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Epistemic Set Theory

WILLIAM N. REINHARDT

It is the purpose of this paper to formulate axioms for GodeFs modal oper-
ator B for provability (see [3], [8]) in the context of set theory. This provides
a framework for consideration of the Post-Turing thesis which is more adequate
than arithmetic with B, where the thesis can only be expressed as a schema. The
framework also provides a new perspective on ordinal notations.

We begin with a brief discussion of the problems to be overcome in extend-
ing the arithmetic case to set theory. The relevant special fact about arithmetic
is that each natural number has a canonical conceptualization. In set theory this
already fails for sets of natural numbers and for real numbers. Thus there is no
clear meaning to formulas BF(x), where x is a set variable. We could arbitrarily
confine quantification into the modal context to variables ranging over the nat-
ural numbers (or over set theoretic representations of them), but this seems
excessively restrictive. In particular, if we wish to state the thesis that all intui-
tively decidable sets of natural numbers are recursive, this requires quantifica-
tion over an arbitrary property P within the scope of B:

vP(Vn(BP(n) or B not P(n)) -» {n\P(n)} is recursive).

Thus we require a theory of the sort of properties which can meaningfully appear
within the scope of B. We shall call such properties concepts; the variables which
can occur within the scope of B will be those which range over concepts and cer-
tain combinations of concepts. Thus we shall want to extend the set of basic con-
cepts Cb to C including combinations of concepts as well.

Now any theory of concepts must of course deal with the paradoxes. This
will be done here via a theory of significant combinations, following ideas of
Gδdel ([4], pp. 228-229) and Kripke ([6]). (In a nutshell, conceptual combina-
tions correspond to significant syntactic combinations.) Kόnig's paradox con-
cerning the first ordinal which is not definable becomes particularly acute, since
"definable" means "given by a concept".

We now turn to the treatment of Cb and C. Since the most natural way to
proceed here would be to take both C# and C to be urelements from the point

Received April 16, 1984; revised July 11, 1986



EPISTEMIC SET THEORY 217

of view of set theory, with C generated from Q, by concept-combining func-
tions of some sort, we expend some effort explaining why the procedure taken
here (which involves only familiar combinations) should accomplish the same
ends.

Let Cb be any set. We wish to introduce the domain of computable com-
binations C over Cb. The case of interest to us is where Cb is the set of con-
cepts, more specifically the basic concepts (such as relations in intension) which
can in principle be used by an idealized mathematician in making definitions.
Thus one thinks of Cb as a set of objects which are directly available to an
idealized mind. This means simply that a canonical means of reference is avail-
able for objects in C&, in the way that we have canonical names for the natu-
ral numbers. In the latter case we have more, namely a canonical enumeration
of the domain as well. Here we do not assume anything about such an enumer-
ation. As in the case of the natural numbers, we do not ordinarily care whether
we deal with the natural numbers themselves (whatever they may be) or merely
with indices for or representations of them; what concerns us is primarily cer-
tain structure over them. In our case two aspects of the structure are of partic-
ular interest. The first is that of predication, the relation that holds between a
concept and an object when the object falls under the concept (and variations
on this theme). We shall return to this presently. The second is the structure
induced by the presence of an idealized mind, specifically notions of provabil-
ity. (We do not of course identify the presence of such a mind with the existence
of such structures, any more than we would identify the existence of a physi-
cal object, say a pendulum, with the existence of a Hubert space with appro-
priate structure.)

By C we understand Cb together with the sets which are hereditarily finite
over Cb, For the kinds of quasi-syntactic combinations we are interested in, one
might feel that sequences over Cb are more natural than sets. However, the two
frameworks appear to be equivalent (provided we ignore issues of efficiency or
feasibility) and the reduction of sequences to sets is standard and well known,
so we choose to take sets over Cb as our basic kind of combination. We observe
that for the Von Neuman ordinal ω, ω £ C, and that the elements of Cb will ap-
pear as urelements in the structure (C, E c ) (where E c = {(x*y)\y E C ~ Cb &
x E C & x E y}) provided that the elements of Cb happen to be either infinite
or genuine urelements.

We remark that in considering combinations of concepts our interest is not
primarily with mathematical combinations and permutations, but rather with
combinations of the sort that form new concepts from old ones. We expect,
however, that such combinations will be images of mathematical combinations,
and in many cases in correspondence with mathematical combinations. Thus,
rather than construct a theory of the appropriate combining functions from
scratch, we shall build it on top of what are essentially ordinary syntactic com-
binations. As indicated above, the theory is that conceptual combinations cor-
respond to syntactic combinations which are significant. Thus the combining
functions we seek will be partial functions. This approach of course follows the
previously mentioned ideas of [4] and [6]. It is perhaps worth remarking that
we thus have the advantage of working in a familiar setting (syntax); the dis-
advantage is that it is technically tedious and messy.
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It should be fairly clear how to develop the syntax of a language with sym-
bols for the concepts in C. For definiteness we indicate here a specific treatment.
First, however, we indicate the primitive notions we adopt, indicate how these
will suffice for defining the basic notions of the theory of concepts and relations,
discuss briefly some alternative choices of primitives, and indicate the axioms
we shall adopt.

Our primitives will be the usual logical ones, -ι, -», V, =, as well as the
provability operator B (a one-place sentential connective), together with the usual
membership relation, G. In addition we have the one-place predicate C (for con-
cepts) which we have discussed above, and one-place predicates Γand S for truth
and significance. (Alternatively we could take predicates for truth and falsity.)
We shall need, in addition to the usual variables, variables understood to range
over C We call these intensional variables. Finally, it will be convenient to have
the usual set theoretic terms in our language. If we wish set theory with urele-
ments (in particular if we wish to treat Cb as consisting of urelements), we of
course also need a one-place predicate for "is a set".

We shall want variable binding terms [θ]x, [θ]Xty, etc. for concept forma-
tion (these are analogous to {x\θ}, {(x,y)\θ}9 etc.); as indicated above, the con-
cepts formed will be viewed as set theoretic combinations, and hence the terms
denoting them will be set-theoretic ones, and not new primitives. Notice that
[red(x)] corresponds almost exactly in usage to the English phrase "that x is
red". Thus the brackets should perhaps be one of the basic things we axioma-
tize (as George Bealer has suggested in [1]). The axioms we give for truth will
be written in terms of the brackets and certain operations &, -H, etc. representing
conjunction, negation, etc. of propositions. These however (or something close)
can be defined using truth and the brackets:

(x&y) = [T(x)& T(y)]

(•̂ x) = [-iΓ(x)].

It might appear that we still need to assume predication as a new primitive
notion. Under fairly mild conditions on predication, this is not the case. It is
true that if R is a relation symbol for a property r, then truth of the sentence
[R(x)] asserting that r holds of x is explained in terms of the predication rela-
tion, and the notion of significant applicability:

T[R(x)] «-> xψ & S[xηr],

and similarly for falsity:

F[R(x)] ~S[xηr] & i(Jttyr).

But in case we assume

xηr-+ S[xηr],

then these show that the notions T and F are enough: from them we may recap-
ture 77, S:

xψ ~ T[R(x)]

S[xψ] ~ T[R(x)] or F[R(x)].
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This of course does not give r itself given R, but it gives the structure we are con-
cerned with; and in case the relations themselves are present, it does give predi-
cation itself.

There is some reason to view properties and predication as more basic than
sets and membership; we have already remarked on the naturalness of the con-
cept formation operator as opposed to a collection of somewhat ad hoc syntactic
operations. Such a development would require allowing properties more general
than those we have called concepts, but this is natural enough. In particular it
is tempting to view membership as being simply predication restricted to sets.
There is one way to do this which perhaps does not do great violence to the con-
ception of a set as a pure combination whose constituents are its elements. (For
this notion of set see [2], pp. 275-276). Bernays takes it for granted that we
understand the relevant notion of combination in the finite case, and understand
sets in the general case by analogy with this. In the famous passage in [5], pp.
262-263, on what has come to be called the iterative notion of set, Gδdel uses
also the phrase "combination of any number of x's" and says that "random sets
are not excluded" (footnote 14), which seems to be getting at the same feature
that Bernays puts in terms of "independent determinations". Neither author
speaks of the constituents of a set, but both are at pains to make clear that the
set is detached from any of its definitions. Sets so conceived are "obtained from"
not their definitions or some mental construction or "link . . . with the
reflecting subject" ([2], p. 275), but rather from their elements, elements of
those, etc. In particular, sets of integers are obtained from integers, and in gen-
eral "a set is something obtainable from the integers . . . by iterated application
of the operation 'set of, not something obtained by [a conceptual definition
which splits things into two categories]" ([5], pp. 262-263). I take it this entails
that sets are not constituted by their definitions, and suggests that their constit-
uents are their elements, etc. (For further comments on this see [9], p. 275; also
compare [7], pp. 118-119. Maddy finds the first statement of this view in Kδnig.)
The view of sets which I have in mind is to construe, for example, [x9y] as
[t = x or t = y]t, and more generally to take

A = ia\aeA] = ^ / = J .
LcXΞΆ It

While this identifies a set A with a certain (very idealized) concept defining it,
notice that a set still comes out as a certain kind of combination, and it gets the
constituents almost right: Perhaps the notion of equality really is needed to form
sets, and the disjunction can be viewed as simply an indication that the kind of
combination is what we earlier called "pure". It seems quite possible, however,
that this kind of combination cannot be defined, but can only be axiomatized.
That is, not only are individual sets not constituted by definitions, but neither
is the notion of set itself. (The explanation of a set x as something obtainable
by iterated application of set formation bears this out, since "obtainable" means
nothing else than the existence of an ordinal α, i.e., a set, which gives x in a iter-
ations.) In particular, there are difficulties in defining sets as the extensions of
certain properties. For example, if we try to define sets as extensions of deter-
minate properties, it seems that complements of sets should be sets. If we restrict
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to hereditarily determinate properties, it is not clear why the class of sets is not
a set. The case is perhaps not hopeless; a possibility in the framework to be con-
sidered here is to read determinate as "significant for every argument". Another
possibility, suggested by the above discussion, is to define sets as the extensions
of properties which coincide in extension with the class of their constituents. In
any case we do not pursue these ideas here, but take sets as basic. We observe
that as long as C is a set, this automatically gives us any equivalence classes,
including equivalence classes of propositions, etc., which we may need (by the
Scott method: the objects of minimal rank equivalent to x).

We are now in a position to describe our axiomatic framework.
First, we describe the set theoretic scaffold. This is quite easy to do: we

adopt the usual axiom schemas of ZFC, allowing arbitrary formulas from our
language in all schemas. That is, we take as axioms all properly formed universal
closures of such schemas. We may add any known axioms of infinity also, but
for definiteness we stop with ZFC. (If urelements are desired, then we use a suit-
able formulation of set theory with urelements. If the urelements do not form
a set, then the axioms should include a principle of dependent choice for trans-
finitely many choices.)

Next we describe the special axioms for C. These say that C is the hereditar-
ily finite sets over Cb, the basic elements x of C (x such that x is disjoint from
C).

c c
Cl Vx (3 t (t G x) -• Vt(t G x -> C(t)))
C2 Vx (V t(t£x)-+ θ(x)) & vxvy(θ(x) &θ(y)-^θ(xU [y])) -> Vxθ(x)

C3 vfvx (W(ί G ^ C(t)) -+ C(x U [y])

C4 W(ί£z)->C(z).

We shall suppose that C is a set:

C5 3zvt(tez «-> C(t)).

This completes the axioms for C. If we work in set theory with urelements, some
obvious modifications are required: C4 should express C ( 0 ) , C5 should say z
is a set. In addition, we would need individual constants ch i G {->, &, V, =,
Set, B, G, C, T, S] for the concepts of our theory, and axioms C(c,).

Now we describe the adjoining of B. If θ is a formula whose free variables
are all intensional (recall that these range over C) then Bθ is a formula. Ignor-
ing terms, it is now easy to describe the logical framework: We take as axioms
the appropriate closures of schemas of ordinary classical logic, together with
some special schemas for B. The only rule is modus ponens. Specifically, the
classical schemas are

LI truth functional tautologies
L2 Vjc(φ -+θ)-+ (Vxφ -• Vxφ)
L3 0 -• Vxφ, x not free in φ
L4 Vy(Vxθ -* θ(x/y)), x free for y in θ, and y is intensional if x is
L5 vx(x = x)
L6 VχVy(χ = y-+ (θ(u/x)-+θ(u/y))).
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Here we note that in L4, if x is an intensional variable, then we require that y
must be also. By the appropriate closures we mean sentences formed by prefixing
universal quantifiers and (optionally) B in any order. Of course, if we put a
nonintensional variable free in the scope of B, we do not get a sentence.

The special schemas for B are

L7 B(θ-+φ)^> (BΘ->Bφ)
L8 Bθ -• θ
L9 Bθ -• BBΘ

L10 BVxθ -* VxBΘ.

Notice that in general L10 gives a sentence only when x is an intensional vari-
able. (In adopting L10, we thereby assume VxBly(x = y), VxB(x = x)9 etc.)

The remainder of the axioms for B assert the computability of elementary
combinatorial functions. In stating these, we indicate that x is intensional by

C
writing Vx. The first two axioms just give the range of these variables. (It may
be helpful to amplify on what is meant by computable here. If δ(x,y) is a for-

Q

mula which defines y as a function of x, we call it computable if Vx3yBδ(x,y).
For example, the formulas for the identity function and the constant function
with value z are x = y and z — y respectively. That these are computable follows
already from our logical schemas.)

BO VyBC(y)

Bl vx(C(x)-*3y(x = y)).

The next says that the empty set is identifiable.

B2 vt(t£z)-+Bvt(t£z)
C C

B3 VxVy(xΦ y^BxΦy).

The corresponding statement for x = y is already logically valid.

C C
B4 VxVy(xGy->Bxey).
Note that if y G Cb9 and x G y, this says nothing.

c c c
B5 vy (3 t (t E y) & v / (t e y -> Bθ) -> Bvt{t ey-+θ)).
This axiom asserts the surveyability of finite sets. We do not assume that
Cb(x) -+BCb(x). Of course, if z — {x\,... ,xn] happens to be (x|C^(x)}, then
x G z -* Bx G z\ but of course we may not have BCb(x). There need be no
proof that x G z coincides in extension with Cb (x).

In introducing the special axioms for truth and significance, it will be much
more perspicuous to use terms. Since terms introduce special complications in
the presence of B, we begin by discussing these.

So far we have avoided any essential use of terms. In classical logic it is well
known that if we can prove VJC3 !yδ(x,y)> then we can introduce a function sym-
bol/(x) and "defining axiom" Vx,y(f(x) =y <-+ δ(x9y)), and we obtain a con-
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servative extension. The logical axioms are the same as before, except that L4
is formulated with y replaced by an arbitrary term t:

Vxθ^>θ(x/t)

with the usual provisos that x is free for t in 0, and if x is a restricted variable,
say of the same sort as a new variable w, then of course we only have

L4a 3u(t = u) & Vxθ -• θ{x/t).

In our context, given Bvx3lyδ(xy), we wish to introduce/and add

Bvxy(f(x) =y ~δ(x9y))9

and obtain a conservative extension. We can indeed adopt L4a (if x is unres-
tricted we can omit 3u(t = u) or regard it as itself a logical axiom), but only pro-
vided that x does not occur free in the scope of B in 0. In the latter case, we need

L4b 3uB(t = u) & Vxθ -• θ(x/t)9

which means that we can apply universal instantiation to a term only if its value
is intuitively computable. If this restriction were ignored, we would not get a
conservative extension when adding terms. (In fact, this would fail spectacularly,
as all functions would become computable, and hence provability would coin-
cide with truth.)

We have dealt with the problem of free variables within the scope of B by
introducing special variables of restricted range for this role. There is an alter-
native which is perhaps more elegant. It consists in defining C(x) by the for-
mula Bly{x = y). To carry this out we can adopt a form for L4 suggested by
L4a:

L4' 3u{y = u) & vxθ -> θ(x/y)

(here 0 may involve B, but y must be a variable, not any term), together with
the axioms

L10' Vχly(χ = y)

(x,y distinct variables). From there we obtain L4 and a form of L10, namely

BVxθ -+ VxB(3y(x = y)-+ θ).

This gives

C
BVxθ -+ VxBΘ,

and one can show (using B\/x{x — x)) that
Q

Vx3yB(x = y),

so that the identity function is computable.
We are now ready to turn to the axioms for truth and significance. We state

these now: the special quasi-syntactic notations should be fairly perspicuous after
our earlier discussion; they are explained in detail immediately following the
axioms.

We first give the axioms for significance. As usual, we intend the appro-
priate closures of the indicated formula. For the classical atomic formulas, these
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say that the atomic formula is significant for all arguments (for example, that
VxVyS[x = y]):

51 S[a]

where a is any of x = y, x G y, C(x). For T and S themselves, the significance
is conditional:

52 S[T(x)] ~ S(x)
S[S{x)] ~ S(x)

53 S(^x] «-> S(x).

For implication, we could require S(x -+ y) <-• S(x) & S(y). However, we adopt
the more liberal policy suggested by Kripke:

54 S(x^y) «-> (S(x) & S(y)) or (S(x) & ^T(x)) or T(y).

Similarly with universal quantification:

55 S(Vux) «-> VyS(A(y9u,x))
orly(S(A(y,y,x)) & -nT(A(y9u,x))).

Here A (y, u,x) is the result of applying the object y to the concept x at the place
u.

Finally, for B we assume

56 S(Bx) «-> S(x) & C(x).

The schemas for truth are simply the usual truth conditions, conditional on the
significance of the relevant formula. The axioms are suitable closures of these.

TO T(x) -> S(x)
Tl S[a] -> (T[a] ~ a), a atomic
T2 S(-^x) -* (Γ(-HΛΓ) «-> -πΓx)

T3 5(JC -^ y) -+ (T(x ^y) ^ (Tx -> 7»)
T4 S(Vwx) -> (T(Vux) +-> VyTA(y,u,x))
T5 S(5JC) -* (Γ(Λc) - ^Γx).

Note that in T5, since x occurs within the scope of B, x must be an intensional
variable.

Let us represent linguistic symbols by triples (t,m,x) where / indicates the
type of symbol (sentential connective, predicate symbol, variable, quantifier, or
function symbol; 0, 1, 2, 3, 4 respectively), m is the number of places (or the
sort of variable), and x is an index for the particular concept to be symbolized.
In case r is for example a binary relation, we may suppose that R = <2,2, /*> is
the predicate symbol for r\ similarly that <3,1,V> is the universal quantifier, etc.
If we do not have the concepts r and V themselves as objects of our theory, but
only indices / r,/v for them, these of course become <2,2,/r>, <3,l,/v>.

We may now define the operations -H, etc. We set

(^x) = «0,UO,x>
(x±y) = «0,2,/_>,x,^>

(Vux) = «3,l,/>,w,x>

(Bx) = «0, !,/*>,*>.
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We also put

cJ,= <4,0,<0,x»;

this provides us with canonical names as will be convenient. This gives names
for arbitrary ΛΓ, but notice that only when x is in C do we have cx in C; this has
the effect of allowing so-called singular propositions while preventing undesirable
features which usually accompany their introduction. We can define substitu-
tion of terms for free variables in one of the usual ways now, and set

A(y,u,x) = the result of substituting cy for
all the free occurrances of u in x

A(yuuι;y2,u2;x) is A(yuu,A(y2,u2,x)).

To handle the atomic formulas, we put

(u = v) = «l,2,i=),u,v>

(uGv) = «1,2,/G>,*/,*;>

(ώ/) = «l,Uc>,κ>

(Λι) = «l,UΓ>,i/>

(SW = «1,1,/ S >,H>,

and for example,

[Cx] =«l,Uc>><*>

= A (cx,u,Cu) (u any variable)

[x = y] = «l,2,/=> ,cX9cyy

= A(cx,u;cy,v;(ύ = v)) (u9v any distinct variables).

The bracket notation can be defined more generally, but this is all that is needed
for understanding our axioms.

The T-S axioms may now be understood as asserting the existence of nine
concepts in C (corresponding to -i, -», V, =, E, C, T, S, B) of which the univer-
sal closures of the T-S axioms are provable. That is, replacing /-,,/_*... by vari-
ables uOi«!,... this has the form

31*0,1*! .Bvx,y...(... (S(-H*) ~Sx)...).

Alternatively we can expand our official language to include individual con-
stants c-, for /_,, etc., with axioms

3uB(u = c-,).

Notice that the choice of the nine indices /-,, etc. here is not as arbitrary
as one might suppose. First of all, ir must be in C; but where? To the extent
that we are using the structure of C to represent conceptual combinations, and
are ignorant of the exact conceptual structure of r (e.g., is it defined or basic?),
we cannot arbitrarily pick an index without imposing or excluding structure on
r unintentionally. Thus we have refrained from specifying a particular indexing.

This concludes the presentation of the axioms. This presentation is inele-
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gant in the following way. We have used terms in our presentation of the
axioms, yet have given axioms for Γand S which give information only about
formulas which do not involve terms (except for canonical names cx). Even
without B,

x = t-*(T[θ(x)]-+T[θ(t)])

is not (contrary to appearances) a logical validity; it and a similar principle for
S must be explicitly assumed if terms are desired.

A few observations on the intended interpretation of theories of signifi-
cance. For a more detailed discussion, see [10]. If Γ is an ordinary theory, we
take Γ h σ as a warrant for the truth (or at least assertability) of σ. Here, how-
ever, Γ h T[σ] provides such a warrant but Γ h σ does not unless Γ h S[σ].
Because of the liar type paradoxes there will in fact be sentences such that Γ h
σ but σ does not satisfy the sufficient condition we have for significance, namely
Γ h S[σ]. Some σ will thus have a purely formal meaning; this is because T
and S are partial predicates only. Such sentences may however contain infor-
mation about genuinely significant sentences; this can be expressed by signifi-
cant statements such as

V/i(Γhσ->m,,σ]).

but not (in general) by asserting T[σ].
It should now be clear how to formulate the Post-Turing thesis in our

framework. The properties we quantify over are just the formulas in C with one
free variable, say w. Because we have imposed no restrictions on the relations
which may be indexed, this gives a very general notion of property. (In partic-
ular it is more general than those expressible by first-order sentences of arith-
metic.) Notice that if P is such a property we express P(x) by T(A(x,u,P)).
Since u is determined by P here, we may write xηP. Thus the strong form of the
Post-Turing thesis becomes

vP(Vn(nηP->BnηP) -• 3eVn(nηP -> n G We)).

While this is more adequate than arithmetical versions, I do not wish to make
exaggerated claims about its adequacy. While it in some way avoids ramified
types in favor of arbitrary properties, it is formulated in a theory of significance
which is inadequate to assign it significance.

I conclude with a brief discussion of ordinal notations. The point is not to
develop the theory, but to give an example of an interesting notion which
involves in an essential way both constructive and nonconstructive elements. One
of the main points about the theory I have presented in this paper is that it incor-
porates ordinary set theory as understood classically, rather than attempting to
reinterpret the formal language constructively, either by replacing the classical
theory with something more amenable to constructive ideas, or by some interpre-
tation of classical logic in intuitionistic logic. But the theory also incorporates
an epistemic element, which gives rise to the possibility of a significantly differ-
ent point of view on ordinal notations: namely, they may be viewed as notations
(a notion with an epistemic or constructivistic content) for ordinals (conceived
in a purely classical nonconstructive way). It seems important to bring out this
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possibility, because (a) the classical view ordinarily replaces essentially epistemic
notions with related extensional notions (such as that of a recursive set), while
(b) on constructive views any reference to a set ordinarily presupposes having
a conception of the set.

I have emphasized that the notion of an ordinal notation involves in an
essential way both constructive and nonconstructive notions. Let me try to
explain the point by analogy with the notion of logical validity. This notion can
be viewed in both finitary and infinitary ways, or rather, there are really two
different notions depending on which way we choose. The analogy I want to sug-
gest is

finitary : infinitary :: constructive : classical + epistemic.

The completeness theorem of first-order logic relates the two notions. This the-
orem involves in an essential way both finitary and infinitary notions: the notion
of logical validity, conceived as truth in all structures, is essentially infinitary,
while the notion of a formally valid argument is finitary. The completeness the-
orem shows that the two are extensionally equivalent; thus, in a certain sense,
after the theorem is proved one can always avoid the infinitary notion and use
the finitary notion. If one does not allow infinitary notions in the first place,
any special importance of the notion will have to arise in some other way, but
if one accepts infinitary notions then the completeness theorem gives it a par-
ticular interest. Now, in the case of the notion of ordinal notation, the most nat-
ural understanding of the notion involves the notion of an ordinal, which is quite
nonconstructive, and the notion of a notation, which in its most natural interpre-
tation involves an essentially constructive element. We can, of course, make con-
structive analogues of the notion of ordinal, and thus conceive of ordinal
notations in a purely constructive way. It is possible that we could prove some-
thing analogous to the completeness theorem; it would say that if we accept
the nonconstructive notions, then there is a constructive notion that is extension-
ally equivalent to the mixed notion of a notation for a nonconstructively con-
ceived ordinal. (Another possibility is that a pure classical notion could be
extensionally equivalent to the mixed notion.) Thus it is of interest as an appli-
cation of the epistemic set theory here proposed, which mixes classical noncon-
structive ideas with the element of constructivity in the notion of provability,
to give a definition of a system of notations for an ordinal.

There are various conditions one may impose on an adequate set of nota-
tions. In the present framework these can be expressed directly in terms of inten-
sional relations and functions and their relation to ordinals, without assumptions
about Turing machine representability. Note that the latter would be required
in any classical treatment, and that in constructivistic treatments, it does not
make sense to refer to ordinals apart from a conception of them, so that there
is no possibility of relating abstractly given ordinals to our intensional relations
and functions in the way intended here. This point will be made clearer as we
proceed. Notice that avoiding assumptions about Turing machine representa-
bility is of interest even if we assume the Post-Turing thesis: there may be con-
cepts which are intuitively decidable (or weakly decidable) and hence recursive
(or r.e.), say by some machine e, but of e one cannot show some property that
may be shown working from the original concept.
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We note first that we can express "the concept P defines the ordinal α" by

Vι>(v G a <- vηP).

(Here we use v, a, etc. for ordinals. Let us write D(P,a) for this. This gives us
the notion of a definable ordinal: T[3PD(P,a)] and of a concept defining an
ordinal: T[3aD(P,oί)]. The potential ordinal notations will thus be P for which
BTl3aD(P,a)].

We can now clarify the remark made above that this makes a use of clas-
sical notions not available to the constructivist. Specifically, the notion

BT[3aD(P9a)]

uses the classical quantifier 3α. Although a cannot go free within the scope of
B (so that BD(P,a), for example, is not an intelligible notion), it can be quan-
tified out to leave P, which can go in the scope of B. Thus we may speak of
knowing that P defines an ordinal without having presupposed direct access to
the ordinal. In effect this gives us the notion of a concept P of an arbitrary ordi-
nal as opposed to a constructively given ordinal. We are now in a position to
explain what a system of ordinal notations is.

Let us suppose that Q is a property of the sort just discussed, that is,
BT[3aD(Q,a)]. Let us also suppose that TV is a property such that
BvcxS[xηN]. We call TV a system of notations for Q in case we have B of the
following:

1. (VP: PηN)BT[laD(P,a)]
2. (VP: PηN)BPηN
3. (VP: PηN)(Va: D{P,a)){aηQ)
4. (Vλ: D(Q,λ))(Va: a < \)HP(PηN& D(P,a)
5. (Vλ: D(Q,λ))(Vα,j8: a,β < \)(VPUP2: D(Pι,a)iD(P2,a))

a<β-+BV a,β(D(Pua) & D(P2β) -» a < β)
lim(α) -• BVa(D(Pi,a) -• lim(α))
β = a + 1 ->BV a^(D(PXia) & D(P2,β) -* β = a + 1)
a = O-+BVa(D(Pιa)-+a = 0).

One could in a similar way impose stronger conditions; for example, one could
require that if a is a limit ordinal, then for some β < a we have a cofinal
sequence h(p), v < β converging to a. Such conditions must be stated relative
to Nof course; the requirement would be for a function/: N^N(which would

ifP)
give the notation for β given that for a) and a function g in J J N, where (/P)

PηN

is the notation in TV for ordinals below the ordinal β defined by/P. Both/and
g are to be intensional functions, of course; g is to give for each P 2 in (/P)
defining v, a notation in TV for h(v).

REFERENCES

[1] Bealer, G., Quality and Concept, Clarendon Press, Oxford, 1982.

[2] Bernays, P., "On platonism in mathematics," L'enseignement Mathematique, 1st
ser. vol. 34 (1935), pp. 52-69; translated by C. D. Parsons and reprinted as pp.



228 WILLIAM N. REINHARDT

274-286 in Philosophy of Mathematics, ed., P. Benacerraf and H. Putnam,
Prentice-Hall, Englewood Cliffs, New Jersey, 1964. Page references in this paper
are to the reprinted version.

[3] Gόdel, K., "Eine Interpretation des intuitionistischen Aussagenkalkus," Ergebnisse
eines Mathematischen Kolloquiums, vol. 4 (1933), pp. 39-40.

[4] Gόdel, K., "Russell's mathematical logic," pp. 125-153 in The Philosophy ofBer-
trand Russell, ed., P. Schilpp, Tudor Publishing Company, New York, 1944;
reprinted as pp. 211-232 in Philosophy of Mathematics, ed., P. Benacerraf and H.
Putnam, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. Page references in
this paper are to the reprinted version.

[5] Gόdel, K., "What is Cantor's continuum problem?" American Mathematical
Monthly, vol. 54 (1947), pp. 515-525; revised and reprinted as pp. 258-273 in Phi-
losophy of Mathematics, ed., P. Benacerraf and H. Putnam, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1964. Page references in this paper are to the reprinted
version.

[6] Kripke, S., "Outline of a theory of truth," Journal of Philosophy , vol. 72 (1975),
pp. 690-716.

[7] Maddy, P., "Proper classes," The Journal of Symbolic Logic, vol. 48 (1983), pp.
113-139.

[8] Myhill, J., "Some remarks on the notion of proof," Journal of Philosophy, vol.
57(1960), pp. 461-471.

[9] Reinhardt, W., "Satisfaction definitions and axioms of infinity in a theory of prop-
erties with necessity operator," pp. 267-303 in Mathematical Logic in Latin Amer-
ica, ed., A. I. Arruda, R. Chuaqui, and N. C. A. da Costa, North Holland,
Amsterdam, 1980.

[10] Reinhardt, W., "Some remarks on extending and interpreting theories with a par-
tial predicate for truth," Journal of Philosophical Logic, vol. 15 (1986), pp.
219-251.

Department of Mathematics
University of Colorado
Boulder, Colorado 80309




