Some Notes on Iterated Forcing With $2^{N_{0}}>\aleph_{2}$

SAHARON SHELAH*

Introduction By Solovay and Tenenbaum ([7]) and Martin and Solovay ([3]) we can iterate c.c.c. forcing with finite support. There have been many works on iterating more general kinds of forcings adding reals (e.g., [4]), getting generalizations of $M A$, and so on, but we were usually restricted to $2^{\aleph_{0}}=\aleph_{2}$. Note only this is a defect per se, but there are statements that we think are independent but which follow from $2^{\mathrm{K}_{0}} \leq \aleph_{2}$.

Some time ago Groszek and Jech (in [2]) got $2^{\aleph_{0}}>\aleph_{2}+M A$ for a family of forcing wider than c.c.c. but for \aleph_{1} dense sets only.

In Section 1 we generalize RCS iteration to κ-RS iteration.
In Section 2 we combine from [4], X, XII (i.e., RS iteration and some properness and semicompleteness) with Gitik's definition of order ([1]). (He uses Easton support, each $Q\left(\{2\}, \kappa_{i}\right)$-complete where for important $i, \kappa_{i}=i$. His main aim was properties of the club filter on inaccessible: precipitousness and approximation to saturation.)

In Section 3 we get $M A$-like consequences (strongest-from supercompact). In Section 4 we get that, e.g., for Sacks forcing (though not included), and in the models we naturally get, for every \aleph_{1} dense subset there is a directed set intersecting all of them.

In Section 5 we solve the second Abraham problem.
The main result was announced (somewhat inaccurately) in [6].

1 On κ-revised support iteration We redo [4], Ch. X, Section 1, with " $<\kappa$ " instead countable.

Remarks 1.0:
(1) Now if $P_{1}=P_{0} *{\underset{\sim}{2}}_{0}, \underline{q}_{1}$ a P_{1}-name, $G_{0} \subseteq P_{0}$ generic over V, then in $V\left[G_{0}\right], q_{1}$ can be naturally interpreted as a Q_{0}-name, called ${\underset{q}{1}}^{1} / G_{0}$,

[^0]which has a P_{0}-name q_{1} / G_{0}, or q_{1} / P_{0}; but usually we do not care to make those fine distinctions.
(2) Using $\bar{Q}=\left\langle P_{i}, Q_{i}: i\langle\alpha\rangle, P_{\alpha}\right.$ will mean $R \operatorname{Lim} \bar{Q}$ (see Definition 1.2).
(3) If D is a filter on a set $J, D \in V, V \subseteq V^{\dagger}$ (e.g., $V^{\dagger}=V[G]$) then in an abuse of notation, D will denote also the filter it generates (on J) in V^{\dagger}.
(4) D_{κ} is the closed unbounded filter on κ.

Definition 1.1 We define the following notions by simultaneous induction on α :
(A) $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\alpha\right\rangle$ is a κ-RS iteration (RS stands for revised support)
(B) a \bar{Q}-named ordinal (or $[j, \alpha$)-ordinal)
(C) a \bar{Q}-named atomic condition (or $[j, \alpha)$-condition), and we define $q \uparrow$ $\xi, \underline{q} \upharpoonright\{\xi\}$ for a \bar{Q}-named atomic $[j, \alpha)$-condition q and ordinal ξ.
(D) the κ-RS limit of $\bar{Q}, R \operatorname{Lim}_{\kappa} \bar{Q}$ which satisfies $P_{i}<\circ \widetilde{R} \operatorname{Lim}_{\kappa} \bar{Q}$ for every $i<\kappa$ and we define $p \upharpoonright \beta$ for $p \in R \operatorname{Lim}_{\kappa} \bar{Q}, \beta<\alpha$. (We may omit к.)
(A) We define " \bar{Q} is $a \kappa$ - RS iteration"
$\alpha=0$: no condition.
α is limit: $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\alpha\right\rangle$ is a κ-RS iteration iff for every $\beta<\alpha$, $\bar{Q} \upharpoonright \beta$ is one.
$\alpha=\beta+1: \bar{Q}$ is an RCS iteration iff $\bar{Q} \upharpoonright \beta$ is one, $P_{\beta}=R \operatorname{Lim}_{\kappa}(\bar{Q} \upharpoonright \beta)$, and Q_{β} is a P_{β}-name of a forcing notion.
(B) We define: $\underset{\sim}{\zeta}$ is a \bar{Q}-named $[j, \beta$)-ordinal above r. It means $r \in$ $\bigcup_{i<\gamma} P_{i}($ where $\tilde{\gamma}=\operatorname{Min}\{\beta, l(\bar{Q})\})$ and $\underset{\underline{\zeta}}{ }$ is a function such that:
${ }_{i<\gamma}(1) \operatorname{Dom}(\underline{\zeta})$ is a subset of $\bigcup\left\{P_{i}: i<\gamma\right\}$
(2) for every $q \in \operatorname{Dom}(\underline{\zeta})$ for some $i,\{q, r\} \subseteq P_{i}$ and $P_{i} \vDash r \leq q$.
(3) for every $q_{1}, q_{2} \in \operatorname{Dom}(\zeta)$, if for some $i<\alpha\left\{q_{1}, q_{2}\right\} \subseteq P_{i}$ and in P_{i} they are compatible then $\zeta\left(q_{1}\right)=\zeta\left(q_{2}\right)$.
(4) if $q \in \operatorname{Dom}(\underset{\sim}{\zeta}), q \in \bigcup_{i<\alpha} P_{i}$ and $i=\tilde{i}(q)$ is the minimal i such that $q \in P_{i}$ then $\underset{\substack{(}}{ }(q)$ is an ordinal $\geq i, j$ but $<\gamma, \beta$.

We define " ζ is a \bar{Q}-named ordinal above r " as " ζ is a \bar{Q}-named [0, $l(\bar{Q})$) ordinal above r ". We omit "above r " when $r=\varnothing$ (i.e., we omit demand (2)).
(C) We say " q is a \bar{Q}-named atomic $[j, \alpha)$-condition above r " if
(1) q is a pair of functions $\left(\underline{\zeta}_{q}, c n d_{q}\right)$ with a common domain $D=$ D_{q} :
(2) $c n d_{q}$ satisfies (1) and (3) above and:
(3) ξ_{q} is a $(\bar{Q} \upharpoonright \alpha)$-named $[j, \alpha)$-ordinal above r
(4) for $p \in{\underset{\sim}{q}}_{q}, \operatorname{cnd}_{q}(p)$ is a $P_{\xi_{q}(p)}$-name of a member of $Q_{\xi_{q}(p)}$. We omit " $[j, \alpha)$-" when $j=\tilde{0}, \alpha=\ell(\bar{Q})$ and we omit "above r " when $r=\varnothing$. If $l(\bar{Q})>\alpha$ we mean $\bar{Q} \upharpoonright \alpha$. We define $q \upharpoonright \xi$ as $\left(\zeta_{q} \backslash D_{1}, c n d_{q} \backslash D_{1}\right)$ where $D_{1}=\left\{p \in D_{q}: \underline{\zeta}_{q}(p)<\xi\right\}$. We define $q \vee \upharpoonright\{\xi\}$ as $\left(\zeta_{q} \backslash D_{2}\right.$, cnd $\left._{q} \upharpoonright D_{2}\right)$ where $D_{2}=\left\{p \in D_{q}: \zeta_{q}(p)=\xi\right\}$.
(D) We define $R \operatorname{Lim}_{\kappa} \bar{Q}$ as follows: if $\alpha=0: R \operatorname{Lim}_{\kappa} \bar{Q}$ is trivial forcing with just one condition, \varnothing.
if $\alpha>0$: we call q an atomic condition of $R \operatorname{Lim}_{\kappa} \bar{Q}$, if it is a \bar{Q}-named atomic condition.
The set of conditions in $R \operatorname{Lim}_{\kappa} \bar{Q}$ is
\{ $p: p$ a set of λ atomic conditions for some $\lambda<\kappa$; and for every $\beta<\alpha, p \upharpoonright \beta={ }^{d s f}\{r \upharpoonright \beta: r \in p\} \in P_{\beta}$, and $p \upharpoonright \beta \mathbb{H}_{P_{\beta}}$ "the set $\left\{r\lceil\{\beta\}: r \in p\}\right.$ has an upper bound in ${\underset{\sim}{\alpha}}^{\prime \prime}\}$.

We define $p \upharpoonright \beta=\{r \upharpoonright \beta: r \in p\}$.
The order is inclusion.
Now we have to show $P_{\beta}<\circ R \operatorname{Lim}_{\kappa} \bar{Q}$ (for $\beta<\alpha$). Note that any \bar{Q}-named $[j, \beta$)-ordinal (or condition) is a \bar{Q}-named $[j, \alpha$)-ordinal (or condition), and see Claim 1.4(1) below.

Remark 1.1A: Note that for the sake of 1.5(3) we allow κ to be not a cardinal and then we really use $|\kappa|^{+}$.

Remark 1.1B: We can obviously define \bar{Q}-named sets; but for conditions (and ordinals for them) we want to avoid the vicious circle of using names which are interpreted only after forcing with them below.

Definition 1.2

(1) Suppose \bar{Q} is a κ-RS iteration, ζ is a \bar{Q}-named $[j, \alpha$)-ordinal above r, $\beta \leq \alpha, r \in G \in \operatorname{Gen}(\bar{Q})$ (see Definition (3) below). We define $\zeta[G]$ by:
(i) $\underset{\zeta}{\zeta}[G]=i$ if for some $\gamma \leq \beta>\alpha$ and $p \in \operatorname{Dom}(\underset{\sim}{\zeta}) \cap G_{\gamma}$ we have $\underset{\sim}{\zeta}(p)=i$.
(ii) otherwise (i.e., $G \cap \mathrm{D}_{\underline{Y}}=\phi$ or $\left.r \notin G\right) \underset{\breve{\zeta}}{[G]}$ is not defined.

For a \bar{Q}-named $[j, \alpha)$-condition above r, \underline{q}, we defined $q[G]$ similarly.
(2) We denote the set of $G \subseteq \bigcup_{i<\alpha} P_{i+1}$ such that $G \cap P_{i+1}$ is generic over V for each $i<\alpha$ by $\operatorname{Gen}(\bar{Q})$.
(3) For ζ a \bar{Q}-named $\left[j, \alpha\right.$)-ordinal (above r) and $q \in \bigcup_{\alpha} P_{i}$ let $q \Vdash_{\bar{Q}}$ $" \underset{\sim}{\zeta}=\xi$ " if for every $G \in \operatorname{Gen}(\bar{Q})$ such that $r \in G: q \in \stackrel{\alpha}{G} \Rightarrow \underset{\sim}{\zeta}[G]=\xi$.

Remark 1.3: From where is G taken in (2), (3)? e.g., V is a countable model of set theory, G taken from the "true" universe.

Now we point out some properties of κ-RS iteration.
Claim 1.4: Let $\bar{Q}=\left\langle P_{i} Q_{i}: i\langle\alpha\rangle\right.$ be a κ-RS iteration, $P_{\alpha}=R \lim _{\kappa} \bar{Q}$.
(1) If $\beta<\alpha$ then: $\vec{P}_{\beta} \subseteq P_{\alpha}$; for $p_{1}, p_{2} \in P_{\beta}, P_{\beta} \vDash p_{1} \leq p_{2}$ iff $P_{\alpha} \vDash$ $p_{1} \leq p_{2}$: and $P_{\beta}<\circ P_{\alpha}$. Moreover, if $q \in P_{\beta}, p \in P_{\alpha}$, then q, p are compatible iff $q, p \upharpoonright \beta$ are compatible.
(2) If ζ is a \bar{Q}-named $\left[j, \alpha\right.$)-ordinal $G, G^{\prime} \in \operatorname{Gen}(\bar{Q}) G \cap P_{\xi}=$ $G^{\prime} \cap P_{\xi}$ and $\underset{\sim}{\zeta}[G]=\xi$ then $\underset{\sim}{\zeta}\left[G^{\prime}\right]=\xi$; hence we write $\zeta \underset{\sim}{[}\left[G \cap P_{\xi}\right]=\xi$.
(3) If $\underset{\sim}{\beta}, \gamma$ are \bar{Q}-named $[j, l(\bar{Q}))$-ordinals, then $\operatorname{Max}\{\underset{\sim}{\beta}, \underset{\sim}{\gamma}\}$ (defined naturãlly) is a \bar{Q}-named $[j, l(\bar{Q})$)-ordinal.
(4) If $\alpha=\beta_{0}+1$, in Definition 1.1(D), in defining the set of elements of P_{α} we can restrict ourselves to $\beta=\beta_{0}$. Also in such a case, $P_{\alpha}=$
$P_{\beta_{0}} * Q_{\beta_{0}}$ (essentially). More exactly, $\left\{p \cup\{q\}: p \in P_{\beta_{0}}, q\right.$ a $P_{\beta_{0}}$-name of a member of $\left.Q_{\beta_{0}}\right\}$ is a dense subset of P_{α}, and the order $p_{1} \cup$ $\left\{q_{1}\right\} \leq p_{2} \cup\left\{q_{2}\right\}$ iff $p_{1} \leq p_{2}, p_{2} \Vdash{\underset{q}{1}}^{1} \leq{\underset{\sim}{q}}_{2}$ is equivalent to that of P_{α}; i.e., we get the same Boolean algebra.
(5) The following set is dense in $P_{\alpha}:\left\{p \in P_{\alpha}\right.$; for every $\beta<\alpha$, if $r_{1}, r_{2} \in$ p, then $\Vdash_{P_{\beta}}$ "if $r_{1}\left\lceil\{\beta\} \neq \varnothing, r_{2} \upharpoonright\{\beta\} \neq \varnothing\right.$ then they are equal" $\}$.
(6) $\mid P_{\alpha} \leq\left(\Sigma_{i<\alpha} 2^{P_{i}}\right)^{\kappa}$, for limit α.
(7) If $\|_{P_{i} "}\left|Q_{i}\right| \leq \lambda$ ", α a cardinal, then $\left|P_{i+1}\right| \leq 2^{\left|P_{i}\right|}+\lambda$ (assuming, e.g., that the set of elements of G is λ).

Proof: By induction on α.

Lemma 1.5 The Iteration Lemma

(1) Suppose F is a function, then for every ordinal α there is one and only one κ-RS-iteration $\bar{Q}=\left\langle P_{i}, Q_{i}: i\left\langle\alpha^{\dagger}\right\rangle\right.$, such that:
(a) for every $i,{\underset{\sim}{i}}_{i}=F(\underset{\sim}{Q} \backslash i)$,
(b) $\alpha^{\dagger} \leq \alpha$,
(c) either $\alpha^{\dagger}=\alpha$ or $F(\bar{Q})$ is not an $\left(R \operatorname{Lim}_{\kappa} \bar{Q}\right)$-name of a forcing notion.
(2) Suppose \bar{Q} is a κ-RS-iteration, $\alpha=l(\bar{Q}), \beta<\alpha, G_{\beta} \subseteq P_{\beta}$ is generic over V. Then in $V\left[G_{\beta}\right], \bar{Q} / G_{\beta}=\left\langle P_{i} / G_{\beta}, \widetilde{Q}_{i}: \beta \leq i<\kappa\right\rangle$ is $a \kappa-R S$-iteration and $R \operatorname{Lim}_{\kappa}$ $\widetilde{Q}=P_{\beta}{ }^{*}\left(R \operatorname{Lim} \bar{Q} / G_{\beta}\right)($ essentially $)$.
(3) The Associative Law: If $\alpha_{\xi}(\xi \leq \xi(0))$ is increasing and continuous, $\alpha_{0}=0$; $\bar{Q}=\left\langle P_{i}, \widetilde{Q}_{i}: i\left\langle\alpha_{\xi(0)}\right\rangle\right.$ is $a \kappa$-RS-iteration, $P_{\xi(0)}=R \operatorname{Lim}_{\kappa} \bar{Q} ;$ then so are $\left\langle P_{\alpha(\xi)}\right.$, $\left.P_{\alpha(\xi+1)} / P_{\alpha(\xi)}: \xi<\xi(0)\right\rangle$ and $\left\langle P_{i} / P_{\alpha(\xi)},{\underset{\sim}{i}}_{i}: \alpha(\xi) \leq i<\alpha(\xi+1)\right\rangle$; and vice versa.

Remark 1.5A: In (3) we can use α_{ξ} 's which are names.
Proof: (1) Easy.
(2) Pedantically, we should formalize the assertion as follows:
(*) There is a function F ($=$ a definable class) such that for every κ-RS-iteration \bar{Q} and $l(\bar{Q})=\alpha$, and $\beta<\alpha, F_{0}(\bar{Q}, \beta)$ is a P_{β}-name of \bar{Q}^{\dagger} such that:
(a) $\Vdash_{P_{\beta}}$ " \bar{Q}^{\dagger} is a κ-RS-iteration of length $\alpha-\beta$ ".
 $F_{1}(\bar{q}, \beta)$ is an isomorphism between the corresponding completions to Boolean algebras)
(c) if $\beta \leq \gamma \leq \alpha \Vdash_{P_{\beta}}$ " $F_{0}(\bar{Q} \upharpoonright \gamma, \beta)=F(\bar{Q}, \beta) \upharpoonright(\gamma-\beta)$ " and $F_{1}(\bar{Q}, \beta)$ extends $F_{1}(\bar{Q} \upharpoonright \gamma, \beta)$ and $F_{1}(\bar{Q} \upharpoonright \gamma, \beta)$ transfer the P_{γ}-name ${\underset{\sim}{\gamma}}_{\gamma}$ to a P_{β}-name of a $\left(R \operatorname{Lim}_{\kappa}\left(\bar{Q}^{\dagger} \upharpoonright(\gamma-\beta)\right)\right.$-name of ${\underset{\sim}{\gamma}}_{\gamma-\beta}^{\dagger}\left(\right.$ where ${\underset{\sim}{\gamma}}_{\gamma-\beta}^{\dagger}=$ $\left.\left\langle Q_{\beta+i}^{\dagger}: i<\gamma-\beta\right\rangle\right)$.

The proof is the induction on α, and there are no special problems.
(3) Again, pedantically the formulation is
(**) For \bar{Q} is an RCS-iteration, $l(\bar{Q})=\alpha_{\xi(0)}, \bar{\alpha}=\left\langle\alpha_{\xi}: \xi \leq \xi(0)\right\rangle$ increasing continuous, $F_{3}(\bar{Q}, \bar{\alpha})$ is a κ-RS-iteration \bar{Q}^{\dagger} of length $\alpha_{\xi(0)}$ such that (a) $F_{4}(\bar{Q}, \bar{\alpha})$ is an equivalence of the forcing notions $R \operatorname{Lim}_{\kappa} \bar{Q}$. $R \operatorname{Lim}_{\kappa} \bar{Q}^{\dagger}$.
(b) $\left.F_{3}\left(\bar{Q} \upharpoonright \alpha_{\xi}, \alpha \upharpoonright(\zeta+1)\right)=F_{3}(\bar{Q}), \bar{\alpha}\right) \upharpoonright \zeta$
(c) ${\underset{\sim}{\alpha}}_{\dagger}^{\dagger}$ is the image by $F_{4}\left(\bar{Q} \upharpoonright \alpha_{\xi}, \bar{\alpha} \upharpoonright(\xi+1)\right)$ of the $P_{\alpha_{\xi}}=R \operatorname{Lim}_{\kappa}(\bar{Q} \upharpoonright$ $\left.\widetilde{\alpha}_{\xi}\right)$-name $F_{0}\left(\bar{Q} \upharpoonright \alpha_{\xi+1}, \alpha_{\xi}\right)$.

The proof again poses no special problems.
Claim 1.6: Suppose we add in Definition 1.1(B) also:
(5) if α is inaccessible, and for some $\beta<\alpha$ for every γ satisfying $\beta \leq$ $\gamma<\alpha, \mathbb{H}_{P_{\beta}} "\left|P_{\gamma} / P_{\beta}\right|<\alpha$ " then $(\exists \beta<\alpha)$ [Dom $\underset{\sim}{\zeta} \subseteq P_{\beta}$].

Then nothing changes in the above (only we have to prove everything by simultaneous induction on α), and if λ is an inaccessible cardinal $>\alpha$ and $\left|P_{i}\right|<\lambda$ for every $i<\lambda$ and $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\lambda\right\rangle$ is a κ-RS iteration, then
(1) every \bar{Q}-named ordinal is in fact a ($\bar{Q} \upharpoonright i$)-named ordinal for some $i<\alpha$,
(2) like (1) for \bar{Q}-named conditions.
(3) $P_{\kappa}=\bigcup_{i<k} P_{i}$.
(4) if κ is a Mahlo cardinal then P_{λ} satisfies the λ-c.c. (in a strong way).

2 The к-finitary revised support We deal with forcing notions Q satisfying:
Definition 2.1 Let γ be an ordinal, $S \subseteq\{2\} \cup\{\lambda: \lambda$ a regular cardinal $\}$. Now Q satisfies (S, γ) $-P r_{1}$ if
(i) $Q=\left(|Q|, \leq, \leq{ }_{0}\right)$
(ii) as a forcing $Q=(|Q|, \leq)$
(iii) \leq_{0} is a partial order
(iv) $\left[p \leq_{0} q \Rightarrow p \leq q\right]$
(v) for every cardinal $\kappa \in S$ and Q-name τ, such that \mathbb{F}_{Q} " $\tau \in \kappa$ " and $p \in Q$ for some $q \in Q, l \in \kappa, p \leq_{0} q$ and $q \Vdash_{Q}$ "if $\kappa=2, \tau=l$ and if $\kappa \geq \aleph_{0}, \tau \leq l "$
(vi) for each $q \in Q$ in the following game player I has a winning strategy: for $i<\gamma$ player I chooses $p_{2 i} \in Q$ such that $q \leq_{0} p_{2 i}: \wedge \bigwedge_{j<2 i} p_{j} \leq_{0}$ $p_{2 i}$ and then player II chooses $p_{2 i+1} \in Q, p_{2 i} \leq_{0} p_{2 i+1}$.
Player I loses if he has sometimes no legal move which can occur in limit stages only.
Let $(S, \gamma)-\operatorname{Pr}_{1}^{-}$means $(\{\kappa\}, \gamma)-\operatorname{Pr}_{1}$ for every $\kappa \in S$.
Fact 2.2:
(1) If $\kappa<\gamma_{1}, \gamma_{2}<\kappa^{+}$then $\left(S, \gamma_{1}\right)-P r_{1}$ is equivalent to $\left(S, \gamma_{2}\right)-P r_{1}$.
(2) If $\kappa+1 \leq \gamma<\kappa^{+}$and \square_{κ} (i.e., there is a sequence $\left\langle C_{\delta}: \delta\left\langle\kappa^{+}\right\rangle, C_{\delta} \subseteq\right.$ δ closed unbounded) [$\delta_{1} \in C_{\delta}, \delta_{1}=\sup \delta_{1} \cap C_{\delta} \rightarrow C_{\delta_{1}}=C_{\delta} \cap \delta_{1}$] and Q satisfies $(S, \gamma)-P r_{1}$ then Q satisfies $\left(S, \kappa^{+}\right)-P r_{1}$.
(3) If Q satisfies ($S, \gamma)-P r_{1}, \lambda \leq \gamma$, and $\lambda \in S$ then in $V^{Q} \lambda$ is still a regular cardinal and when $\lambda=2, Q$ does not add bounded subsets to γ.
(4) If Q satisfies $(S, \gamma)-P r_{1}, \lambda \in S, \lambda$ regular, and for every regular μ, $\gamma \leq \mu<\lambda \Rightarrow \mathbb{H}_{Q}$ " μ is not regular" (e.g., [γ, λ) contains no regular cardinal) then λ is regular in V^{Q}.

Proof: Straightforward.

Definition 2.3 $(S,<\kappa)-P r_{1}$, will mean $(S, \gamma)-P r_{1}$ for every $\gamma<\kappa$.
Fact 2.4: The following three conditions on forcing notion Q, a set $S \subseteq\{2\} \cup$ \{ $\lambda: \lambda$ a regular cardinal $\}$ and regular ordinal κ are equivalent:
(a) there is $Q^{\prime}=\left(Q^{\prime}, \leq, \leq \leq_{0}\right)$ such that $\left(Q^{\prime}, \leq\right),(Q, \leq)$ are equivalent and Q^{\prime} satisfies $(S, \kappa)-P r_{1}$.
(b) for each $p \in Q$, in the following game (which last κ moves) player II has a winning strategy: in the i th move player I chooses $\lambda_{i} \in S$ and a Q-name τ_{i} of an ordinal $<\lambda_{i}$ then player II chooses an ordinal $\alpha_{i}<\lambda_{i}$.
In the end player II wins if for every $\alpha<\kappa$ there is $p_{\alpha} \in Q, p \leq p_{\alpha}$ such that for every $i<\alpha p_{\alpha} \|$ "either $\lambda_{1}=2_{i}, \tau_{i}=\alpha_{i}$ or $\lambda_{i} \geq \aleph_{0} \tau_{i}<\alpha_{i}$ ".
(c) like (a) but moreover $\left(Q, \leq_{0}\right)$ is κ-complete.

Proof: $(c) \Rightarrow(a)$: trivial.
Proof: $(\mathrm{a}) \Rightarrow(\mathrm{b})$: Choose $q \in Q^{\prime}$ which is above p. We describe a winning strategy for player II: he plays on the side a play (for q) of the game from 2.1 (vi) where he uses a winning strategy (whose existence in guaranteed by (a)). In step i of the play (for $4.2(\mathrm{~b})$) he already has the initial segment $\left\langle p_{j}: j<2 i\right\rangle$ of the play for 2.1 (vi). If player II plays λ_{i}, τ_{i} in the actual game, he plays $p_{2 i} \in Q^{\prime}$ in the simulated play by the winning strategy of player I there and then he chooses $p_{2 i+1}, p_{2 i} \leq_{0} p_{2 i+1} \in Q^{\prime}$, which forced the required α_{i} (exists by $2.1(\mathrm{v})$) and then plays α_{i} in the actual play.

Proof: (b) \Rightarrow (c): Find winning strategy for player II in the game from 2.9(b). We define $Q^{\prime}: Q^{\prime}=\left\{\left(p,\left\langle\lambda_{i}, \tau_{i}, \alpha_{i}: i<\xi\right\rangle\right): p \in Q\right.$, and $\left\langle\lambda_{i}, \tau_{i}, \alpha_{i}: i<\alpha\right\rangle$ is an initial segment of a play of the game from 2.4(b) for p in which II uses his winning strategy.

The order \leq_{0} is:

$$
\left(p,\left\langle\lambda_{i}, \tau_{i}, \alpha_{i}: i<\xi\right\rangle\right) \leq_{0}\left(p^{\prime},\left\langle\lambda_{i}^{\prime}, \tau_{i}^{\prime}, \alpha_{i}^{\prime}: i<\xi^{\prime}\right\rangle\right)
$$

iff (both are in Q^{\prime}) and

$$
\begin{gathered}
Q \vDash p=p^{\prime}, \xi \leq \xi^{\prime}, \text { and for } i<\xi \\
\lambda_{i}=\lambda_{i}^{\prime}, \tau_{i}=\tau_{i}^{\prime}, \alpha_{i}=\alpha_{i}^{\prime}
\end{gathered}
$$

and the order \leq on Q^{\prime} is

$$
\left(p,\left\langle\lambda_{i}, \tau_{i}, \alpha_{i}: i<\xi\right\rangle\right) \leq\left(p^{\prime},\left\langle\lambda_{i}^{\prime}, \tau_{i}^{\prime}, \alpha_{i}^{\prime}: i<\xi^{\prime}\right\rangle\right)
$$

iff (both are in Q^{\prime} and) $Q \vDash p \leq p^{\prime}$. Moreover, $p^{\prime} \mathbb{H}_{Q}$ " $\lambda_{i}=2, \tau_{i}=\alpha_{i}$ or $\lambda_{i} \geq$ $\aleph_{0}, \tau_{i}<\alpha_{i}$ " for $i<\xi$.

The checking is easy.

Definition 2.5

(1) Let $\operatorname{Gen}(\bar{Q})=\left\{G: G \subseteq \bigcup_{i<\alpha} P_{i}\right.$ is directed, $G \cap P_{i}$ generic over V for $i<\alpha\}$. Let $\operatorname{Gen}^{r}(\bar{Q})=\left\{G\right.$: for some (set) forcing notion P^{*}, $\bigwedge_{i<\alpha} P_{i}<0 P^{*}$ and $G^{*} \subseteq P^{*}$ generic over V and $\left.G=G^{*} \cap \bigcup_{i<\alpha} P_{i}\right\}$.
(2) If $\bar{Q}=\left\langle P_{i}: i\langle\alpha\rangle\right.$ or $\bar{Q}=\left\langle P_{i}, Q_{i}: i\langle\alpha\rangle P_{i}\right.$ is <o-increasing we define a \bar{Q}-name τ almost as we define $\left(\bigcup_{i<\alpha} P_{i}\right)$-names, but we do not use maximal antichains of $\bigcup_{i<\alpha} P_{i}, G \subseteq \bigcup_{i<\alpha} P_{i}$:
(*) $\quad \tau$ is a function, $\operatorname{Dom}(\tau) \subseteq \bigcup_{i<\alpha} P_{i}$ and every directed $G \in \operatorname{Gen}^{r}(\bar{Q}), \tau[G]$ is defined iff $\operatorname{Dom}(\tau) \cap G \neq \varnothing$ and then $\tau[G] \in V[G]$ [where "every $G \ldots "$ is taken? e.g., V is countable, G any set from the true universe] and τ is definable with parameters from V (so τ is really a first-order formula with the variable G and parameters from V).
(3) For $p \in \bar{Q}$ (i.e., $\left.p \in \bigcup_{i<\alpha} P_{i}\right), \bar{Q}$-names $\tau_{0}, \ldots, \tau_{n-1}$, and (first-order) formula ψ let $p \Vdash_{\bar{Q}} \psi\left(\tau_{0}, \ldots \tau_{n-1}\right)$ means that for every directed $G \in$ $\operatorname{Gen}^{r}(\bar{G})$, with $p \in G, V[G] \vDash \psi\left(\tau_{0}[G], \ldots, \tau_{n-1}[G]\right)$.
(4) A \bar{Q}-named $[j, \beta$)-ordinal ζ is a \bar{Q}-name ζ such that if $\zeta[G]=\xi$ then $j \leq \xi<\beta$ and $\left(\exists p \in G \cap \bar{P}_{\xi \cap \alpha}\right) p \mathbb{F}_{\bar{Q}} " \underset{\sim}{\zeta}=\xi "($ where $\alpha=l(\bar{Q}))$. If we omit " $[j, \beta)$ " we mean $[0, l(\bar{Q}))$.
Remark 2.5A: We can restrict in the definition of $\operatorname{Gen}^{r}(\bar{Q})$ to P^{*} in some class K, and get a K-variant of our notions.
Fact 2.6:
(1) For \bar{Q} as above and \bar{Q}-named $[j, \beta)$-ordinal $\underline{\zeta}$ and $p \in \bigcup_{i<\alpha} P_{i}$ there are ξ, q and q_{1} such that $p \leq q, q \Vdash_{\bar{Q}}$ " $q_{1} \in G ", q_{1} \in P_{\xi}, \stackrel{i<\alpha}{\xi}<\alpha$, and $q_{1} \Vdash_{\bar{Q}}$ " $\zeta=\xi$ " or $q \Vdash_{\bar{Q}}$, " ζ is not defined".
(2) For \bar{Q} as above, and $\underset{\sim}{\zeta}, \tilde{\xi} \bar{Q}$-named $[j, \beta)$-ordinals, also $\operatorname{Min}\{\underset{\sim}{\zeta}, \xi\}$, $\max \{\underset{\sim}{\zeta}, \xi\}$ (naturally defined) are \bar{Q}-named $[j, \beta$)-ordinals.
(3) For \bar{Q} as above and \bar{Q}-named ordinals ξ_{1}, \ldots, ξ_{n} and $p \in \bigcup_{i<\alpha} P_{i}$ there are $\zeta<\alpha$ and $q_{0} \in P_{\zeta}, p \leq q, q \Vdash_{\bar{Q}} " \zeta=\operatorname{Max}\left\{\xi_{1}, \ldots, \xi_{n}\right\} "$. Similarly for Min.
Definition 2.7 We define and prove by induction on α the following simultaneously:
(A) $\bar{Q}=\left\langle P_{i}, Q_{i}: i\langle\alpha\rangle\right.$ is a κ-Sp p_{2}-iteration.
(B) A \bar{Q}-named atomic condition q (or $[j, \beta$)-condition, $\beta \leq \alpha$) and we define $q \backslash \xi, q \upharpoonleft\{\xi\}$ for a \bar{Q}-named atomic condition $\underset{\sim}{q}$ and ordinal $\xi<\alpha$ (or \bar{Q}-named ordinal ξ).
(C) If q is a \bar{Q}-named $[j, \beta$)-atomic condition, $\xi<\alpha$, then $q \upharpoonright \xi$ is a $(\bar{Q} \upharpoonright \xi)$-named $[j, \operatorname{Min}[\beta, \xi\})$-condition and $q \upharpoonleft\{\xi\}$ is a P_{ξ}-name of a member of Q_{ξ} or undefined (and then it is assigned the value \varnothing, the minimal member of Q_{ξ} similarly for ξ).
(D) The $\kappa-S p_{2}$-limit of $\bar{Q}, S p_{2}-\operatorname{Lim}_{\kappa} \bar{Q}$, and $p \upharpoonright \xi$ for $p \in S p_{2}-\operatorname{Lim}_{\kappa} \bar{Q}, \xi$ an ordinal $\leq \alpha$ (or \bar{Q}-named ordinal).
(E) $P_{\beta}<\circ S p_{2} \operatorname{Lim}_{\kappa} \bar{Q}$ (if $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\alpha\right\rangle$ is a κ - $S p_{2}$-iteration, $\beta<\alpha, P_{i}, Q$ satisfying (i)-(iv) of Definition 1.2). In fact $P_{\beta} \subseteq$ $S p_{2}-\operatorname{Lim}_{\kappa} \bar{Q}$ (as models with two partial orders, even compatibility is preserved) and $q \in P_{\beta}, p \in S p_{2} \operatorname{Lim}_{\kappa} \bar{Q}$ are compatible iff $q, p \upharpoonright \beta$ are in P_{β}.

Proof:

(A) $\bar{Q}=\left\langle P_{i}, Q_{i}: i\langle\alpha\rangle\right.$ is a κ-Sp p_{2}-iteration if $\bar{Q} \upharpoonright \beta$ is a κ-Sp 2 -iteration for $\beta<\alpha$, and if $\alpha=\widetilde{\beta}+1$ then $P_{\beta}=S p_{2} \operatorname{Lim}_{\alpha}(\bar{Q} \upharpoonright \beta)$ and Q_{β} is a P_{β}-name of a forcing notion as in Definition 2.1(i)-(iv).
(B) We say q is a \bar{Q}-named atomic $[j, \beta$)-condition when: q is a \bar{Q}-name, and for some $\zeta=\xi_{q}$ a \bar{Q}-named $[j, \beta)$-ordinal $\Vdash_{\bar{Q}}$ " ζ has a value iff q has, and if they have then $\underset{\sim}{\zeta}<\operatorname{Min}(\beta, l(\bar{Q})), \underset{\sim}{q} \in{\underset{\sim}{\zeta}}^{3}$ ". Now $\underset{\sim}{q} \upharpoonright \xi$ will have a value iff $\underline{\zeta}_{q}$ has a value $<\xi$ and then its value is the value of q. Lastly, q † $\{\xi\}$ will have a value iff $\underline{\zeta}_{q}$ has value ξ and then its value is the value of $\underset{\sim}{q}$ (similarly for $\underset{\sim}{\xi}$).
(C) Left to the reader.
(D) We are defining $S p_{2} \operatorname{Lim}_{\kappa} \bar{Q}$. It is a triple $P_{\alpha}=\left(\left|P_{\alpha}\right|, \leq, \leq_{0}\right)$ where (a) $\left|P_{\alpha}\right|=\left\{\left\{q_{i}: i<i(*)\right\} ; i(*)<\kappa\right.$, each q_{i} is a \bar{Q}-named atomic condition, and for every $\xi<\alpha, \mathbb{H}_{P_{\xi}}$ " $\left\{\tilde{q}_{i}^{e} \mid[\xi\}: i<i^{*}\right\}$ has an $\leq_{0^{-}}$ upper bound in $Q_{\xi}{ }^{\prime \prime}$.
(b) $P_{\alpha} \vDash p_{1} \leq{ }_{0} p_{2}$ iff for every $\zeta<\alpha \mathbb{H}_{P_{\zeta}}\left\{q_{i}^{l} \mid\{\zeta\}: i<i^{l}(*)\right\}$ are equal for $l=1,2$ or for some $i<i^{2}(*)$ for every $j_{1}<i^{1}(*) k$ $q_{\gamma_{1}}^{1} Q_{\zeta} \vDash q_{j_{1}} \leq_{0} q_{i}^{2}$ where $p_{l}=\left\{q_{i}^{l}: i<i^{l}(*)\right\}$
(c) $P_{\alpha} \neq p^{1} \leq p^{2}$ iff:
(i) for every $\zeta<\alpha\left(p^{2} \upharpoonright \zeta\right) \mathbb{H}_{P_{\zeta}}$ " $p^{1} \upharpoonright\{\zeta\}, p^{2} \upharpoonright\{\zeta\}$ are equal as subsets of Q_{ζ} (remember (F)) or for some $i<i^{2}(*)$ for every $j<i^{1}(*) \Vdash_{P_{\zeta}} " Q_{\zeta} \vDash q_{j}^{1} \leq q_{i}^{2} "$ where $p^{l}=\left\{q_{i}^{l}: i<i^{l}(*)\right\}$
(ii) for some $n<\omega$ and \bar{Q}-named ordinals ξ_{1}, \ldots, ξ_{n} for each $\zeta<$ $l(\bar{Q}): p_{2} \upharpoonright \Vdash_{\bar{Q}}$ "if $\zeta \notin\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ then for some $r \in p_{2}$, ${\underset{\sim}{r}}_{r}[G]=\zeta$ and for every $s \in p_{1}\left[{\underset{\sim}{r}}_{r}=\zeta \Rightarrow s \leq_{0} r\right]$ ". We then say: $p_{1} \leq p_{2}$ over $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$.

Remark: We could use names for $\underset{\sim}{n}$ too, but as it is finite this is not necessary.
Now for $\xi \leq \alpha$, and $p \in S p_{2} \operatorname{Lim}_{\kappa} \bar{Q}$, let us define

$$
\begin{aligned}
& p \mid \xi=\{r \upharpoonright \xi: r \in p\} \\
& p \upharpoonright\{\xi\}=\{r \upharpoonright\{\xi\}: r \in p\} .
\end{aligned}
$$

Proof of (E) : Let us check Definition 2.1 for $P_{\alpha}={ }_{d f} S p_{2} \operatorname{Lim}_{\kappa} \bar{Q}$:
$\leq^{P_{\alpha}}$ is a partial order: Suppose $p_{0} \leq p_{1} \leq p_{2}$. Let $n^{l}, \xi_{0}^{l}, \ldots, \xi_{n}^{l}$ appear in the definition of $p_{l} \leq p_{l+1}$. Let $n=n^{0}+n^{1}$, and

$$
\underline{\zeta}_{\ell}=\left\{\begin{array}{l}
\xi_{l}^{0} \text { if } l<n^{0} \\
\xi_{l}^{1}-n^{0} \text { if } l \geq n^{0}
\end{array}\right.
$$

Now $\mathbb{H}_{\bar{Q}} p_{l} \upharpoonright\left\{{\underset{\sim}{\zeta}}_{\ell}\right\} \leq p_{l+1} \upharpoonright\left\{{\underset{\sim}{l}}_{\ell}\right\}$, "hence $\Vdash_{\bar{Q}} p_{0} \upharpoonright\left\{{\underset{\sim}{\zeta}}_{\ell}\right\} \leq p_{2} \upharpoonright\left\{\zeta_{\Omega}\right\}$ ".

Also $\mathbb{F}_{\bar{Q}}$ "if $\zeta \notin\left\{\zeta_{0}, \ldots, \zeta_{n+1}\right\}$ then $p_{0} \upharpoonright\{\zeta\} \leq_{0} p_{1} \upharpoonright\{\zeta\} \leq_{0} p_{2} \upharpoonright\{\zeta\}$ ". So we finish.
\leq_{0} is a partial order: As in I.
$p \leq_{0} q \Rightarrow p \leq q$: By the definition; easy.
So in Definition 2.1, (i), (ii), (iii), and (iv) hold. We leave the checking of the rest to the reader.

Remark 2.8: This is a combination of [4], X with the recent Gitik ([2]) (which uses Easton support, each Q is $\left(\{2\}, \kappa_{i}\right)$-complete, where for the important i 's $\kappa_{i}=i$: as his aim was mainly cardinals which remain inaccessible).

Lemma 2.9 Suppose γ is an ordinal and $\bar{Q}=\left\langle P_{i}, Q_{i}: i\langle\alpha\rangle\right.$ is a κ-Sp p_{2}-iteration.
(1) if $p \leq q$ in $P_{\alpha}=S p_{2} \operatorname{Lim}_{\kappa} \bar{Q}$ then for some n ordinals $\xi_{1}<\ldots,<\xi_{n}, r \in$ $P_{\alpha}, q \leq r$, and $p \leq r$ above $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$.
(2) If γ is successor cardinal (or not a cardinal) then the parallel of 1.4, 1.5, 1.6 holds.
(3) If κ is inaccessible but $\Vdash_{P_{i}}$ " κ is a regular cardinal" for each $i<\alpha$ then the parallel of 1.4, 1.5, 1.6 holds.

Proof: Left to the reader.
Lemma 2.10 Suppose $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\alpha\right\rangle$ is a κ-Sp p_{2}-iteration, $\left.\kappa\right\rangle{\gamma_{0}}$ a regular cardinal, $S \subseteq\{2\} \cup\left\{\mu: \aleph_{0} \leq \mu \leq \kappa, \mu\right.$ regular $\}$ and each $Q_{i}\left(\right.$ in $\left.V^{P_{i}}\right)$, has $(S,<\kappa)-P r_{1}$, then:
(1) $P_{\alpha}=S p_{2}-\operatorname{Lim}_{\kappa} \bar{Q}$ has $(S,<\kappa)-P r_{1}$, and if each Q_{α} has $(S, \kappa)-P r_{1}$ then P_{α} has it.
(2) If $\kappa \in S$ and $c f(\alpha)=\kappa$ then $\bigcup_{i<\alpha} P_{i}$ is dense in P_{α}.
(3) If $\kappa \in S, \alpha$ strongly inaccessible, $\alpha>\left|P_{i}\right|+\kappa$ for $i<\alpha$ then P_{α} satisfies the α-chain condition (in a strong sense).
(4) If each Q_{i} has a power of $\leq \chi$, then P_{α} has a dense subset of power $\leq(|\alpha|+\chi)^{<\chi}$.
(5) If $\left|Q_{i}\right| \leq \chi, \chi^{<\chi}=\chi, l(\bar{Q})=\chi^{+}$then \bar{Q} satisfies the χ^{+}-c.c.
(6) If $S=\{\kappa\}$, (1) works even for $(S, \kappa)-\operatorname{Pr}$ which is defined as the game definition of semiproperness; i.e., using Fact 2.4(b) with winning means:

$$
\bigwedge_{\alpha}\left(\exists p_{\alpha}\right) p_{\alpha} \Vdash \operatorname{Sup}_{i<\alpha} \tau_{i} \leq \operatorname{Sup}_{i<\alpha} \alpha_{i}
$$

Proof:
(1) Let us check Definition 2.1. Now (i)-(iv) hold by 2.7.

For (v) let $\mu \in S$, $\mathbb{H}_{P_{\alpha}}$ " $\tau<\mu ", p \in P_{\alpha}$. For simplicity $\mu \neq 2$. We define by induction on $n p_{n}, p=p^{8}, p^{n} \leq_{0} p^{n+1}$. For each n let $\left\{{\underset{\sim}{i}}_{i}^{n}: i<\gamma_{n}<\kappa\right\}$ be the domain of p^{n} (i.e., $\left\{\underline{\zeta}_{r}: r \in p^{n}\right\}$) and define by induction on $i<\gamma_{n} p_{i}^{n}, p_{0}^{n}=p_{n}$. p_{i}^{n} is \leq_{0}-increasing (in i).

If p_{i}^{n} is defined let (writing a little inaccurately) $G \subseteq P_{\xi_{i}^{n}+1}$ be generic over V. In $V[G]$ if there are $\alpha_{i}^{n}<\mu, r \in P_{\alpha}, r \upharpoonright\left(\xi_{i}^{n}+1\right) \in G, p_{i}^{n} \leq_{0} r$, such that $r \Vdash_{P_{a} / G}$ " $\tau \leq \alpha_{i}^{n "}$, let $r_{i}^{n}[G]$ be like that; otherwise, let $r_{i}^{n}=p_{i}^{n}$. So $r_{i}^{n}, \alpha_{i}^{n}$ are $P_{\xi_{i}^{n}+1}$-names. Now in $V\left[G \cap P_{\xi_{i}^{n}}\right], Q_{\xi_{i}^{n}}$ is a forcing notion, α_{i}^{n} a name of
an ordinal $<\mu$; hence there are $\beta_{i}^{n}<\mu, q_{i}^{n}, p_{i}^{n} \upharpoonright\left\{\xi_{i}^{n}\right\} \leq_{0} q_{i}^{n} \in Q_{\xi_{i}^{n}}, V[G \cap$ $\left.P_{\xi_{i}^{n}}\right] \vDash$ " $q_{i}^{n} \mathbb{H}_{Q_{\xi_{i}}}$ " $\alpha_{i}^{n} \leq \beta_{i}^{n}$ ". So β_{i}^{n} is a $P_{\xi_{i}^{n}}$-name, \tilde{q}_{i}^{n} a \bar{Q}-named atomic condition. Now define p_{i+1}^{n} as $p_{i+1}^{n}=p_{i}^{n} \cup r_{i}^{n} \upharpoonright\left[\xi_{i}^{n}+1, \alpha\right) \cup\left\{q_{i}^{n}\right\}$.

We have an obvious flaw - why is there a limit for $p_{i}^{n}(\tilde{i}<\delta)$? (or $p^{n}(n<$ $\omega)$). For this, use (v) of Definition 2.1, i.e., increase p_{i+1}^{n} albeit according to the winning strategy. Now p_{n+1} will be ${ }_{0} \geq p_{\gamma_{n}}^{n}$ according to the strategy too.

So there is $p^{*}, p^{n} \leq_{0} p^{*}$ for each n. Dom $p^{*}=\bigcup_{n<\omega}$ Dom p_{n}. We claim that for some $\alpha<\mu, p^{*} \mathbb{H}_{P_{\alpha}}$ " $\tau \leq \alpha$ ". If not, let $q \in P_{\alpha}, q \geq p^{*}$, and $\beta<\mu$ be such that $q \Vdash_{P_{\alpha}}$ " $\tau=\beta$ ". So by 2.9(3) w.l.o.g. $q \geq p^{*}$ above some $\left\{\xi_{0}, \ldots\right.$, $\left.\xi_{n-1}\right\}, \xi_{0}<\ldots<\xi_{n-1}$. Choose such number n, and ordinals $\xi_{l}(l<n)$ with minimal ξ_{n-1} (or $n=0$ is best of all). If $n>0$, w.l.o.g. for some $m<\omega q$ † ξ_{n-1} $\Vdash_{P_{\xi_{n-1}}} " \xi_{n} \in \operatorname{Dom} p^{m "}$ and we get contr. to the choice of p^{m+1}
(vi) is left to the reader.
(2), (3) are left to the reader.
(4), (5) Like [4], Ch. III x.x, use only names which are hereditarily $<\kappa$.

Definition 2.10 We define $S p_{3}$ iteration \bar{Q} and $S p_{3} \operatorname{Lim}_{\kappa} \bar{Q}$ like $\kappa-S P_{2}$ with only one change: instead $p \in P_{i}$ being of cardinality $<k$, we require:
(*) for every $p \in P_{\alpha}, \lambda \leq l(\bar{Q})$ which is strongly inaccessible, and ($\forall i<$ к) $\left[\left|P_{i}\right|<\lambda\right] \Vdash^{q} \mid \lambda$ "the domain of $p \upharpoonright \lambda$ is bounded below λ ". Hence, for each $\lambda \bigcup_{i<\lambda} P_{i}$ is dense in P_{λ}.
Claim 2.11: The parallel of Definition 2.10 holds.

3 We can get from the lemma of preservation of forcing with (S, $\gamma)-\operatorname{Pr}_{1}$ by $\kappa-S p_{2}$ iteration (and on the λ-c.c. for then) Martin-like axioms. We list below some variations.

Notation 3.1: Reasonable choices for S are
(1) $S_{\kappa}^{0}=U R C a r_{\leq \kappa}=\left\{\mu: \mu\right.$ a regular cardinal, $\left.\aleph_{0}<\mu \leq \kappa\right\}$
(2) $S_{\kappa}^{1}=R C a r_{\leq \kappa}=\left\{\mu: \mu\right.$ a regular cardinal, $\left.\aleph_{0} \leq \mu \leq \kappa\right\}$
(3) $S_{\kappa}^{2}=\{2\} \cup C a r_{\leq \kappa}$
(4) If we write " $<\kappa$ " instead $\leq \kappa$ (and $S_{<\kappa}^{l}$ instead S_{κ}^{l}) the meaning should be clear.

Fact 3.2: Suppose the forcing notion P satisfies $(S, \gamma)-P r_{1}$
(1) If $2 \in S$ then P does not add any bounded subset of γ.
(2) If μ is regular, and $\lambda_{i}(i<\mu)$ are regular, and $\{\mu\} \cup\left\{\lambda_{i}: i<\mu\right\} \subseteq S, D$ is a uniform ultrafilter on $\mu, \theta=c f\left(\prod_{i<\mu} \lambda_{i} / D\right)$ (λ_{i}-as an ordered set) then P satisfies $\left(S \cup\{\theta\}, \gamma^{\prime}\right)-P r_{1}$ whenever $\mu \gamma^{\prime} \leq \mu$. (We can do this for all such θ s simultaneously.)
(3) If $\lambda \in S$ is regular, $\mu<\gamma$ then for every $f: \mu \rightarrow \lambda$ from V^{P} for some $g: \mu \rightarrow \lambda$ from V for every $\alpha<\mu, f(\alpha)<g(\alpha)$.
Claim 3.3: Suppose $M A_{<\kappa}$ holds (i.e., for every P satisfying the \aleph_{1}-c.c. and
dense $D_{i} \subseteq P($ for $i<\alpha<\kappa)$ there is a directed $\left.G \subseteq Q, \bigwedge_{i<\kappa} G \cap D_{i} \neq \varnothing\right)$. Then the following forcing notions have expansions (by \leq_{0}) having the (U RCar, $\kappa)-P r_{1}^{0}$.
(1) Silver forcing: $\{(w, A): w \subseteq \omega$ finite, $A \subseteq \omega$ infinite $\}$
$\left(w_{1}, A_{1}\right) \leq\left(w_{2}, A_{2}\right)$ iff $w_{1} \subseteq w_{2} \subseteq w_{1} \cup A_{1}, A_{2} \subseteq A_{1}$.
(2) The forcing from [5], Section 2 (changed suitably).

Proof: (1) Let P^{\prime} be the set of (w, A, B) satisfying: $w \subseteq \omega$ finite, $B \subseteq \omega$ infinite, $B \subseteq A \subseteq \omega$, with the order

$$
\begin{gathered}
\left(w_{1}, A_{1} B_{1}\right) \leq\left(w_{2}, A_{2}, B_{2}\right) \text { iff }\left(w_{1}, A_{1}\right) \leq\left(w_{2}, A_{2}\right) \\
\text { and } \left.B_{2} \subseteq^{*} B_{1} \text { (i.e., } B_{2}-B_{1} \text { finite }\right) \\
\left(w_{1}, A_{1}, B_{1}\right) \leq \leq_{0}\left(w_{2}, A_{2}, B_{2}\right) \text { if } w_{1}=w_{2} \\
A_{1}=A_{2} \\
B_{2} \subseteq * B_{1} .
\end{gathered}
$$

Let us check Definition 2.1: (i)-(iv) easy.
Note that $\{(w, A, A):(w, A, A) \in P\}$ is dense in P.
(iv) Let $\mu>\mathcal{\aleph}_{0}$ be a regular cardinal, τ a P^{\prime}-name, \mathbb{H}_{P} " $\tau<\mu$. Let $p=$ (w, A, B) be given. Choose by induction on $i<\omega, n_{i}, A_{i}$ such that
(a) $A_{0}=B(\subseteq A)$
(b) $n_{i}=\operatorname{Min} A_{i}$
(c) $A_{i+1} \subseteq A_{i}-\left\{n_{i}\right\}$
(d) for every $u \subseteq\left\{0,1,2, \ldots, n_{i}\right\}$ for some $\alpha_{i, u}<\mu,\left(u, A_{i+1}, A_{i+1}\right)$ $\mathbb{F}_{P^{\prime}}$ " $\tau=\alpha_{i+1}$ " or for no $B \subseteq \omega$ and $\alpha<\mu(u, B, B) \mathbb{H}^{\text {" } ~} \tau=\alpha_{i, u}$ ".
There is no problem to do this, now $q={ }_{d f}\left(w, A,\left\{n_{i}: i<\omega\right\}\right)$ satisfies:
(e) $p \leq q \in P^{\prime}$ and even $p \leq_{0} q$.
(f) $q \Vdash_{P^{\prime}} " " \tau \in\left\{\alpha_{i, u}: i<\omega, u \subseteq\left\{0,1,2, \ldots, n_{i}\right\}\right\}$.

So q is as required.
(v): Suppose $p_{i}(i<\gamma)$ is \leq_{0}-increasing so $p_{i}=\left(w, A, B_{i}\right) B_{i} \subseteq A, B_{i}$ is *decreasing. It is well known that for $\gamma<\kappa, M A_{<\kappa}$ implies the existence of an infinite $B \subseteq \omega,(\forall i<\gamma) B \subseteq * B_{i}$.

Claim 3.4: The following forcing notions have the ($U R C a r, \kappa)-P r_{1}$:
(1) \aleph_{1}-c.c.
(2) κ-complete
(3) $\{f: f$ a function from A to $\{0,1\}, A \subseteq \omega, A=\phi \bmod D\}$ where D is a filter on ω, containing the co-finite sets, such that if $A_{i} \in D$ for $i<$ $i^{*}<\kappa$ then for some $B \in D \bigwedge_{i<i^{*}} B \subseteq * A_{i}$

Discussion 3.5: Let $\kappa<\lambda$, λ regular. Each of the following gives rise naturally to a generalized $M A$, stronger as λ is demanded to be a larger cardinal (so if λ is supercompact we get parallels to PFA).

Case I: We use \bar{Q} of length λ, a $\kappa-S P_{2}$ iteration, $\mathbb{H}_{P_{i}}\left|Q_{i}\right|<\lambda$ ", each Q_{i} having $\left(S_{\kappa}^{l}, \kappa\right)-\operatorname{Pr}_{1}^{-}$.

Now $P_{\lambda}=\kappa-S P_{2} \operatorname{Lim}_{\kappa} \bar{Q}$ have the $\left(S_{\kappa}^{l}, \kappa\right)-P r_{1}$ by 2.10 , so all regular $\mu \leq \kappa$ remain regular and usually every $\lambda^{\prime} \in(\kappa, \lambda)$ is collapsed. But λ is not collapsed if it is strongly inaccessible (by $2.10(3)$) and also if $(\forall \chi<\lambda)\left(\chi^{<\kappa}<\lambda\right)$ (by $2.10(5)$). If $2 \in S_{\kappa}^{Q}$, no bounded subset of κ is added.
Case II: Like Case I with $(\kappa+1)-S p_{2}$ iteration $S p_{2} \operatorname{Lim}_{\kappa+1}$ and every $\lambda^{\prime} \in$ (κ, λ) is collapsed. Here we need λ to be strongly inaccessible.
Case III: \bar{Q} is $S p_{3}$-iteration, has length $\kappa,\left|Q_{i}\right|<\kappa$ for $i<\kappa, \kappa$ is strongly inaccessible, and Q_{i} have $\left(S, \gamma_{i}\right)-P r_{1}^{-}$.

By $2.11 P_{\kappa}=S p_{3} \operatorname{Lim} \bar{Q}$ has the κ-c.c. (and $\left|P_{i}\right|<\kappa$ of course). Let $S=$ $\left\{\mu<\kappa ; \mu\right.$ regular and for some $i, \mathbb{H}_{P_{i}}$ " μ is regular and $\mu \in S_{j}, \mu \leq \gamma_{j}$, for $j>$ i) then $\mathbb{H}_{P_{\alpha}}$.

Fact 3.6: Suppose λ is strongly inaccessible, limit of measurables, $\lambda>\kappa, \kappa$ regular. Then for some λ-cc forcing P not adding bounded subsets of $\kappa,|P|=\lambda$, and \Vdash_{P} " $2^{\kappa}=\lambda=\kappa^{+}$, and for every $A \subseteq \kappa$ there is a countable subset of λ not in $L(A)$.

Proof: We use κ - $S P_{2}$-iteration $\left\langle P_{i}, Q_{i}: i<\lambda\right\rangle,\left|P_{i}\right|<\lambda$. For i even: let κ_{i} be the first measurable $>\left|P_{i}\right|$, (but necessarily $<\lambda$) and τ. Then Q_{i} is Prikry forcing on κ_{i} and Q_{i+1} is Levi collapse of κ_{i}^{+}to κ.

4

Lemma 4.1 Suppose

(i) R is an \aleph_{1}-complete forcing notion.
(ii) For $r \in R, \bar{Q}^{r}=\left\langle P_{i}^{r}: i \leq \alpha_{\alpha}^{r}\right\rangle, P_{i}^{r}$ is <0-increasing in i and if $i \leq \alpha^{r}$ has cofinality ω_{1}, then every countable subset of $V^{P_{\kappa}^{r}}$ belongs to $V^{P_{i}^{r}}$ for some $i<\alpha$.
(iii) If $r^{1} \leq r^{2}$ then $\bar{Q}^{r^{1}} \leq \bar{Q}^{r^{2}}$.
(iv) If $r \in R$ and Q is a $P_{\alpha_{r}}^{r}$-name of a forcing notion, then for some $r^{1} \geq r$

$$
P_{\alpha_{\mu}+1}^{r_{1}}=P_{\alpha_{\mu}^{*}}^{r} Q \text { or } \Vdash_{P_{\alpha_{M}}^{r_{1}}} Q \text { does not satisfy the c.c.c. }
$$

(v) If $r^{\zeta}(\zeta<\delta)$ is increasing, $\delta \leq \omega_{1}$, then for some r

$$
\bigwedge_{\xi<\delta} r^{\zeta} \leq r \text { and } \alpha_{r}=\bigcup_{\xi<\delta} \alpha_{r} \xi
$$

Let $P\left[G_{R}\right]$ be $\cup\left\{P_{i}^{r}: r \in G_{R}, i \leq \alpha_{r}\right\}$, so it is an R-name of a forcing notion. Then $\mathbb{H}_{R}\left[\mathbb{H}_{P\left[G_{R}\right]}\right.$ "for any \aleph_{1} dense subsets of Sacks forcing, there is a directed subset of Sacks forcing not disjoint to any of them"].
Remark: $Q_{\text {Sacks }}=\left\{\tau: \tau \subseteq^{\omega>} 2\right.$ is closed under initial segments nonempty and $(\forall \eta \in \tau)(\exists v)\left(\eta<v \wedge v^{\wedge}\langle 0\rangle \in T \wedge v^{\wedge}\langle 1\rangle \in T\right)$ and $\tau_{i} \leq \tau_{2}$ if $\tau_{2} \subseteq \tau_{1}$.
Proof: Let ${\underset{\sim}{i}}_{i}$ be $R^{*} P\left[\mathcal{T}_{R}\right]$-name of dense subset of $Q_{S \text { Sacks }}^{R^{*} P\left[G_{R}\right]}$ for $i<\omega_{1}$ ($Q_{\text {Sacks }}^{V}$ is Sacks forcing in the universe V).

For a subset E of Sacks forcing let $\operatorname{var}(E)$ be $\{(n, T): T \in E, n<\omega\}$ ordered by $\left(n_{1} T_{1}\right) \leq\left(n_{2}, T_{2}\right)$ iff $n_{1} \leq n_{2}, T_{2} \subseteq T_{1}$, and $T_{1} \cap^{n_{1} \geq 2}=T_{2} \cap^{n_{1} \geq} 2$. We now define by induction on $\zeta \leq \omega_{1}, r(\zeta)$, and D_{ζ} such that:
(a) $r(\zeta) \in R$ is increasing, $\alpha_{r(\zeta)}$-increasing continuous.
(b) D_{ζ} is a $P_{\alpha_{r}(\zeta+1)}^{r(\zeta+1)}$-name of a countable subset of $Q_{\text {Sacks }}$.
(c) If $T \in D_{\zeta}, \eta \in T$ then $T_{[\eta]}={ }_{d f}\left\{v: \eta^{\sim} v \in T\right\}$ belongs to D_{ζ}.
(d) If $T_{1}, T_{2} \in D_{\zeta}$ then $\left\{\left\rangle,\langle 0\rangle{ }^{\wedge} \eta: \eta \in T_{1}\right\},\left\{\langle \rangle,\langle 1\rangle{ }^{\wedge} \eta: \eta \in T_{2}\right\}\right.$ and their union belongs to D_{ζ}.
(e) Let $\xi<\zeta$, then for $T_{1} \in D_{\xi}$ there is $T_{2} \in D_{\zeta}, T_{1} \geq T_{2}$ and for $T_{2} \in D_{\zeta}$ there is $T_{1} \in D_{\xi}, T_{1} \geq T_{2}$.
(f) If $T \in D_{\zeta+1}$ then for some n for every $\eta \in{ }^{n} 2 \cap T, T_{(\eta)}={ }_{d f}\{v \in T$: $v \leq \eta$ or $\eta \leq v\}$ belongs to ${\underset{\sim}{S}}_{\zeta}$.
(g) Suppose ζ is limit, then $P_{\alpha_{r}(\zeta)+1}^{r(\zeta+1)}=P_{\alpha_{r}(\zeta)}^{r(\zeta)} * T_{\zeta}, T_{\zeta}$ is $\left[\operatorname{var} \bigcup_{\xi<\zeta} p_{\xi}\right]$ if $\zeta<$ ω_{1} and T_{ζ} is $\left[\operatorname{var} \bigcup_{\xi<\zeta} D_{\xi}\right]^{\omega}$ if $\zeta=\omega_{1}$ (the ω-th power, with finite support).

Next the generic subset of T_{ζ} gives a sequence of length ω of Sacks conditions closing the set of those conditions by $(c)+(d)$ we get D_{ζ}. We have to prove that T_{ζ} satisfies the \aleph_{1}-c.c. in $V^{R^{*} P_{\alpha_{r(\zeta)}}}$: When $\zeta<\omega_{1}$ this is trivial (as T_{ζ} is countable). Let $\zeta=\omega_{1}$. It suffices to prove that $\left[\operatorname{var} \bigcup_{\xi<\zeta} D_{\xi}\right]^{n}$ satisfies the \aleph_{1}-c.c.where $n<\omega$. So let I be a $R *{\underset{\sim}{x}}_{\alpha_{r(\xi)}}^{r(\xi)}$ name of a dense subset of $\left[\operatorname{var} \bigcup_{\xi<\zeta} D_{\xi}\right]^{n}$. We can find a $\xi<\zeta, \operatorname{cf} \xi=X_{0}$ such that $I_{\xi}=\left\{x: x \in V^{R * P_{\alpha_{r(\xi)}}^{P(\xi)}}\right.$ and every $p \in R * \underset{\sim}{\alpha_{r(\xi)}} \underset{r(\xi)}{r(s)} / R * \underset{\sim}{P_{\alpha(\xi)}^{r(\xi)}}$ force x to be in $\left.I\right\}$ is predense in $\left[\operatorname{var} \bigcup_{\gamma<\xi} D_{\gamma}\right]^{n}$ (exists by (e)). Check the rest.

Remark: This argument works for many other forcing notions like Laver.

5

Definition 5.1 Let S be a subset of $\{2\} \cup\{\lambda: \lambda$ is regular cardinal $\}, D$ a filter on a cardinal λ (or any other set). For any ordinal γ, we define a game $G m^{*}(S, \gamma, D)$. It lasts γ moves. In the i-th move player I choose a cardinal $\lambda \in$ S and function F_{i} from λ to λ_{i} and then player II chooses $\alpha_{i}<\lambda_{i}$.

Player II wins a play if for every $i<\gamma$,

$$
\begin{gathered}
d\left(\left\langle\lambda_{j}, F_{j}, \alpha_{j}: j<i\right\rangle\right)={ }_{d f}\left\{\zeta<\lambda: \text { for every } j<i\left[\lambda_{i}=2 \Rightarrow F_{j}(\zeta)=\alpha_{i}\right]\right. \\
{\left[\lambda_{i}>2 \Rightarrow F_{j}(\zeta)<\alpha_{i}\right\} \neq \varnothing \bmod D .}
\end{gathered}
$$

Remark 5.1A:
(1) See [4], Chapter X on this.
(2) If not said, otherwise we assume that $\lambda-\{\zeta\} \in D$ for $\zeta<\lambda$.
(3) If D is an ultrafilter on $\lambda,\left(|\gamma|+\kappa^{+}\right)$-complete for each $\kappa \in S$ then player II has a winning strategy.

Definition 5.2 For \mathbf{F} a winning strategy for player II in $G m^{*}(S, \gamma, D), D$ a filter on λ (we write $\lambda=\lambda(D)$), we define $Q=Q_{\mathbf{F}, \lambda}=Q_{\mathbf{F}, S, \gamma, D}, Q=(|Q|, \leq$, \leq_{0}).

Part A: Let $(T, H) \in Q$ iff
(i) T is a nonempty set of finite sequence of ordinals $<\lambda$.
(ii) $\eta \in T \Rightarrow \eta \upharpoonright \ell \in T$, and for some n and $\eta: T \cap{ }^{n \geq} \lambda=\{\eta \upharpoonright \ell: \ell \leq n\}$, $\left|T \cap{ }^{n+1} \lambda\right| \geq 2$; we denote $\eta=\operatorname{stam}(T)=\operatorname{stam}(T, H)$ (it is unique).
(iii) H is a function, $T-\{\operatorname{stam}(T) \upharpoonleft \ell: \ell<\lg (\operatorname{stam}(T))\} \subseteq \operatorname{dom} H \subseteq{ }^{\omega>} \lambda$.
(iv) for each $\eta \in \operatorname{Dom} H, H(\eta)$ is a proper initial segment of a play of the game $G m^{*}(S, \gamma, D)$ in which player II use his strategy \mathbf{F} so $H(\eta)=$ $\left\langle\lambda_{i}^{H(\eta)}, F_{i}^{H(\eta)}, \alpha_{i}^{H(\eta)}: i<i^{H(\eta)}\right\rangle$, and $i^{H(\eta)}<\gamma$.
(v) for $\eta \in T, d(H(\eta))=\{\zeta<\lambda: \eta$ И $\langle\zeta\rangle \in T\}$.

Part B: $\left(T_{1}, H_{1}\right) \leq\left(T_{2}, H_{2}\right)$ (where both belong to Q) iff $T_{2} \subseteq T_{1}$ and for each $\eta \in T_{2}$, if $\operatorname{stam}\left(T_{2}\right) \leq \eta$ then $H_{1}(\eta)$ is an initial segment of $H_{1}(\eta)$.

Part C: $\left(T_{1}, H_{1}\right) \leq_{0}\left(T_{2}, H_{2}\right)$ (where both belong to Q) if $\left(T_{1}, H_{1}\right) \leq$ $\left(T_{2}, H_{2}\right)$ and $\operatorname{stam}\left(T_{1}\right)=\operatorname{stam}\left(T_{2}\right)$.

Remark 5.2A: (1) So if $(T, H) \in Q_{\mathbf{F}, \lambda}$ and $\mathbf{F}, S(\gamma, D)$ are as above, $\eta \in T$, $\eta \geq \operatorname{stam}(T)$ then $d(H(\eta)) \neq \varnothing \bmod D$.
(2) We could restrict H to T in (iii).

Notation 5.2B: For $p=(T, H) \in Q_{\mathbf{F}, \lambda}$ and $\eta \in T$ let $p^{[\eta]}=\left(T^{[\eta]}, H\right), T^{[\eta]}=$ $\{\nu \in T: \nu \leq \eta$ or $\eta \leq \nu\}$. Clearly $p \leq p^{[\eta]} \in Q_{\mathbf{F}, \lambda}$.

Lemma 5.3 If $Q=Q_{\mathbf{F}, S, \gamma, D}, D$ a uniform filter on $\lambda(D)$ then $\mathbb{H}_{Q} c f$ $\lambda(D)=\boldsymbol{K}_{0}$.

Proof: Let $\eta_{Q}=\bigcup\left\{\operatorname{stam}(p): p \in G_{Q}\right\}$.
Clearly if $\left(T_{\ell}, H_{\ell}\right) \in G_{Q}$ for $\ell=1,2$ then for some $(T, H) \in G_{Q},\left(T_{\ell}, H_{\ell}\right) \leq$ (T, H); hence $\operatorname{stam}\left(T_{\ell}\right) \leq \operatorname{stam}(T)$, hence $\operatorname{stam}\left(T_{1}, H_{1}\right) \cup \operatorname{stam}\left(T_{1}, H_{2}\right)$ is in ${ }^{\omega>} \lambda$. Hence η_{Q} is a sequence of ordinals of length $\leq \omega$. It has length ω, as for every $p=(T, H) \in Q$, and n, there is $\eta \in T \cap{ }^{n} \lambda$, hence $p \leq p^{[\eta]} \in Q$ (see 5.2B), and $p^{[\eta]} \Vdash " \lg \left(\eta_{Q}\right) \geq n "$ because $\eta \leq \operatorname{stam}\left(p^{[\eta]}\right)$ and for every $q \in$ $Q, q \mathbb{H}_{Q} " \operatorname{stam}(q) \leq \eta_{Q} "$. Obviously, $\mathbb{H}_{Q} " \operatorname{Rang}\left(\eta_{Q}\right) \subseteq \lambda "$. Why \mathbb{H}_{Q} sup $\operatorname{Rang}\left(\eta_{Q}\right)=\lambda$? Because for every $(T, H) \in Q$ and $\alpha<\lambda$, letting $\eta={ }_{d f}$ $\operatorname{stam}(\tilde{T})$, clearly $d(H(\eta)) \neq \varnothing \bmod D$ (see Definition 5.12) but D is uniform, hence there is $\beta \in d(H(\eta)), \beta>\alpha$, so $\eta^{\wedge}\langle\beta\rangle \in T$, and $(T, H) \leq(T, H)^{[\eta \wedge\langle\beta\rangle]} \in$ $Q,(T, H)^{[\eta \wedge\langle\beta\rangle]} \Vdash_{Q} " \eta \eta^{\wedge}\langle\beta\rangle \leq \eta_{Q} "$ hence $(T, H)^{[\eta \wedge\langle\beta\rangle]} \Vdash " \sup \operatorname{Rang}\left(\eta_{Q}\right) \geq$ β ", as $\alpha<\beta$ we finish.

Lemma 5.4 If S, γ, D are as in Definition 5.1, $\aleph_{0} \notin S, \mathbf{F}$ a winning strategy of player II in $\operatorname{Gm}^{*}(S, \gamma, D)$, cf $\gamma>\aleph_{0}$, then Q satisfies $(S, c f \gamma)-\operatorname{Pr}_{1}$ (see Definition 2.1).

Proof: In Definition 2.1, parts (i), (ii), (iii), (iv), (vi) are clear. So let us check (v). Let $\kappa \in S, \tau$ be a Q-name, $\mathbb{H}_{Q} " \tau \in \kappa$ " and $p=(T, H) \in Q$. We define by induction on $n, p_{n}=\left(T_{n}, H_{n}\right)$ such that:
(i) $p_{0}=p, p_{n} \leq_{0} p_{n+1}, T_{n} \cap^{n>} \lambda=T_{n+1} \cap{ }^{n>} \lambda$
(ii) if $\eta \in T_{n} \cap{ }^{n} \lambda$, and there are q, α satisfying
" $p_{n}^{[\eta]} \leq_{0} q \in Q, \alpha<\kappa, q \Vdash$ "if $\kappa=2, \tau=\alpha$, if $\kappa \geq \mathcal{X}_{0}, \tau<\alpha$ " then $p_{n+1}^{[\eta]}, \alpha_{\eta}$ satisfying this.
(iii) if $\eta \in T_{n+1} \cap{ }^{n} \lambda$ and there are q, β satisfying
(*) $p_{n+1}^{[\eta]} \leq_{0} q \in Q$, and for every $r, \beta<\kappa$,
$\left[q \leq \leq_{0} r \in Q \rightarrow \neg\left(\exists r_{1}\right)\left(r \leq r_{1} \in Q \wedge r_{1} \Vdash\right.\right.$ if $\kappa=2, \tau=\beta$, if $\left.\kappa \geq \aleph_{0}, \tau<\beta^{\prime \prime}\right]$
then $p_{n+1}^{[\eta]}$ satisfies ($*$).
Let p_{ω} be the limit of $\left\langle p_{n}: n<\omega\right\rangle$, i.e., $p_{\omega}=\left(T_{\omega}, H_{\omega}\right), T_{\omega}=\bigcap_{n<\omega} T_{n}, H_{\omega}(\eta)$ is the limit of the sequences $H_{n}(\eta)$ (for $\left.\eta \in T_{\omega}-\{\operatorname{stam}(T) \mid \ell: \ell\}\right)$. It is well defined as $c f(\gamma)>\aleph_{0}$.

Now for each $\eta \in T_{\omega}, H_{\omega}(\eta)$ is a proper initial segment of a play of the game $G m^{*}(S, \gamma, D)$, and it lasts $i^{H_{\omega}(\eta)}$ moves. Player I could choose in his $i^{H_{\omega}(\eta)}$-th move the cardinal κ and the function $f_{\eta}: \lambda \rightarrow \kappa$,

$$
f_{\eta}(\zeta)= \begin{cases}\alpha_{\eta \wedge\langle\zeta\rangle} & \text { if defined (which is }<\kappa) \\ 0 & \text { otherwise }\end{cases}
$$

So, for some $\beta_{\eta}, H_{\omega}(\eta)^{\wedge}\left\langle\alpha, f_{\eta}, \beta_{\eta}\right\rangle$ is also a proper initial segment of a play of $G m^{*}(S, \gamma, D)$ in which player II use the strategy \mathbf{F}. So there is $p_{\omega+1}=\left(T_{\omega+1}, H_{\omega+1}\right) \in Q, p_{\omega} \leq_{0} p_{\omega+1}$, and for each $\eta \in T_{\omega+1}-\{\nu: \nu<$ $\operatorname{stam}(T)\}, H_{\omega+1}(\eta)=H_{\omega}(\eta)^{\wedge}\left\langle\kappa, f_{\eta}, \beta_{\eta}\right\rangle$.

We can easily show
Fact 5.4A: If $p=(T, H) \in Q, \kappa \in S, f: T \rightarrow \kappa$, then for some $p_{1}=\left(T_{1}, H_{1}\right) \in$ $Q, p \leq p_{1}$, and for every $\eta \in T_{1},\left[\kappa=2 \wedge f \backslash \operatorname{Suc}_{T_{1}}(\eta)\right.$ is constant] or [$\kappa \geq$ $\aleph_{1} \wedge f \backslash \operatorname{Suc}_{T_{1}}(\eta)$ is bounded below $\left.\kappa\right]$.
[Proof: Define by induction $r^{n}, p \leq_{0} r^{n} \leq_{0} r^{n+1} \in Q, r^{n+1}$ satisfies the conclusion of 5.4A for η of length n, now any $r^{\omega} \in Q,(\forall n) r^{n} \leq{ }_{0} r^{\omega}$ is as required].
Fact 5.4B: If $p=(T, H) \in Q, A \subseteq T$ then there is $p_{1}=\left(T_{1}, H_{1}\right) \in Q, p \leq_{0} p_{1}$ and for every $\eta \in T_{1}$, and $k<\omega$:

$$
\begin{gathered}
(\exists \nu \in A)\left[\nu \in T_{1} \wedge \eta \leq \nu \wedge \lg (f)=k\right] \rightarrow \\
(\forall q)\left[q \in Q \wedge p_{1}^{[\eta]} \leq_{0} q \rightarrow(\exists \nu \in A)(\nu \in q \wedge \eta \leq \nu \operatorname{Alg}(\nu)=k)\right]
\end{gathered}
$$

[Proof: Define by induction on $n r^{n}, p \leq_{0} r^{n} \leq_{0} r^{n+1} \in Q, r^{n+1}$ satisfies the conclusion of 5.4B for η of length $\leq n$ and $k \leq n$. Now any $r^{\omega} \in Q,(\forall n) r^{n} \leq_{0}$ r^{ω} is as required.]

Let $A=\left\{\eta \in T_{\omega+1}: \alpha_{\eta}\right.$ well defined $\}$, and let $q, p_{\omega+1} \leq q \in Q$ be as in 5.4B. Now for every $\eta \in T^{q}$ there is $r \in Q, q^{[\eta]} \leq r$, and r force a value for τ. So $\operatorname{stam}(r) \in A\left(\right.$ as $p_{\omega} \leq q$, see the definition of the p_{η} 's), and $p_{\omega}^{[\text {stam } r]}$ force a value to τ; hence, $q^{[\text {stam } r]}$ does, and let k_{η} be $\lg (\operatorname{stam} r)$ for such r with minimal $\lg (\operatorname{stam}(r))$. So by 5.4B,
(*) For every $\eta \in T^{q}$, and $r, q^{[\eta]} \leq_{0} r \in Q$, for some $\nu \in q^{[\eta]}, \eta \leq \nu, \lg (\nu)=$ k_{η}, and $\nu \in A$.
Now for each $q_{1}, q \leq_{0} q_{1} \in Q, \eta \in T^{q_{1}}$ we can, by k_{η} applications of 5.4A, get an ordinal $\alpha<\kappa$ and $q_{2}, q_{1}^{[\eta]} \leq_{0} q_{2}$, and
(*) $\quad\left(\forall q_{3} \in Q\right)\left[q_{2} \leq_{0} q_{3} \rightarrow(\exists \nu \in A)\left(\nu \in T^{q_{3}} \wedge \lg (\nu)=k_{\eta} \wedge \alpha_{\nu} \leq \alpha\right)\right]$ (or if $\left.\kappa=2, \alpha_{\nu}=\alpha\right)$.

But this shows that β_{η} is defined for every $\eta \in T^{q}$. Finishing alternatively by repeated application of 5.4 A we can define by induction on $n, q(n) \in Q$, $q(0)=q, q(n) \leq_{0} q(n+1)$ and β_{η}^{n} for $\eta \in T^{q(n)}$ such that:
(a) $\beta_{\eta}^{0}=\beta_{\eta}$
(b) when $\kappa \geq \aleph_{0}: \eta^{\wedge}\langle\zeta\rangle \in T_{n+1} \Rightarrow \beta_{\eta}^{n+1} \geq \beta_{\eta \wedge\langle\zeta\rangle}^{n}$
(c) when $\kappa=2: \eta^{-}\langle\zeta\rangle \in T_{n+1} \Rightarrow \beta_{\eta}^{n+1}=\beta_{\eta \wedge\langle\zeta\rangle}^{n}$.

Let $q_{\omega} \in Q$ be such that $q_{n} \leq_{0} q_{\omega}$ for $n<\omega$.
Now if $\kappa>\aleph_{0}$ (is regular), we claim

$$
q_{\omega} \Vdash_{Q} \tau \leq \bigcup_{n<\omega} \beta_{\langle \rangle}^{n}
$$

Clearly $p \leq_{0} q_{\omega} \in Q, \bigcup_{n<\omega} \beta_{<>}^{n}<\kappa$ so this suffices. Why does this hold? If not, then for some $q^{\prime}, q_{\omega} \leq q^{\prime} \in Q, q^{\prime} \Vdash_{Q} " \tau \geq \bigcup_{n} \beta_{\langle \rangle}^{n}$. Let $\eta=\operatorname{stam}\left(q^{\prime}\right)$, so $\eta \in$ T^{q}, and $\alpha_{\eta} \omega$ is well defined, and as $p_{\omega}^{[\eta]} \leq_{0}\left(q^{\prime}\right)^{[\eta]}, \alpha_{\eta}>\bigcup_{n} \beta_{\langle \rangle}^{n}$. But as $\eta \in$ $\bigcap_{n<\omega} T^{q(n)}, \beta_{\ell \xi}^{l(n)} \geq \beta_{\eta}$, and we get a contradiction.

If $\kappa=2$, we note just that if $\eta \in T^{q(1)}, \beta_{\eta}=\beta_{\eta}^{0}=\beta_{\eta}^{1}$.
Lemma 5.5 Suppose $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\lambda\right\rangle$ is a κ-Sp p_{2}-iteration, $\left|P_{i}\right|<\lambda$ for $i<\lambda$, each Q_{i} has $(S,<\kappa)-P r_{1}$ and $(\mathrm{S}, \sigma)-\operatorname{Pr}_{1} \sigma \leq \kappa$ regular, $S \subseteq\{2\} \cup\{\theta$: θ regular uncountable $\leq \kappa$) and in V, D is a normal ultrafilter on λ (so λ is a measurable cardinal). Then $\Vdash_{P_{\lambda}}$ "player II wins $G m^{*}(S, \kappa, D)$ ".
Remark: Also for $\kappa-\mathrm{Sp}_{3}$.
Proof: Let $A=\left\{\mu<\lambda:(\forall i<\mu)\left|P_{i}\right|<\mu, \mu\right.$ strongly inacessible $\left.>\kappa\right\}$.
Let $G_{\lambda} \subseteq P_{\lambda}$ be generic over $V, G_{\alpha}=G \cap P_{\alpha}$.
W.l.o.g. player I choose P_{λ}-names of functions and cardinals in S. Now we work in V and describe player II's strategy there. For each $\mu \in A$ the forcing notion P_{λ} / P_{μ} has $(S, \sigma)-P r_{2}$; hence, player II has a winning strategy $F\left(P_{\lambda} / G_{\mu}\right) \in V\left[G_{\kappa}\right]$, so $\underset{\sim}{F}\left(P_{\lambda} /{\underset{\sim}{G}}_{\mu}\right)$ is a P_{κ}-name, $\left\langle\underset{\sim}{F}\left(P_{\lambda} /{\underset{\sim}{G}}_{\mu}\right): \mu\right\rangle$ a P_{λ}-name. Let us describe a winning strategy for player II.

So in the i th move player I chooses ${\underset{\theta}{i}}^{i} S$ and $f_{i}: \lambda \rightarrow{\underset{\theta}{i}}$. Player II chooses in his i-th move not only ${\underset{\sim}{\alpha}}_{i}<{\underset{\sim}{\theta}}_{i}$ but also $A_{i}, f_{i}, \gamma_{i},\left\langle\left\langle{\underset{\sim}{j}}_{j}^{\mu}: j \leq i\right\rangle: \mu \in A_{i}\right\rangle$ such that γ_{i} is an ordinal $<\lambda$,
(1) $j<i \Rightarrow \gamma_{j}<\gamma_{i}$.
(2) $A_{i} \in D, A_{i} \in V, A_{i} \subseteq \bigcap_{j<i} A_{j}$ and $A_{\delta}=\bigcap_{j<\delta} A_{j}$
(3) \Vdash " ${\underset{\sim}{f}}_{i}: \lambda \rightarrow{\underset{\sim}{\theta}}_{i},{\underset{i}{i}}^{\theta_{i}}$ ".
(4) for $\mu \in A_{i}$,

$$
\left\langle p_{j}^{\mu}: j \leq 2 i+2\right\rangle
$$

is a P_{κ}-name of an initial segment of a play as in (vi) of 2.1 , for the forcing $P_{\lambda} / G_{\kappa}, p_{2 j+1}^{\mu} \Vdash_{P_{\lambda} / G_{\mu}}{ }^{"}{\underset{\sim}{i}}_{i}(\mu)={\underset{\sim}{i}}$ if $\theta_{i}=2, f_{i}(\mu)<\alpha_{i}^{\mu}$ if $\theta_{i} \geq$ $\boldsymbol{\aleph}_{0} ", \alpha_{i}^{\mu}$ a $P_{\alpha_{i}}$-name.
In the i-th stage clearly $A_{i}^{0}={ }_{d f} \bigcap_{j<i} A_{j} \cap A$ is in D, and let $\gamma_{i}^{0}=\sup _{j<i} \gamma_{j}$, so $\gamma_{i}^{0}<\lambda$ and choose $\gamma_{\mu}^{1} \in\left(\gamma_{\mu}^{0}, \lambda\right)$ such that θ_{i} is a $P_{\gamma_{\mu}^{1}}$ name. For every $\mu \in$ $A, \mu>\gamma^{\prime}$, we can define P_{μ}-names ${\underset{\sim}{2}}_{2 i}^{\mu}, p_{2 i+1}^{\mu}, \alpha_{i}^{\mu}$ such that:
(a) $\Vdash_{P_{\mu}}$ " $\left\langle p_{j}^{\mu}: j<2 i+2\right\rangle$ is an initial segment of a play as in (v) of 2.1 for $P_{\lambda} \tilde{/} P_{\mu}$ in which player II uses his winning strategy $F\left(P_{\lambda} / G_{\mu}\right)$.
(b) $p_{2 i+1}^{\mu} \Vdash_{P_{\lambda} / P_{\mu}}{ }_{\sim}{\underset{\sim}{f}}_{i}(\mu)={\underset{\sim}{\alpha}}_{\mu}^{\mu}$ if ${\underset{\sim}{i}}_{i}=2, \underset{\sim}{f}(\mu)<\alpha_{i}^{\mu}$ if ${\underset{i}{i}}_{i} \geq \mathcal{K}_{0}$ ".

Now α_{i}^{μ} is a P_{μ}-name of an original $<\kappa \leq \mu$, it is $P_{\beta[\mu]}$-name for some $\beta[\mu]<\mu$ (as P_{μ} satisfies the μ-c.c. see 2 .x). By the normality of the ultrafilter D, on some $A_{i}^{1} \subseteq A_{i}^{0}, \beta[\mu]=\beta_{i}$ for every $\mu \in A_{i}^{1}$. Let $\gamma_{i}=\gamma_{n}^{1}+\beta_{i}$.

Easily for each $i<\sigma, \mathbb{H}_{P_{\lambda}} "\left\{\mu \in A_{i}: p_{2 i+1}^{\mu} \in G_{\lambda}\right\} \neq \varnothing \bmod D$ ", so we finish.

Now we can solve the second Abraham problem.
Conclusion 5.6: Suppose λ is strongly inaccessible $\{\mu<\lambda$: μ measurable $\}$ is stationary, $\kappa<\lambda, S \subseteq\{2\} \cup\{\theta: \theta \leq \kappa$ regular uncountable $\}$. Then for some forcing notion $P:|P|=\lambda, P$ satisfies λ-c.c. and $(S,<\kappa)-\operatorname{Pr}_{1}\left(\right.$ and $(S, \kappa)-P r_{1}$, if we want), and \Vdash_{P} " $\lambda=|\kappa|^{+"}$ (so $\Vdash_{P_{\lambda}} 2^{|\kappa|}=\lambda$) in V^{P} : and: for every $A \subseteq$ λ, for some $\delta<\lambda$, there is a countable set $\alpha \subseteq \delta$, which is not in $V[A \cap \delta]$, we can also get suitable axiom (see 3.5).

Remark 5.6A: We can also prove (by the same forcing) the consistency of $D_{\lambda}+$ $\left\{\delta<\lambda: c f \delta=\boldsymbol{\aleph}_{0}\right\}$ is precipitous: if in addition there is a normal ultrafilter on λ concentrates on measurables.

REFERENCES

[1] Gitik, M., "Changing cofinalities and the non-stationary ideal," a preprint, first version, Fall, 1984.
[2] Groszek, M. and T. Jech, announcement.
[3] Martin, D. and R. M. Solovay, "Internal Cohen extensions," Annals of Mathematical Logic, vol. 2 (1970), pp. 143-173.
[4] Shelah, S., "Proper Forcing," Springer Verlag Lecture Notes, vol. 840 (1982).
[5] Shelah, S., "On cardinal invariants of the continuum," Proceedings of the 6/83 Boulder Conference in Set Theory, eds. J. Baumgartner, D. Martin and S. Shelah, Contemporary Mathematics, vol. 31 (1984), pp. 183-207.
[6] Shelah, S., Abstracts of AMS (1984).
[7] Solovay, R. M. and Tenenbaum, "Iterated Cohen extensions and Souslin's problem," Annals of Mathematics, vol. 94 (1971), pp. 201-245.

Institute of Mathematics
The Hebrew University
Jerusalem, Israel

and
Departments of Mathematics and Computer Science
University of Michigan
Ann Arbor, MI 48109

[^0]: *The author would like to thank the NSF for partially supporting this research.

