic code violates those idea(l)s most brutally, the success of genetic
engineering refutes —once again, and strikingly— a tacit assumption behind
them; specifically, that human intellectual capacities are at their best or, at least,
efficient when using logical knowledge. Experience shows, as somebody said,
that reason is not reasonable (in the sense that Simple Simon gives to this word).
The second corollary concerns A.I., a part of another new branch of engineer-
ing, which uses other programs (not the genetic code). By almost common con-
sent among experienced engineers, success in their subject(s) requires flexibility
in the use of available resources, not systematic rules in the logical tradition, even
when the latter may have helped in building up the resources of material and
intellectual technology.

Conclusions for CT There is no end in sight to the possibilities of coherent
and imaginative analysis in the tradition of IR; specifically, of the common
notion(s) of the ideal mathematician and thus of CT, as interpreted in the pres-
ent section. What is in doubt is the adequacy of these notions, not only to the
phenomena of mathematical thought (processes), but even to our practical
knowledge of them. Without much exaggeration, current theoretical literature
contributes infinitesimally to that knowledge. Corollary. Differences between
different parts of that literature, for example, pro and contra A.I. (or even dif-
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ferences from talkshows on TV) are not apparent if measured by the absolute
value of their contributions.

Manifesto Existing theoretical knowledge of our own data processing is so
limited that (even) the logical aspects of the common notions here considered
remain principal elements of that knowledge. Those of us who recognize this
may still want to analyse the little we know with IR, and feel that, as long as
we do not stray beyond the pale, we can afford this luxury in our age of intellec-
tual affluence. As for selecting suitable parts of the current literature, by the
corollary above the choice cannot rely on differences in the absolute value (of
their contributions). But their ratios usually separate remarkably sharply the
parts beyond the pale from those that are still on this side.

Readers satisfied with the manifesto may wish to stop here. Those curious
only about my conception of the luxury in question should skip the next section,
which is intended for readers who, like myself, wish to muse about consequences
for CT of knowing a bit more about the laws of thought; naturally, by refer-
ence to a suitable parallel.

6 Theories in natural science: rational and computable laws The parallel
meant in the last paragraph concerns CT applied to, say, physical systems or,
more precisely, to theories of them. The words ‘input’ and ‘output’ are used
below for initial conditions given in nature or under experimental control,
respectively for observable behaviour; in both cases: according to theory. The
former correspond to rules or programs, even though in general there need not
be—according to theory! —any discrete steps that terminate in the observed
behaviour.

There is another parallel to help keep our feet on the ground, when mouth-
fuls like computability-in-principle begin to make us light-headed: the thesis
attributed to Pythagoras about number being the measure of all things. This is
to be compared to: programs for a universal Turing machine being such a mea-
sure. In particular, when, as originally intended, Euclidean geometry is thought
of as a theory of physical space there are dimensionless quantities that are not
rational; for example, the ratios of diagonal to length of the square or of cir-
cumference to radius of the circle. In the case of processes, represented by func-
tions, there is a distinction between those that are not ratios of polynomials (with
rational coefficients), and those that do not take rational values for some
rational arguments; for example, sin x: 0 < x < 2.

The two results, of the irrationality of v2 and of w, were discovered more
than 2000, respectively 200, years ago. So there is plenty of experience to reflect
on when wondering about realistic consequences; both for experimental science
and, above all, for the style of later theory.

Noncomputability results, corresponding to irrationality on the parallel
mentioned, have accumulated in the last 50 years; in work by Pour El and
Richards with special emphasis on questions arising, more or less, in mathemat-
ical physics (cf. for example, their most recent papers [14] and [15]). In partic-
ular, the latter has a neat description in terms of bounded and unbounded linear
operators, where previously one had (endless) lists of typical, familiar examples,
as at the beginning of the review of [13]. But, again by experience with the par-
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allel, a much more demanding job is the proper interpretation of the mathemat-
ical results; in hackneyed terms: not to forget the physics behind the
mathematics.

Experimental consequences (of the irrationality of \2 or x) It is generally
assumed that there are none, and it seems very plausible that there is no single
measurement that could be interpreted to establish irrationality; or rationality
for that matter. For the record, I am not persuaded that (ir)rationality results
have no experimental implications at all; for example, in so-called fundamen-
tal theories characterized by relations with very diverse phenomena, and admit-
ting ingenious statistical interpretations. Be that as it may, problems of similar
flavour come up with the two demarcations, between rational/irrational and
computable/noncomputable. Much more can be said about the other kind of
consequence, for new kinds of solution.

New kinds of solution, say, of differential equations, and new questions about
them It would be close to affectation to belabour ancient history; the pas-
sage from rational solutions to elementary expressions, built up by adding
trigonometric functions, exponentiation and their inverses; going on to (effec-
tively) convergent series of such expressions. Perhaps less familiar is the shift
of emphasis to a qualitative classification; not according to the manner of con-
vergence (proof), but by such related properties as analyticity or continuity in
parameters. And the discoveries of so-called weak solutions and of distributions
are part of living memory. Incidentally, these things are not confined to mar-
ginal refinements, but used in central parts of mathematics and mathematical
physics.

On the other hand, as an advertisement about technology used by United
Technology put it, nothing is ever lost completely. Once unexpected implications
of good old rationality were recently discovered in connection with the Yang-
Mills equations, and duly advertised, too. Here, ‘in connection with’ has to do
with new questions.

One of P.A.M. Dirac’s disarming aper¢us is worth quoting: “If I want to
know something about a differential equation, I derive the answer directly with-
out solving the equation.” In other words, generally he did not merely want to
know the graph of a solution, nor does anybody else. Since the turn of the cen-
tury, the subject of qualitative dynamics has grown up, concerned with topo-
logical, that is, nonlocal, properties of solutions. More recently a shift in a
different direction had to be made when, as the title of the readable exposition
[11] puts it, the failure of predictability in Newtonian dynamics was recognized;
not of predictability-in-principle (= determinism), but of the kind of order which
makes it rewarding to bother about it. Beyond the so-called horizon of predict-
ability, properties of the solution are used that are familiar from statistics; as
occasionally notions from probability theory are applied in number theory to
impeccably (primitive) recursive sequences.

The moral for the version of CT discussed in the present section—or,
equivalently, for the question whether current theories of nature are mechanistic
in the sense of [8] —is compelling. The answer to the question is one of the many
things that one might want to know about such a theory. And if it is negative,
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one just has to look for suitable problems with solutions that are not only
computable-in-principle, but in practice. At least, to start with, the words ‘suit-
able’ and ‘in practice’ are not as clear as ‘mechanistic’. But then, like mere truth,
mere clarity is not enough by a long chalk. A clear meaning of those words is
part of the solution; cf. Schiller’s Spruch des Confucius: Nur die Fulle bringt
die Klarheit.

Remarks on another shift of emphasis in the general area of recursiveness, and
away from the preoccupations of CT: The model here is Higman’s answer,
touched on in Section 3, to the (new) question: Which finitely generated groups
can be embedded in finitely presented (f.p.) groups? A mere corollary to his
‘positive’ answer is an f.p. group with unsolvable word problem; in other words,
something of concern to CT. So Higman’s answer shifts attention away from
the latter. The answer, in terms of recursiveness, is tested by its contribution to
the demands of group theory; not primarily by the validity of CT in any of its
versions. Incidentally, much the same kind of shift is conveyed by the subtitle
of the chapter in [3] on Hilbert’s 10th problem about diophantine equations:
positive aspects of a negative solution. It remains to be seen whether theories
in natural science will benefit from this kind of shift too.

7 Conversation pieces: a wider market for the literary forms of mathematical
logic, and especially of IR? wider than the market for their contributions to
science and technology Even if these contributions were more central than
they are, the market would be limited by the background knowledge needed for
more than an illusion of understanding. It is a hallmark of philosophical ques-
tions that they present themselves to those of us who do not have such knowl-
edge (and even as not requiring any).

As I read him, Bertrand Russell expresses a somewhat related view some-
where in the introduction to his History of Western Philosophy: philosophy is
to teach us how to act in the face of uncertainty. This is a tall order. The vari-
ant here proposed puts ‘talk’ for ‘act’. NB: This is in direct conflict with one of
the most famous passages in Marx (as it was meant, that is, without quibbling
about the changes that can result, for example, in the world of academics, from
a different style of talking). The idea that philosophers, that is, those who have
enjoyed a philosophical education, should be particularly well prepared for
changing the material world too, is one of the many odd assumptions of that
(to many, compelling) writer. To me he is not persuasive. Thus in this article
there is no trace of measuring value by labour; rather by the opposite, of interest
of result divided by labour! We now return to the question above:

How to talk in the face of uncertainty (= ignorance)? The easiest answer
is in dubio non, expressed in, often vocal, advice to be silent. This advice is not
followed. Certainly not by Wittgenstein, who has given the most famous for-
mulation of that answer in our century. Nor by the so-called silent majority,
which breaks its silence (see Note 2) with barks and grunts, not housebroken as
it were by proper breeding; cf. Aristotle’s Met I'4, 1006a, 6-9. To paraphrase
Pascal: if you try to be a silent angel you’ll finish up neighing like an ass
(L’homme n’est ni ange ni béte . . .).
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How then might IR and mathematical logic help? The idea is in the Man-
ifesto at the end of Section 5; here are a couple of samples (related to CT);
at least, of the existence of various possibilities, if not of their (all-important)
weight.

The first sample concerns A.I. and the laws of thought, a topic touched
earlier on. The question is, how to talk about this topic; for example, in a cir-
cle of like minds, not necessarily as a missionary. Most discussions I know (pro
or contra, no matter) seem to me spoilt not only by clumsy exaggerations, but
above all by the following fact: There is a glamorous aura of electronic com-
puters, with a hardware that is, admittedly, one of the wonders of the modern
world, but no mention of its details. Without exaggeration, the discussions rely
on Simple Simon’s idea of a computing machine, in short, on this common
notion. The words come from the world of engineering, but the thoughts straight
from the logical tradition.

Viewed this way the discussions are likely to benefit from explicit reference
to the unquestionable logical progress, including attention to IR, that has been
made since the discussions between the (same) pros and contras 100 years ago,
who were then called ‘formalists’, respectively, ‘antiformalists’.

Bibliographical remarks and a disclaimer In the last 20 years of his life,
Wittgenstein was surely sensitive to the banality of (as opposed to logical mis-
takes in) both the kind of popular discussions above, and their counterparts in
academic jargon. But the dramatic style of his objections seems (to me) to jar,
as it were objectively, with their content. There may be something dramatic
about claims —true or false —to have found ‘the general form of propositions’.
A correction is surely salutary. But is it dramatic? (Cf. also refutations of Hil-
bert’s program.) Do a few starry-eyed fans of A.I. constitute evidence of be-
witchment (by the admittedly facile language of that subject)?” For the record
I too am impressed by the phenomenon of otherwise thoughtful scientists repeat-
ing empty phrases like a mantra in discussions on some broad philosophical
question. But I have thought of this as the ‘natural’ consequence of their feel-
ing obliged to have an opinion when in fact they had none. (Experts may attri-
bute that sense of obligation to some wicked witch.) The colloquial style above
requires a disclaimer, in the following reminder.

Reminder on our practical knowledge, here, of thought processes: It is an
assumption that those general discussions benefit significantly from adding to
practical knowledge any specialized, let alone academic, experience such as logic.
For example, everyday experience of creative and mechanical thinking (= fol-
lowing mechanical rules) shows that the former is simply more congenial to us,
less prone to errors, and accordingly more reliable; but also (perhaps disappoint-
ingly) the latter can be more efficient. Thus, a modern computer sums X,,: 1 <
n < 100 more quickly —not more reliably — by routine addition than Gauss did
at the age of 6 by use of a bright idea. (Computers do mechanical work more
reliably than people.)

If this colloquial style of thought, not only of words, is found to be as good
as any then the academic style is a ritual, at best useful as occupational therapy.
Fully aware of this, I now turn to the second sample of using the logical style.
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Meaning and use Questions suggested by this pair of words turn up almost
anywhere; from charming situations with bricklayers and their mates, to eru-
dite texts on modern semantics or on pragmatism of blessed memory. As long
as the questions are sufficiently general, by the nature of the case they can be
discussed ‘in principle’ in all those contexts; for example, questions about conflict
or correspondence, but also about the relative contribution of establishing for-
mal properties of meaning and of pin-pointing uses. Here the very modest Sec-
tion 4 seems to me good value, of course, in the non-Marxist sense.

There is no conflict there between meaning and use. Different meanings of
‘equational definability’ correspond to different uses, rigorously to boot. As to
relative contributions, they differ for different meanings. The formal side was
more demanding in the case of straight definitions, needing knowledge of hyper-
arithmetic functions. On the other hand, once the use of finitely determined
equations had been recognized the formal exercises were routine. Reminder: My
own experience is too lopsided to judge what the material above is worth on the
market envisaged in this section. In particular, I am not familiar enough with
the many alternatives (to the logical style and IR), which, as in an earlier warn-
ing, are all-important for such judgments.

Other literary forms are available for ‘talk in the face of uncertainty’, except
of course to those hamstrung by some doctrine, for example, of formal preci-
sion, according to which only formal theorems have substance, and all else is
packaging. The alternative usually mentioned is the discursive philosophical style
with its big abstract words (and its venerable tradition). Another much more
recent alternative is the philosophical novel, although it is rarely seen this way
(least, in connection with foundations).

Here apercus and bon mots take on the role of theorems in the logical style;
and slogans, which are to be used repeatedly, correspond to lemmas. As I see
it, a principal difference from the older style is that those apercus, etc., are not
introduced in isolation and dissected, but appear ‘live’ in memorable situations,
and thus help us learn where they apply. Viewed this way, staged dialogues and
comic strips in the contemporary foundational literature are minor variants of
the old style. Perhaps a closer parallel to the style of the philosophical novel is
found in the oral scientific tradition. Here memorable proofs and definitions are
‘interrupted’ by perceptive comments if and where this is appropriate. Again they
appear live, and thus casual in form.

Remark: Some of the pioneers of mathematical logic, as far back as Leibniz,
hoped that its style would bridge the gap between formal slogging (ours is not
to reason why) and the understanding expressed in literate comments. Its style
could be more easily learnt since it does not require literary talent. Once again,
it is left open how effective this style is for communicating the (additional)
understanding where to apply the logical knowledge; ‘once again’ as with the
master assumption in Section 1.

An anecdote: Recently Godel’s incompleteness result was brought to the atten-
tion of Austrian politicians; successfully in the sense that one of them quoted
it during a ‘discussion’ sponsored by a movement called Nova Spes. His purpose
was to underline the, incidentally, quite obvious weakness of some panacea
meant to bring health, wealth, and other ingredients of happiness; in short, new
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hope. Though the proposal was surely simple minded, as bad luck would have
it, it was not formal nor did it give any hope of solving any recursively unsolv-
able problem. A clever man was led to faire la béte.

Let there be no mistake. Some learning was conveyed by learning the truth
of Godel’s result; it just was little learning. Empirical-minded, not to be con-
fused with so-called empiricist philosophers, might be interested in looking for
more such empirical evidence.

NOTES

1. Below there are other warnings against such appearance of innocence. They are
prompted by a complaint of one member of the audience at a lecture in June 1986
at Utrecht where an earlier version of this article was presented. He found it uncon-
troversial. (Of course, ‘boring’ was meant since there is no virtue in being controver-
sial except perhaps among professional dissidents.) I take this opportunity to thank
not only this critic, but also the logicians at Utrecht for their hospitality, and the
Ford Foundation for a grant supporting work on the paper.

2. The phrase refers to A. E. Houseman’s oft-quoted, albeit odd, epistemological ideal
of an Irish terrier. When asked to define ‘poetry’, A.E.H. referred to terriers that
can smell a rat, but not define ‘rat’. In different parts of the world one has pigs that
grunt when they smell a truffle.

3. A property P of a notion, say, N, is a definition of N if N is the only object (con-
sidered) that satisfies P. The passage to formal rigour is standard, once P has been
established to be a mathematical analysis of P, and 3!NP(N) has been proved.

4. Also widespread, would-be revolutionary obiter dicta: for example, about an alleged
‘relativity’ of truth (of theses), which would be spectacular, in place of change in their
marginal utility with increased knowledge, which is indeed important but a matter
of course.

5. It is of course in the nature of lack of experience that particular native talent is
needed even to suspect the need for more experience: cf. Goethe’s remark to Eck-
ermann on the high cost of bon mots, derived from experience bought, literally, by
seeing more of the world.

6. Cf. [5]. This scientific failure contains a splendid piece of IR in its analysis of the
notion of rational code (given the structure of DNA). The actual codes, both for
mitochondria and for the rest of us, are quite different.

7. Big words like computable-in-principle may be addictive, and thus seem bewitching,
too. Reminder: Mathematicians live with them, for example, ‘imaginary’ or ‘tran-
scendental’ applied to numbers; originally, for reasons now considered (by most of
us) to have been misguided. Short words like ‘real’ have a way with them, too. Hil-
bert got a lot of ‘mileage’ out of his real and ideal elements when it would have made
good sense to pause after he had gone an inch.
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