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1 Introduction: Functional completeness A set of truth-functional connec-
tives is said to be functionally complete' if every truth function can be repre-
sented by some formula which uses connectives only from that set. In the first
semester of a sequence of introductory symbolic logic courses, one normally
remarks that the usual connectives {~, v, =, A, «} form a functionally com-
plete set. Typically, one does not rigorously prove this since such proof requires
use of mathematical induction—a concept usually reserved for the second semes-
ter. However, a method of constructing disjunctive (and conjunctive) normal
forms is often given, and the claim is made that every formula of the proposi-
tional logic can be treated by this method. The method (for disjunctive normal
form) is this: given an arbitrary formula A with n distinct sentence letters in it,
represent A’s truth table in the usual way. For example consider (the three dis-
played T rows are the only T rows):

P P, P .... P |A
T T T ... T|F
T T T F|T
F F F ... T|T
F F F ... FIT

Now look at each row where A is assigned T and construct a formula which
“describes” that row. For the above example, with the three T rows, we
“describe” each T row by looking at the truth values (in that row) of the sen-
tence letters. If the value in that row is T we employ the (unnegated) sentence
letter; if its value is F we employ the negated sentence letter. We conjoin these
employed formulas to make a formula which describes that row. For our three
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rows which are T in the above example we would obtain three formulas, each
of which “describes” one of the T rows of A4:

(PLAP,AP3;A...A~P)
(~PiA~PyA~P3A...AP,)
(~PiA~PyA~P3A...A~Pp).

It is now pointed out to the students that each of these three conjunctive for-
mulas is true in exactly one row of its truth table —namely the one it “describes”.
We now disjoin all these “descriptive” formulas:

(PLAP,AP3;A...A~P) Vv (~PiA~PyA~PsA...APy)
V(~PiA~PyA~P3A...A~Pp).

Since each of the disjuncts is true in exactly one row (namely a row in which 4
is T), and since there is a disjunct for every T row of A, and since the entire dis-
junction is true just in case at least one of its disjuncts is true, it follows that
the entire disjunction is true precisely when A is. Thus the student becomes con-
vinced that any propositional formula can be described using only ~,v,A.2 That
is, the student is convinced that {~,v,A} is functionally complete.
At this stage, the instructor reminds the class of certain equivalences such

as:

(AvVB) & ~(~A A ~B)

(AAB) & ~(~AvVv ~B).

By the use of these equivalences, one could replace all the v’s in the disjunctive
normal form formula by ~’s and A’s. Therefore {~,A} is functionally complete.
Or, all the A’s could be replaced by ~’s and v’s; so {~,v} is functionally com-
plete. To prove that a proposed set of connectives is functionally complete,
all one needs to do is show that the connectives of an already-established-as-
functionally-complete set can be “defined” by those in the proposed set. For
example, to show that {~,—} is functionally complete, we appeal to the func-
tional completeness of {~,v} and the equivalence

(AvB) - (~A—B).

Possibly students are introduced to other truth functions such as the Scheffer
strokes (NAND [7] and NOR [!]). The truth table for a | is:

and the student is asked to show {!} to be functionally complete in itself. After
some trials, the student might come up with:

~A4 - (A1 A)
(AvB) - ((AlB)l (41l B))

thereby showing that a functionally complete set of connectives {~,v} can be
“defined” by only {; so {!} is functionally complete.
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It is also straightforward to establish the functional incompleteness of many
sets of connectives without explicit excursion into mathematical induction. Thus,
for example, the functional incompleteness of ~ is easily established by point-
ing out that it is impossible to describe any binary truth table (except for the ones
that are “really” just negation) with a unary operator. And it is easy to convince
students that {v, =, A, <} is functionally incomplete since each connective in
this set takes true subformulas onto true formulas so that no truth function hav-
ing an F in the first row can be described by any formula using just these con-
nectives alone.

Drawing connectives only from the standard set of five, {v, A, <, =, ~},
it follows (from what has already been established about incomplete sets of con-
nectives) that any functionally complete set must

(i) contain ~
(ii) contain at least one of the other four connectives.

From what has been shown about complete sets we know it suffices for one of
these other connectives to be A, v, or —. To provide necessary and sufficient
conditions for the functional completeness of any set drawn from the five stan-
dard connectives, only one question remains: Is {~, <} functionally complete?

Proof of the functional incompleteness of this latter set is, for good rea-
son, best handled only after techniques of mathematical induction have been
introduced. For reasons that will be apparent in the next section, it is our view
that this problem is not handled well in the standard texts.

2 A problem in functional incompleteness Proof of the incompleteness
of {~, <} is assigned as a homework problem in various books, for instance
[1], p. 212, #8; [3], p. 211, #10; [4], p. 177, #10; [7], p. 28, #1.34. A similar prob-
lem (the proof of which is, in all important respects, identical) is to prove that
the set { <, < } is functionally incomplete ([2], p. 135, #24.6).> And of course,
rather than using the simple arguments we gave above, one could try to prove
that the set { —} is functionally incomplete by induction (along the lines of the
{ —,~} problem). See here [9], p. 121, #1 and [S], p. 52, #6. Hunter ([6], pp.
89-90) uses the {~, <} problem as an example of how to use mathematical
induction, and Bergmann, et al. ([1]) present a solution to their problem in their
answer book (p. 132).

Despite the problem’s popularity as an exercise for intermediate students,
it is not a transparently easy problem. Intermediate logic-teacher folklore has
it that the key to the solution is to prove that no truth table of any formula with
two atomic sentences using only ~ and < as connectives can have an odd num-
ber of F’s (or, equivalently, an odd number of T’s). Therefore, no truth table
with (say) three F’s in it can be expressed. This is the strategy employed by
Hunter and by Bergmann, et al. But even given this hint the problem has some
pitfalls. Indeed, the proofs by Bergmann, et al. and by Hunter are incorrect. Let
us see how the Bergmann, et al. proof is started (the Hunter proof proceeds sim-
ilarly). Where P is a formula containing two atomic components and only ~, <
as connectives, they argue:
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Our induction will proceed on the number of occurrences of connectives in
P. However, the first case, that considered in the basis clause, is the case
where P contains one occurrence of a connective. This is because every sen-
tence that contains zero occurrences of connectives is an atomic sentence and
thus cannot contain more than one atomic component.

Basis Clause: The thesis holds for every sentence of [the logic] with exactly
two atomic components and one occurrence of (one of) the connectives ~
and «.

In this case P cannot be of the form ~Q, for if the initial ~ is the only con-
nective in P, then Q is atomic, and hence P does not contain two atomic
components. So P is of the form Q — R, where Q and R are atomic sen-
tences. Q — R will have to be true on the two partial assignments [i.e., rows
of the truth table] to Q and R that assign the same truth-values to Q and R
and false on the other two partial assignments to Q and R. Hence the the-
sis holds in this case. (p. 132)

That was the basis step. We see that the “smallest” biconditional formula under
consideration has two distinct sentence letters in it, and that the “smallest”
negated formula has an embedded biconditional. There must be two distinct sen-
tence letters in it or else this wouldn’t be a correct basis case. If there were only
one sentence letter in it, then they could not rule out ~Q from the basis case.
Furthermore, the two sentence letters must be distinct, or else they could not
conclude that Q «— R will have two true rows and two false rows. (After all,
Q « Q does not have this feature.)

Now we come to the induction step. Here it is argued that if 4 and B both
have an even number of T’s and F’s in their truth tables, then any formula join-
ing them with « or ~ also does. The negation case is simple: if 4 has an even
number of T’s and F’s then ~A will also. When the connective is a <, there are
a variety of subcases, depending on just what even number of F’s it is that A
and B have (and when they each have 2 F’s [and hence 2 T’s], how they are
“aligned” to one another). While tedious, this part of the proof is conceptually
simple. Now since 4 has an even number of F’s, and since there are two sen-
tence letters in it, it must have 0, 2, or 4 F’s. Now we just go through the pos-
sibilities. If 4 has 0 F’s, B can have 0, 2, or 4. If they are both 0, then (A4 «
B) is always T and therefore has 0 F’s (an even number). If B has 2 F’s, then
(A < B)is F in those cases and T in the other 2 (and hence has an even num-
ber of F’s). If B has 4 F’s then (A <~ B) is always F (and hence has an even num-
ber of F’s). Postponing the case where A has 2 F’s, we move on to the case where
A has 4 F’s. Again B might have 0, 2, or 4 F’s. If it is O, then (A < B) is always
F (4, an even number). If it is 2, then (A4 <« B) is T in exactly those 2 cases (an
even number). If it is 4, then (A < B) is always T (0 F’s, an even number). The
last case is where 4 has 2 F’s. Here, B can have 0, 2, or 4 F’s. If it is 0, then
(A < B)is F exactly when A is F (2, an even number). If it is 4, then (4 <
B) is F exactly when A4 is T (2, an even number). The final possibility is that both
A and B have 2 F’s. Here, unlike the other cases, we need to consider how the
two formulas have their T’s and F’s “aligned”. Recall that there are supposed
to be exactly two distinct sentence letters (call them p and ¢) in (4 < B) and
that they both occur in each of 4 and B. Thus we have these possibilities:
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Pqg|AB AB AB AB AB AB AB AB AB AB
TT|TT TT TT TF TF TF TT TT TF TF
TF|TT TF TF TT TT TF FF FF FT FT
FT|FF FT FF FT FF FT TT TF TT TF
FFIFF FF FT FF FT FT FF FT FF FT
AB AB AB AB AB AB AB AB AB AB AB
TF TT TF TF TF FF FF FF FF FF FF
FF FF FT FT FF TT TT TF TT TF FF
TT FF FT FF FT TT TF TT FF FT TT
FT TT TF TT TT FF FT FT TT TT TT

(Since (A <« B) has the same truth table as (B — A4), all of the symmetric pos-
sibilities have been omitted. For instance, we did not consider the possibility:

A B
T T
F T
T F
F F

because by symmetry it is handled by the second possibility, viz.,

A B
T T
T F
F T
F F

This cuts the number of possibilities to be looked at from 36 to 21.) It will be
noted that every possibility has either 0 F’s (possibilities 1, 7, 12, 16, 19, 21) or
2 F’s (possibilities 2, 3, 4, 5, 8, 9, 11, 14, 15, 17, 18, 20) or 4 F’s (possibilities
6, 10, 13).

Thus the theorem has been proved —or has it? What does the theorem say
about these formulas?

L.pe(p~-p)

2. ~p = (p+~q)

3.~(pep) = (p-~q)

4. p—p

5(pep)-~(@-q)

6. (p—p)~q) = (~p - (q+Dp).

That is, formulas in which some arbitrarily deeply embedded biconditional does
not have distinct sentence letters on each side, or in which (as in case 2) one side
of such a biconditional does have further embedded two-variable biconditionals
and the other does not. The “proof” just cited has in essence defined an “OK
biconditional using p and q” as follows:
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(a) If p and g are distinct sentence letters, then (p < q) is an OK bicon-
ditional.

(b) If A and B are both OK biconditionals, then (4 < B) is an OK bicon-
ditional.

(c) If A is an OK biconditional, then so is ~A.

The proof given shows that every OK biconditional will have 0, 2, or 4 F’s in
its truth table, and therefore not every truth table can be described by OK bicon-
ditionals. But as formulas 1-6 show, not every biconditional (using p and q) is
an OK biconditional (using p and gq), so the original problem has not been
solved.

What is needed to fix up this proof? Obviously there is a problem in the
basis case for we need to be able to consider such formulas as p and (p < p)
and the like, so that we can apply the induction step to such formulas as (p <
(p <~ q))or (p —p) (p< q). The problem with this is that the induction
hypothesis — that the formula has 0, 2, or 4 F’s (or T’) in its truth table —is false
for such formulas as p or (p < p), since there are but two rows in p’s truth table
and only one is F.

In the sections following, we present two ways to prove the problem cor-
rectly. The first way follows the “proof” just given but makes allowances for
the non-OK biconditionals by altering the basis step. The second way makes use
of some properties of formulas which are composed only of negations and
biconditionals. Both methods make heavy use of mathematical induction, which
is, after all, frequently the point of the problem to begin with —to allow the stu-
dent to demonstrate his or her ability with this technique. At the end we will
mention still another way it might be proved. This way is more general and gives
more information about the property of functional completeness/incomplete-
ness, but does not easily allow the student to practice mathematical induction.

3 Solution I: The straightforward solution Let us recall what we are trying
to do. We wish to show that no formula made up exclusively of ~ and <, and
using only the sentence letters p and g, will have exactly three F’s in its truth
table. Since there is such a truth table, we conclude that {~, <} is functionally
incomplete.

The problem with the previously given “proof” is that some of the formulas
to be considered use only ore of p and ¢, and hence do not have a four-row
truth table suitable for use in the argument (and were therefore incorrectly omit-
ted from the discussion). This is the case that Bergmann, et al. explicitly excluded
from their basis case, and is therefore the reason that the induction step does
not consider all the formulas which might be of interest in determining whether
some formula might have (say) three T’s and one F. The correct proof, following
the general method employed by Bergmann, et al., would alter the basis step.
Again, we will show that no formula using only the sentence letters p and/or
q, and the connectives ~ and/or <, can have anything except 0, 2, or 4 F’s in
its truth table. However, obviously, a caveat must be made here: when the for-
mula under consideration employs only one sentence letter we will want to look
to the four-rowed truth table which uses both p and g. For example, if the for-
mula under consideration is (~ (p < p) < p), its normal two-rowed truth table
would be:
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p ' (~(p < p)=p)

T F
F T

But we will want to look instead at this four-rowed truth table:

p q \ (~(p < p) <D

T T F
T F F
F T T
F F T

(Obviously, this four-rowed truth table is to be constructed from the two-rowed
truth table in such a way as to agree in its assignment of T/F to the formula on
the basis of the value of the component sentence letter. Whenever a particular
value of the sentence letter in the two-rowed truth table assigns a value to the
formula, the four-rowed truth table will assign that value to the formula for the
same values of the sentence letter. This guarantees that there is a unique four-
rowed truth table for each particular two-rowed truth table.)

We are now in a position to prove that {~, < } is an incomplete set of con-
nectives. Our proof will be somewhat smoother than the Bergmann, et al.
“proof™, since the inclusion of all formulas into the discussion makes the proof
of the basis case simpler. Nonetheless, the induction step remains messy, and
we will just cite the induction step given earlier (which now works correctly for
the new basis case). Throughout this proof the term ‘truth table’ refers to the
four-rowed truth table constructed as needed in the manner indicated in the last
paragraph; we call this the “expanded truth table ” when the formula has only
one sentence letter.

Theorem Every formula A constructed from p, q, ~, < has 0, 2, or 4 F’s
in its (expanded) truth table.

Proof: Basis step. A has 0 connectives. Here A is a single sentence letter, either
porgq.

The two-rowed truth table for A would look like (when the sentence let-
ter is p):

p A(=p)
T T
F F

The only way to construct a four-row truth table (incorporating ¢) in such a way
that it assigns to A whatever X did for that value of p is this:

p q ) A(=p)
T T T
T F T
F T F
F F F

which, as we see, has two F’s in it, so the basis case is proved.
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Induction step. We assume that every formula 4 with fewer than k& connectives
(k = 1) has either 0, 2, or 4 F’s in its (expanded) truth table, and will prove that
therefore any formula with k& connectives has 0, 2, or 4 F’s in its (expanded) truth
table. Here we appeal to the induction carried out earlier. That proof, it will be
recalled, considered every combination of subformulas having 0, 2, or 4 F’s in
their truth table. Here we consider the four-rowed truth tables, and again every
combination of subformulas having 0, 2, or 4 F’s. If the formula A is ~B, then
(since B’s four-rowed truth table obeys the induction hypothesis), B will have
either 0, 2 or 4 F’s in it and hence A will have either 4, 2, or 0 F’s in its truth
table. If the formula A4 is (B « C) then the induction hypothesis holds for each
of B and C. That is, the four-rowed truth tables of B and C each have 0, 2, or
4 F’s. Here we consider all the possibilities mentioned earlier: (a) B has 0 or 4
F’s, (b) B has 2 F’s while C has 0 or 4 F’s, and (c) both B and C have 2 F’s. (In
this last case we need to consider the way these F’s are “aligned”.) In any of these
cases we find that the theorem holds.

This proves that every formula A made up only of p and ¢, with only the
connectives ~ and — will have the following property: if A contains both p and
q, then A’s truth table will contain either 0, 2, or 4 F’s in it; and if 4 contains
only one of p or g, then its expanded truth table will contain either 0, 2, or 4
F’s in it. From this it follows that {~, <} is functionally incomplete because
there is no formula constructible from p, ¢ and these connectives that will have
(say) three F’s in its truth table.

4 Solution II: Some tricks with biconditionals The previous solution was
pretty messy. Expanding truth tables and going through all the cases in various
of the theorems was extremely tedious. And it all rested on the insight that ~, «
could not describe a truth table with 3 F’s in it. Another insight we might have
into the problem has to do with the relationship between the truth of a formula
composed exclusively of < ’s and the number of occurrences of the sentence let-
ters in it.

Lemma 1 Let A be a formula composed exclusively of p, q, and —. Let
V(x) be a truth value assignment function which represents “True” by +1 and
“False” by —1. And finally, let n} be the number of x’s in A. Then:

V(A) = V(p)* x V(q)"4.

(That is, given a particular row of a truth table, the truth value—+1 or —1—of
A can be computed by counting the numbers of times p and q occur in A, raising
the values of each of p and q—as given by that row—to those numbers, and mul-
tiplying these results. Note that +1 to any non-negative power is +1, and that
—1 to any non-negative power is either +1 or —1.)

Proof: By induction on the number of connectives in A.
Basis step. A is either p or q. (Say p for definiteness). Then trivially:
V(A) = V(p) = V(p)' x 1 = V(p)' x V(q)° = V(p)"? x V(g)"4.

Induction step. Assume the result holds for any formula with fewer than & «’s.
A is a formula with & <’s, call it (B < C). By the induction hypothesis:
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V(B) = V(p)' x V(q)™
V(C)=V(p)*” X V(g)"e.
Note that (from the < truth table) V(B « C) = V(B) X V(C). Substituting

the previous formulas into this last formula, and using the arithmetic fact that
ab x a¢ = a®*°, we have:

V(A) = V(B « C) = V(p)'s*"s x V(q)"4*"s.
But njf = np + nS, and nj = nZ + ng, whence we have:
V(A) = V(p)'? x V(g)"s
which was the required result.

Although we will not prove it here, there is a simple generalization of
Lemma 1 to the case of an arbitrary number of sentence letters.

Lemma 2 Let py,D,,...D, be all the sentence letters in A. Then
V(A) = V(D)™™ X V(D)™ X ... X V(pa)'o.
A simple consequence of Lemma 1 is this:

Lemma 3 A formula A containing only p,q, < is valid iff both of p and q
occur an even number of times.

Proof: (a) Assume that both p and g occur an even number of times. We show
that V(A) = 1. The result of Lemma 1 holds for any row of the truth table: One
takes V(p) and V(q) in that row and raises them to the appropriate power.
Since both p and g occur an even number of times, the result for each will be
+1. Thus, the product will be +1.

(b) Assume that A4 is valid (i.e., V' (A) is always 1). We show that both p
and g must occur an even number of times. If p, for example, could occur an
odd number of times, consider the row of the truth table where p is F and g is
T. Now apply Lemma 1 to this row:

V(A) = V(p)"? x V(g)4.

Since V(q) = 1, it follows that V(g)"? = 1. So V(A4) = V(p)" . But V(p) =
—1 and n;‘ is odd. Therefore V(A) = —1 in this row, contrary to the assump-
tion that A is valid. By a similar argument, g must also occur an even number
of times.

Again this can easily be generalized, although we shall not prove it.

Lemma 4 A formula whose only connective is <« is valid just in case every
sentence letter in it occurs an even number of times.

Some trivial consequences of Lemma 2 are:

Lemma § The bracketing and order of occurrence of sentence letters in a for-
mula with < as its only connective are irrelevant to its truth value (so long as
it is well-formed).

Proof: This follows from the fact that Lemma 2 only counts numbers of occur-
rences of sentence letters, not location.
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Lemma 6 Any formula with < as its only connective is either valid or else
truth functionally equivalent to one in which all sentence letters occurring an
even number of times have been eliminated, and in which the number of occur-
rences of each sentence letter occurring an odd number of times has been
reduced to one.

Proof: This follows from the fact that, by Lemma 2, only those sentence let-
ters occurring an odd number of times can affect the value of V' (A) and they
affect it in the same way regardless of the (odd) number of their occurrences.

Another interesting consequence of Lemma 2 is the following.

Lemma 7 Any formula whose only connective is < is either valid, or else
has the same number of T’s and F’s in its truth table.

Proof: By Lemma 6, every formula with only < as connectives is either valid
or equivalent to a formula consisting of single occurrences of various sentence
letters. But by Lemma 2, the truth value in a particular row of a formula of the
latter type will be T or F depending only on whether the number of sentence let-
ters receiving the value F is even or odd. But in any truth table, exactly half the
rows have an odd number of F’s. Hence any formula with only < as its con-
nectives has either all T’s or else an equal number of T’s and F’s in its truth table.

Now let’s add negation into the picture. In light of the propositional theorems
@) (A & B) & (B« A)and (b) (A « ~B) & ~(A < B), the following is
true (we will provide an inductive proof of it).

Lemma 8 Any formula A whose only connectives are — and ~ is truth func-
tionally equivalent either to some formula whose only connective is <, or to the
negation of such a formula.

Proof: By induction on the number of connectives in A.

Basis step. A has 0 connectives. Then A is a sentence letter, and thus is itself
a formula whose only connective is «.

Induction step. Suppose that any formula using < and ~ with fewer than k con-
nectives (k = 1) is equivalent to some formula using only < or to the negation
of such a formula. We prove that any formula 4 with k£ connectives must be
also.

Case i. A is ~B. By the induction hypothesis B either is equivalent to X or to
~X, where X contains only «<’s. Trivially, then, A is equivalent to ~X or to
~~X (.., to X).

Case ii. A is (B < C). By the induction hypothesis, B is equivalent either to X
or to ~X and C is equivalent either to Y or to ~ Y, where X and Y contain only
«’s. There are thus four subcases:

Subcase o. B equivalent to X, C to Y. Then A is equivalent to (X « Y).
Subcase 3. B equivalent to X, C to ~Y. Then A is equivalent to ~(X < Y).
Subcase . B equivalent to ~X, C to Y. Then A is equivalent to ~(X < Y).
Subcase 6. B equivalent to ~X, C to ~Y. Then A is equivalent to (X < Y).
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Thus every formula containing only ~ and « is equivalent to one contain-
ing only «’s or to the negation of such a formula. With Lemmas 7 and 8 at
hand, we can easily prove the functional incompleteness of ~, .

Theorem Every formula whose only connectives are ~ and < has either all
F’s or all T’s or else the same number of T’s and F’s in its truth table.

Proof: From Lemma 8, every formula 4 using only ~ and < is equivalent either
to X or to ~X, where X contains only «’s. By Lemma 7, X is either always T
or else contains the same number of T’s and F’s in its truth table. If A4 is equiv-
alent to X, then A will have either all T’s in its truth table or else the same num-
ber of T’s and F’s. If A is equivalent to ~X, then A will have either all F’s in
its truth table or else the same number of T’s and F’s.

5 Solution III: Some deeper insights into functional incompleteness The
highly motivated and deeply inquiring student probably wishes to know why
{~,—} does form a functionally complete set but {~,« } does not. Is there any-
thing that can be done to explain why? In this section we give an explanation
of a very general nature (due to [8]). We will not prove the central theorem, but
will content ourselves with explaining it and explaining how to use it to deter-
mine whether an arbitrary set of connectives is or is not functionally complete.
(Although we know precisely which subsets of the standard five connectives are
functionally complete, there are, of course, many other possible connectives to
consider.)

We start by defining the notion of a dummy variable in a truth function.
Intuitively it is a variable (or position) which never makes a difference in eval-
uating a formula. For example, suppose we make up the truth function (p-q)
like this:

D q \ (p°q)
T T F
T F T
F T F
F F T

Note that this function “really” is just the negation of a ¢—the value of p in no
way ever makes a difference. More formally, if fis a truth function of » vari-
ables and

f(xl,X2, . .Xi,F;Xi+2, cen ,Xn) =f(X1,X2, e Xy T,XH_], .o .Xn)

for all the possible values of the other variables, then x;,; is a dummy variable
for f. That is, it never matters what the value of the (i + 1)st position is.
We next describe five classes of possible truth functions:

Type 1: Functions closed under T. For an arbitrary truth function f; fis closed
under T iff f(T,T,...T)=T.

Type 2: Functions closed under F. For an arbitrary truth function f, fis closed
under F iff f(F,F,...F)=F.

Type 3: Linear functions. A linear function is one in which every non-dummy
variable always makes a difference. That is, given any row of a truth
table, if you ignore values of dummy variables, a change in the value
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of one variable (holding all others constant) will create a change in the
value of the function. So: each variable either never makes a difference
(“dummy variable”) or else it a/ways makes difference. This means that
linearity can be easily tested in the following way. First, delete dummy
variables. Then, a function is linear if one of the following two situa-
tions occurs: (a) In every row in which the value of the function is T,
there are an even number of T’s assigned to the arguments of the func-
tion; and in every row in which the function is F, there are an odd num-
ber of T’s assigned to the arguments of the function; or (b) In every row
in which the value of the function is T, there are an odd number of T’s
assigned to the arguments of the function; and in every row in which
the function is F, there are an even number of T’s assigned to the argu-
ments of the function. That this is an adequate test can be seen by con-
sidering a simple example. We ignore any dummy variables. Now
suppose f(T,T,T) = T; then since a change in an argument must result
in a change of the function value, f(T,T,F) =F, and applying this fact
again we get f(F,T,F) = T and so on. Here everywhere the value of the
function is T there are an odd number of T’s in the arguments and
everywhere the function is F there are an even number of T’s. Had the
value of f(T,T,T) = F, the reverse would have been the case. A func-
tion fis nonlinear iff, after deleting dummy variables, there is at least
one n-tuple where f(x,...,T,...x,) =f(x(,...,F,...x,). Also note
that since this /™" position of the nonlinear function is not a dummy
position, there is also at least one sequence of truth values {y,...y,)
such that f(y1,...,T,... ) #f(Vis.. . Fyoo V).

Monotonic functions. A monotonic function is one in which the value
of the function “follows” the values of the arguments. That is, if fis
an n-adic monotonic function and {x,...x,) and (y;...y,) are
sequences of truth values, then: if {(x,...x,) < {)y;...y,) then
Sf(x1,... %) <f(y1...Y,). To make sense of this we note first that we
consider F < T, and so what f(x;,...x,) < f(y;...y,) rules out is
that f(xy,...x,) =T while f(y;...y,) =F. A sequence of truth val-
ues {Xp,...X,) is < to another sequence (y; ...y,) just in case when-
ever x; = T then so is y; = T. More pictorially we can represent this as
a lattice with the sequence (T, T, ...T) at the top and (F,F,...F) at the
bottom. For example, the 3-tuple lattice is:

(T,T,T>

(T,T,F) (T,F,T) (F,T,T)

X

(T,F,Fy <(F,T,F) (FFT)

(F,F,F)

A sequence is < another just in case the former is below the latter along
lines in the lattice. A function f is monotonic iff applying it successively
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to tuples downwards along the lines never results in having a F followed
by a T. Or: is nonmonotonic iff there is at least one place where
f(x1,...x,) = T while f(y,...y,) = F and yet (y,...y,) is above
(X1 ...X,) in the lattice.

Type 5: Self-dual functions. A truth function f'is self-dual if its reading from
top to bottom is the same as the complement of reading it from bot-
tom to top (in the standard ordering of values for arguments). So, for
example, if f yields the values FTFFTTFT (reading from top to bottom
of its truth table) we can reverse the order to get TFTTFFTF and com-
plement this to get FTFFTTFT. This is the same as what we started
with, and so f is self-dual. The function whose truth table reads
FFTFTTFT is not self-dual. That is, a self-dual function obeys the
following condition: for every row of the truth table {xi,...x,),
f(x1,...x,) #f(=x1,...—X,), where —X; is the opposite truth value
from x;. A function is not self-dual just in case there is a row of the
truth table {y;...y,) such that f(y;...,) =f(=yi...=V,).

Having defined these classes of truth functions, we are in a position to state (but
not to prove):

Theorem (Post’s Functional Completeness Theorem) A set X of truth func-
tions (of two-valued logic) is functionally complete iff, for each of the five
defined classes, there is a member of X which does not belong to that class.”

One can state in class (and even illustrate the truth of) the following state-
ments of what types the usual connectives are.

An,V: Classes 1, 2, 4

—: Class 1

~: Classes 3, 5

«: Classes 1, 3

«: Classes 2, 3

Ty: Classes 1, 3, 4

Fy: Classes 2, 3, 4
=:Classes 1, 2, 3,4, 5

where T, is any k-place truth-function whose value is always T; Fy is any .-
place truth function whose value is always F; and = is the (monadic) identity
function: = (p) is always the value of p.

Given Post’s Functional Completeness Theorem and this classification of
the usual connectives, we can easily prove that {~, < } is not functionally com-
plete because both connectives belong to Class 3. On the other hand, {~, A}
or {~, v} or {~, =} or {—, F;} are each functionally complete. In class one
might also demonstrate that the Sheffer stroke functions T and | do not belong
to any of the five classes.

6 Conclusion The point of this note has been to discuss the notion of func-
tional completeness and the proofs of the completeness/incompleteness of var-
ious sets of truth functions. We showed that the published proofs of the
incompleteness of {~, <} are incorrect and stated how to repair them. We also
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gave an alternate way to solve this problem relying on some idiosyncracies of
. The point of such proofs was really to give students practice in mathematical
induction, rather than to give them insight into the notion of functional com-
pleteness. So we concluded by trying to indicate the underlying features of truth
functions that will yield a functionally complete set.

Although the proof of Post’s Functional Completeness Theorem is prob-
ably beyond the scope of an intermediate symbolic logic class, the mere presen-
tation of it can deepen the students’ understanding of how truth-functions work.
This is especially so if it is given after the students have been assigned a series
of problems with the instructions “either prove to be functionally incomplete or
state the definitions which will reduce the set of connectives to a set known to
be complete”. At such a stage the students will have tried to figure out exactly
what properties of truth functions are relevant to having a complete set.

NOTES

1. Alternative terms for this are adequate and expressively complete.

2. For formulas without any T’s, any contradiction using only ~,v,A can be chosen to
express them.

3. The symbol < stands for “exclusive disjunction”.

4. We would like to thank Norman Martin (University of Texas) for information about
Post’s Functional Completeness Theorem.
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