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Inconsistent Number Systems

CHRIS MORTENSEN

1 Introduction In a previous paper ([8]), it was shown that there are finite
inconsistent arithmetics which are extensions of consistent Peano arithmetic for-
mulated with a base of relevant logic, and also of the set of truths of the clas-
sical standard model of arithmetic. In the present paper, the study of the
operations of inconsistent number-theoretic structures, especially finite struc-
tures, is continued. The interest is particularly in displaying inconsistent theories
and associated finite structures which extend standard classical structures, in the
sense that all truths of the latter hold also in the former. The principal thesis
to be argued on that basis is that classical mathematics is a special case of incon-
sistent mathematics.

The view of mathematics, as based on classical two-valued logic as a deduc-
tive tool, has it that from inconsistency all propositions are deducible. Hence,
inconsistency-toleration is achieved in the present paper by use of a logic with
a weaker deductive relation |, the three-valued logic RM3, the third value of
which has a natural interpretation, ‘both true and false’ (cf. Section 2). It should
not be thought, however, that theories in which a weaker | is used inevitably
lead to sacrifice of some classical propositions. It is one purpose of this paper
to demonstrate this, by displaying inconsistent theories which contain various
well-known classical consistent complete subtheories.

Aside from its capacity for contradiction containment, RM3 is chosen for
two reasons. First, being three valued it is reasonably easy to deal with, partic-
ularly in yielding a rich model theory. Second, every RM3-theory displayed is
also a theory of all the usual relevant logics such as E and R, which have an
independently natural motivation. The interest of those logics for mathematics
may be judged accordingly. Indeed, since every classical theory is an RM3-theory
and thus also an E- or R-theory, the “special case” thesis above has another
dimension: just as consistent mathematics is a special case (under the assump-
tion of consistency or closure under classical deducibility) of inconsistent math-
ematics, so classical logic is a special case (in which closure under classical
deducibility, for instance the rule of Disjunctive Syllogism, holds over a limited
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subject matter) of inconsistency-tolerating logic. Again, no sacrifice of math-
ematical richness is envisaged; on the contrary, the hope is to show that further
mathematically rich structures are to be uncovered by the expanded perspective.

In Sections 2 and 3, the basic model-theoretic framework is set up. In Sec-
tion 3, this is used to study inconsistent theories which include the classical the-
ories of various rings and fields—that is, the standard theories of addition,
multiplication, subtraction, and division. In that section the notion of a model
with identity is defined, and it is argued that the existence of inconsistent models
with identity supports the thesis that inconsistent mathematics can be seen as
extensional in a perfectly standard sense of that term, as a study whose subject
matter can be viewed as objects with inconsistent properties. An important out-
come of this section is that it is not so easy to develop an inconsistent theory
of fields even with an inconsistency-tolerating logic; the problems seem to be
deeper, to do with identity and functionality. In Section 4, order is studied; and
in Section 5, order is put together with the arithmetical operations to study
ordered rings and fields.

A model-theoretic framework is employed, but I suggest that this is a con-
sequence of the fact that intuitive inconsistent thinking is undeveloped (though
not entirely absent) among mathematicians and logicians. It is to be hoped that
its development will not prove ultimately impossible, but in its absence it is nec-
essary to demonstrate that control of the deductive consequences of contradic-
tions is possible. Thus, it is certainly not being claimed that the ‘natural logic’
of mathematicians is nonclassical, a disputed question in recent debates within
philosophical logic (see e.g., [3]1-[6], [10], [11], [14]). Mathematicians do seem
to be habitual consistentizers. But if there is any way to expand this perspective,
it must proceed by demonstrating the existence of rich mathematical structures
which are nonetheless inconsistent. Conversely, the paraconsistency movement
has somewhat shirked its duties in calling for inconsistency-tolerating logics but
omitting to demonstrate the existence of rich inconsistent mathematical theories
(e.g., [14]). If, say, there were no particularly interesting inconsistent theory of
fields, perhaps because of problems about the desired functional properties of
division and subtraction (as in the light of Section 3 may well turn out to be the
case), then it is no use calling for a paraconsistent logic if it is not much use
when you get it. Nonetheless, this paper aims to show that an expanded perspec-
tive is available. There is, I suggest, a ‘seamless web’ between classical consis-
tent structures with a limitingly simple logic (tacit or not), and structures in
which less deductive power leads to increased richness and freedom.

One direction in which this paper could be extended is toward nonstandard
models of various number theories. This is done in sequels ([12] and [13]).

2 Basic definitions and the extendability lemma We begin with a general
notion of an assignment which has minimal semantic features and then work
toward semantic features of models. The point of the exercise is to pick apart
some simple model-theoretic concepts which coincide classically, taking advan-
tage of the greater freedom afforded by weakened background logic. We will
see that some of the remaining connections are invariant with respect to broad
variations in background logic, while others are specific to RM3. The eventual
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aim is to establish conditions, in Section 3, under which the resulting structures
look more like extensional theories of inconsistent objects.

We consider various sublanguages of the language L consisting of simple
terms (names), one for each real number; function symbols +, X, —, +; atomic
predicates =, <, € (the latter is used only briefly in Section 5); variables x, y,
Z,...; and operators -, &, V (the latter also written ()). Complex terms, wffs,
and sentences are defined in the usual way, as are D, v, =, and 3. We regard
sentences of the form ¢, = £, t; < t,, t; € t, with no occurrences of —, &, V as
atomic, irrespective of whether the terms contain occurrences of function sym-
bols. Only theories whose theorems contain no free variables are considered,
and, for simplicity, no term is a variable. An RM3-assignment (abbreviated to
‘assignment’) is a function 7 assigning to the wffs of L, or the appropriate sub-
language of L under investigation at the time, values from the set {7, N, F} in
accordance with:

(1) For any atomic wff with terms ¢, #,, we have I(¢; = t,), I(t; < t3)
and I(¢, € t,) all belong to {T,N, F}, (read ‘true, neuter, false’).!
(2) I(~A) and I(A & B) are given by the RM3-matrices:

& | T N F | -

*T T N F F
*N N N F N
F F F F T

) I((x)A) = min{y: for some term ¢, I(A(t|x)) =y}, where min is rel-
ative to the ordering: false < neuter < true. A sentence A holds in an
assignment I iff I(A) € {T,N}.

A subset S of L is an L-semitheory (relative to Logic L) iff if 4 € S and
A |y Bthen B € S. Sis an L-theory iff S is an L-semitheory and in addition
if A € Sand B e Sthen A & B € S. Where no confusion will result, we often
drop the ‘L—’ when L = RM3. A set S of sentences is determined by an
RM3-assignment I iff (A € S iff A holds in I). A set S of sentences is consis-
tent iff for all closed wffs A, not both 4 € S and A € S; otherwise inconsis-
tent. S is trivial (or absolutely inconsistent) iff S = L; otherwise nontrivial. S
is complete iff for all closed wffs A4, either A € S or = A € S; otherwise incom-
plete. 1f S is determined by an RMa3-assignment, then S is a complete
RM3-theory; but not every RM3-theory is determined by an RM3-assignment,
since not every RM3-theory is complete (not every classical theory is complete,
and every classical theory is an RM3-theory).

A basic result is the following:

Proposition 1 (Extendability Lemma) Let I, I' be RM3-assignments with
the same sets of terms. If the atomic sentences holding in I are a subset of the
atomic sentences holding in I' and if in addition the negations of atomic sen-
tences holding in I are a subset of the negations of atomic sentences holding in
I, then the theory determined by I is a subset of the theory determined by I'.

Proof: By induction on the complexity of sentences. We observe first that
the hypothesis of the proposition is equivalent to the following: if A4 is atomic
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then: (i) if 7(A) = T then I'(A) € {T,N}; (i) if 7(4) = N then I'(4) = N;
and (iii) if 7(A4) = F then I'(A) € {N,F}. The induction proves that (i)-(iii)
hold of all formulas. The base clause is already proved. The - and & clauses
are straightforward from the — and & table. If A is of the form (x) B then either
(i) I((x)B) =T, whence I(B(t/x)) = T for all terms z. So for all terms ¢ (same
terms, by hypothesis) 1'(B(t/x)) € {T,N}; whence I'((x)B) € {T,N}. The two
other alternatives (ii) and (iii), where I((x)B) € {N,F}, are similar.

Note one consequence of this. If a theory determined by an RM3-assign-
ment is consistent and complete, then it is in fact a theory of classical first-order
logic, since in the absence of the value Neuter, RM3-assignments are just clas-
sical models. Hence we can begin with any model from classical model theory
(provided that it is equipped with appropriate names) and extend it by adding
additional atomic sentences to make it inconsistent, evaluating all complex sen-
tences as in RM3-assignments. The Extendability Lemma then ensures that the
resulting theory is a supertheory of the classical theory commenced with. Fur-
thermore, this extension is controlled by the assignment to atomic sentences, so
to speak, so that if even one atomic sentence or its denial remains with the value
False in the supertheory, it is nontrivial (absolutely consistent). There are two
related desiderata with this strategy which will come out later: the substitutiv-
ity of identity, and the functionality of +, X, —, +. Setting these aside here,
the general strategy so described for producing inconsistent extensions of clas-
sical theories (particularly determined by finite models) is a basic concern in what
follows.

3 Identity, with applications to arithmetical operations Consider first the
classical standard model of the natural numbers, equipped with names for the
natural numbers. In view of the Extendability Lemma, the set of sentences hold-
ing therein can be extended by adding any collection of sentences of the form
—n = n and evaluating in an RM3-assignment. Note that the contradiction does
not spread to other sentences of the form —m = m. Similarly, collections of sen-
tences of the form n = m for distinct n, m, may be added with the same result.

This raises the following question. If we add, say, 0 = 2 to the standard
model of the natural numbers, then, in virtue of the substitutivity of identity and
the fact that =0 = 2 also holds, have we not imported the further sentence
=0 = 0? The answer is no, and it illustrates the generality of the Extendabil-
ity Lemma. The rule of substitutivity of identity (SI) in the form if ¢; = ¢,
holds, then Ft, holds iff Ft, holds (all terms t,, ¢,, with £, replacing ¢, in F in
at least one place) does not always hold in our assignments. What is the case,
if the sentences holding in an RM3-assignment include those holding in the stan-
dard model of the natural numbers, is that (¢; = ¢, & Ft;) D Ft, holds, since it
holds in the standard model. But it is not in general true that if A O B holds and
A holds then B holds. In particular, (4 & ~A) D B) & (A & —A) might hold
while B does not. However, this leads to no loss of information from classical
arithmetic, since we do have that if (4 D B) & A holds, and if moreover (A D
B) & A holds back in the standard model for arithmetic, then B holds (trivial).
A special case of interest is this: if ¢, = t, & Ft; holds and if moreover —t, =
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t, and —Ft, both do not hold, then Ft, holds. (Reason: for then ¢ = ¢, & Ft,
holds back in the classical complete subtheory, wherein F#, could be detached.)

So the rule SI does not hold in all RM3-assignments. This is by no means
catastrophic. Intentional theories, for instance modal theories, in which SI fails
have been extensively investigated. Many philosophers have taken the failure of
SI as the mark of the intensional. Even so, it is obvious that a central role will
be played by those models for which SI does hold. In fact, it is useful to use a
more semantically based notion which ensures SI. We call an assignment an
assignment with identity iff for all terms ¢, ¢,, if {; = ¢, holds then for all
predicates F, Ft; holds iff Ft, holds; where Ft, is like Ft,, except that ¢, replaces
t; in at least one place. This is evidently a generalization of the corresponding
classical notion which nevertheless remains within its spirit. We also say that an
assignment is reflexive iff t = t holds for all terms ¢. Now the idea of an assign-
ment with identity does not determine much by itself, but coupled with reflex-
ivity it determines a lot, as the following proposition shows. First, some
definitions: an assignment is functional iff for all terms ¢, ¢, if ¢, = ¢, holds
then f(¢,) = f(t,) holds provided that both the latter are defined, and both are
undefined otherwise. An assignment is symmetric iff ¢, = t, holds iff ¢, = ¢,
holds, and transitive iff if t; = ¢, holds and ¢, = ¢; holds, then #; = #; holds (all
11, t5, t3). An assignment which is reflexive, symmetric, and transitive is nor-
mal. Now we have necessary and sufficient conditions for a model with identity.

Proposition 2 (1) 1 is an assignment with identity iff for all terms t,, t,, if
t, = t, holds then for all atomic F, I(Ft,) = I(Ft,). 2) If I is a reflexive assign-
ment with identity, then I is normal and functional. (3) If I is reflexive and =
is the only predicate of the language, then I is an assignment with identity iff I
is functional and for all t,, t,, if t, = t, holds then for all t5, I(t, = t;) = I(t, =
t3) and 1([3 = f[) = 1(13 = 12).

Proof: (1) R - L follows by a straightforward induction on the complexity of
terms. L — R: Let I(Ft,) # I(Ft,) for some atomic F while ¢, = ¢, holds. If one
of Ft,, Ft,, does not hold then the other does, so that / is not an assignment
with identity. Otherwise, if both Ft;, Ft, hold, then one of —Ft,, —Ft, does not
hold while the other does, again incompatible with identity.

(2) Symmetry: Let ¢; = £, hold. By identity, if #; = ¢, holds, then ¢, = £
holds iff #, = ¢, holds. By reflexivity, #; = ¢; holds. Hence ¢, = ¢, holds. Tran-
sitivity: Let ¢, = ¢, and ¢, = t; hold. By identity, if ¢, = ¢, holds then ¢; = #3
holds iff #, = #; holds. Hence ¢; = ¢; holds. Functionality: Let ¢; = ¢, hold. By
identity, f(¢;) = f(t,) holds iff f(¢,) = f(¢,) holds. By reflexivity, f(¢;) = f(¢;)
holds. Therefore, f(¢;) = f(t,) holds.

(3) L - R follows from (1) and (2). R — L: From (1), we need only prove
that if ¢, = ¢, holds, then for atomic F, I(Ft;) = I(Ft,). Clearly, atomic F have
one of four forms: ¢, = t3, t3 = t,, f(t;) = t3, or {3 = f(¢;). In the first two
cases, the conditions of the theorem ensure what we want. In the third case, we
have to prove that if ¢, = ¢, holds, then for any #;, I(f () = t3) = I(f(t;) =
t3). But if #; = ¢, holds, then by functionality, f(¢;) = f(Z,) holds; hence by the
conditions of the theorem, for any #;, I(f(#;) = t3) = I(f(t,) = t3) as required.
The fourth case is similar. This completes the proof.
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Note that all of (1)-(3) are true over a broad class of logics, since the induc-
tions needed for (1) and (3) will work provided that I assigns values in a Lin-
denbaum algebra, and (2) and the remainder of (3) need only minimal properties
for ‘holds’. Proposition 2 is thus a general result for model theory based on
many different logics.

The conditions for an assignment with identity can be made more seman-
tically based, so the idea of an assignment is now strengthened to that of a
model.

An RM3-model is a pair (D, I) where D is a domain and 7 is a function
which is an RM3-assignment and which in addition has the following four prop-
erties: (1) 7 assigns to every simple term a member of D, and [ is onto D; so
that every object is named. This has the effect that our substitutional quan-
tification becomes objectual. (2) 7 assigns to every n-ary functional expression
an n-ary partial function on D. (3) The assignment to complex terms is given by
I(f(ty...ty) = I(fYU(t)...1(t,)), provided that these are defined. (4) I
satisfies: #; = ¢, holds iff 7(¢;) = I(¢,). These have the effects that 7 is normal
and functional. _

A model is infinite iff D = Ry, otherwise finite. If {D,I) is a model and
I is an assignment with identity, then (D, I) is a model with identity. Thus, if
{D,I) is a model, then its semantical features ensure that 7 is normal and func-
tional. Further, then, a necessary and sufficient condition for a model for an
equational theory to be a model with identity is that if #; = ¢, holds, then for
any 13, I(t; = t3) = I(t, =t3) and I(#3 = t;) = I(t3 = ;). We could introduce
further semantical conditions on the domain to ensure models with identity: the
obvious maneuver is to introduce for each n-ary relational symbol a truth exten-
sion and a falsity extension, the intersection of which would be the neuter exten-
sion. But we do not consider that here, since the aim is less model theoretic than
it is to establish the model theory as a convenient device for studying inconsis-
tent mathematical objects and demonstrating that the inconsistency is under
control.

It is sometimes thought that contradiction-toleration is a matter of the use
of theories of intensional logics, or perhaps that it is a matter of “mere syntax”.
To the contrary, it is argued here that the study is extensional in at least two
senses. It is syntactically extensional, in dealing only with the connectives -, &,
v; and it is extensional in dealing with models with identity. In this sense, it can
usefully be viewed as dealing with mathematical objects which have inconsistent
properties, especially when models which inconsistently extend various consis-
tent classical standard theories of classes of mathematical objects are considered.

As an example, consider the following class of inconsistent finite models
with identity in which all sentences of the classical standard model for the arith-
metic of (+,X) hold (investigated in [8]). There are names (i.e., simple terms)
for all the nonnegative integers, with the domain being the integers modulo m,
i.e., {0,1,...,m — 1}; +, X, are interpreted as addition and multiplication in
arithmetic modulo m. Set I(n), for every name n, to be n(mod m). With
I(+,x) this determines I(¢) for every term ¢. And finally set I(#, = t,) = Niff
t,(mod m) = t,(mod m), i.e., iff I(t;) = I(t;); and I(¢; = t,) = F otherwise.
In [8], these are called RM3™, and it is proved that they are inconsistent, non-
trivial, complete, w-inconsistent, w-complete, and decidable. In [8], the interest
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in these structures is that they are extensions of the axiomatic arithmetic R”,
and show that Godel’s Second Incompleteness Theorem can be escaped after a
fashion in inconsistent and relevant mathematics. Here, the interest is that they
are models with identity and determine finite inconsistent extensions of the clas-
sical standard theory of arithmetic,

A simple development of these results can be obtained from the well-known
fact that the algebra of the integers modulo m enables a natural definition of
‘minus »’ and thereby subtraction. This can be exploited to display finite incon-
sistent extensions of the classical theory, with names, of the full ring of integers
Z (positive and negative). Take names for all the integers. The domain is the
integers modulo m; + and X are, as before, + (mod m) and x (mod m). The
additive inverse (—rn) modulo m of a number # is given classically by m— (n
mod m) if n mod m # 0, and 0 otherwise; and then subtraction mod m is given
by (k—(mod m)n =4 k mod m + (mod m)(—n)mod m.) So here we interpret
‘—’to be ‘—mod m?’. This determines I(¢) for all terms ¢. Set I(¢; = t,) = N iff
I(t) = I(t), i.e., iff t;, mod m = t, mod m; and set I(t; = t;) = F otherwise.
Clearly, the condition of Propositions 2 and 3 for a model with identity is satis-
fied. Also every true identity of the classical theory of integers holds, since if
classically ¢, = ¢, then t; mod m = t, mod m. So, by the Extendability Lemma,
we have

Proposition 3 There are finite inconsistent models with identity in which
every sentence of the classical theory of the ring of integers Z holds.

A useful and obvious result is the Term Elimination Lemma. The above
models have finite domains and infinite numbers of simple terms, the latter being
necessary if we are to have extensions of the various classical theories with
names. But, as might be expected, the simple terms can be cut down to just one
per member of the domain, while preserving the assignments to all terms, and
preserving the values of all sentences in the weaker vocabulary. In particular,
the term-free quantified theory remains identical. It needs models with identity
to make this work, so that is another use for the notion. Let (D, ) be a model
with identity. Select only one term from each set {¢: (3x)(/(¢) = x € D)}, and
let 7! assign to it the same value it is assigned by 1. Functional expressions are
assigned the same partial functions on the domain as before, but functional
terms only in the weaker language are assigned values. Atomic sentences in the
weaker language are given the same values by 7! as by 1. This evidently ensures
the base clause of an induction to prove the following.

Proposition 4 (Term Elimination Lemma) A sentence in the cut-down lan-
guage has exactly the value in {D,I) that it has in {D,I1').

Proof (Inductive Clause): The - and & clauses are straightforward. For the v
clause (a.i) if (x)Fxis T in {(D,I) then I(Ft) = T for all terms of the vocabu-
lary of I, so I'(Ft) =T for all terms of the vocabulary of I'!, so (x)Fxis T in
I'. (a.ii) If I(x)Fx) = N then I(Ft) = T or N for all terms ¢, and N for at least
one. So I'(Ft) = T or N for all terms ¢ of the vocabulary of I'. But also by the
construction of 7', for some ¢* we must have 7'(Ft*) = N. Hence 7!((x)Fx) =
N. (a.iii) The F clause is similar, with ‘F’ replacing ‘N’. Conversely (b.i) If
I'((x)Fx) = T then I'(Ft) = T for all ¢ in weaker vocabulary. But for every
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term ¢* of I, we have I(¢*) = I(¢) for one of these ¢; so that, since M is a model
with identity, Ft* agrees with some Ff of I!. But all of the latter are T, so also
every I(Ft*) must be. Hence I((x)Fx) = T. (b.ii) and (b.iii) the N and F cases
are similar.

The effect of this lemma is that the two classes of models previously con-
sidered now yield inconsistent models with cut-down languages (finite numbers
of simple terms, exactly one for each member of the domain), with the same sen-
tences in the weaker language, including the term-free language, holding. These
cease to be inconsistent extensions of, e.g., the classical theory of Z with names,
but remain inconsistent extensions of the finite consistent arithmetics modulo m.

We now bring in division, and thus the theory of fields. It turns out that
the interaction between subtraction and division is not smooth sailing. The fol-
lowing are a set of postulates adequate for the classical theory of fields (see [15],
p. 130)

D xrn)x+(+2)=x+y)+2)

@) »x+y=y+x)

3) X)(x+0=x)

4 (X)(x+(—x)=0)

G) (12)(x X (¥yxz2)=(xXy)X2z)

6) (x,)(xxXy=yXx)

(7 (x)(xx1=x)

@B X)(~x=0Dxxx"'=1)

® (22X Xx(y+2)=(xXy)+ (x X2)
(10) =0 =1.

First, there are certainly finite inconsistent fields because (as is well known)
there are finite consistent fields. The finite arithmetics modulo p, {0,1,...,p —
1}, where p is prime, permit a definition of a unique multiplicative inverse n~!
for any n € {1,2,...,p — 1} though not for n = 0 (see, e.g., [2], p. 40). There-
fore, if we take names only for {0,1,...,p — 1}, interpret +, X, —, + as in
arithmetic modulo p, and set I(¢, = t,) = T iff I(¢,) = I(¢,), and F otherwise,
we have the classical consistent theory of fields. Thus, setting instead I(¢; =
t,) = N for I(t) and F otherwise, we have by the Extendability Lemma:

Proposition 5 There are finite inconsistent models with identity in which
every sentence of the classical theory of fields holds.

It would be desirable to see finite inconsistent extensions of the full theory with
all names of the field of rationals Q. But it is not clear how to do this with these
methods, because the interpretation function I(n) assigning to all names of
rationals members of the domain {0,1,...,p — 1} would seem to assign infinitely
many nonzero rationals to 0, as it does in the case of the integers. But then for
these, an inverse n~! is not defined, while it is in the full theory of Q.

A useful general result can be obtained as a consequence of the Extend-
ability Lemma.

Proposition 6 Let A be an algebra {(D,0,,...,0,) where D is a set and
0y,...0, are relations on D. Let h be a homomorphism from A to a subalgebra
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A with D' = h(D) and operations the restriction of 0y, .. .,0, to D'. Then the
classical equational theory of A with names for all elements of D can be incon-
sistently extended to an RM3-model with identity using the assignment I(t) =
h(t), I(tl = t2) =N lffI(tl) = I(t2) and I(tl = tz) = F otherwise.

Proof: Certainly the assignment I is a model: 7(¢) is defined on domain D!,
and if I(¢;) = I(¢;) then evidently O;(¢;) = O;(t,). Also, it plainly satisfies the
condition for a model with identity.

An application of this is that whenever classically one can partition an
algebra into equivalence classes via a homomorphism onto a subalgebra, one
may instead literally inconsistently identify distinct elements in the larger algebra,
thereby obtaining an inconsistent extension of it. That is, of course, precisely
what the modulo arithmetics are doing, with the caveat about division noted
before. Another example is as follows. There are finite models inconsistently
extending the classical (+,X,+) theory of the nonnegative rationals Q* with
names (see also Section 5 for order). Consider the following subalgebra of that
structure:

D = {0,1} with the operations
1 x]0 1 +]0

0 1
0 1 0|00 OFUO
11 1{0 1 110 1

U = undefined

!

The homomorphism # is given by A(0) =0, A(n) =1 for all n > 0.

Thus there is a finite model with identity in which the classical (+, X, +) the-
ory of the nonnegative rationals Q% with names holds. Notice how introduc-
ing the negative rationals and thereby subtraction would wreck this model: we
want some element to function as an additive inverse —n for each n, but if we
identify more than one rational n;, n, with a given element, they have the same
additive universe, so that n; — n, = n; — n; = 0; and so division by n; — n, is
(improperly) undefined. Thus, the prospects for a sensitive inconsistent theory
of arithmetical fields look bleak, not for reasons of propositional logic, but
because of the functional interaction of — and +. Relevant logic has hitherto
not taken proper cognizance of the fact that a good inconsistent mathematics
might be difficult to obtain for reasons beyond the purely sentential.

There are, needless to say, infinite inconsistent extensions of the theory of
Q, even models with identity, e.g., set I(n = n) = N for every rational n, and
F otherwise. We encounter some of these in later sections, when order is intro-
duced.

One interest in such inconsistent theories of division, both finite and infi-
nite, is that they permit a solution to the following problem (raised by Graham
Priest). Ordinarily one wants postulates such as the Cancellation Law ([2], p.
2) to hold when extending the theory of rings to that of integral domains and
fields:

X)(x=0D (N)(xXy=xXzDy=2).
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But in inconsistent theories such as those of this section (see also Section 5)
=0 =0 and (x)(0 X x = 0) hold, and one does not want to detach the conse-
quent to get y = z for all y, z; yet one also does not want to forbid detachment
for those x which are classically not identical with zero. However in the incon-
sistent finite fields modulo prime p above, while both -0 =0 and (x)(0 X x =
0) hold, we cannot detach the consequent (because patently we do not have
(3,z2)(y = z) holding). But on the other hand, the fact that they really are fields
means that for those x of the model which are “really” not identical with zero,
i.e. for which x = 0 has value F in the model, we can detach because we do have
that x X y = x X 2 D y = z, even that if x X y = x X z holds then y = z holds.
Problems: Are there any finite inconsistent models with identity of the full clas-
sical theory of Q with names? Is the above two-element model the only finite
inconsistent model for Q*? Is the addition of ~n = n to any model with iden-
tity still a model with identity?

4 Order The aim in this section is to introduce order, and in the next sec-
tion to study the inconsistent interplay between order and arithmetical opera-
tions, particularly the theory of ordered fields. In this section, we look at =
and < alone. Among other things, it is shown that a standard result of model
theory, namely that the theory of dense order with no first and last elements
is Ro-categorical, breaks down given a suitable extension of that concept to
cover the more general inconsistent case.

The following postulates suffice for the standard classical theory of dense
order without endpoints (e.g., [1], p. 324; [7], pp. 78, 90):

(i) Irreflexivity (x)(—x < x)
(i) Asymmetry (x,y)(x <y D -y <x)
(iii) Transitivity (x,,2)(x <y D.y<z2Dx<2)
(iv) Comparability (x,»)("x=y D. " x<yDy<Xx)
(v) Exclusiveness (x,y)(x =y D. x<y & y<x) & (x<yDx=
»)
(vi) No endpoints (x)(Iy,2)(x <y & z < x)
(vil) Denseness (x,»)(x <y D (32)(x<z2& z<Y))
(viii) Mixing (x,»,2)(z=yD. (y<zDx<z2)& (2<y D z<Xx)).

These postulates hold in the classical (and RM3-) models with identity
whose domain is the rational numbers, which we may also take as terms naming
themselves; with I(# =¢) =T and I(¢; = t,) = F otherwise, and I(¢; < ;) =T
iff t; < t,, and F otherwise. It is a standard result that all classical models of
(i)—(viii) of cardinality R, are isomorphic. Now in the case where every element
of the domain has a name, the following version of isomorphism lends itself to
natural generalization. Two models (D, I, (D!, I') are isomorphic iff there is
a 1 to 1 correspondence f: D — D! such that for all atomic terms #,...,,,
ty ot i IV = FU)), .. TN (8)) = f(I(t,)), then for all atomic F,
Fty...t, holds in Iiff Ft! ...t} holds in I'.

Now extend the model of the previous paragraph to an inconsistent RM3-
model as follows. Take the rationals as simple terms as before, but domain D =
the integers Z. For each rational n, set I(n) = the integral part of n. Set I(n =
m) = N iff I(n) = I(m), and F otherwise; and set I(n < m) = N iff I(n) <
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I(m), and F otherwise. By the Extendability Lemma, every sentence of the clas-
sical theory of Q continues to hold, and hence (i)-(viii) hold. Furthermore, it
is a model with identity; since if n = m holds, i.e. I(n) = I(m), then clearly for
all atomic F, I(Fn) = I(Fm). Note in passing that the discreteness postulate
(X)) (x<y & (2)(x<zD.y<zDy=27)) also holds in this model; so that
both discreteness and denseness postulates can be inconsistently satisfied. But
there is no 1 to 1 correspondence which preserves atomic sentences between the
domain of this model and that of the previous model: a 1 to 1 correspondence
ffrom Z to Q must eventually reverse the order on some of the elements of Q,
so that while I(n) < I(m) and thus n < m holds in the inconsistent model,
fI(m)) < f(I(n)) in the classical model. Thus

Proposition 7 There are non-isomorphic RM3-models with identity, of cardi-
nality Ry, in which every sentence of the classical theory of dense order without
endpoints holds.

Indeed, the Term Elimination Lemma may be used on this model to dis-
pense with all names except names for the integers, and the same result applies
to this model. Again, a similar result can be simply obtained using a finite
model, which can also be used to show that the order theories of R, Q, and Z
have a common inconsistent extension. Take domain D = {0,1}, and do three
constructions corresponding to three sets of simple names, those of R, Q, and
Z. In each case, set I(n) =0ifn<0and I(n)=1ifn>0;set I(n=m) =N
if I(n) = I(m), and F otherwise; and set /(N < m) = N if I(n) < I(m), and F
otherwise. The three cases are inconsistent extensions of the order theories of
R, Q, and Z respectively, by the Extendability Lemma; and the conditions for
being models with identity are satisfied. The case of Q evidently provides an
example of a finite-domain model in which all sentences of the theory of dense
order without endpoints hold. But also, the Term Elimination Lemma can be
applied to each of these constructions, to give that the set of term-free sentences
of each of the order theories of R, O, Z holds in the same (two-element) model,
the term-free sentences of which are thus a common inconsistent extension of
them all. Problem: Is there a way to extend the theory of R directly to that of Q?

5 Ordered rings and fields In this section, the question of putting together
the arithmetical operations with the order relation is discussed. It is useful at this
point to introduce a distinction. So far, models have been constructed in which,
typically, all sentences of various classical theories hold; that is, inconsistent
extensions of classical theories. We have thus been working implicitly with two
desiderata for models: (i) that they make all sentences of the classical theory
hold, and (ii) that they be models with identity. The interplay between arithmetic
and order, however, tends to make this rather more difficult to achieve. So we
consider a third, weaker desideratum: (iii) all members of a certain set of postu-
lates (such as e.g., the order postulates of Section 4) hold. Classically, (iii) coin-
cides with (i), but not necessarily in RM3. It should not be thought that this is
inevitably a “defect” of RM3, of course, since many have argued that the deduc-
tive relationship of classical logic is too strong, precisely in its inability to pro-
vide contradiction containment. It will be seen in this section that there are
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occasions when (i) must be sacrificed while (iii) continues to hold. This can be
amplified by a point from [8]. It is an interesting open question whether R*,
i.e., Peano arithmetic formulated with a relevant — as its implication operator
instead of D, contains all of classical Peano arithmetic P*. It is however a sep-
arate matter whether, if R* does not contain all of P*, this would be a “defect”
of R*, since it is arguable that natural arithmetic is formulated merely with
“if . . . then”, and relevant — is at least as good a candidate for that as D is.
Indeed, were we to discover that natural arithmetic suffered an inconsistency in
virtue of some recondite feature, to do with the Godel sentence, say, it is by no
means obvious that we would regard the contradiction as spreading uncontrol-
lably and thus affecting our ability to calculate.

Begin with the integers Z. The following postulates classically suffice for
its order theory (cf. Section 4): Irreflexivity, Asymmetry, Transitivity, Compara-
bility, Exclusiveness, No First and Last Elements, Mixing, together with:

(ix) Discreteness (x)(WY)(x <y & ()(x<zZD.y<zVvy=2))
& (X)) AY)(y<x& ()(z<xD.2<yvz=Yy))

(x) Sum Law (x,»,2)(x<yDx+2<y+2)

(xi) Product Law (x,,2)(x <y D.0<zDxXz<y X2).

First consider finite models. Take the finite (+,X,—) models modulo m of
Section 4 and add the atomic sentences ¢; < f, for all terms #;, ¢, constructible
from names for the integers. Set I(#, < t,) = N iff #; < t,, and F otherwise. By
the Extendability Lemma, all classical consequences of the (=,+,X,—,<) the-
ory of Z with names hold. They are not, however, models with identity (Rea-
son: t; = t, holds iff ¢, mod m = t, mod m, but t; mod m = t, mod m together
with ¢; < t; does not ensure ¢, < t3; ¢, might be too large even though when col-
lapsed modulo m it is equal to #;).

So there are finite models in which all sentences of the arithmetic and order
theory of the integers holds, but which are not models with identity. Equally
there are finite models with identity in which all the above order postulates hold.
Take the above (+,X,—) models modulo m with names for all of Z; and set
I(t, < t;) =Niff t; mod m < t, mod m, and F otherwise. To show that these
are models with identity it suffices to consider atomic sentences of the form
1, < t,, since other atomic sentences have been dealt with earlier. But if ¢; = ¢,
holds, then ¢, mod m = t, mod m; whence I(Ft;) = I(t, < t3), say, = N iff ¢,
mod m < t; mod m iff t, mod m < t; mod m, so that N = I(t, < t3) = I(Fty).
Identity then follows from Proposition 2. However, not all classical conse-
quences follow because the assignment to < destroys the order on the integers
(for example, in modulo 3, 2 < 4 is F, because 2 mod 3 = 2 < 4 mod 3 = 1 does
not hold).

There are, however, finite models with identity in which all classical sen-
tences true in Z hold. Take the (+,%,—) models as before, and set all sentences
of the form #; < ¢, to be Neuter. Clearly the Extendability Lemma ensures that
all sentences in the (=,+,X,—,<) theory of Z continue to hold. That it is a
model with identity follows from the fact that for atomic F of the form ¢, < #,,
trivially I(Ft;) = I(Ft,), whether or not ¢; = ¢, holds. These models have the
unsatisfactory feature that the order properties are rather insensitively ensured,
in that all sentences of the form #; < ¢, are made to hold. Even so, it is still only
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possible to make this work by exploiting the inconsistency-toleration features
of RM3, e.g., in making (x)~x < x take the value N and so hold also. To sum-
marize these results:

Proposition 8 There are finite models both with and without identity of the
classical (=,+,%X,—,<) theory of the integers Z with names, and finite models
with identity in which all classical (=,+,X,—) consequences hold and all order
postulates hold as well.

We turn to division. The problem is to see what can be made of the the-
ory of ordered fields. In addition to standard field (+,X,—,+) properties, order
postulates are needed. Classically the previously mentioned postulates suffice:
Irreflexivity, Asymmetry, Transitivity, Comparability, Exclusiveness, No First
and Last Elements, Denseness, Mixing, Sum, and Product Laws.

We saw in Section 3 that bringing in division restricts rather drastically the
possibilities for finite inconsistent models, or at any rate finite extensions of Q.
We can, however, go further with a result of that section, namely that all clas-
sical consequences of the (=,+,X,~+) theory of the nonnegative rationals hold
in a two-element model D = {0,1} with operations as specified previously, and
I(0) =0, I(n) =1 for all n > 1. To this we can add the ordering I(n < m) =
N iff I(n) < I(m), and F otherwise. It now follows easily that

Proposition 9 There is a finite model with identity in which all classical con-
sequences of the (=,+,X,+,<) theory of Q% hold.

Consider now the following model with identity: names for all real numbers
R;D={0,1,...,p—1}; I(n)=0for n<0and n>p — 1, and I(n) = the near-
estinteger = nfor0<n=<p—1; I(n=m) =N iff I(n) = I(m), and F other-
wise; I(n < m) = N iff I(n) < I(m), and F otherwise. It is as immediate that
it is a model with Identity as it is that the conditions of the Extendability Lemma
apply, so that the sentences holding therein include all classical consequences of
the first-order (=,<) theory of R, including the continuity schema ([15], p. 131).

(((Ix)Fx & (Iy)(X)(Fx Dx=y)) D (32)(x)(Fx D x < 2)
& (V)Y(X)(FxDx=<y)Dz=y)).

So the Term Elimination Lemma can be applied to this model to give the con-
clusion that the following is a model with identity: D = {0,1,...p — 1} (nam-
ing themselves); I(n = m) = N iff n = m and F otherwise; I(n < m) = N iff
I(n) = I(m) and F otherwise. This satisfies all classical consequences of the
(=,<) theory of R in this language, and in particular all universally quantified
sentences containing no names. Now we exploit the fact that a classical field can
be constructed on the above domain in the standard fashion. The model can-
not be made wholly classical (sentences only T or F) since we already have that
I(t =t) = N for all ¢. But the construction of the field simply adds to the above
by assigning I(¢, + t5), I(t; X t,), I(t; — t,) and I(¢; + t,) the values they stan-
dardly take in {0,...,p — 1}, and sets I(#; = ¢,) (for any terms #,, ;) = N iff
I(t)) = I(t,), and F otherwise; and I(¢; < t,) = N iff I(¢;) < I(t,), and F
otherwise. The Extendability Lemma ensures that all classical consequences of
the theory of fields hold, and it is straightforward to show that it remains a
model with identity. That is,
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Proposition 10 There exist inconsistent continuously ordered finite fields.

A complication should be mentioned. It has not been proved that every
classical consequence of the theory of real closed fields holds in this model. To
see this, note that the ability to substitute field identities in the theory of con-
tinuous ordering does not ensure that all classical consequences hold; for
instance the Sum and Product laws are not obtained this way. In fact, the Sum
and Product laws hold in our model, but conceivably various of their classical
consequences might not. We do have though, as might be expected, that stan-
dard systems of first-order postulates for complete ordered fields (e.g., [15], p.
130) hold.? This point can be amplified by considering a different continuous
ordering for the finite fields. For any real n, I(n) = 0 for n < 0, I(n) = the next
whole number =n for 0 < n < p — 2, and I(n) = p — 1 otherwise. Then set
In<m)=TifI(n) <I(m), I(n<m)=Nif I(n) =1I(m), and I(n < m) =
F otherwise; and I(n = m) = N iff I(n) = I(m), and F otherwise. Again, this
inconsistently extends the classical ordering on R, so every classical sentence true
therein holds. Further, it is a model with identity. By the Term Elimination
Lemma, this is true for the model restricted to the p names {0,1,...p — 1}. Then
we can add the (+,X,—,+) theory of p-membered finite fields to this in the same
fashion as before to get models with identity for different finite inconsistent con-
tinuously ordered fields. But now notice this: Sum and Product Laws fail here
whereas they did not in the previous model. (Sum Law: In modulo p, p — 2 <
p—1lisT,butp—2+1<(p—1)+1isF.Product Law: In modulo 3, 1 <
2&2<0(r2+#0)isT,but1 X2 <2 x2is2< 1which is F.) This latter argu-
ment works for all modulo primes p = 3, but not for modulo 2. So we can
deduce a couple of RM3-independence results: Sum and Product Laws cannot
be obtained from continuity ordering + field properties, and these together with
the Product Law do not yield the Sum Law. The moral to draw, though, is that
it would be incorrect to conclude from the previous model that finitude + con-
tinuity + field properties + model with identity give all the sentences of the clas-
sical theory of real closed fields. Problem: Is that conclusion nevertheless true?

The results of these two models suggest the following simple extension
into set theory. Instead of the schema ‘Fx’ in the continuity schema, replace it
by ‘x € u’ and universally quantify the whole formula with respect to u, where
u ranges over subsets of the domain. Let s,¢,... be names for these, so that
I(s) € P(D). Then let I(n € s) = T iff I(n) € I(s), and F otherwise. It is
straightforward to verify that the set-theoretic continuity postulate holds in the
above models which remain models with identity.

6 Conclusion To amplify a point made at the beginning, the use of an ex-
plicit background logic to study mathematical structures is a mark of mathemat-
ical logic as opposed to “natural” mathematics. While natural mathematics does
seem typically to proceed on a tacit consistency assumption, it is by no means
obvious that this is essential. The test is to see whether the relaxation of that
assumption leads to rich structures, and it is suggested that the evidence here that
it does is initially promising. The assumption of consistency does not entail that
natural logic is classical, and the case that natural logic is not classical has been
extensively argued in recent times. Discoveries in semantics have shown that non-
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classical logics of the paraconsistent kind must have inconsistent theories, so it
would seem mandatory to display these. But it is a moot point the extent to
which the deductive assumptions on which natural mathematics proceeds are log-
ically necessary, or simply there because the history of the activity has made
alternatives invisible. Only the investigation of such alternatives can determine
that.

NOTES

1. The terminology ‘neuter’ is perhaps a little misleading, since it suggests “neither true
nor false”, whereas in fact it is better construed as “both true and false”, or perhaps
“both it and its negation hold”. We retain ‘neuter’ here on grounds of established
practice.

2. Save 0~! = 0, concerning which opinion differs. [15], p. 130; [9], pp. 280, 286; [17].
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