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Some Notes on Iterated Forcing With 2K° > K2

SAHARON SHELAH*

Introduction By Solovay and Tenenbaum ([7]) and Martin and Solovay ([3])
we can iterate c.c.c. forcing with finite support. There have been many works
on iterating more general kinds of forcings adding reals (e.g., [4]), getting gen-
eralizations of MA, and so on, but we were usually restricted to 2K° = K2

Note only this is a defect per se, but there are statements that we think are inde-
pendent but which follow from 2K° < X2.

Some time ago Groszek and Jech (in [2]) got 2K° > X2 + MA for a family
of forcing wider than c.c.c. but for Ki dense sets only.

In Section 1 we generalize RCS iteration to κ-RS iteration.
In Section 2 we combine from [4], X, XII (i.e., RS iteration and some

properness and semicompleteness) with Gitik's definition of order ([1]). (He uses
Easton support, each Q ({2}, κt) -complete where for important /, κ, = /. His
main aim was properties of the club filter on inaccessible: precipitousness and
approximation to saturation.)

In Section 3 we get M/4-like consequences (strongest-from super compact).
In Section 4 we get that, e.g., for Sacks forcing (though not included), and in
the models we naturally get, for every Xx dense subset there is a directed set
intersecting all of them.

In Section 5 we solve the second Abraham problem.
The main result was announced (somewhat inaccurately) in [6].

/ On K-revised support iteration We redo [4], Ch. X, Section 1, with u < K"
instead countable.

Remarks 1.0:

(1) Now if Pι = Po * Q o, qx a iVname, G o £ p0 generic over F, then in
V[G0], Qι can be naturally interpreted as a Q0-name, called qι/G0,
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which has a P0-name Q\/Qo* or Qi/Po; but usually we do not care to
make those fine distinctions.

(2) Using Q = (Pi9 Qji i < α>, Pa will mean RLim Q (see Definition 1.2).
(3) If D is a filter on a set /, D G V, K g K1" (e.g., F1" = V[G]) then in

an abuse of notation, D will denote also the filter it generates (on J)
in V\

(4) Dκ is the closed unbounded filter on /c.

Definition 1.1 We define the following notions by simultaneous induction
on a:

(A) Q = (Pi, Qii i < a) is a κ-RS iteration (RS stands for revised support)
(B) a Q-named ordinal (or [j,a)-ordinal)
(C) a Q-named atomic condition (or [y, α)-condition), and we define q \

£> Q ϊ {£} for a Q-named atomic [y,α)-condition # and ordinal ξ.
(D) the~κ-RS limit of Q, i? Lining which satisfies P, <°RLimκQ for every

/ < K and we definep t β for p E RLimκQ9 β < a. (We may omit /c.)

(A) We flfe/me "Q is a κ-RS iteration9'
a = 0: no condition.
α is limit: Q = (Pi9 Qji i < a) is a κ-RS iteration iff for every β < a,

Q \ β is one.
α = j8 + 1: Q is an RCS iteration iff Q \ β is one, Pβ = RLimκ(Q \ β),

and Qβ is a P^-name of a forcing notion.

(B) We define: f is a Q-named [y,|8)-ordinal above r. It means r e
| J P/ (where 7 = Min{β, /(Q)}) and f is a function such that:

(1) Dom(f) is a subset of (J {P, : i < 7}
(2) for every # G Dom(f) for some /, {q,r] c p,. and P, |= r < <7

(3) for every qu q2 G Dom(f)> (/"for some / < α f ^ i , ^ ) S P, and in
P/ they are compatible then ζ(q\) = ζ(qi)-

(4) z/ςr G Dom(f), q G (J P, and / = /(^r) is the minimal / such

that q G P, /Λe/2 f (#) is an ordinal >/,y but <γ, 0.
We define "f isa Q-named ordinal above rw as "f is a Q-named

[0, l(Q)) ordinal above r". We omit "above r" when r=0 (i.e.,
we omit demand (2)).

(C) We say "q is a (5-named atomic [y, a)-condition above r" if
(1) q is a pair of functions (ξq, cndg) with a common domain D =

Dg: - '
(2) cwrf̂  satisfies (1) and (3) above and:
(3) ξg is a (Q Γ α) — named [y, α) —ordinal above r

(4) for p G Z>̂ , cndg(p) is a P^(/?)-name of a member of Qf (P>.

We omit " [y, α ) - " wheny = 0, α = I(Q) and we omit "above r"

when r = 0 . If /(Q) > α w e mean Q f α. We define q Γ £ as

(£2 f A» cndq\ Dx) whereD1 = {/?GD ? :^(/?)<{}. We define

9 Πf} as (r/r i ) 2 , c/id^ Γ Z>2) where Z)2^= {/? G Dg: ζq(p) = ξ).

(D) We define RLimκQ as follows:
if a = 0: ΛLim^ Q is trivial forcing with just one condition, 0 .
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if α > 0: we call q an atomic condition of R\Amκ Qy if it is a ζλ-named
atomic condition.

The set of conditions in RL\mκ Q is

[p: p a set of λ atomic conditions for some λ < κ; and for every
β < a, p r β =dsf [r Γ β: r G p) G Pβ9 and /? f β hPβ " the set

{r \ [ β}: r G /?} has an upper bound in Qβ"}.

We define p \ β = {r \ β: r G/?}.
The order is inclusion.
Now we have to show Pβ <° R\Λmκ Q (for β <a). Note that any Q-named

lj9β)-ordinal (or condition) is a Q-named [7, α)-ordinal (or condition), and see
Claim 1.4(1) below.

Remark 1.1 A: Note that for the sake of 1.5(3) we allow K to be not a cardinal
and then we really use \κ\ +.

Remark LIB: We can obviously define Q-named sets; but for conditions (and
ordinals for them) we want to avoid the vicious circle of using names which are
interpreted only after forcing with them below.

Definition 1.2 _
(1) Suppose Q is a κ-RS iteration, f is a Q-named [y, α)-ordinal above r,

β<a,rGGe Gen(Q) (see Definition (3) below). We define f [G] by:

(i) f [G] = i if for some 7 < β > a and p G Dom(ζ) Π Gy we have
I (P) = 1.

(ii) otherwise (i.e., G Π D f = φ or r £ G) ζ[G] is not defined.

For a β-named [j, a)-condition above r, q, we defined q[G] similarly.

(2) We denote the set of G c (J p / + 1 such that G Π P / + 1 is generic over

Ffor each / < a by Gen(Q).
(3) For f a Q-named [y, α) -ordinal (above r) and q G (J P, let # Ihg

"f = ξ" if for every G G Gen(Q) such that r G G : ^ G G = > [ [ G ] = J .

Remark 1.3: From where is G taken in (2), (3)? e.g., Fis a countable model of
set theory, G taken from the "true" universe.

Now we point out some properties of κ-RS iteration.

Claim 1.4: Let Q = <P/Q, : / < a) be a κ-RS iteration, Pa = /?limκ ζλ
(1) Ifβ < a then: P^ c Pa; for pup2 G P^, Pβ \= p{ < p2 iff P« N

Px < /?2: and P^ <° P α . Moreover, if q E Pβ, p G Pa, then #,/? are
compatible iff q, p \ β are compatible.

(2) If f is a Q-named [y,α)-ordinal G, G' G Gen(Q) G Π P^ =
Gr Π P^ and f [G] = ξ thenj*[G'] = ξ; hence we write f [G Π Pξ] = ξ.

(3) ίΓjβ,y are Q-~named [y,/(Q))-ordinals, then Max{£,7} (defined nat-
urally) is a Q-named [y,/(Q))-ordinal.

(4) If a = β0 + 1, in Definition l.l(D), in defining the set of elements of
Pa we can restrict ourselves to β = β0. Also in such a case, Pa =
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Pβo*Qβo (essentially). More exactly, {p U {q}: p G Pβo, q a P^-name
of a member of Qβo] is a dense subset of P α , and the order px U
{<7i) ^ /?2 U {^Πff Pi ^ P2* P2 Ih tfi ̂  #2 is equivalent to that of
Pa; i.e., we get the same Boolean algebra.

(5) The following set is dense in Pa: [p G P α ; for every β < a, if rx, r2 G
p9 then lhP/3 "if rx \ {β} Φ 0 , r2 f [β] Φ 0 then they are equal"}.

(6) | P α < ( Σ / < α 2 p < ) \ for limit a.
(7) If Ihp/Ίg/j ^ λ", α a cardinal, then | P Z + 1 | < 2^ + λ (assuming,

e.g., thaf the set of elements of G is λ).

Proof: By induction on α.

Lemma 1.5 The Iteration Lemma
(1) Suppose F is a function, then for every ordinal a there is one and only one
κ-RS-iteration Q = <P,, ζ),: / < α 1 ) , such that:

(a) /or every /, & =~F(Q f /),
(b) af<a,
(c) β/YΛer α^ = α or F(Q) is not an (RLimκ Q)-name of a forcing notion.

(2) Suppose Qis a κ-RS-iteration, a. = l(Q)> β < a, Gβ^Pβis generic over V.
Then in V[Gβ], Q/Gβ = (Pi/Gβ, Q, : β<i<κ) is a κ-RS-iteration and RUmκ

Q = Pβ *(Z?Lim Q/Gβ) (essentially).
(3) The Associative Law: Ifa^(ξ< £(0)) is increasing and continuous, a0 = 0;
Q = (Pi, Qh i < otξ(θ)> is a κ-RS-iteration, PH0) = RLimκQ; then so are < P α ( ί ) ,
Patt+i)/Pa(t): ϊ < i(0)> and <P//P«U), g,-: α ( « < / < α({ + 1)>; and vice
versa.

Remark 1.5A: In (3) we can use α^s which are names.

Proof: (1) Easy.

(2) Pedantically, we should formalize the assertion as follows:

(*) There is a function F (= a definable class) such that for every κ-RS-iteration
Q and l(Q) = α, and β < a, F0(Q, β) is a P^-name of Q} such that:
(a) \\-Pβ " 6 f is a Ac-RS-iteration of length a - β".
(b) Pβ * CRLim^Q1") is equivalent to P α = .RLim,, Q, by FiίβjS) (i.e.,

Fι(q,β) is an isomorphism between the corresponding completions to
Boolean algebras)

(c) ifβ<y<cL\\-Pβ"Fo(Qϊy,β)=F(Qίβ) f (γ - j8)w and Fx(Q9β)

extends F\(Qty,β) and FX(Q ty9β) transfer the P7-name Qy to a

P^-name of a (Jf?LimJC(Qt \ (y - jS))-name of Q]-β (where Q^β =

<gJ+|.:ι<7-0».
The proof is the induction on α, and there are no special problems.

(3) Again, pedantically the formulation is

(**) For Q is an RCS-iteration, l(Q) = c^ ( 0 ) , a = (aξ: ξ < ξ(0)> increasing
continuous, F3(Q, α) is a fc-RS-iteration Q 1 of length α ί ( 0 ) such that
(a) F 4 (Q,o) is an equivalence of the forcing notions i^Lim^Q.

RLim.Q^.
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(b) F3(Q f α { > a f (f + 1))_= F 3 ( β ) , ά) f f
(c) Ql is the image by F4(Q \aξ,ά\ (ξ + 1)) of the P α ξ = ΛLinMβ Γ

αξ)-nameF0(Q Γα { + I ,α$).

The proof again poses no special problems.

Claim 1.6: Suppose we add in Definition 1.1 (B) also:

(5) if a is inaccessible, and for some β < a for every y satisfying β <

7 < α , hPβ"\Py/Pβ\ < α " t h e n (3/3 < a) [ D o m f S ^ ] ,

Then nothing changes in the above (only we have to prove everything
by simultaneous induction onα), and if λ is an inaccessible cardinal > a and
|P, | < λ for every / < λ and β = <P,, β,: / < λ> is a κ-RS iteration, then

(1) every β-named ordinal is in fact a ( β t /)-named ordinal for some
/ < a,

(2) like (1) for β-named conditions.
(3) Pκ = U Pi-

i<κ

(4) if K is a Mahlo cardinal then Pλ satisfies the λ-c.c. (in a strong way).

2 The K'flnitary revised support We deal with forcing notions Q satisfying:

Definition 2.1 Let y be an ordinal, S ς | 2 | U { λ : λ a regular cardinal}. Now
Q satisfies (5,γ) - Prx if

(i) β = ( | Q j , <, <o)
(ii) as a forcing Q = ( |Q|, <)

(iii) < 0 is a partial order
(iv) [p <og^P< q]
(v) for every cardinal K G S and β-name r, such that \\-Q "τ G K" and

p E Qfor some q E Q, IE K, p <0 q and q \\-Q "if K = 2, r = / and if
AC > K0, ΐ < Γ

(vi) for each q G Q in the following game player I has a winning strat-
egy: for / < 7 player I choosesp2i G Q such that q <0/?2/ : Λ /\ /?,- <o

7<2i

p2i and then player II chooses P2/+1 ̂  Q> P2/ ^OPH+I

Player I loses if he has sometimes no legal move which can occur in
limit stages only.
L e t (S,y) — Pr^ m e a n s ([κ},y) — Prx fo r every K E S.

Fact 2.2:
(1) If K < 7i, 72 < κ+ then (S,7i) - Prx is equivalent to (5,72) - Prx.
(2) If K -I- 1 < 7 < κ+ and Πκ (i.e., there is a sequence <Q: δ < /c + >, Cδ c

ό closed unbounded) [δi E Cδ, δi = sup διΠCδ-+ Cδl = Cδ Π δγ]
and β satisfies (^,7) - Prx then β satisfies (S,κ + ) - Pr{.

(3) If β satisfies (S, 7) - P ^ , λ < 7, and λ E S then in F e λ is still a reg-
ular cardinal and when λ = 2, β does not add bounded subsets to 7.
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(4) If Q satisfies (5,7) - Prx, λ E S, λ regular, and for every regular μ,
7 < μ < λ => ||-£ "μ is not regular" (e.g., [7, λ) contains no regular
cardinal) then λ is regular in VQ.

Proof: Straightforward.

Definition 2.3 (5, <κ) - Pru will mean (S,y) - Prx for every 7 < K.
Fact 2.4: The following three conditions on forcing notion Q, a set S c= {2} U
(λ: λ a regular cardinal) and regular ordinal K are equivalent:

(a) there is Q' = (Q', <, < 0) such that ((?', <) , (ζ), <) are equivalent
and Q' satisfies (S,κ) - Prγ.

(b) for each p E Q, in the following game (which last K moves) player II
has a winning strategy:

in the /th move player I chooses λ, E 5 and a Q-name r, of an or-
dinal < λ, then player II chooses an ordinal α7 < λ, .

In the end player II wins if for every a < K there is pa E Q, p < pa such
that for every i < a pa \\- "either λ! = 2h r7 = α, or λ, > Ko r, < α, M.

(c) like (a) but moreover (Q, < 0) is /c-complete.

Proof: (c) => (a): trivial.

Proof: (a) => (b): Choose q GQ' which is above p. We describe a winning strat-
egy for player II: he plays on the side a play (for q) of the game from 2.1 (vi)
where he uses a winning strategy (whose existence in guaranteed by (a)). In step
/ of the play (for 4.2(b)) he already has the initial segment </?y: j < 2/> of the
play for 2.1(vi). If player II plays λ,, τ, in the actual game, he plays p2i E Q! in
the simulated play by the winning strategy of player I there and then he chooses
P2i+i,P2i ^oPii+i Ξ Q', which forced the required α, (exists by 2.1(v)) and then
plays oLi in the actual play.

Proof: (b) => (c): Find winning strategy for player II in the game from 2.9(b).
We define Q'\ Q' = {(A <λ,, I h αf : i<ζ»:pE β and <λ/f χh αf : / < α> is
an initial segment of a play of the game from 2.4(b) for p in which II uses his
winning strategy.

The order < 0 is:

(A <λ, , τh on: i < O) ^0 (P\ <λ/, r/, a/: i < Γ »

iff (both are in Q') and

Q¥p=p\ ξ < Γ , and f o r / < ξ
λ/ = λ/, j / = r/, α/ = a/

and the order < on Q' is

(A <λ, , Γ l , α / : / < D) ̂  (P7, <λ/, 7/, α/: / < ^ »

iff (both are in Q' and) Q \= p < p'. Moreover, p' \-Q "λ, = 2, j , = α, or λ, >
«o» ΐi< α,"for/< ξ.

The checking is easy.
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Definition 2.5 r
(1) Let Gen(Q) = \G: G C \J p, is directed, G Π P, generic over V

for / < α . Let GenΓ(Q) = JG: for some (set) forcing notion P*,

Λ P/ <° P* and G* c P* generic over K and G = G* Π (J pλ.

(2) If Q = <P, : / < α> or Q = <P,, Q,: / < α> P, is <<>-increasing we define

a Q-name r almost as we define I (J P,) -names, but we do not use
\i<a I

maximal antichains of (J P, , G c (J p z :
ι<α i<ct

(*) T is a function, Dom(τ) c | J pf. and every directed G G GenΓ(ζ5), r[G]
i<oi

is defined iff Dom(τ) Π G ^ 0 and then τ[G] G F[G] [where "every
G . . . " is taken? e.g., Fis countable, G any set from the true universe] and
r is definable with parameters from V (so r is really a first-order formula
with the variable G and parameters from V).

(3) For p E Q (i.e., p E (J P, ), Q-names τ 0 , . . . ,τπ_i, and (first-order)

formula ψ let p \\-Q ψ(τ0,... rπ_i) means that for every directed G E
GenΓ(G), with/? E G, F[G] N ^ r o [ G ] , . . . 9τn-X [G]).

(4) A β-named [j, β)-ordinal f is a Q-name f such that if f [G] = ξ then
y < { < |8 and (3/7 E G Π P€n«)P Ihfl "f = Γ (where α = /(β)). If we
omit "[y,j8)M we mean [0,/(Q)).

Remark 2.5A: We can restrict in the definition of Genr(Q) to P* in some class
K9 and get a if-variant of our notions.

Fact 2.6:
(1) For Q as above and Q-named [j>β)-ordinal f and /? E | J P, there

/<o;

are ξ, q and <7! such that p < q, q \-Q "q{ E G", qx E P^, ξ < α, and
^i IhQ "f = Γ or r̂ |h δ , «f is not defined".

(2) For Q as above, and f, ξ Q-named [j,jS)-ordinals, also Min{f, ξ],
max{f, ξ} (naturally defined) are Q-named [j9β)-ordinals.

(3) For Q as above and β-named ordinals ξ i , . . . , £„ and /? E ( J P/ there

are f < α and tf0 G P r , p < <?, ̂  Ihg "f - Maxfξ j , . . . , | Λ } " . Similarly
for Min.

Definition 2.7 We define and prove by induction on a the following simul-
taneously:

(A) Q = <P,, Qji i < a) is a κ-S/?2-iteration.
(B) A β-named atomic condition q (or [j\β)-condition, β < a) and we

define <? Γ £, ^ f {ξ} for a Q-named atomic condition q and ordinal
ξ < α (or Q-named ordinal £)•

(C) If ^ is a Q-named [y, jS)-atomic condition, ξ < α, then ^ ί £ is a
(Q ϊ £)-named [y, Min[i8, £})-condition and ^ f {£} is a P^-name of
a member of Q^ or undefined (and then it is assigned the value 0 , the
minimal member of Q^ similarly for £).
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(D) The K - Sp2-limit of Q, Sp2-LimκQ, and/? Γ £ for/7 E S^-Lim^β, £
an ordinal < or (or β-named ordinal).

(E) Pβ <o Sp2 UmκQ (if Q = <P, , Qt: i < a) is a κ-S/?2-iteration,
l8 < α, Pf , Q satisfying (i)-(iv) of Definition 1.2). In fact Pβ c
Sp2-LimκQ (as models with two partial orders, even compatibility is
preserved) and q E Pβ, p E Sp2 LimκQ are compatible iff q, p Γ β are

Proof:
(A) Q = (Ph Qji i < a) is a κ-S/?2-iteration if Q \ β is a κ-S/?2-iteration for

0 < α, and if α = β + 1 then Pβ = S^2 Limα(β f β) and ζ^ is a P^-name
of a forcing notion as in Definition 2.1(i)-(iv).

(B) We say q is a Q-named atomic [j, β)-condition when: q is a Q-name,
and for some f = ^ a Q-named [y, jS)-ordinal Ihg "f has a value iff q has, and
if they have then f < Min(β, l(Q)), q E β^". Now q \ ζ will have a value iff ^
has a value < £ aίnd then its value is~the value of q. Lastly, q Γ {£} will havea
value iff ξq has value £ and then its value is the value of q (similarly for £).

(C) Left to the reader.
(D) We are defining Sp2 LimκQ. It is a triple Pa = (\Pa\, <, < 0 ) where

(a) | P α I = {{qi: i < /(*)} /(*) < K, each q{ is a β-named atomic con-
dition, and for every ξ < a, \\-P^ "{qf Γ [£}: / < /*} has an <0-
upper bound in ζ^"}.

(b) Pa \=Pι ^oP2 iff for every f < α lhpr {«/ Γ {f}: / < /7(*)} are
equal for / = 1, 2 or for some / < /2(*) for every yΊ < /#1(*) |=
Qy{ Qζ ¥ qjx ^o QΪ where pi = {̂ r/: / < /'(*)}

(c) P α N p 1 ^ p 2 i f f :
(i) for every ζ < a (p2 \ Γ) lhpr "p 1 Γ {f}, p 2 Γ {f ] are equal as

subsets of Qζ (remember (F)) or for some / < /2(*) for every
j < iι(*) ¥P" QΪ ¥ QJ * Qf" wherep ι = [qf: i < /'(*))

(ii) for some n < ω and β-named ordinals £i ,...,$„ for each f <
l(Q)'Pi f lhs"if f ί {ίi,...»έ/i) then for some r E /?2,
|-r[G] = f and for every s E pf [fΓ = f => 5 < 0 r] w. We then
say:/7j </?2 over [ | ! , . . . ,^}.

Remark: We could use names for n too, but as it is finite this is not necessary.

Now for ξ < a, and p E Sp2 Lining, let us define

pt£ = [r\ξ:rep)
ptli} = {r\{!ί):rep}.

Proof of (E): Let us check Definition 2.1 for Pa -dfSp2 Lim^β:

< P α is a partial order: Suppose po<p1<p2. Let nι, £o> »ί« appear in
the definition of Pι<Pι+\. Let /i = /i° + Λ1, and

_Γ|?i f/</i°

Now | h δ Λ r {£} </?/+1 Γ {f», "hence IhgPo Γ {|» </?2 Γ U(]
n.
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Also l h δ " i f f ^ { | b , . . . , f Λ + i ί t h e n p o t {f} < 0 />i f i f ) ^ o P 2 f { f P So
we finish.

<o is a partial order: As in I.
p <0 q => p < q: By the definition; easy.
So in Definition 2.1, (i), (ii), (iii), and (iv) hold. We leave the checking of

the rest to the reader.

Remark 2.8: This is a combination of [4], X with the recent Gitik ([2]) (which
uses Easton support, each Q is ({2}, κ, )-complete, where for the important /'s
Kj = /: as his aim was mainly cardinals which remain inaccessible).

Lemma 2.9 Suppose y is an ordinal and Q = <PZ, g,: / < a) is a
κ-Sp2-iteration.
(1) if p < q in Pa = Sp2 LimκQ then for some n ordinals £ i < . . . , < £ „ , A* e
Pa, q< r, andp< r above { £ i , . . . , £ „ } .
(2) Ify is successor cardinal (or not a cardinal) then the parallel of 1.4, 1.5,
1.6 holds.
(3) If K is inaccessible but \\-Pi "K is a regular cardinal" for each i < a then the
parallel of 1.4, 1.5, 1.6 holds'.

Proof: Left to the reader.

Lemma 2.10 Suppose Q - (Pt, Qt: i < a) is a κ-Sp2-iteration, K > Ko a reg-
ular cardinal, S c {2} U [μ: Ko < μ < K, μ regular] and each Qt (in Vp>), has
(S, <κ) - Pru them
(1) Pa = S/72-Liniκ Q has (5, <κ) - Prx, and if each Qa has (5, K) - Prx then
Pa has it.
(2) IfκGS and cf(a) = K then (J Pt is dense in Pa.

(3) If K G 5, a strongly inaccessible, a> | P, | + K for i < a then Pa satisfies
the a-chain condition (in a strong sense).
(4) If each Qt has a power of < χ , then Pa has a dense subset of power
<(\a\+χ)<\
(5) // I Qt I < x, x <x = x, l(Q) = x + then Q satisfies the x +-c.c.
(6) IfS= {K}, (1) works even for (S,κ) - Pr which is defined as the game def-
inition of semiproperness; i.e., using Fact 2.4(b) with winning means:

Λ (*Pa)Pa I!" Sup 7/ < Sup (X,

Proof:
(1) Let us check Definition 2.1. Now (i)-(iv) hold by 2.7.
For (v) let μ E S, \\-P " r < μ\p E Pa. For simplicity μ Φ 2. We define by

induction on n pn, p = p , pn < 0 p n + ι . For each n let {ξ": i < yn < K} be the
domain of pn (i.e., {ζr: r E p n } ) and define by induction on i < ynpf, p$ -pn.
p" is <0-increasing (in /).

Up" is defined let (writing a little inaccurately) G 9 Ptf+i be generic over
V. In V[G] if there are α/1 < /x, r E P α , r Γ (ξf + 1) E G,>/* < 0 A*, such that
r \Ypa/G "τ ^ <*?", let r f tG] be like that; otherwise, let rf =pP. So rf, a? are
P ^ + r n a m e s . Now in V[G Π P%?], Qξ? is a forcing notion, a" a name of
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an ordinal < μ; hence there are β? < μ, q?> pf \ {£?} < 0 Q? ^ Qξ?> V[G Π
Pξj] N "Q? H-Q$f "α/1 ̂  0/1". So β? is a Pjf-name, ςr/1 a Q-named "atomic con-
dition. Now definep?+1 as /?&i = A " U r/* f [£? + 1, a) U {^}.

We have an obvious flaw—why is there a limit for p?(i < δ)l (or pn(n <
ω)). For this, use (v) of Definition 2.1, i.e., increase p"+ι albeit according to the
winning strategy. Now/?Λ+1 will be 0 ^ p"n according to the strategy too.

So there is p*9 pn < 0 p* for each n. Dom /?* = (J Dom /?„. We claim

that for some a < μ, p* \\-Pa "τ < α". If not, let q E Pa, g > /7*, and j3 < μ
be such that <? |(-Pα "r = jff". So by 2.9(3) w.l.o.g. q > p* above some {ζo» >
ξ/i-i}> έo < < £/2-i Choose such number «, and ordinals ξι(l < ή) with
minimal \n_x (or « = 0 is best of all). If n > 0, w.l.o.g. for some m<ωq\ ξn-X

H-pίπ_/' ξπ ^ Dom/7W" and we get contr. to the choice of pm+i

(vi) is left to the reader.
(2), (3) are left to the reader.
(4), (5) Like [4], Ch. Ill x.x, use only names which are hereditarily < K.

Definition 2.10 We define S/?3 iteration Q and Sp3 Limκ Q like κ-SP2 with
only one change; instead p e Pt being of cardinality < #, we require:

(*) for every p E Pa, λ < l(Q) which is strongly inaccessible, and (v/ <
K) [\Pi\ < λ] \\-Q\\ "the domain of p \ λ is bounded below λ". Hence, for
each λ U Pi is dense in P λ .

/<λ

Claim 2.11: The parallel of Definition 2.10 holds.

3 We can get from the lemma of preservation of forcing with (S, y) - Prx

by κ-Sp2 iteration (and on the λ-c.c. for then) Martin-like axioms. We list below
some variations.

Notation 3.1: Reasonable choices for S are
(1) S® = UR Car<κ =^ {μ: μ a regular cardinal, Ko < μ < κ\
(2) S*1 = RCar<κ = {μ: μ a regular cardinal, Ko < μ < K]
(3) Sκ

2 = {2} U Cαr^κ

(4) If we write "< K" instead < K (and Sι

<κ instead Si) the meaning should
be clear.

Fact 3.2: Suppose the forcing notion P satisfies (S,y) - Pr}

(1) If 2 E S then P does not add any bounded subset of 7.
(2) If μ is regular, and λ, (ι < μ) are regular, and {μ} U {λii i < μ} Q S, D

is a uniform ultrafilter on μ, θ = cfl JJ λ//£>) (λ ras an ordered set)

then P satisfies (S U {0}, 7') - Prx whenever μy' < μ. (We can do
this for all such θs simultaneously.)

(3) If λ E S is regular, μ < 7 then for every/: μ -• λ from F p for some
g: μ-> λ from Ffor every α < μ,f(α) < g(α).

Claim 3.3: Suppose Λ/y4<κ holds (i.e., for every P satisfying the tfi-c.c. and
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dense Dt c P (for / < a < K) there is a directed G c Q, /\ G Π D,r * 0 ) . Then

the following forcing notions have expansions (by < 0 ) having the (U RCar,

K) - Prl

(1) Silver forcing: {(w,>l): w £Ξ ω finite, A Q ω infinite)
(wuAλ) < (w 2 ,^ 2 ) iff wx^w2^ wx U Au A2 QAi.

(2) The forcing from [5], Section 2 (changed suitably).

Proof: (1) Let P' be the set of (w, ̂ 4, B) satisfying: w c ω finite, 5 c ω infi-
nite, 5 c > J c ω , with the order

(wuAxBx) < (w29A2,B2) iff(WuAι) < (w2,^2)
and B2 g* .βj (i.e., 5 2 - #i finite)

(W!,i4l,^l) ^0 (W2,^2,^2) tfWl = W2

AX=A2

B2<^*BX.

Let us check Definition 2.1: (i)-(iv) easy.
Note that [(w9A,A): (w,A,A) G P] is dense in P
(iv) Let μ > Ko be a regular cardinal, r a P'-name, \\-P "τ < μ. Let p =

(w,^4,5) be given. Choose by induction on / < ω, nh A, such that

(a) A0 = B(^A)
(b) Πi - Min Ai
(c) Ai+1cAi- [Πi]
(d) for every u c {0,1,2,... ,/2/J for some α/)M < /x, (w, y4/+1, Ai+X)

\\-p, «τ = α / + 1 " or for no B c ω and α < μ(w, 5, 5) Ih "T = aitU".
There is no problem to do this, now q =df (w9 A, {ΛZ: / < ω})
satisfies:
(e) p < q G P' and even p < 0 <7
(f) q VP> " " r e {α/fII: / < ω, u c {0,1,2,...,^}}.

So # is as required.
(v): Suppose/?,•(/ < 7) is <0-increasing so/?/ = (w, A, Bt) Bj Q A, Bt is *-

decreasing. It is well known that for 7 < K, M/4<λC implies the existence of an
infinite B ̂  ω, (V/ < 7) B c * ,0^

Claim 3.4: The following forcing notions have the (URCar,κ) — Prx:
(1) Krc.c.
(2) κ-complete
(3) {/: / a function from A to {0,1}, A c ω , ̂ 4 = φ mod Z>} where £) is

a filter on ω, containing the co-finite sets, such that if Ai G D for / <
/* < K then for some B G D /\ B Q*Aj

Discussion 3.5: Let K < λ, λ regular. Each of the following gives rise naturally
to a generalized MA, stronger as λ is demanded to be a larger cardinal (so if λ
is supercompact we get parallels to PFA).
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Case I: We use Q of length λ, a κ-SP2 iteration, \\-P. " | Q,| < λ", each Qf hav-
ing (Sj,κ) - /Vf.

Now Pλ = K - SP2 Limκ ζ) have the (S/, K) - Prx by 2.10, so all regular
μ < K remain regular and usually every λ' G (K, λ) is collapsed. But λ is not col-
lapsed if it is strongly inaccessible (by 2.10(3)) and also if (Vχ < λ)(χ<κ < λ)
(by 2.10(5)). If 2 G Sp, no bounded subset of K is added.

Case II: Like Case I with (K + 1) - Sp2 iteration Sp2 Lim^j and every λ' G
(/c, λ) is collapsed. Here we need λ to be strongly inaccessible.

Case III: Q is S/?3-iteration, has length K, \Qt\ < K for i < K, K is strongly inac-
cessible, and Q/ have (S,γ/) - Λ f.

By 2.11 Pκ = Sp3 Lim Q has the κ-c.c. (and |P, | < K of course). Let S =
(μ < κ; μ regular and for some /', hPi "μ is regular and μ G Sj, μ < γy , fory >
/) then |[-pα.

Fact 3.6: Suppose λ is strongly inaccessible, limit of measurables, λ > /c, K reg-
ular. Then for some λ-cc forcing P not adding bounded subsets of κ9 \P\ == λ,
and Ihp "2" = λ = κ + , and for every A c /c there is a countable subset of λ not
inL(^l).

Proo/: We use κ-SP2-iteration <PZ, &: / < λ>, |P, | < λ. For / even: let K, be the
first measurable > |P, |, (but necessarily < λ) and r. Then Qt is Prikry forcing
on Kj and Qi+Ϊ is Levi collapse of κ+ to AC.

Lemma 4.1 Suppose
(i) Z? is an Xι-complete forcing notion.

(ii) For reR,Qr = (Pf: i < α£>, Pf /5 ̂ -increasing in i and ifi < ar has co-
finality ωi, then every countable subset of Vp« belongs to Vp*r for some i < a.
(iii) //rι < r2 then Qr" < Qμ.
(iv) Ifr^R and Q is a P^-name of a forcing notion, then for some rι > r

PrJμ+ι = Pr

a*Q or hp^MQ does not satisfy the ccc.

(v) If r^{ζ < b) is increasing, δ < ωi, then for some r

/\rϊ<randar= \J ar^

Let P[QR] be U{P[: r G QR, i < ar], so it is an J?-name of a forcing notion.
Then \\-R [hp[GR] "for any K! dense subsets of Sacks forcing, there is a
directed subset of Sacks forcing not disjoint to any of them"].

Remark: Qsacks = iτ: τ —ω > 2 is closed under initial segments nonempty and
(Vη E τ)(3v)(η < v Λ v ~ <0> G Γ Λ U Λ <1> G Γ) and r, < τ 2 if r 2 £ 7χ.

Proof: Let Z), be ^^[G^J-name of dense subset of Q§acPksGR] for / < ωx

(Qsacks is Sacks forcing in the universe F).
For a subset E of Sacks forcing let var(E) be {(«, Γ): T e E, n < ω]

ordered by ( A * ^ ) < (n2, T2) iff nr < Λ2, T2 C r l f and 7\ Π"1- 2 = Γ2 Π
Π l - 2.

We now define by induction on f < ω2, /*(i"), and D̂ - such that;
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(a) r(ζ) E R is increasing, ar(^-increasing continuous.
(b) Dζ is a P ^ ( r + ί ) " n a m e °f a c o u n t a b l e subset of Qsacks-
(c) If TeD{[ η G Γthen Γ[r?] = ^ {t;: η ~ v G T] belongs to 7)r.
(d) If Tu T2 eDζ then {< >, <0> ̂ ry: 17 G ΓJ , [< >, <1> ~η: η G Γ2} and

their union belongs to Dζ.
(e) Let ξ < f, then for Γj G ̂  there is Γ2 G 7)r, 7̂  > T2 and for T2 G 7)r

there is T{ e D^ Txτ> T2.
(f) If Te Dς+ι then for some n for every 77 G n2 Π Γ, Γ(r?) = ^ ( ι ; G T:

v < η or η < v] belongs to Dζ.

(g) Suppose f is limit, then P ^ f ^ ^ P ^ ) * ! } , 7} is v a r ( J ^ if f <
r "lω L «<r J

ω! and 7} is var N DΛ if f = ωt (the ω-th power, with finite sup-
L ^<r J

port).

Next the generic subset of 7} gives a sequence of length ω of Sacks con-
ditions closing the set of those conditions by (c) + (d) we get Dξ. We have
to prove that 7} satisfies the Ki-c.c. in VR*Paπn: When ζ < ωι this is trivial

(as 7} is countable). Let f = ωi. It suffices to prove that var (J D% satis-
L ξ<r J

fies the K^c.c.where n < ω. So let 7 be a i? * P£(J;. name of a dense subset of

[ 1 ~ ~ r

var U A We can find a ξ < f, cf { = Ko such that Iξ = {x:xe VR**«{& and
*<* J r I ,

every peR* P£(

r[>} /R * P^f^ force x to be in 7) is predense in var \J DΎ

(exists by (e)). Check the rest.
Remark: This argument works for many other forcing notions like Laver.

5

Definition 5.1 Let S be a subset of {2} U {λ: λ is regular cardinal}, D a filter
on a cardinal λ (or any other set). For any ordinal 7, we define a game
Gm*(S, 7, D). It lasts 7 moves. In the /-th move player I choose a cardinal λ G
S and function Ft from λ to λ, and then player II chooses α, < λ/.

Player II wins a play if for every / < 7,

d((λj9Fj9 aj:j<i» =df{t<\: for everyy <i [λ, = 2 => Fy(f) = αj
[λ, > 2 => F;(f) < a,-} Φ 0 modD.

Remark 5.1 A:
(1) See [4], Chapter X on this.
(2) If not said, otherwise we assume that λ - {ξ] G D for ζ < λ.
(3) If D is an ultrafilter on λ, ( |γ | + κ + )-complete for each

K G S then player II has a winning strategy.

Definition 5.2 For Γ a winning strategy for player II in Gm*(S9 7, £>), D a
filter on λ (we write λ = λ(D))9 we define Q = QFtλ = QF,s,7,z>, 6 = (| Q|, <,
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Part A: Let (T,H)eQiff
(i) T is a nonempty set of finite sequence of ordinals < λ.

(ii) η G Γ=> η 11 G T, and for some n and ι/: ΓΠ *~λ = {η 11: 2<n}9

\TΠ n+ιλ\ > 2; we denote η = stam(T) = stam(T,H) (it is unique),
(iii) //is a function, T- {stam(T) \ I: t < lg(stam(T))} c dom HQ ω >λ.
(iv) for each η G Dom //, i/(τ;) is a proper initial segment of a play of the

game Gm*(S,y9D) in which player II use his strategy F so H(η) =
<λf <*>, F/™, «/*<*>: i < /"<*>>, and /"<*> < 7.

(v) for η G T,d(H(η)) = {f<λ:7?~<f>G Γ).

Part A (Γπi/O < (Γ2,i/2) (where both belong to Q) iff T2 Q Tx and for
each η G Γ2, if stam(T2) < ry then H\ (η) is an initial segment of Hι(η).

Part C: (TUHX) < 0 (Γ2,//2) (where both belong to Q) if (TUH{) <
(Γ2,//2) and stam(Tx) = stam(T2).

Remark 5.2A: (1) So if (TfH) G QF ) λ and F, S(y,D) are as above, 77 G Γ,
η > stam(T) then d(H(η)) Φ 0 moc/£).

(2) We could restrict Hto Tin (iii).

Notation 5.2B: For/7 = (Γ,//) G QF,λ and r/ G 7Ίet/?[r>] = (T[η\H), T[η] =
{vGT: v<η or η <v}. Clearly p<p[η] G QF,λ

Lemma 5.3 If Q = 6F,5,7)JD» i? βr uniform filter on λ(D) then \\-Q cf
λ(D) = Ko.

Proof: Let ηQ = \J {stam(p): pE QQ}.
Clearly if (7>, He) G QQ for ί = 1,2 then for some (Γ, i/) G QQ, (T€, He) <

(T,H); hence stam(T£) < stam(T), hence stam(TuHx) U stam(TuH2) is in
ω >λ. Hence ι/e is a sequence of ordinals of length < ω. It has length ω, as
for everyp=(T,H)G Q, and n, there is η G ΓΠ rtλ, hencep<p [ η ] eQ (see
5.2B), and p[η] \\- "lg(ηQ) > «" because η < stam(pίη]) and for every <? G
Q, q \VQ "stam(q) < j β

M . Obviously, \\-Q "Rang(ηQ) c λ". Why |hQ sup
Rang(ηQ) = λ? Because for every (Γ,//) G Q and α < λ, letting η =df

stam(f), clearly d{H(η)) Φ 0 mod £> (see Definition 5.12) but £> is uniform,
hence there is β G d(H(η)), β > a, so η ~ (β) G Γ, and (Γ, ̂ ) < (Γ, H)[η"<β>] G
β, (T,H)[^<™ hQ «η ̂  </3> < 32" hence (Γ,i/)[^<^>] |h "sup Rang(ηQ) >
|8W, as α < j8 we finish.

Lemma 5.4 IfS,y,D are as in Definition 5.1, Ko ί S, F α winning strat-
egy of player II in Gm*(S, y,D), cfy > Ko, then Q satisfies (S, cfy) - Prx (see
Definition 2.1).

Proof: In Definition 2.1, parts (i), (ii), (iii), (iv), (vi) are clear. So let us check
(v). Let K G S, T be a β-name, \\-Q "r G /c" and /? = (Γ,//)Eβ.We define by
induction on n, pn = (TnfHn) such that:

(0 Po=p,Pn*oPn+i, τnn
n>\ = τn+ιn

n>λ

(ii) if 77 G Γn Π "λ, and there are q9 a satisfying

(*) "plη] < 0 q G β, a < K, q |h "if K = 2, r = α, if /c > Ko, r < α"

rΛe« pjj^i, α^ satisfying this.
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(iii) if η E Tn+i Π
 n\ and there are q, β satisfying

(*) p{

nt\ <oqeQ, and for every r, β < κ9

[q < 0 r E Q -> i (3r ! ) ( r < π E 2 Λ n Ih if K = 2, r = 0, if * > Ko, j < 0"]

then plj+i satisfies (*).
Let/?ω be the limit of (pn: n < ω>, i.e.,/?ω = (Γω,//ω), Γω = p) Tn,Hω(η)

is the limit of the sequences //„(*/) (for 77 E Γω - [stam(T) \ t\ £}). It is well
defined as cf(y) > Ko.

Now for each η E Tω, Hω(η) is a proper initial segment of a play of the
game Gm*(S, y,D), and it lasts iH^η) moves. Player I could choose in his
/^"W-th move the cardinal K and the function/,: λ -> K,

ί ctη~<& if defined (which is < K)

0 otherwise.

So, for some βη9 Hω(η) ~ (α,fη,βη) is also a proper initial segment of a play
of Gm*(S,y,D) in which player II use the strategy F. So there is
Pω+ι = (Tω+Ϊ9Hω+ι) E Q, pω < 0 /?ω+i> and for each η E Γ ω + 1 - {v: v <

stαm(T)}, Hω+ι(η) = Hω(η) ~ <κ,fη,βη>.

We can easily show

Fact 5.4A: Up = (T,H) e β , κ G S,f: T-+κ9 then for some/?! = (TUHX) E
ζ), /?</?!, and for every η E 7\, [/c = 2 Λ / Γ SucTι(η) is constant] or [K >
K! Λ / ί Swĉ j (77) is bounded below K] .

[Proof: Define by induction rΛ, p < 0 r
Λ < 0 /*"+1 E Q, rΛ + 1 satisfies the conclu-

sion of 5.4A for η of length n9 now any rω E Q, (Vn)rn < 0 r
ω is as required].

Fact 5.4B: If/?= (Γ,i/) G β , ^ c T then there is /?! = (Tι,H{) G Q, p < 0 A
and for every 77 E 7\, and k < ω:

( V ^ r ) [ ^ E Q Λ / ? ^ < O < 7 - ^ (lvEA)(veq Λη< vAlg(v) = k ) ]

[Proof: Define by induction on n rn

y p < 0 r
n < 0 A*Λ+1 E Q, A Λ + 1 satisfies the

conclusion of 5.4B for η of length < Λ and k<n. Now any rω E Q, (Vn)rn < 0

rω is as required.]

Let A = [η E Γω+1: α^ well defined), and let q, pω+γ < q E Q be as in
5.4B. Now for every η E Tq there is r E <2, # [ ϊ ? ] < /*, and r force a value for r.
So stαm(r) E v4 (as p ω < q, see the definition of the A/S), and p^stαmr] force a
value to τ; hence, q^stαmr^ does, and let kη be lg(stαm r) for such r with mini-
mal lg(stαm(r)). So by 5.4B,

(*) For every η E Γ g, and r, q[η] < 0 r E Q, for some ί/ E # [ τ ? 1, ry < ,̂ lg(v) =
kη9 and ̂  E ^4.
Now for each qu q < 0 q\ E Q, i; E Γ 9 1 we can, by fc, applications of

5.4A, get an ordinal α < K and q2i q\η] ^0 2̂> and

(*) (V?3 E Q) [q2 <o ̂ 3 "* (3f E Λ)(i> E Γ^3
 Λ lg(v) = kη A αv < α)] (or if

fc = 2, «„ = α).
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But this shows that βη is defined for every η E Tq. Finishing alternatively
by repeated application of 5.4A we can define by induction on n, q(n) E Q,
q(0) = q,q(n)<Qq(n + \) and β% for η E Tg(n) such that:

(a) β°η = βη

(b) when K > Ko: η ~ <f> E Tn+ι =* ft?+1 > /3^<r>

(c) when K = 2: η ~ <f> E ΓΛ + 1 => ft?+1 = ft^<r>.
Let qω E β be such that #„ < 0 tfω for n < ω.
Now if Ac > Ko (is regular), we claim

n<ω

Clearly/? < 0 qωeQ, \J jS<Λ> < /c so this suffices. Why does this hold? If not,

then for some q\ qω<qf E Q, <y' lhQ " r > U jSf >. Let η = stam{q'), so η E

Γ^, and c^ω is well defined, and aspi" 1 < 0 ( ^ Ί ^ 1 , ^ > U ^ o B u t a s ^ E

p | Tq(n\ β${n) > /J,, and we get a contradiction.

If K = 2, we note just that if η E Γ« ( 1 ) , ft, = /3® = β*.

Lemma 5.5 Suppose Q = <PZ, Q,-: / <λ) is a κ-Sp2-iteration, |P/ | < λ/or
/ < λ, etfcA Q, ΛύT5 ( 5 , <κ) - Prx a n d ( S , σ)-Prγσ<κ regular, S ς ( 2 ) U ( ί :
0 regular uncountable <κ} α/irf I/I V, D is a normal ultrafilter on λ (so λisa mea-
surable cardinal). Then \VPχ

 ((player II wins Gm*(5, κ,D)".

Remark: Also for κ-Sp3.

Proof: Let A = {μ < λ: (Vi < μ) |P, | < μ, μ strongly inacessible > K}.
Let G λ c p λ be generic over V, Ga = G Π Pa.
W.l.o.g. player I choose Pλ-names of functions and cardinals in S. Now

we work in V and describe player IPs strategy there. For each μGA the forc-
ing notion P\/Pμ has (S, σ) — Pr2\ hence, player II has a winning strategy
F{Pλ/Gμ) E V[GK], so F(Pλ/Gμ) is a Pκ-name, <F(PX/Gμ): μ) a P λ-name.
Let us describe a winning strategy for player II.

So in the ith move player I chooses 0, E S a n d / : λ -• 0,. Player II chooses
in his /-th move not only αz < 0/ but also Ahfh yi9 ((pf: j < />: μ E 4̂/> such
that γ, is an ordinal < λ,

(1) j < i => γy < γ 7.

(2) A G A Λ G K, Λ £ Π ^ a n d^«= Γ\AJ

(3) ih^rλ-^g^fi/eS".
(4) forμEΛ,

</7/:y<2/ + 2>

is a P^-name of an initial segment of a play as in (vi) of 2.1, for the
forcing Pλ/Gκ, pξJ+ι \\-Pλ/Gμ "Mμ) = α, if 0/ = 2, ft(μ) < at if 0/ >
Ko", at a Pα.-name.

In the /-th stage clearly A® =df f]AjΠA is in D, and let γf = supγ,,
j<i J<i

so 7® < λ and choose yμ E (7^, λ) such that 0, is a PΎi-name. For every μ E
-4, μ > y\ we can define Pμ-names pξh p&+i, α/* such that:
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(a) \\-Pμ "(pf: j < 2/ + 2> is an initial segment of a play as in (v) of 2.1
for Pχ/Pμ in which player II uses his winning strategy F(Pλ/Gμ).

(b) pξi+1 hPλ/Pμ "Mμ) = q? if θi = 2, Λ(μ) < αf if ft > Ko"

Now α/* is a Pμ-name of an original < K < μ, it is P ^ j - n a m e for some
β[μ] < μ (as P μ satisfies the μ-c.c. see 2.x). By the normality of the ultrafilter
D, on some Aj c ^4f, 0 [ μ ] = ft for every μEAj. Let γ, = γ,J + ft.

Easily for each / < σ, \\-Pλ " ( μ E At: pξi+ι E Gλ] * 0 mod D9\ so we
finish.

Now we can solve the second Abraham problem.

Conclusion 5.6: Suppose λ is strongly inaccessible {μ < λ:μ measurable) is sta-
tionary, K < λ, S ζ: {2} U {θ: θ < K regular uncountable}. Then for some forc-
ing notion P: \P\ = λ, P satisfies λ-c.c. and (S, <κ) - Prx (and (5, K) - Pru

if we want), and hP "λ = |/c| + " (so h \ 2'"I = λ) in Vp: and: for every A c
λ, for some δ < λ, there is a countable set a £Ξ δ, which is not in V[A Π δ], we
can also get suitable axiom (see 3.5).

Remark 5.6A: We can also prove (by the same forcing) the consistency of D\ +
{δ < λ: cfδ = Ko) is precipitous: if in addition there is a normal ultrafilter on
λ concentrates on measurables.
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