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Operational Semantics for Positive R

I. L. HUMBERSTONE*

/ Two kinds of formal semantics for intensional logics It is convenient to
begin with a few remarks about the distinction between model-theoretic (some-
times called 'set-theoretic') semantics and algebraic semantics for sentential logics
containing non-truth-functional connectives. Both issue in definitions of validity
on a structure or over a class of structures in terms of which completeness the-
orems are sought, to the effect that provability in this or that logic coincides with
a certain such notion of validity. I take the hallmark of the model-theoretic
approach to be that it characterizes the validity notion in question via an induc-
tively defined notion of truth of a formula at a point in a model, while the alge-
braic approach features no such intermediate level of description.1 The
considerable appeal of the Kripke relational semantics for normal (and some
non-normal) modal logics and for intuitionistic and intermediate logics over ear-
lier algebraic accounts was due no doubt in part to its supplying this interme-
diate level of description, with something recognizably analogous to the informal
notion of truth restored to center stage. This feature of the relational seman-
tics for modal logic is shared by the operational semantics suggested for certain
normal systems by Garson ([9]), as well as by the neighborhood semantics for
these (and weaker) systems. Accordingly, in such cases, even when the stuctures
are algebraic structures (carrier set + operation(s)) what we have is model-
theoretic rather than algebraic semantics.

The above distinction is somewhat stipulatively drawn, articulating just one
significant difference often marked by the terminological contrast. It certainly
ignores, in particular, a tendency on the part of some writers to speak of any
proposed formal semantics as 'merely algebraic' as opposed to 'genuine' seman-
tics when they are not persuaded that it throws any light on the intended mean-
ings of the expressions involved (see [4] for example).

*In addition to those mentioned in the text and in the notes of this paper, I should like
to thank this Journal's referee for corrections to an earlier draft, and my former stu-
dent Michaelis Michael for helpful conversions on some of the topics touched on.
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The reason I open with this distinction is that I shall be concerned in what
follows with a variation on the semilattice semantics originally proposed by
Urquhart (in [15]) for relevant logics, which is by our present lights clearly
model-theoretic, though operational, semantics. We consider, in particular, as
did Urquhart, the negation-free fragment of the system R, and will be suggesting
that troubles — over disjunction —his semantics got into as a semantics for that
system may be solved if we see an additional binary operation as called for to
deal with disjunction. This yields algebras of the same similarity type as bounded
lattices and rings. Since such structures have figured prominently in the algebraic
semantics for relevant logics, I repeat that it is model-theoretic semantics that
is being offered here.

The question raised in the second paragraph above about the intelligibil-
ity of the semantics itself has of course always been important in relevant logic
and I address it here with the following comment. The operation used in the
Urquhart semantics in defining truth for implicational formulas deserves no
doubt somewhat more attention than it gets in [15], where there are just a few
informal remarks, the gist of which is summarized below in Section 2. The addi-
tional operation invoked in this paper to deal with disjunctive formulas makes
more immediate —or so I hope my informal remarks will show-intuitive sense.
Thus the claim is that a slight variation, itself independently motivated, on the
Urquhart semantics can be seen to handle disjunction in positive R without
introducing any further murkiness.

2 The Urquhart semilattice semantics In [15] there may be found a semantic
treatment of the {->,Λ)-fragment of R, which is axiomatized by the following
schemata:

A -> A (Id)
(A -+ (B -> O ) -* (B -> (A -> C)) (Perm)
(A-+B)^> ((B -+C)-+(A-+ O) (Suff)
(A-+(A-> B)) -* (A-+B) (Contrac)
((A -+B)Λ(A-+ C)) -+(A^(BΛ O) (Λlntr)

(AΛB)-+A (ΛEliml)

(A Λ B) -> B. (ΛElim2)

with the two rules of proof:

— — (Adjunction)
\-/± Λ £>

^ ^

The "frame" role, to adapt (with [6]) this term from the relational model the-
ory of modal logic, was played in Urquhart's models by groupoids <5, ,1> with
a left-identity element (i.e., - is a binary operation on S and 1 €. S satisfies: Ix =
x for all x E 5; unlike Urquhart, I use the multiplicative notation here). A model
on such a frame —here again departing somewhat in manner of presentation
from Urquhart — is specified when a valuation function V from atomic formu-
las2 paired with elements of S to truth-values (0,1) is supplied. Such an assign-
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ment of truth-values is extended to arbitrary formulas by an inductive definition
of the relation <S, , 1, F>, x |= A. We suppress mention of the model:

x \= A iff V(A,x) = 1 for A atomic
x \= A Λ B if f x N A and x N B
x N A -+ B iff for all y G S, if .y N A then xy (= 5.

A formula A is valid on a frame <S, , 1> if for any model <5, , 1, V) on that
frame, we have: <S, ,1, K>, 1 |= A. By an ingenious argument Urquhart
managed to show that the theorems of the {Λ,->}-fragment of R9 as axioma-
tized above, are precisely the formulas valid on every frame <S, ,1> which is a
semilattice (commutative idempotent semigroup) with identity. His idea was we
could think of the sets S as collections of pieces of information combinable with
the aid of the operation , with 1 as the 'empty' piece of information, and he
noted that this represented a generalization of the Kripke semantics for intui-
tionistic logic, which could be recovered by adding the persistence (or 'no for-
getting') condition: if V(A,x) = 1 then V(A,xy) = 1 for atomic A. Note that
this is a condition on models rather than on frames, as is the intermediate con-
dition Urquhart provided for the extension of the above system by the Mingle
schema ,4 -> (A -> A): if V(A,x) = V(A9y) = 1 then V(A,xy) = I. 3 For at
least the original {Λ,-^}-fragment of R, Urquhart suggested reading 'x V A' as
something along the lines of On the basis of the information in x9 all of which
is relevant for this purpose, we may conclude that A\

When Urquhart extended the above semantic account to accommodate dis-
junction, he suggested extending the definition of truth by the 'classical' clause:

xVAvB iff x\=A o r x\=B

and found that while every theorem of the -+, Λ, v-fragment of R was valid on
all semilattice frames, so also were some additional formulas not belonging to
this fragment. To axiomatize the fragment in question, add to the axiom-
schemata listed already the following four:

A-+(AvB) vlntrl
B^(AvB) vlntr2
((A -> C) Λ (B - C)) - ((A v £) - C) vElim
(A A (By C)) -> ((A Λ B) v C). Λ/v-Distrib

Then one example (due to Meyer and Dunn, independently) of a formula-schema
not all of whose instances are provable from this extended set of axioms but all
of which are valid on all semilattices is:

((A -+(B\/ O) Λ (B -> O) -+(A-+C).

(Actually this is a simplification, from [5], of the formula mentioned as due to
Meyer and Dunn in [15].) Another schema in the same category is the similar-
looking:

(A-+ (Bv O) -> ((Λ Λ (B -• O ) -> C).

The extent to which these formulas or other similarly supernumerary results
could be held to violate motivating constraints on relevant logics does not appear
to have been addressed in the literature, though Dunn ([5]) has some remarks on
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its interaction with negation and conjunction. In the absence of a definitively
unfavorable verdict here, it would be open to Urquhart to take the same line
about disjunction as he does about negation itself (not a topic for treatment in
the present paper), namely that there is nothing sacrosanct about the particu-
lar choice of axioms made by (Ackermann and) Anderson and Belnap.4 How-
ever, in the meantime, Fine and Charlwood have gone on to find complete (if
somewhat inscrutable) axiomatizations of the formulas in ->, Λ, and v valid on
all semilattices with the above definition of truth in place (in [8], [2]).

It is my intention instead to modify the semantic account of disjunction in
order to adapt Urquhart's model theory in such a way as to make available a
completeness proof for positive R, or R+ as we call it from now on. Thus, the
system R+ will here be taken to be that axiomatized by the schemata Id, Perm,
Suff, Contrac, Λlntr, ΛEliml,2 vlntrl,2, vElim, and Λ/v-Distrib, with the rules
MP and Adjunction.

3 Dealing with disjunction We begin by contrasting Urquhart's treatment
of disjunction with that provided by the Routley-Meyer (ternary-)relational
semantics and Fine's combined operational and (binary-)relational semantics
([14], [6], respectively). The Routley-Meyer account manages to match valid-
ity with provability in R+ (indeed R itself) in spite of using a classical clause for
disjunction like Urquhart's. This it achieves by exploiting the extra flexibility of
a ternary relation over a binary operation (especially the absence of a unique-
ness requirement), along with the use of conditions on models analogous to those
resorted to by Urquhart only for the Mingle and intuitionist extensions of the
system. For more by way of comparison, [5] may be consulted. Fine's models
come equipped with a distinguished subset of "saturated" points, an operation
like the " " we have been using, as well as a binary relation "is an extension of"
(in terms of which a persistence condition on models is stated), with a disjunction
true at an arbitrary point just in case each saturated extension of that point ver-
ifies one disjunct or the other. The force of the "is an extension of" relation will
be capturable with the aid of the new operation to be introduced below; its intro-
duction turns out to render unnecessary the appeal to saturated points. (Though
we do not take the relation in question as primitive, it will be convenient to
define it below, where it appears in the notation "<".) One small price to be paid
for these simplifications over Fine's account is that we shall need, alongside the
distinguished element 1, another such element, 0, which may be thought of as
a maximally undiscriminating piece of information: at 0, all formulas will be true
(in any model).

Continuing, then, with something like Urquhart's "pieces of information"
picture in mind, we note (with Copeland [3]) how very inappropriate to that pic-
ture is the classical clause for "v" adopted by Urquhart. A piece of information
may notoriously not be sufficiently informative to determine as true one disjunct
or the other of a disjunction it does determine as true. There is a close analogy
here with the "possibilities" semantics for modal logic here (cf. [10]), understood
as regions of logical space rather than (as possible worlds are) points therein.
Indeed, a piece of information may be regarded as a possibility in epistemic
dress: all information is information that you are in such-and-such a region of
logical space. And, in contrast with the case of possible worlds, a disjunctive
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statement may hold throughout a region, without this being so for either dis-
junct, for the same reason that a barnyard can be full of things each of which
is a sheep or a goat, without being full of sheep or full of goats. In the latter
case this can only be so if the yard can be divided without remainder into a (per-
haps spatially scattered) part which is full of sheep and a part which is full of
goats. Similarly, we are led to require that an (A v 2?)-verifying region should
be exhaustively composed out of an ^-verifying and a ^-verifying subregion.
We denote this mode of composition by " + " . The subregions may in general
overlap, of course, should the disjuncts be compatible. Some will want to think
of regions of logical space as sets of possible worlds, and think of " + " in this
context as representing set union. In fact, though (cf. [10]), there is no need to
do so, and we may prefer to think more mereologically, with x + y as the
smallest whole of which both x and y are parts. The difference between these
two views does not matter for what follows, however. Either way, what is sug-
gested is the following clause for disjunction in the definition of truth, once we
have incorporated the 4- operation into our models:

(*) xY AM B iff there exist y, z such that x = y + z and yY A and z V B

Below, we shall be using " < " to represent the subregion relation here borne
by y and z to x. You may prefer to think of pieces of information more linguisti-
cally. Then instead of taking our x9y9 etc. as regions of logical space, they are
thought of as sets of sentences, those true over the whole of the region in ques-
tion. In this case, the <-relation is somewhat confusingly named since when
x < y, x contains more sentences than y: the smaller the region the more there
will be that is true over the whole of it. The + operation, thought of as set-
theoretic union or mereological aggregation on the "ontic" approach to infor-
mation, may here be thought of as acting on x and y to "dilute" each with the
other, in the following sense: x + y consists of all those sentences B v C for
which B belongs to x and C to y. When we come to consider the consequences
of such a set, we find them to be precisely the common consequences of x and
y, a fact exploited in the completeness proof of the following section, where in
general the 'linguistic' approach is dominant. On either way of thinking of infor-
mation, what we are thinking of is information in a rather abstract sense, rather
than information as actually possessed by a knowing subject. Care is needed in
transferring concepts across to this area: for example, when x = y + z, a per-
son in possession of information x need not be in possession of y or in posses-
sion of z: there are in general more specific pieces of information of which he
may be ignorant.

Now (*) may look suspiciously conjunctive for a treatment of disjunction.
For example, mightn't A already be determined as true by x—true, that is, over
the whole region x (to revert to this way of conceptualizing information) with-
out there being any subregion of x to play the role of the z in (*) and verify BΊ
This is where the new element 0, mentioned above as an identity element for the
operation +, comes to our assistance. We can apply (*) in a case like this by tak-
ing x itself to be the promised y and take 0 as the z. So this does not after all
raise a difficulty for regarding a disjunction A v B as holding over a region just
when that region can be broken down into A- and B-verifying parts. (Compare
the difference between Urquhart's clause and (*) with that between the treatment
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of disjunction in the Beth semantics and in the Kripke semantics for intuitionistic
logic.)

The reader may feel somewhat uneasy at the role 0 is here called on to play,
either because of dissatisfaction with the idea of an empty region or because of
the fact that, until we consider (in Section 5) the addition of the sentential con-
stant F, 0 does not play a role in the truth-definition (or, like 1, in the explana-
tion of what it is to be valid). The latter uneasiness has been expressed to me
by Kit Fine, who also suggested the following alteration to (*) designed to cir-
cumvent appeals to the presence of 0 and the associated apparatus deployed
below (the conditions (CO) and Zeroing, and the Zero Lemma): count a disjunc-
tion A v B true at x just in case A is true at x, or B is true at x, or the right hand
side of (*) holds. I leave the exploration of this suggestion to any reader affected
by such qualms, preferring to work with the simpler (*) itself.

The clause (*) has an interesting relation to Urquart's own clause for dis-
junction which was drawn to my attention by Chris Brink. Recall that to any
algebra there corresponds a power algebra (also called: subset algebra, global
algebra, complex algebra) whose underlying set consists of that algebra's sub-
sets and whose fundamental operations are defined by 'lifting' the original
algebra's corresponding operations in the following way. Where / is an rt-ary
operation on the original algebra, we understand Q)(X\,... A^) to be the set of
all those elements y of the original algebra for which there exist x{ G X\,...,
xn G Xn such that y =f(X\9... ,xrt). Now denote by |^4|| the set of points in
an a model, as defined precisely below, at which the formula A is true. Then
Urquhart's clause for disjunction puts IA v B\\ = ||>4|| U ||£|| whereas (*)
amounts to a power-algebraic lifting of the + operation: \\A v B\\ = \\A\\ ®
|| B ||. (In [1] Brink gives other applications of power algebras and related con-
structions to the semantics of relevant logic.) In fact, [15] also suggests (what
amounts to) a lifting of the product operation for determining the truth-sets of
fusion-formulas, but as we shall have occasion to note in Section 5, this results
in validating formulas even in just the connectives of conjunction, implication,
and fusion, which are not theorems of R. We turn now to a more precise
description of the proposed model theory.

An R-frame is to be an algebra <5, ,+, l,0> of similarity type (2,2,0,0) in
which <S,+,0> is a semilattice with zero (0), possessing a certain Decomposition
Property to be described below, <S, ,1) is a commutative semigroup with unit
(1), satisfying the following conditions on the interaction between the additive
and multiplicative notions:

Ring Distribution x(y + z) = xy + xz
Pseudo-idempotence x(x + 1) = x2

Zeroing Ox = 0.

This third condition insists that in i?-frames the additive identity 0 really lives
up to its name in doubling also as the annihilator for the product operation. A
corresponding condition requiring that x + 1 = 1 for all x G 5 would be of no
relevant-logical interest as a condition on ^-frames in that the class of formulas
valid on every such frame (with validity on a frame understood as defined below)
coincides with the class of negation-free theorems of intuitionistic propositional
logic. However, as a condition on individual points x in the frames, it will be
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seen in Section 5 to play a role in connection with the addition of sentential con-
stants (in particular, with "t").

The condition of pseudo-idempotence is perhaps not very attractive; it is
so named because, as the reader will notice, the idempotence demanded of the
operation on Urquhart's account has been abandoned here and this weaker
condition does the same work (basically validating Contrac). In the light of the
first condition, the ring-theoretic distribution law, it may be rewritten as requir-
ing that x2 = x2 + x, or again equivalently as: for some j>, x2 + y = x. The <-
relation introduced informally above may now conveniently be officially defined
by: u < v iff for some y, u + y = v; with its aid we may further rewrite the con-
dition of pseudo-idempotence as: x < x2. In terms of the 'logical space' concep-
tualization of information, this may be read as saying that the possibility A: is
a subregion of the possibility x2: from the point of view of its formal appear-
ance it is a condition familiar from other model-theoretic and algebraic work
on the semantics of R. One reason we do not demand idempotence is simply that
the style of completeness proof to be found in the following section, which is
a minor adaptation of the argument of [14] and (especially) [6], simply does not
provide us with an idempotent in the canonical frame. But more importantly,
it can be shown that the interaction between + and an idempotent validates,
given the other features of our semantics, some formulas which are not theorems
of R. (See Appendix A for details.)

Finally, having now officially introduced the semilattice ordering nota-
tion <, we can spell out not too long-windedly what is required for the addi-
tive operation to satisfy the decomposition property:

Decomposition If x < u + v then there exist u' < u, vr < v with uf + υ' = x.

In other words, if x is a subregion of the sum of u and v, then x can be decom-
posed into regions which are subregions of these summands (u' and υ' being "x-
parts" of u and υ respectively). This is reasonable on any mereological reading
of " < " . For example, if an area of the earth's surface is a subregion of the
aggregate consisting of North and South America, it must itself be the aggregate
of a subregion of North America and a subregion of South America. (In this
case, because North and South America have no common nonempty subregion,
the representation of the region in question as a sum of their subregions is
unique; this will not generally be so.) For those who prefer to think more lin-
guistically of pieces of information and the operations on and relations between
them, the plausibility of this condition may be ascertained from the way in which
it is established to hold for the canonical model in the following section.

The obvious observation to make here is that with Decomposition we lose
the chance, hitherto alive, of regarding /^-frames as an equational class. While
this does cost us the availability of certain techniques from universal algebra,
it does make for a simpler definition of truth, in particular as regards disjunc-
tive formulas, than would otherwise be possible. It is true that one could do
without it by complicating the notion of a frame, adding a further binary oper-
ation, lattice-theoretically dual to + . Write this as #. Then the idea would be
that the reducts <S,+,#> of the resulting structures would be required to be dis-
tributive lattices. A supplementary condition analogous to Ring Distribution
would be imposed, to the effect that x(y # z) = xy # xz. The clause for "Λ"
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given in Section 2 in the definition of truth would be replaced by one exactly
analogous to (*) but with the role of + played instead by #. (The Zero Lemma
and the Plus Lemma, stated exactly as below, though in the latter case it pays
to observe that if A is a formula for which x + y Y A implies x (= A, all x,y,
then A is a formula for which u |= A implies u # v N A, all w, v. The complete-
ness proof proceeds as in Section 4, taking x ft y to be the deductive closure of
the union of x and y.) We do not take this path simply because we can avoid
the complication of having a third operation in the frames by sticking with the
truth-definition in its present form. There is a sharp contrast here with the case
of disjunction, for which we have noted the classical clause to be both motiva-
tionally astray and ill-suited to semantically characterizing R+. The # alterna-
tive is mentioned simply so as to note that under it there would be no need
separately to impose the condition of Decomposition, since when x<y + z, the
required y' (<y) and z' (<z) summing to x can be taken simply as x # y and x
# z respectively. Having said this much to make the condition appear reason-
able, we continue the development of the semantics.

If <S, ,+,l,0> is an i?-frame, then <S, ,+,1,0, V) is a model on (S, ,+,l,0>
if Fis a function from formulas paired with elements of S to truth-values {1,0}
(which appear in boldface here to avoid confusion with the unit and zero of the
i?-frames) such that for each atomic formula A these two conditions are
satisfied:

(C+) V(A, x + y) = liff V(A,x) = V(A,y) = 1 for all x,y G S
(CO) V(A,0) = 1.

These conditions will not appear unreasonable in the light of our previous
remarks. (C+) is an orthodox persistence condition from left to right (thinking
of x + y as a less specific piece of information, in general, than x and y) and
from right to left corresponds to the condition of resolution in [7], refinability
in [10], cumulativity in [12], etc. (CO) is the embodiment of the idea, mentioned
above, of the zero as a maximally undiscriminating piece of information, recall-
ing the doctrine popularized by Popper and others, that degree of informative-
ness may be measured by how much is excluded.5

As before, we shall say a formula A is valid on an ZMrame <S, ,+,l,0>
when for any model <S, ,+,l,0, V) on that frame, we have <S, , + ,l,0, F>,
1 (= A. The inductive definition of truth (the h relation) is as in Section 2 for
atomic, conjunctive, and implicational formulas, with disjunctive formulas inter-
preted in accordance with (*) above. The remainder of this section establishes
that the theorems of R+ are valid on every i?-frame; the following section
shows that every formula (of the present language) valid on all jR-frames is a the-
orem of R+. We then consider some extensions of the machinery. As a prelim-
inary to the soundness argument, we must first observe that the conditions (C+)
and (CO) imposed on models generalize from atomic to arbitrary formulas. We
deal with the two cases in that order.

Plus lemma For any model < S, ,+, 1,0, V) and any formula A :

<S, ,+,l,0, V)x + yt=A iffxYA andyYA, all x,y e S.
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(We revert here to suppressing mention of the model, as on the right-hand side,
when the context makes it clear which model is intended.)

Proof: By induction on formula complexity. We work through the case where
A is an implication and the case in which A is a disjunction, for illustration, (i)
A is B -> C and the Lemma holds for B, C. Suppose it fails for B-* C, say left
to right. It will be sufficient to derive a contradiction from supposing x + y |=
B -+ C while x # B -> C, so let us suppose this. Then for some z, z t= B and
xz # C. Since x + y V B -> C and z\= B, (x + j )z - xzΛ- yzY C (by commu-
tativity and ring distribution), which contradicts the inductive hypothesis since
we have already been forced to suppose that xz Ψ C. Next, we check the right
to left direction. Suppose:

x\=B^C yVB-*C x + yψ B-+C.

The third assumption means there exists z such that zY B with (x + y)z ¥ C.
But the first two assumptions then imply xz\= C and yz V C, so (ind. hypoth.)
xz + yzV C. Since (x + y)z -xzΛ- yz we have our contradiction, (ii) A is B v
C and the Lemma holds for B, C. First, left to right. Suppose x + y N B v C (to
show xt=5vC, the case of y being similar since + is commutative). Then for
some u,υ x + y = u + v,uY B and v\= C. Since x < u + v, by Decomposition
there exist u' < w, i/ < y, with w7 + ι/ = x. Then by the inductive hypothesis,
u'V B and υ' V C, because w |= B and ι> |= C. So, since x = ι/' + ι; ' ,x |=5vC.
Next, the converse direction. Suppose that x^Bw Candy \= B v C. Then cand
j> can be represented as xx + x2 and >Ί + y2 respectively, with B true at each of
the first summands and C true at each of the second. So by the inductive hy-
pothesis, Xι + yx = B and x2 + ̂ 2 1= C; then since x = (x\ + J Ί ) + (x2 + ^2)*

Zero lemma <£, + , ,0,1, F> and any formula A:

<S, + , . , 0 , l , F > 0 M .

Proof: Again by induction on the complexity of A. The details are routine; the
case where A is of the form B -> C requires appeal to the condition on frames
we called Zeroing.

We are now ready for the

Soundness theorem Every formula provable in R+ is valid on every R-
frame.

Proof: By induction on the length of proofs in the axiomatization presented in
the preceding section. The rules present no novelty; nor do most of the axioms.
We explicitly examine Contrac, vlntrl, and vElim; Λ/v-Distrib requires the left-
to-right direction of the Plus Lemma.

Contrac: If an instance of this schema is false at the element 1 in model
on an /?-frame, then for the model in question there is an element x of the
frame, and formulas A and B with:

x¥A-+(A-+B) xψA-+B.
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From this second fact, we know there is a y with y \= A and xy ψ B; so by the
first fact, xy f= A -• B, so (xy)y = xy2 N B. But since j 2 = y2 + j> (pseudo-
idempotence in distributed form), xj>2 = xy2 + xy and since xy2 \= B, by the
Lemma, left to right, xy N B: a contradiction.

vlntrl: Suppose x \= A; then since x = x + 0 and (by the Zero Lemma)
0 N B9 x is the sum of an ^-verifying and a ^-verifying region, s o x M vA

vElim: Here we are to suppose that xY A-* C, x^ B -+ C, but xψ (AM
B) -• C; so for some y

y\=AvB xyψC.

Thus for some w, t>, w: w + j> = w + v, and « N A, v (= 5, and by the original
suppositions, x« N C and xy N C, so the Lemma (right to left) gives xu + xt> |=
C; since xw + xi; = x(w + υ) = x(w + .y) = xw + xj>, we have xw + xj> h C,
which contradicts (by the left to right direction of the Lemma) xy ψ C.

4 The completeness of R+ This section establishes that every formula
which is valid on every i?-frame is a theorem of R+; it consists of a routine
adaptation of the argument to be found, e.g., in [6]. We will provide a single
frame and a model on that frame, called respectively the canonical frame and
the canonical model for the system R+ with the property that the formulas true
at its 1 element are precisely the theorems of R+: thus any nontheorem fails to
be true at the 1 element in this model, and hence is not valid on the frame in
question.

For the remainder of this section <5, ,+,l,0> will denote a certain algebraic
structure to be called the canonical frame for R+

9 though it will of course have
to be verified after the definition is given that the algebra concerned really is an
i?-frame. A set of formulas which contains B whenever it contains Au . . . ,An

and R+ \- {Ax /\.. ./\ An) -> B(n >: 1) will be called deductively closed. Then
the elements of the set S are to be all of the nonempty deductively closed sets
of formulas of the language of R+. The operation is defined by:

xy = [B: for some A G y9 A -> B G x).

It is easy to verify (cf. [6]6) that for deductively closed x,y, the set xy so de-
fined is also deductively closed; so to show that whenever x,y G S, the product
xy G 5, it suffices to check that if x and y are not only deductively closed but
also nonempty, xy is nonempty. Here we note that permuting twice on an
instance (A -> (B -> C)) -+ (A -+ (B -• C)) of the schema Id gives R+ \- A ->
(B -• [(A -• (B -> O) -> C]. Thus given some A G x, B G y, we conclude that
xy is also nonempty, containing for every formula C at least the formula (A ->
(B -+ C)) -» C It is similarly straightforward to verify (again cf. [6]) that the
operation is commutative (appealing to Perm) and that it satisfies (xy)z £
x(yz) (appealing to Suff); from these last two facts it follows that is associa-
tive. The identity element for , 1, is defined to be the set of theorems of R+.
Since MP and Adjunction guarantee that this set is deductively closed, it belongs
to S. The definition of deductive closure and the axiom schema Id further ensure
that 1 = x for all x G S. The operation + is defined by:

x + y = x n y.
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The required semilattice properties are then immediate. 0 is to be the set of all
formulas of the language (giving x + 0 = x). (Recall that while thinking of x and
y as regions of logical space, x + y is in general a larger region including both
of them, here + contracts them to their intersection. This is because we here
'identify' such a region with the set of formulas true over it, and since the for-
mulas true over the larger region are precisely those true over each of the regions
summed, the set of formulas true shrinks as the region grows. Thus x < y holds
when y Q x.)

We now show x(x + 1) = x2 in the unreduced form (Ring Distribution
being justified next) x2 + x = x2. This means simply that x2 Π x = x2, i.e.,
x2 c x, which follows by appeal to Contrac. Turning now to Ring Distribution
we show:

χ(y + z) = xy + xz.

First, x(y + z) <Ξ (xy + xz): since + is Π, by symmetry it suffices to show
x(y + z) <Ξ xy. So suppose A E x(y + z), i.e., for some BEy + z,B-+AE
x. Since B E y, it follows immediately that A E xy. Next, we show (xy + xz) <Ξ
x(y + z) Suppose A E xy + xz; then there are formulas B9 C with B E j>, B^>
A E JC, C E z, C -> ̂ 4 E Λ:. By deductive closure and vElim, then, ( ί v C ) - +
,4 E x. But by vlntrl,2 Bv CEy,z. So Bv CEy + z and hence,4 Ex(y + z).
The nontrivial direction of the third of our separately listed conditions on R~
frames (Zeroing), namely 0 c Ox, follows from the fact that x is nonempty.

This leaves the Decomposition Property to check. Our argument makes use
of the concept of the deductive closure ("tfc") of a set of formulas, where if Γ
is a set of formulas dc(T) denotes the smallest deductively closed set of formulas
including Γ. What we have to show is that if x < u + υ then there are u' < w,
υ' < v such that u' + υf = x (all quantifiers ranging over S, of course). That is,
we must show that if u Π v ̂  x then there are supersets u', v\ of u, v, respec-
tively, with u' Π υ' - x. So suppose that uΓ\ v Qx. Then let u' = dc(u U x),
υr = dc(υ U x). We must show that the intersection of these two sets is precisely
x. But it is clear immediately that if A E ΛΓ, then A belongs to each of these sets.
Suppose, conversely, that: (ϊ) A Edc(uU x) and (ii) A Edc(vU x); then there
is, by (i) a formula B E u and a formula D G x such that R+ \- (B ΛD) -* A.
[An initial reaction might be that we should allow for formulas BΪ9... ,Bm E
u and similarly with v; but since these sets are deductively closed, we may just
as well consider the conjunction of these 2?, as the single formula B. ] And by
(ii), there are formulas CGv and £ Έ x with R+ \- (C A E) ^> A. From these
two theorems of R, we easily get that

R+ \- (BΛ (DΛE))-+A andR+ \-(CΛ (DΛE)-+A.

Hence, by Adjunction and vElim:

R+ h [(B A (DA E)) v (C A (D A E))} -> A.

So appealing to Λ/V Distrib:

R+ f- [(BVC)A(DAE)] -+A.

Now since B Gu and C E v, by v ln t r l ,2 the formula Bv C EuΠ v, and as we

are supposing that u Γ) v ^ x, we have 5 v C G x But also D,E E x so that
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D NE, and hence also (B\ι C) Λ (D /\E)9 belongs to x. So by the theorem of
R+ last cited, we get the desired conclusion that A G x.

Having shown the canonical frame for R+ to be an i?-frame, we proceed
to supply it with a Fto yield the canonical model for the system; we stipulate
that for x E S , V(A9x) = 1 if A G x, for all atomic A, and V(A,x) = 0 other-
wise. Note that the conditions (C+), (CO) on models are satisfied because of the
definitions of 0 and +. We now show that what was said for V and atomic for-
mulas holds for |= and formulas in general.

Fundamental theorem for R+ For every formula A, and all x G S:

<s, ,+,i,o,κ>*M«Me*.
Proof: As usual, by induction on the complexity of A. The case of A atomic and
the inductive steps for yl = B ΛC or A = B^> C are familiar from the literature
so we deal only with the case of A = B v C.

"Only if" direction: suppose x t= B v C; then for some y,z, x = y + z, y V
B,zYC. So (induct, hyp.) Bey,CGz. Then BvC<Ey,z by vlntrl,2; there-
fore BvCeyΓ\z = y + z = x

"If" direction: suppose BvCex. Then by vElim dc({B}) Π dc([ C}) c x.
We now appeal to the Decomposition Property, established above for the canon-
ical frame, conclude that there are u',v' including respectively dc({B}) and
dc([C}), and therefore containing, and so by induct, hyp. verifying, respectively
B and C, and which are further such that u' + υ' - x. Therefore x |= B v C.

As a corollary to the Fundamental Theorem we have the

Completeness theorem If a formula A is valid on all R-frames, it is a the-
orem ofR+.

Proof: If R+ \t A, then in the canonical model just defined 1 ψ A because A $.
1; thus A is not valid on the canonical frame for R+, which is an i?-frame.

5 Additional vocabulary Four sentential constants, normally written Γ, /,
F, and/, have played a prominent role in studies in relevant logic ([5] provides
a pleasant discussion). Because of its intimate connections with (relevant) nega-
tion, a discussion of the last of these, "/", has no place in a paper on positive
R. The other three are usually governed by axiom schemata along the follow-
ing lines:

(T) A -> T

(tl) t
(t2) A ->(t->A)
(F) F^A.

To core with these enrichments of the language of positive R together with the
corresponding extensions of the logic R+, taken either severally or individually,
we extend the definition of truth by the stipulation that: In any model <S, ,+,
0,1, F>, for all x e S we have

x \= T iff x = x

x M iffx + 1 = 1
x |= F iff x = 0.
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Soundness and completeness results for these extensions of R+ are provided by
methods like those of the preceding two sections. For example, the valid for-
mulas of the language with just t added are precisely the theorems of system
whose axiomatization is that of R+ (with schematic letters now ranging over
formulas of the enriched language) with (tl) and (t2) as added axioms; the valid
formulas of the language also having F in its vocabulary are those provable from
the extension of this system with (F), and so on. The soundness parts of these
claims are left to the reader. A point to bear in mind is that it is not just a matter
of checking that the axioms are all valid: an eye must be kept on retaining the
Lemmas from Section 3 intact as we pass to richer languages. In this connec-
tion, note that the right-hand sides of the biconditionals above extending the
truth-definition above by the new atomic cases for the sentential constants
impose in each case a certain condition — call it Φ(x) —on a point x which it
requires the point to meet in order to verify the constant in question. Thus it
suffices to check for the Plus Lemma that for each of the three choices of Φ we
have Φ(Λ: + y) iff Φ(x) and Φ(y), and similarly for the Zero Lemma that we
always have Φ(0). Completeness uses, for the various systems, canonical models
whose S component consists of all the nonempty deductively closed sets of for-
mulas of the language concerned, where of course deductive closure is under-
stood in terms of provability in the particular system. If (F) is present, the
observation that the zero of the canonical frame is dc({F}) is all that is called
for to show that the Fundamental Theorem of the previous section extends to
this case. Similarly, if (T) is present, we show that Tbelongs to every element
of the canonical frame by the fact that these are all nonempty as well as deduc-
tively closed, so that any formula in such a set implies, by (Γ), that T also
belongs to the set. The remaining case is slightly more interesting and so is left
for the reader's amusement.

We should not leave the subject of these sentential constants without paus-
ing to remark in connection with the various extension of R+ by a selection of
the above axioms which includes (F) that the system in question is not the frag-
menting the constants involved of the full system R, being nonconservatively
extended by the axioms governing (De Morgan) negation or the constant/. This
observation is due to Meyer, who at p. 17 of [11] cites the following example
of a "missing theorem-schema" (provable in the full system): (A -* F) v ((̂ 4 ->
F)->F). Meyer also has some interesting comments on when one should, and
when one should not, be alarmed at the prospect of nonconservative extension.

We turn now from the sentential constants to the treatment of fusion, to
be written "<>". This is the binary connective added to the vocabulary of R in
order to have a form of the exportation/importation principles for relevant
implication. A common pair of schemata which are used to obtain this exten-
sion are:

A -> (B -+ (A o B)) (olntr)
(A-+(B-> C)) -• ((A oB)-+C) (oElim)

It is well known that the first of these schemata can be replaced by the converse
of the second and that either of these three-variable schemata can be taken in
"rule" rather than axiom form without deductive loss given the implicational
axioms of R.



74 I. L. HUMBERSTONE

Some interest attaches to the extension of R+ itself by (°Intr,Elim); in view
of [15] one may expect things to work out satisfactorily by defining truth for
fusion formulas thus:

(**) x \= A o B iff for some y,z, such that x = yz, y V A and z f= B.

But with such a clause, I have not been able to show that the Plus Lemma con-
tinues to hold, in order to secure which I opt instead for:

(***) x |= A o B iff for some w,y,z, w + x = yz and yY A and z V B.

In terms of our earlier abbreviation, we could express the right hand side here
by: for some y,z such that x < yz, y N A and z N B. This makes the proof of
the left to right direction of the Lemma (that if u + v \= B ° C then « M ° C
and v (= B ° C) immediate. For the converse, suppose w |=5°C and υ t= B ° C,
so that there exist u\ υ',y,z,y',z' with u + u' = yz, v + υ' = j>'z', ^ N #, z 1= C,
y' Y B, zf t= C. Then by the inductive hypothesis y + y t= B and z + z' N C;
so by the truth-definition (}' + }'')(z + z ' ) M o C . But, distributing, (j> +
y')(z + z') =yz + yz' + y'z + j ' z 7 . What we want is a point w such that w 4-
(u + y) is the product of a ^-verifying and a C-verifying point; then the truth-
definition allows us to conclude that u + υ N B ° C. But by the application just
cited of the ring-distributive law, we may take the desired w to be: (y'z + yz') +
(«' + !; '). The remaining details of the soundness and completeness proof for
this extension of R+ again present some interest but no essential difficulty and
are accordingly left for the reader to supply.

The difficulties with Urquhart's clause (**) for fusion do not essentially
involve disjunction. It was mentioned in Section 3 that the formulas in -+, Λ, °
valid on Urquhart's semantics do not coincide with the theorems of R involv-
ing just these connectives. Here is an example of a schema valid when (**) is
employed in the truth-definition, but not provable in R+ extended by the fusion
axioms:

((A -* B) Λ (A O) -* B.

Interestingly, the techniques of [14] allow one easily to show that extending R+

by this schema gives a system whose theorems are precisely the formula verified
in all Routley-Meyer ternary-relational models in which the relation R satisfies
the condition that Rxyz implies Rxzz, a condition which, when imposed on the
models, renders unfalsifiable all instances of the earlier pair of supernumerary
schemata in -+, Λ, and v.7 It would be worth investigating to see if further work
along these lines led to a simpler and more natural axiomatization of Urquhart's
logic than is currently available ([2], [8]).

Another topic worth exploring would be the modifications needed to the
present semantics in order to get validity to match provability in various sub-
systems of R+. The condition of pseudo-idempotence is particularly readily
detached, contributing towards nothing but the validation of Contrac. Keeping
everything else the same, but deleting this condition, we obtain a semantics for
the result (positive R- W, or positive R W, as it is sometimes called) of remov-
ing this schema from our axiomatization of R+. Another question concerns the
precise effect of replacing the clause (*) for disjunction in Section 3 with some-
thing analogous to (***), with ' + ' in place of * 'on the right hand side, and con-
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comitantly deleting the Decomposition condition from the definition of an
R-frame. (The role of that condition in our discussion has been simply to carry
the inductive proof of the crucial Plus Lemma through the case of disjunction,
which would now be secured automatically—as with (***) for fusion —by the
form of the truth-definition.) The idea would be to provide a model-theoretic
treatment of Oτtho-R+, axiomatized by dropping Λ/v-Distrib from our list of
schemata for R+.s For this axiom is no longer valid on the semantics thus
revised, though vlntrl,2 and vElim survive unscathed. A snag, of whose sur-
mountability I am uncertain, with this line of thought arises over the V case of
the proof of the Fundamental Theorem, on which our completeness proof
rested. For in showing that truth implied membership for disjunctive formulas
we appealed to the result that the canonical frame for R+ met the Decompo-
sition condition, a result itself established by, inter alia, an appeal to the pres-
ence of Λ/v-Distrib.

We close with some further questions arising out of the extension of Urqu-
hart's semantics presented in this paper, reserving for Appendix B some remarks
on the extension to quantifiers. What are the prospects for treating fission with
at least the same elegance as fusion? Or is this connective too heavily involved
with negation for any similar treatment to be expected? And finally, what of
negation (in one or other form) itself? Were Urquhart's pessimistic comments
in [15] on this score perhaps premature? After all, one would need to have been
similarly pessimistic about disjunction in R+ if the operational semantics in the
original shape it has in [15] had to be taken as the final arbiter of intelligibility.

Appendix A: Idempotence and mingle As was mentioned in Section 3, there
is a problem about extending one particularly appealing feature of the Urquhart
semilattice semantics to incorporate the operation + which has played so promi-
nent a role in our discussions: the idempotence of . In this appendix, I should
like to amplify this remark. There is the following difficulty about trying to get
the product operation in the canonical frames to be idempotent, or more par-
ticularly, in trying to show that x is included in x2 (for we already know the
converse inclusion holds): suppose A Ex; we must find some B for which
both B and B -* A belong to x (to show A Ex2). But this B, which may depend
upon the given A, of course, for which reason let us denote it by Ω(A), will then
have to be provably implied by A, as will the formula Ώ(A) -• A, for us to be
able to conclude, when the sole information we have about A and x is that
A E JC, that these formulas also both belong to x. Now, if the Mingle schema
A -• (A -+A) were available, this would allow us to take Ω(A) to be A itself.
But in fact, whenever there is a formula Ω(A) available, the Mingle formula in
A is a consequence of its availability. That is, from A -> (Ώ(A) ->A) and A ->
ti(A) we can deduce in R+ the formula A -> (A -> A). Hence there is no ques-
tion of showing that the product operation in the canonical î -frame for the sys-
tem R+ itself is idempotent.

However, this does not show that some completeness proof, organized (as
for example Urquhart's was in [15]) along quite different lines, might not suc-
ceed in showing R+ have as theorems all those formulas valid on every i?-frame
satisfying the idempotence condition. But we can show that there is no such
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completeness result to be had, at least without some alteration to the definition
of truth or to the concept of a model (such as tampering with condition (C)),
and the demonstration again focuses on the Mingle schema. Although in Urqu-
hart's semantics, imposing the condition of idempotence (as he did) on the prod-
uct operation did not render this schema valid, in the present setting that is
indeed the effect of this condition. For suppose that x |= A yet not x |= A -> A.
Then for some y,yV A and not xyY A. By the Lemma from Section 3, since
A is true at each of x,y9 we have x + y Y A; so by the assumption that is
idempotent, x + y = (x + y)2 = x2 + xy + y2

9 i.e., something of the form
xy + . . . , so by the Lemma again, since x + y N A, we must have xy\=A — a
contradiction. (Compare Urquhart's way of capturing the Mingle schema seman-
tically via a condition on models, mentioned above in Section 2.) We conclude
from these observations that the system axiomatized by adding the Mingle
schema to the axioms of R+ has for its theorems all and only those formulas
of L+ which are valid on every structure <S, ,+,l,0> in which S is a semilat-
tice under with identity 1 and a semilattice under + with identity 0, and the
ring-distribution, zeroing, and decomposition conditions from Section 2 hold.

Appendix B: Universal quantifiers In this appendix, we indicate how the
semantics of the present paper can be extended to quantified (positive) relevant
logic. More specifically, we consider the addition of the universal quantifier.
Take each atomic formula which is not a sentential constant to consist of an n-
place predicate letter followed by n individual parameters (or 'individual con-
stants'). There is assumed to be at least one such predicate letter (for some n),
and countably many individual parameters in all. Complex formulas are formed
by the operations of conjunction, disjunction, implication and fusion; we also
presume the sentential constants t and F discussed in Section 5 are present. If
A is a formula containing a parameter c then {Vυ)A' is also a formula where
A' is like A except that it has the individual variable v where A has c. As with
individual parameters, these variables come in countably infinite supply. We
interpret this language in a highly substitutional way, objectualizing the interpre-
tation being a routine matter. Atomic formulas paired with elements of the car-
rier set of i?-frames in the sense of Section 3 are assigned truth-values by the
function V which turns such a frame into a model; the conditions (CO) and (C+)
of that section remain in force. The definition of truth runs as before, with the
quantifiers being dealt with by:

<S, ,+,l,0,F> x N (w)A (v) iff for each individual parameter c
<S, ,+, l ,0 ,K>xM(c)

where A(c) is the result of replacing all occurrences of v in A by c.
To the axiom-schemata and rules from the main body of this paper govern-

ing the various connectives we have assumed present, the following two govern-
ing the universal quantifier are to be added:

(vElim) (Vv)A(v) -> A(c) with the notation to be understood as above.

(Vlntr) — — provided the parameter c does not occur in A.
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There is no problem verifying that all theorems of this system are valid on every
i?-frame when the current truth-definition is used. But there is a problem about
adapting the completeness-proof method of [6], [14], or Section 4 above, to this
setting. This difficulty (amongst others) is mentioned by Routley at p. 336 of
[13]. We would like to prove that truth and membership coincide for the canon-
ical model here as in Section 4. For universally quantified statements this means
showing that if (yv)A(v) belongs to one of the elements of the canonical model,
so does each instance A(c) —which is no problem since this follows by deduc-
tive closure and (vElim) —and further that whenever each such A(c) belongs,
so does (yv)A(υ). And with this latter requirement, we do meet a problem.
Calling a deductively closed set of formulas V-complete whenever it meets the
condition just described, the problem is that even if we start off with v-complete
sets of formulas (such as the present logic itself, which is easily seen to meet it,
taking A = ί in Vlntr), the product of two V-complete deductively closed
(nonempty) sets need not itself be V-complete. For we might have A(c) E xy for
each c, so that there exists Bx E y with Bx -> A(cx) E x, B2 E y with B2 ->
A(c2) E xy and so on, with neither these conditionals nor their antecedents
exhibiting the commonality of form we should need in order to exploit the
hypothesis that x and y are V-complete and so conclude that (Vv)A(v) E xy.

There is a simple solution to this difficulty on the present semantics which
is not available (unless infinitary formulas or infinitely many further sentential
constants are added —cf. [13]) to those treatments requiring that only when at
least one disjunct is true at a point is the disjunction true there. Such treatments
have to have not just deductively closed but "saturated" or "prime" sets of for-
mulas as the points in the canonical model at the propositional level; sets, that
is, which always contain either A or B when they contain the formula AM B.
The following considerations do not apply to such canonical models.

Instead of taking the canonical Z?-frame in Section 4 to consist of all de-
ductively closed nonempty sets of formulas, we could equally well—had we there
already introduced the sentential constant t and the fusion connective —have
taken it to consist of just those sets Γ for which there is a single formula A with
Γ being the deductive closure of A. (These of course include all the sets describ-
able as the deductive closure of a finite collection {Bl9... ,Bn] of formulas
since one then takes A as the conjunction of the #,. These "formula-generated"
deductively closed may conveniently be represented in the notation [A], where
A is the generating formula; in other words, we write "[>!]" to abbreviate
(dc([A}) \ The logic (R+ with t9 F, and <>) itself is, as before, the 1 of the struc-
ture; it is available to us here as [t]. Similarly we use [F] as the 0. Where x =
[A] and y=[B], for xy take [A B], and for x + y9 [AM B]. The reader may
verify that these operations are well-defined by such stipulations, and that the
resulting structure is indeed a model for which the (analogue to the) Fundamen-
tal Theorem from Section 4 holds.

The interest of this variation on the old style of canonical model is that it
helps us with our difficulty about inferring the V-completeness of xy from that
of x and y. We take the logic now to be that described in the opening paragraphs
of this Appendix, and build a canonical model out of the formula-generated
deductively closed sets of formulas of its language. This sidesteps the above
difficulty because all such sets are V-complete from the outset. For suppose
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B(c) G x for every individual parameter c, where x = [A]. Then \-A -> B(c)
for each c, and so in particular for a c^ chosen so as not to be amongst the (at
most finitely many) parameters occurring in A. But this particular implication
then provides a premise for the application of (Vlntr) and we conclude that
\-A -+ (Vv)B(v), and hence that x contains (Vv)B(v).

This simple argument contrasts strikingly with the situation in the
Routley-Meyer semantics, with respect to which Kit Fine has recently shown (in
work as yet unpublished) that the proof theory proposed by Routley and Meyer
is incomplete with respect to the semantics they offer and can be completed only
by the addition of further axioms whose very description involves considerable
complexities. (Fine has also investigated modifying the semantics so as to get it
to match the proposed proof theory; again the needed modifications are rather
surprising.) Of course it remains the case that we have looked only at the positive
connectives and at the universal quantifier. If existential quantification were to
be treated in the same manner as disjunction in this paper, an infinitary version
of the + operation would presumably be called for. The same holds for stating
a generalized form of the condition of Decomposition which would validate the
schema (invalid on the current semantics): (Vv)(A v B(v)) -> (A v (Vv)B(v)).
An infinitary form of the product operation would also no doubt repay atten-
tion, though here the failure of its idempotence creates conceptual obstacles to
be overcome, in connection with the 'fusion quantifier', Ψv\ say, where
(Fv)B(v) counts as true at x just in case x bears < to some product of points

yu . . . ,yn,..., these factors verifying, respectively, its instances B(cχ),...9

B(cn),.... But these further extensions of the present machinery will not
occupy us here.

NOTES

1. These are of course various notions short of validity over a class of (e.g., modal)
algebras, such as validity on a given member of the class, or being assigned the *Γ
of the algebra by a given homomorphism from formulas to algebra elements. But
these correspond respectively to validity on a frame and to truth throughout a model
on that frame, not to the notion of truth at a point in a model. The crudely drawn
contrast in the text leaves out of account the matrix approach, which may be thought
of as a generalization of algebraic semantics (allowing various designated elements)
or as a generalization of two-valued model-theoretic semantics, depending on the
particular application. The contrast may also be somewhat overstated since below
when some semantic ideas from [10] are borrowed, the entities with respect to which
truth is evaluated in models look much more like the elements of modal algebras
than the points in a Kripke model.

2. The atomic formulas at the present stage of discussion (until Section 5) should be
taken to be some stock of sentence letters; as long as there is at least one of these
(so that the class of formulas is nonempty), the discussion to follow is unaffected by
their exact cardinality. Complex formulas are formed in accordance with the usual
inductive definition.

3. For the treatment of /?M(ingle) in terms of the apparatus to be introduced here, see
Appendix A.
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4. When an earlier version of the present paper was delivered to the annual conference
of the Australasian Association for Logic (Melbourne, November 1985), I was
informed by Richard Sylvan that Urquhart has in fact taken just such a line, in work
as yet unpublished.

5. Warning: what Urquhart calls the "empty piece of information" in [15] is not our
0 but our 1.

6. See Lemma 2, part (i), which appears on p. 353 of [6]; note that at line 10 from the
base of that page, "•" appears misprinted as "/".

7. Thinking of Rxyz as (i) xy = z, we may infer (ii) x2y = xz, by multiplying both sides
by x. The left-hand sides of (i) and (ii) are then equal, on Urquhart's assumption of
idempotence for , from which we conclude that so also are their right-hand sides,
i.e., Rxzz.

8. The possibility of such a line of development was suggested to me by Chris Morten-
sen on the occasion mentioned in note 4.
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