
520

Notre Dame Journal of Formal Logic
Volume 28, Number 4, October 1987

Turing Projectαbility

TIMOTHY MCCARTHY and STEWART SHAPIRO

/ Introduction Let N be the set of natural numbers. A function g: Λf-> N
is effectively (or mechanically) computable if there is an algorithm or effective
procedure which, given (a representation of) an integer n as input, terminates
after finitely many steps, and yields (a representation of) g(n) as output. The
Church-Turing thesis (CT) states that the effectively computable number-theo-
retic functions are precisely the Turing computable number-theoretic functions,
or, equivalently, the recursive functions. In this paper, we develop a generaliza-
tion of the notion of mechanical computability and use CT to argue for an anal-
ogous thesis concerning that generalization.1

It is an important aspect of the classical notion of effective or mechanical
procedure that an effective procedure terminate for each natural number given
as input.2 We consider here a generalization of effective computability accord-
ing to which a nonterminating effective process may be said to determine the
values of a number-theoretic function. Our idea is to describe such a process
in the following terms. There is, first, an effective procedure (in the ordinary
sense) which, applied to any input m, generates a computation that proceeds in
stages σ l w, σ2m, Secondly, there is an effective function / which, applied to
any stage σnm of the computation, yields & projection, or tentative value, for the
computation at the stage n. The projection is subject to revision, in the sense
that at a further stage σkm (k > n), it may happen thatf(σkm) Φf(σnm). But
we allow the projected value to change only finitely often, so that for each m
there is a value p such that

ln\fk> nf(σkm) = p.

We say that the given pair of effective procedures is a projective strategy. The
function g is said to be projected by that strategy if and only if for each m an
n can be found such that

Vk>nf(σkm)=g(m).

In this case, we say that the strategy is stable for m at stage n?

Received December 9, 1985; revised December 30, 1985

TURING PROJECT ABILITY 521

Intuitively, then, a projective strategy for g is an effective procedure which,
given any number m as input, produces a conjecture for the value g(m), but
(possibly) keeps on working. Subsequently, the procedure may change the con-
jecture. But we require that the conjectured value change only finitely often.
Eventually the value g(m) is produced and is stable under further computation.

A function is effectively project able if there is a strategy that projects it.
A number-theoretic relation is said to be effectively projectable if its character-
istic function is effectively projectable, and to be projected by any strategy that
projects its characteristic function.

It is clear that all computable number-theoretic functions are effectively
projectable. For, let a computable function/: TV-• TV be given. Let Mbe a Tur-
ing machine computing/. A projective strategy for / i s the following: for any
n E TV, apply M to n in stages. At stages before the machine halts, project 0.
At the stage at which the machine halts and thereafter, project the computed
value for/(«). However, the converse does not hold: not every effectively pro-
jectable function is effectively computable. For example, the characteristic func-
tion of any recursively enumerable set is effectively projectable. Recall that the
characteristic function CA of a set A is defined for each Λ E TV by

[l if n GA
CΛ{n) = \

\θifn£A.

The following is a projective strategy for CΆ: given n, at stage 0, project the
value 0 for CA (n). Enumerate A in stages k > 0. If n appears in the enumera-
tion at some stage k, we project 1 at stages >k. Otherwise, we continue to
project 0. Clearly, for each n, the correct value of CA (n) will eventually be pro-
duced by this process, and will be stable in the sense described.

If A: TVx TV-> TV and/?, q E N , we write that lim h(p,k) -q\ϊh{p,k)=q

holds for all sufficiently large k. Using CT, we may obtain a simple characteriza-
tion of the effectively projectable functions: a function g: TV—• TV is effectively pro-
jectable iff there is a recursive function A: TVx TV->TVsuch that for each n we have

(*) limA(/i,*)=g(Λ).

For if g satisfies this relation for a given recursive function A, we may take σkn

above to be a computation of A (/?, k) for each kf n, and/to be the appropriate
result-extracting function. Conversely, if g is effectively projectable, by CT there
is a recursive function A which maps each pair </i, k) onto the projected value for
g(n) at stage k, and this A will satisfy (*) for each n. Thus, granted CT, the notion
of 'effectively projectable set' is equivalent to Putnam's concept of a trial and error
predicate [3]: a set A is a trial and error predicate if there exists a recursive binary
function A such that lim h(n,k) = CΆ(n) holds for each ^ E TV.

k^oo

In this paper, we shall give another characterization of the effectively pro-
jectable functions in terms of a generalization of the Turing model of comput-
ability, obtaining a theorem of Putnam as a corollary (Section 2). In Section 3
we will examine the relation of effective projectability to the problem of extrap-
olating deterministic regularities in inductive logic. The concluding sections con-

522 TIMOTHY MCCARTHY AND STEWART SHAPIRO

cern ways of restricting the definition of effective projectability which lead to
more limited classes of functions.

2 Turing projectability In this section, we shall set up a model of effective
projectability analogous to the Turing model of computability. Informally, an
extended Turing machine M is a Turing machine equipped with two tapes, a
projection tape and a computation tape, each possessing a printer and a scan-
ner (or, alternatively, a single printer-scanner that can move between the tapes).
The machine states of M are of two sorts, projection states and computation
states, but in any configuration M is in exactly one state. The instructions of M
determine the action and the next state of M as a function of its current state
and the symbol that it currently scans.4

By a configuration of an extended Turing machine M we mean a complete
description of the content of the computation and projection tapes, the positions
of the scanners, and the current computation or projection state. The instruc-
tions of M then effectively determine, for each configuration of M, the next
configuration (if any). By a computation of M we mean a sequence of config-
urations <σi,...,σΛ> such that V/ < n, σ,+1 arises from σ, by applying an
instruction of M. Notice that, unlike the analogous situation with ordinary Tur-
ing machines, a computation of M may be incomplete in the sense that M may
not have terminated at the last configuration in the sequence. Extended Turing
machines and their configurations can be effectively coded via a Godel number-
ing in the usual way, as can computations. In what follows, we freely identify
syntactical objects with their Godel numbers.

We introduce an analogue T*(z,y9x) of the Kleene Γ-predicate: for any e,
n, m EN, T*(e,n,m) holds iff m is the Godel number of a computation of the
extended machine (with Godel number) e at input n. Notice that T* is not com-
pletely analogous to the Kleene Γ-predicate in that T*(e,n,m) does not entail
that m codes a terminating computation. Nevertheless, T* is a recursive rela-
tion. We write mak to mean that m and k are codes of sequences and m codes
an initial subsequence of the sequence with code k. Of course, a is also a recur-
sive relation. Notice that T*(e,n,k) and mak entail that T*(e,n,m).

We define a partial recursive function | | on TV as follows. The domain of
I I is the set of Godel numbers of sequences of extended machine configurations.
If m is the Godel number of such a sequence, then | m\ is the integer described
on the projection tape of the last configuration of the sequence. If σ is a sin-
gle configuration, |σ | is defined to be |<σ>|. If e is the Godel number of a
machine and m the Godel number of a computation thereof, m is said to be sta-
ble for e iff

VnVx((max& T*{e,n,x))-+ \x\ = \m\).

Finally, a number-theoretic function / is said to be projected by an extended
Turing machineM(with Godel number e) iff, for each n EN, there is a com-
putation code m of Mfor input n such that m is stable for e and \m\ =f(n).
A function is Turing project able iff some extended Turing machine projects it.

Projectability and Turing projectability are related as are computability and

TURING PROJECTABILITY 523

Turing computability. In fact, it follows from CT by means of a simple lemma
that the effectively projectable number-theoretic functions are precisely the Tur-
ing projectable functions.

Lemma A number theoretic function f is Turing projectable if and only if
there are Turing computable functions f* and g such that for each n9f*(n) is
the index of a Turing machine and

(1) 3mvk>mg(lf*(n)}(k))=f(n).

Proof: Let/: N->Nand Mbe an extended Turing machine that projects/. For
each n, let/*(«) be an index for an ordinary Turing machine that enumerates
the computations of M at n in order of increasing length; if M applied to n halts
in k steps, we set {/*(«)} (j) = {/*(*)} (k) for ally > k. It is clear that/*(>?)
may be obtained effectively from n. Let g be | | . Then (1) holds; and both/*
and g are Turing computable.

Suppose now that/* and g are Turing computable functions that fulfill (1)
for each n. We give an intuitive description of an extended Turing machine M
that projects/.

For any input n, the computation of M proceeds in stages. At stage 0, 0
is projected. At any stage k > 0, the following procedure is executed on the com-
putation tape: using instructions for /*, M first computes f*(n). Using the
instructions of the universal Turing machine, M now computes if*(n)} (k).
Finally, using instructions for g, M computes mk = g({f*(n)} (k)). By means
of the projection instructions it then inscribes mk on the projection tape. By (1),
for each n9 a k can be found for which Vp > k mp = /(«); thus, at each π,
the projected value of Misf(n) at sufficiently large stages. Therefore, M pro-
jects /.

We may now obtain an analogue of CT for effective projectability. Sup-
pose that/: N-+ Nis effectively projectable. Recall that a projective strategy
for /consists of a pair of effective functions (/*,/?) such that for each n9 h(n)
determines a computation that proceeds in stages σnU σn2,... and/? maps each
stage σnj effectively onto a projected value which isf(n) at sufficiently large
stages. From CT, we may assume h and/? to be Turing computable, and that
for each n, h(n) is the index of a Turing machine that enumerates the stages
σnj. Thus, taking/* = h and g = p in the lemma satisfies (1) for each «, so that
/is Turing projectable. Conversely, if/is Turing projectable, by the lemma there
is a pair of Turing computable functions (/*,g) such that (1) holds for each n.
These functions determine an obvious projective strategy for /.

We now turn to a recursion-theoretic characterization of the class of Turing
projectable functions. The characterization problem turns out to be quite simple:

Theorem 1 A number-theoretic function is Turing projectable if and only
if it is recursive relative to the halting problem for ordinary Turing machines.

Proof: Suppose that/: N-+ Nis projected by an extended Turing machine M.
We show that for each n G N9 f(n) may be computed relative to the halting
problem for ordinary Turing machines. Consider the r.e. sequence {σ ĵ of com-

524 TIMOTHY MCCARTHY AND STEWART SHAPIRO

putations of M applied to n in order of increasing length. At stage k in the com-
putation of/(/?), we compute σk and determine whether

(2) 3/7 > k \σp\ Φ \σk\.

Since (2) is a Σx predicate, this can be determined recursively relative to the halt-
ing problem. If the answer is yes, we proceed to stage k + 1. If the answer is
no, we set f(n) = \σk\ and stop. Since Mprojects/, we must eventually reach
a stage kn such that V/? > knf(n) = \ σp|, so that the indicated procedure ter-
minates after kn stages, and gives the correct result.

Conversely, suppose that/is computable relative to the halting problem.
We give a projective strategy for/. Recall that solutions to cases of the halting
problem assign truth values to sentences of the form

(3) 3xT(e9m9x)9

where T(z9y,x) is the ordinary Kleene Γ-predicate ("xis a (convergent) compu-
tation of machine with code z at input y"). (Note that since (3) is Σi, there is
a projective strategy for the relation {{e9m)\ e is the Gόdel number of a Tur-
ing machine that halts at input m}.)

To project the value of f(n)9 we give a computation that proceeds in stages.
At each stage, a projected value for f(n) will be effectively determined. At stage
0, project 0. We divide each stage k > 0 into three parts Ak9 Bk9 and Ck. At
substages Ak9 the truth values of the sentences T{e9m9p) for all e9 m9p < k are
computed. At substage Bk9 k steps in the computation of f(n) relative to the
halting problem are executed. When a truth-value of a sentence of the form (3)
is required, assign it the value F unless a computation verifying an instance of
this sentence was executed at substage Ak9 in which case the value Γis assigned.
At substage Ck, determine if a value for f(n) was produced at stage Bk. If so,
project this value for stage k. If not, project the value projected at stage k — 1.

We claim that the procedure just described is a projective strategy for /.
Since/is recursive relative to the halting problem, for any n there are finitely
many pairs {eumx),... 9(eZ9mz) of integers such that the relative recursive pro-
cedure for /determines the correct value of f(n) given the truth-values of the
statements (3) for e = eu m = m{9 O < 1 < z. Let (ejumji),... 9{ejVimjv) be
precisely the pairs <^/,m/> such that lxT{ei9mhx) holds. For each s9 O < s <
v9 let Ns = min[p: T(ejS9nijS9p)}9 and Ms = max{ejS9mJS9Ns}. Then a compu-
tation verifying (3) for e = eJS9 m = rrijS will appear by stage Ms. Let p be the
maximum value of the Ms and q be the number of steps in the complete com-
putation of f(n) relative to the halting problem. Then our proposed strategy will
produce the correct value oϊf(n) at all steps after max{p9q}. Thus/is effec-
tively projectable and hence, by CT, Turing projectable. This completes the
proof of Theorem 1.

We now obtain a theorem of Putnam ([3], Theorem 1):

Corollary A set of natural numbers is a trial and error predicate if and only
if it is Δ 2.

Proof: A predicate is Δ2 if and only if it is recursive relative to the halting prob-
lem. A set of natural numbers is a trial and error predicate if and only if its char-

TURING PROJECTABILITY 525

acteristic function is Turing projectable. The corollary now follows from
Theorem 1.

3 Generalized computabilίty and inductive logic Inductive logicians have dis-
cussed the possibility of a perfect learning strategy, i.e., a procedure for forming
belief that will correctly extrapolate any (mechanical) regularity (cf. [1], [4]). In
order to provide a suitable mathematical representation of this question, it has
been customary to convert it into the question of whether there is a uniform
strategy for solving the following class of problems:

(I) Given a sufficiently large finite initial segment of a mechanically generated
sequence {nx} of natural numbers, to extrapolate the rest of the sequence.

For any a: N-+ N, n E N, let u*(n) code the finite sequence <α(0),. . . ,
oc{n - 1)> in N. A strategy for solving the problems (I) for a given class R of
functions is representable by a number-theoretic function Ψ such that for each
function of a G R there is an integer na such that

(P) Vn > naψ(a*(n)) = a(n).

If (P) holds for some choice of na, we say that Ψ extrapolates a. Informally,
Ψ may be thought of as describing the mathematician's pastime of considering
a finite initial segment of a sequence and trying to guess the next element. The
assertion "Ψ extrapolates α" is the claim that Ψ describes a process that even-
tually produces the correct result; i.e., given a large enough initial subsequence,
the process will always conjecture the (correct) next element.

It might be suggested that if Ψ is to describe a learning strategy for a class
R of sequences, then there must be a uniform bound on the number of steps
required for the strategy to extrapolate a sequence in R; or, at least, that there
be a uniform bound on the number of times the procedure can be defeated by
a sequence in R. However, although these are desirable features of a learning
strategy, they are not plausibly necessary. It frequently occurs that a class K of
possible physical systems can be described by laws of a certain form without
there being an a priori bound on the complexity of the laws (in terms of some
natural complexity measure, e.g., length). There is no such bound because there
is no a priori bound on the complexity of the systems under consideration. Con-
sider the problem of extrapolating such a law from data presented by a system
in K. A natural inductive strategy would be to try to fit the data by laws in order
of increasing complexity (with respect to a suitable measure of complexity; for
this example, let us suppose it to be decidable whether a given finite array of
data is generated by a law of the relevant form). For any integer n, there is a
system which is not described by any law of complexity <AZ, and so the proce-
dure will not terminate in fewer than n steps for the system. Moreover, if we
suppose that the data for this system are presented in stages σu σ 2 , . . . such
that, for each k < n, the data of σk are accommodated by a law of complexity
k, but by no law of complexity <&, this system will defeat the procedure at least
n times. Nevertheless, the procedure seems unexceptionable. We are justified in
continuing to use it in the face of repeated defeats, for our theory of the sys-

526 TIMOTHY MCCARTHY AND STEWART SHAPIRO

tern in question implies that it will eventually succeed. The fact that it is defeat-
able any finite number of times is attributable not to a defect in the strategy,
but to the complexity of the systems to which it is applied.

We are interested in inductive strategies for the class of all mechanically
generated sequences. Granted (CT), then, we may focus on providing such a
strategy for the class of all recursive functions. It is easily shown that no recur-
sive function Ψ has the property (P) for each recursive function a (for a proof,
see [4]). In fact, by essentially the same method one can prove a more general
result. A collection T of number-theoretic functions is said to be a Turing cone
iff

V/E TVg(g<τf-+g<Ξ Γ),

where ' < / denotes Turing reducibility. We then have:

Theorem 2 No element of a Turing cone T extrapolates each element of T.

Proof: Let a Turing cone Γbe given, and consider any/E T. We construct a
g E T that /does not extrapolate, g is described recursively as follows:

(4) g (0) = 0
(5) g(n+ 1) = / (* * (/ ! + 1)) + 1.

Clearly, g is recursive relative to/, so that g E T. If/extrapolates g, there exists
an ng such that

g(ng+l) =f(g*{ng+l)).

But taking n = ng in (5) we have

£(/!*+ l)=/(g*(/ !g+l)) + l,

a contradiction. Thus/cannot extrapolate g.
However, we will show that there is a projective strategy that uniformly

solves the problems (I) for each recursively generated sequence {«,-}.

Theorem 3 There is a Turing project able function φ: N^ Nsuch that φ
extrapolates any recursive function.

Proof: In virtue of Theorem 1, it suffices to construct a function φ such that
φ extrapolates any recursive function and φ is recursive relative to the halting
problem for ordinary Turing machines. This is done as follows. Let e0, e{,...
be a recursive enumeration of Turing machine indices. We assume that the indi-
cated coding of finite sequences from N is onto TV, and for any n E N we let
<j?o, ιΛ*(n)> be the sequence with code n. We give a procedure by which
φ(n) may be computed relative to the halting problem. Find the first index ein

such that [ein] (j) converges to nj for each j < k(n)9 and converges for j =
k(n) + 1. Set:

Φ(n) = iein]{k(n) + l).

φ is clearly defined for each n and computable relative to the halting problem.
For later purposes we note that φ is projected by the following extended

TURING PROJECTABILITY 527

Turing machine M. For any input n, the computation of M proceeds in stages.
At each stage m, M does m steps in the computation of the functions {ex},...,
{em\ at all inputs <k(n) + 1 on its computation tape. If at stage m, M finds an
index β, such that {e,} (j) = «/ for eachy <k{ή) and for which {e,} converges
at £(/?) + 1, then it projects {e,} (k(n) + 1) for the least such /. Otherwise, M
projects 0.

We now claim that φ extrapolates any recursive function /. Let ev be the
first number in the enumeration ex, e2,... which is an index of/. Let rtf be the
least integer n such that Vz < t> either {e,} (y) does not converge for somey <
n or/*(/i) * {<?/}*(/!). Then φ(/*O)) = [eυ] (j) =f(j) for eachy > nf, so that
φ extrapolates /.

On the other hand, there is no Turing projectable function that extrapo-
lates each Turing projectable function. This is an immediate consequence of The-
orems 1 and 2, and the fact that the collection of functions recursive relative to
the halting problem is a Turing cone.

The interest of Theorem 3 depends upon the extent to which extended Tur-
ing machines are relevant to an acceptable model of inductive procedure. Here
we argue for a limited sort of relevance. An extrapolating procedure for a func-
tion/is applied to finite initial segments of the graph of/. These are regarded
as empirical data on the basis of which the procedure frames predictions about
the further behavior of the graph of/. Given a sufficiently large finite initial seg-
ment as input, the procedure produces a rule which describes that initial segment.
Call this rule a covering law for that segment.

The conjectured covering law is subject to revision under two circum-
stances: First, some new data — a larger initial segment of the graph of/—may
be found which is inconsistent with the covering law. In this case, the procedure
searches for an alternative covering law for the largest known initial segment.
We think of these initial segments as derived from external experience.

Secondly, however, the conjecture may be changed in the face of further
theoretical experience, independently of further external experience. The pro-
cedure may produce a covering law that provides a better explanation of the
given data. In this case, a finite initial segment of/is given, together with a
covering law for it. Subsequently, an alternative law is found which better expli-
cates the given initial segment, without a longer initial segment being given. For
example, it may be found that a simpler algorithm (with respect to a suitable
simplicity measure) generates the given initial segment; or that that segment may
be described by an alternative law that is a logical consequence of a previously
acquired theory. (Recall from Church's theorem that it is not generally decid-
able whether a law is a consequence of a given theory.)

A conjectured hypothesis, then, may be revised either in the face of recal-
citrant data or in the aftermath of a theoretical reevaluation. To some extent,
the present model of inductive procedure in terms of the projectable function
φ reflects both aspects of conjecture revision. On the suggested model, a finite
initial segment σ of the function to be extrapolated is recorded on the compu-
tation tape of the machine M projecting φ. The machine searches for a cover-
ing law for σ in the form of a partial recursive function, which becomes a basis
for the prediction of further values. The conjectured covering law is subject to
revision in two ways. First, a longer initial segment σ+ may appear which is

528 TIMOTHY MCCARTHY AND STEWART SHAPIRO

incompatible with the conjecture. The procedure then searches for a Turing
machine index that generates σ+ . Second, even if new data do not appear, the
conjecture is subject to revision due to the nonterminating character of the com-
putation. Once a covering law is found for σ, the machine will continue to search
for another covering law with a smaller index. If we imagine the initially given
ordering of Turing machine indices to reflect a prior ordering of hypotheses in
terms of theoretical acceptability (say, by means of a simplicity measure), the
second class of revisions represents a corresponding sort of theoretical reevalu-
ation.

4 Projectabίlity infinite space In this and the following sections, we shall
consider some restrictions on the definition of project ability which determine
more limited classes of functions. In some cases, these restrictions will lead us
back to the class of Turing computable functions.

We first consider limitations on the computational space used by an ex-
tended Turing machine. Let p = (σ{,..., σm) be a sequence of configurations
of an extended Turing machine M. By the space used by p, we mean the total
number of loci on the tapes of M which either contain symbols or which occur
between loci which contain symbols in some σ, . If M is an extended Turing
machine and n is a natural number, let PM(n90) be the initial configuration of
Mat input n, and for any (n,m), let PM(n,m + 1) be the configuration follow-
ing PM(n9m), if any; otherwise, it is PM(n9m). By spM{n9m) we denote the
space used by the sequence of configurations (PM(n90)9... 9PM(n9m)). The
space used by M at n is defined to be the maximum over all natural numbers
m of the values spM(n9rn)9 if this maximum exists, and is otherwise undefined.
We say that Mis a finite space machine if this value is defined for each n. In
short, a finite space machine is an extended Turing machine which uses only a
finite amount of space for each input.

We begin with the following observation. One may think of an ordinary
Turing machine as an extended Turing machine, one whose projection at any
stage coincides with the content of its tape at that stage.5 Thus the definitions
of stability and projection make sense for ordinary Turing machines. In partic-
ular, an ordinary Turing machine configuration is stable just in case no print-
ing or erasing instructions are executed in succeeding configurations, and an
ordinary Turing machine M projects a function f:N->N iff for each input
n EN9 Meventually enters a stable configuration with/(/?) on its tape. Thus,
if an ordinary Turing machine projects a function, it executes only finitely many
printing or erasing instructions for each input. Therefore, an ordinary Turing
machine that projects a function is a finite space machine in the sense of the last
paragraph.

The definition of projectability for ordinary Turing machines thus relaxes
the usual definition of Turing computability by dropping the requirement that
the machine halt when it has produced the "result" of the computation. The next
theorem says that this relaxation does not change the class of computable func-
tions.

Theorem 4 Let f: N -• N. Then f is projectable by an ordinary Turing
machine ifff is (Turing) computable.

TURING PROJECTABILITY 529

Proof: Right to left is, of course, immediate. Assume, then, that/: N-+N is
projected by an ordinary Turing machine M. It suffices to show that the collec-
tion of stable configurations for Mis recursive. For in this case, to compute/(π)
we apply M to n to obtain a recursive enumeration σ l5 σ 2,... of configura-
tions, testing each for stability. Since Mprojects/, we must eventually reach an
m such that σm is a stable configuration for M. We then output | σm | for the
least such m. So we need only prove:

Lemma 5 Given an ordinary Turing machine M and a configuration σ for
M, it is decidable whether σ is stable for M.

Proof: Given M and σ, consider the following algorithm:
Apply M to the configuration σ to obtain a sequence of configurations

{σ/}; i.e., σ0 = σ and for any n σn+\ is the configuration following σ. Execute
the following instructions, in order, at each stage in the computation:

(1) If a printing or erasing instruction is executed, output "NO" and stop.
(2) If a halting state is assumed, output "YES" and stop.
(3) If for some n and m > n σm = σn, then output "YES" and stop.
(4) If for some n and m > n:

(i) σm and σn indicate the same state;
(ii) in σn the machine is scanning a space to the right of any space

on which a printed symbol appears;
(iii) in σm the machine is scanning a space to the right of the space

scanned in σn;
(iv) for any / , « < / < ra, in σz the machine is scanning a space to

the right of any space containing a printed symbol;
then output "YES" and stop.

(5) Like (4), with "left" in place of "right".

We claim that: (i) if this algorithm halts, then it gives the correct results; and
(ii) the algorithm halts for any configuration σ.

Ad(i): If the algorithm halts because of instruction (1) or (2), then the result
is clearly correct. Now suppose that the algorithm halts because of instruction
(3). Then when applied to σ, M will eventually pass through the sequence σn,
σ π +i,.. . σm without executing a printing or erasing instruction. Since σn = σm,
the sequence will enter an infinite loop. Thus, σ is stable. If the algorithm halts
due to instruction (4), the machine passes through a sequence σn9 σn+u . . . ,σm

in which only blank spaces are encountered, which puts the machine in the state
of σn and places the scanner to the right of its position in σn. The machine will
then follow indefinitely an analogous sequence of configurations without execut-
ing a printing or erasing instruction. Thus σ is stable for Min this case as well.
If the algorithm halts because of instruction (5), the result is similar.

Ad(ii): We consider four cases. Case (I): the initial configuration σ is not
stable for M. Then when applied to σ the machine will eventually print or erase
a symbol, in which case instruction (1) will be executed. Case (II): M applied
to σ halts without executing a printing/erasing instruction. Then instruction (2)
will eventually be executed. Case (III): M applied to σ neither halts nor executes

530 TIMOTHY MCCARTHY AND STEWART SHAPIRO

a printing/erasing instruction, and for each n there is an m > n such that σm

indicates the machine to be scanning a symbol. Notice that with the tape con-
tents fixed, there are only finitely many configurations a given machine may
assume in which it scans a (nonblank) symbol. Thus eventually a configuration
will be repeated and instruction (3) will be executed. Case (IV): the machine nei-
ther halts nor executes a printing/erasing instruction, and there exists an n such
that for each m> n σm indicates that the machine is scanning a blank. Thus in
σn+ι, σn+2,... the scanner either (i) stays within some finite block of blank
spaces or (ii) tracks indefinitely to the right (possibly with backtracking) with-
out encountering a symbol, or (iii) tracks indefinitely to the left without encoun-
tering a symbol. Since the total number of states is finite, if (i) holds, instruction
(3) will be executed; if (ii) holds, instruction (4) will be executed; and if (iii)
holds, instruction (5) will be executed. This completes the proof of Lemma 5.

It is tedious but straightforward to extend Lemma 5 to finite space ma-
chines in general. The reason is that such machines also produce only finitely
many configurations in which a (nonblank) symbol is scanned. It follows that
the collection of all stable configurations of any finite space machine is recur-
sive. So in analogy to Theorem 4, we have:

Theorem 6 Suppose that f: N-+Nis projectable by a finite space machine.
Then f is Turing computable.

Thus the finite space restriction on projectability leads us back to precisely
the class of computable functions.

5 Projectability with convergence bounds If an extended Turing machine M
projects a function/: N-> N9 at each input n, Mproduces a computation which
eventually results in a stable projection for/(«). One can then ask, for each
input, how many steps are required for a stable value to be achieved. Say that
a function g: N-+ N is a stability measure for M if for each n, M applied to n
reaches a stable value in g(n) steps. More formally, g is a stability measure for
M iff, for each n e TV, there is a computation (σι,...,σk) of M at input n such
that k < g(n) and σk is stable for M. Notice that an extended machine has a
stability measure only if there is a function that it projects; the first observa-
tion of this section is that in such a case the machine has a projectable stabil-
ity measure.

Theorem 7 Let M be an extended Turing machine that projects a number-
theoretic function. Then there is a projectable stability measure for M.

Proof: Consider the following projective strategy. Given any n as input, ap-
ply M to n. Let σu σ 2,.. . be the resulting sequence of configurations for M.
We specify a projection Gn(m) of the strategy at stage m by induction on m:
Gn{0) = 0. For each m,

\Gn(m) if | σ m + 1 | = \σm\
Gn(m+l)=\ .

[m + 1 otherwise.

TURING PROJECTABILITY 531

Thus, at stages where M changes its projection, G conjectures the number of
steps that M has run up to that point. Let g(n) be the least integer m such that
the computation of M at input n produces a stable configuration in m steps.
Then g is a stability measure for M, and for each n we have

Vm> g(n)Gn(m) = g(n)9

so that the suggested strategy projects g.
On the other hand, it is immediate that a function is Turing reducible to

any stability measure for any extended machine that projects it:

Theorem 8 Let f: N-+ N, let M project f and let g be a stability measure
for M. Then f is recursive relative to g.

Proof: Let /, M and g satisfy the hypothesis. Let n be given. To compute
f(n) relative to g, do g(n) steps in the computation of M applied to n. Let
tfi> 9σg(n) be the corresponding sequence of configurations for M. Output
I σg(rt) I. Since g is a stability measure for M, we have/(«) = | σgin) | for each
n, so that this procedure, which is clearly effective relative to g, computes /.

Corollary 9 If an extended Turing machine has an effective stability mea-
sure, then it projects a recursive function.

Conversely, it is clear that any recursive function is projected by an
extended Turing machine with a recursive stability measure. Thus the condition
that a function is projectable by an extended machine with a computable sta-
bility measure is equivalent to the computability of that function. However, the
following theorem shows that it is not true that any extended machine that proj-
ects a recursive function can be associated with a recursive stability measure:

Theorem 10 There is an extended machine M that projects a computable
function such that there exists no computable stability measure for M.

Proof: We construct an extended Turing machine M that projects the constantly
zero function. Let Mo be an extended machine that projects a nonrecursive
function/. Given an input n, Mproceeds in stages as follows: on its computa-
tion tape, M simulates the computation of M o at n, producing the configura-
tions σ\, σ 2 , . . . of M o . For each k, if \σk\ differs from | σk+\ | , Mprints 1 on
its projection tape, and if \σk\ — \σk+γ\ it prints 0. That is, M conjectures 1
when Mo changes its conjecture, and conjectures zero at all other times.

Since M o projects /, at any input n, M will eventually be stable with a
projection of zero. Let g be any stability measure for M. Then g is nonrecur-
sive. For it is clear that one could compute a stability measure for M o relative
to g. Thus, if g were recursive, M o would possess a recursive stability measure.
By Corollary 9, then,/would be recursive, contradicting the assumption.

It is natural at this point to ask whether, if/: 7V-> TV is a projectable func-
tion, there exists an extended machine projecting/which is associated with a
stability measure recursive relative to / The following result answers this ques-
tion in the negative:

Theorem 11 Let f: N -> N be a projectable function. Then there is an
extended Turing machine M and a stability measure g for M such that M pro-

532 TIMOTHY MCCARTHY AND STEWART SHAPIRO

jects f and g is recursive relative to f iff f is Turing equivalent to a recursively
enumerable set.

Proof: For the left to right direction, let M be an extended Turing machine
projecting a function/and let g be a stability measure for M. Suppose that g
is recursive relative to /. Let g* be the stability measure for M that maps any
n onto the least integer m such that, when Mis given n as input, Mis stable in
m steps. Clearly, g* is recursive relative to g. Since g is recursive relative to/,
g* is recursive relative t o / Also, by Theorem 8,/is recursive relative to g*.
Thus, /is Turing equivalent to g*. Now let

A = {{n,m): at input n, Mis not stable in m steps}.

Note that A is r.e. For, to enumerate A, we systematically apply M to each
input. If, for an input n and stage/?, Meither halts or changes its conjecture
at /?, we output (n, m) for each m <p. Finally, we claim that A is Turing equiv-
alent to g*, and hence t o / To compute g* relative to A proceed as follows: at
any argument n and stage m, determine whether (n,m) G A. If not, output m
and halt. Otherwise, go to stage m + 1. Conversely, to determine whether any
(n,m) belongs to A, one need only determine whether m < g*(n), and this
relation is clearly recursive relative to g*.

For the right to left direction, assume that /is Turing equivalent to an r.e.
set P. We construct an extended Turing machine that projects /along the lines
of the proof of Theorem 1. Let an input n be given. Divide each stage k in the
computation into substages Ak, Bk, and Ck. At substage Ak, do k steps in the
enumeration of P. At substage Bk, do k steps in the computation oϊf(n) rela-
tive to P. When a truth-value of a sentence of the form "m E P" is required,
assign it the value F unless m appeared in the (partial) enumeration of P at sub-
stage Ak, in which case the value T is assigned. At substage Ck, determine
whether a value ϊox f(ή) was produced at stage Bk. If so, that value is projected.
Otherwise, project 0 at stage k. As in Theorem 1, it may be shown that M pro-
jects/ Moreover, for each n there is a stage kn such that at substage Bkn only
correct truth-values are assigned to sentences of the form "ra G P" and a value
for/(«) is determined. This value will be correct and M will be stable at stage
kn. The function h defined for each n by h(n) = kn is then a stability measure
for M. Moreover, h is clearly recursive relative to P and hence, by hypothesis,
relative to /

Corollary 12 There is a Turing projectable function f such that no extended
machine projecting f possesses a stability measure recursive relative to f.

Proof: Let/be any function recursive relative to the halting problem, but not
equivalent to any r.e. set. By Theorem 1,/is Turing projectable. But by The-
orem 11, no extended machine projecting/has a stability measure recursive rel-
ative to /

6 Other conditions There are other natural restrictions on the definition of
'projectable function'. In this section, we briefly consider some restrictions which
lead to classes of projectable functions properly intermediate between the recur-
sive functions and the collection of all projectable functions.

TURING PROJECTABILITY 533

The conditions considered above involving space and time may be viewed
as constraints on the efficiency of projection. Another notion of efficiency for
projective strategies is that there exists a uniform finite bound on the number
of times a given generalized machine can change its projection. Let us say that
a generalized machine is uniform if there is a number k such that at any input
the machine reaches a stable projection with fewer than k changes in its
projected value. Say that a function/: TV-• TV is uniformly project able if it is
projected by some uniform machine. Under a somewhat different terminology,
Putnam investigated the question of uniform project ability for characteristic
functions (see [3], especially Theorem 2). He found that such a function is uni-
formly projectable if and only if the associated predicate belongs to Σ*9 the
smallest set containing the r.e. predicates and closed under truth-functions. Thus
the collection of such predicates falls short of the collection of all effectively pro-
jectable predicates.

A rather different notion of efficiency for projective strategies concerns the
number of times a given projection is used. Let M be an extended machine. Say
that M is perfect if at any input M projects any value at most once. If a func-
tion/: TV-> TV is projected by a perfect machine, we say that / is perfectly pro-
jectable.

One class of perfectly projectable functions is of special interest. Let R be
a partial ordering of the natural numbers. Let M be an extended Turing ma-
chine. Say that M is monotonic in R if for any argument the projected values
of M appear in (strictly) increasing order with respect to R. Thus, for example,
if R is the natural order (<) on TV, then a machine is monotonic in R if for any
successive projections n and m of M, we have n < m. Monotonicity in < may
be thought of as the requirement on an extended Turing machine that no erasing
instruction be executed on the projection tape.6 A number-theoretic function
is monotonically projectable in R iff some machine monotonic in R projects it.
It is clear that if a machine is monotonic in some order, then it is perfect pro-
vided that it projects a function.

Our first result circumscribes the perfectly projectable functions:

Theorem 13 Let /: TV -̂ TV. Iff is perfectly projectable, then f is Turing
equivalent to a recursively enumerable set.

Proof: Let M be a perfect extended machine projecting/. We show that /is
Turing equivalent to an r.e. set. In view of Theorem 11, it suffices to show
that M has a stability measure recursive relative to /. We may compute a sta-
bility measure relative to / as follows: for any n, count the number of steps
until f(n) is projected, then output that number. That this procedure com-
putes a stability measure for M follows immediately from the fact that M is
perfect.

In view of Theorems 1 and 13, there exist projectable functions/which are
not perfectly projectable: take/to be any function recursive relative to the halt-
ing problem, but not Turing equivalent to any recursively enumerable set. Thus,
since it is clear that any recursive function is perfectly projectable, the perfectly
projectable functions are properly intermediate between the recursive functions
and the class of all projectable functions.

Our final result shows that Theorem 13 cannot be reversed:

534 TIMOTHY MCCARTHY AND STEWART SHAPIRO

Theorem 14 There is a function f: N^N such that f is equivalent to an r.e.
set and f is not perfectly projectable.

Proof: Let A(n9k) say that n is the Gδdel number of an extended machine M
such that M at input n discards at least one projection by stage k. Define g:
NxN-+Nby

Γo if A(n9k)
g(n,k)= \ .

|^1 otherwise.

Define/by f(n) = lim g(n9k). Then/is not projected by any perfect extended

machine (on the convention that each machine begins with an initial projection

of 0). B u t / i s clearly Turing equivalent to the predicate (lx)A(n,x), which is

r.e., since A(n9x) is recursive.

NOTES

1. Similar generalizations have been considered before. In particular, the notion of
'effectively projectable set' introduced in Section 1 of this paper is equivalent to the
concept of 'trial and error predicate' in Putnam's [3]; see also Jeroslow [2].

2. For simplicity, we consider only total functions here, but most of the results and
arguments presented throughout readily generalize to partial functions. Here, the
relevant statement for partial functions is that the output of an effective or mechan-
ical procedure is defined only for inputs on which it terminates.

3. Of course, we wish to allow the case in which {σim} terminates with some stage σkm.

In this case, we set σιm = σkm for all / > k.

4. As with ordinary Turing machines, virtually any reasonable variation on this theme
will suffice. For definiteness, we propose the following: The alphabet of each
extended Turing machine is the familiar universal one consisting of blanks (or zeros)
and ones, with a natural number n represented by a string of n ones. Let qOi qu ...
be the computation states and rθ9 rl9... the projection states. The "interaction"
between the tapes is effected by two distinguished states qOi r0, and an instruction
(<7O>1>O,A*O): when Mis in the state q0 and scans a one on the computation tape, it
erases the character and assumes the distinguished projection state r0. This state
causes the machine to perform a subroutine which erases the projection tape and
throws Mback into state qOt scanning the original space on the computation tape.
At this point, M transcribes part of the computation tape to the projection tape by
proceeding from left to right, transcribing each 'Γ until a blank space is encountered.

5. In this case, one must slightly extend the notion of projection, to allow finite
sequences of T s and blanks to be projected values.

6. Incidentally, there is a similarity in spirit here to the original Turing machines (of
Turing's seminal "On computable numbers, with an application to the Entsheidungs-
problem" [5]). Those machines were thought of as devices for enumerating sets. Every
second square of the tape is designated for output and no erasing instructions are
executed on those squares.

TURING PROJECTABILITY 535

REFERENCES

[1] Carnap, R., The Continuum of Inductive Methods, University of Chicago Press,
Chicago, 1952.

[2] Jeroslow, R., "Experimental logics and Δ^-theories," Journal of Philosophical
Logic, vol. 4 (1975), pp. 253-267.

[3] Putnam, H., "Trial and error predicates and the solution to a problem of Mos-
towski," The Journal of Symbolic Logic, vol. 30 (1965), pp. 49-57.

[4] Putnam, H., " 'Degree of confirmation' and inductive logic," reprinted in his Math-
ematics, Matter and Method, Cambridge Unversity Press, Cambridge, 1975.

[5] Turing, A. M., "On computable numbers, with an application to the Entsheidungs-
problem," Proceedings of the London Mathematical Society, series 2, vol. 42
(1936-1937), pp. 230-265.

T McCarthy S. Shapiro
Department of Philosophy Department of Philosophy
University of Illinois at Urbana-Champaign The Ohio State University
Urbana, Illinois 61801 Newark, Ohio 43055-9990

